
CprE 488 – Embedded Systems Design

MP-1: Quad UAV Interfacing

Assigned: Monday of Week 4
Due: Monday of Week 6

Points: 100 + bonus for automated flight and advanced diagnostics

[Note: the goal of this Machine Problem is for you to work with your group to increase your exposure to three
different aspects of embedded system design:

1. Interfacing – you will reverse engineer an RC transmitter to gain an understanding of the trainer
interface and format.

2. IP core design and integration – you will use the Xilinx tools to generate an AMBA AXI4-compliant IP core
that you will integrate into an existing XPS project.

3. Finite State Machine design – you will design and implement an FSM-based hardware module to record
and transmit PPM data.

1) Your Mission. Jeff Bezos believes that within a few years’ timeframe, Amazon will have Unmanned Aerial
Vehicles (UAVs) deliver packages right to your doorstep. What could possibly go wrong with his vision, right? As
a newly-hired engineering intern at a rival e-commerce company, you have been tasked with discovering
spectacular answers to this question!

There are significant complexities involved in building a system for autonomous flight, as it requires solving
challenges in multiple engineering domains, including image and signal processing, controls, and real-time
embedded systems. Fortunately, as a fresh intern your only task (for now) is to design an interfacing and control
platform for a simple quadcopter UAV and demonstrate its effectiveness.

2) First Flight. An RC quadcopter is a 4-rotor helicopter with motors that spin in counter-rotating pairs to create
a downward thrust while canceling out rotational inertia, with two rotors spinning clockwise and two spinning
counter-clockwise. We are using the Mini Fly QuadCopter ARF system which has a MultiWii Controller (MWC)

2

board and weighs only 325g. Quads of this scale are typically powered by a Lithium polymer (Lipo) battery and
are controlled via a wireless transmitter / receiver pair.

Transmitters come in various configurations – ours is a Hobby King 2.4 Ghz 6 channel mode 2 transmitter. In
mode 2, the left stick controls thrust (up-down) and yaw (left-right), and the right stick controls pitch (up-down)
and roll (left-right). After a brief orientation from the TA, spend 5-10 minutes gaining some familiarity with quad
flight. In your writeup, describe your experiences in practicing controlling the quad. Please keep the following
considerations in mind when flying the quad:

 Safety should be your primary concern. Use the open space in the back of the lab to fly the quad, and
make sure it is tethered safely to the ground at ALL times.

 The quads will only fly well when the batteries are completely charged. We have plenty of spare
batteries and chargers, so just make sure you disconnect your battery from the quad and plug it into a
charger when you’re done. Note that these Lipo cells can produce a decent amount of current, so don’t
short-circuit or connect them to the chargers backwards.

 Did I mention safety? Do not fly the quad when students are walking nearby, do not hold them in your
hand when they are activated, and in general respect the speed in which the propeller blades can spin.
Learn from Frankie below!

Figure: former CprE 488 student Frankie Four-Fingers after his unfortunate quadcopter incident

 Start out slowly. We have spare blades and other parts, but our general rule is if you break it, you fix it.

3) Trainer Port. As is common in the RC world, our Hobby King transmitters have a trainer port on the back,
which uses a 3-pin serial interface to transmit the Pulse Position Modulation (PPM) data that was described in
the HW-1. A typical usage scenario of a trainer port is to have two people share control of an RC aircraft: the
input (student) transmitter directly sends PPM data over the trainer port to a second output (instructor)
transmitter, which copies this data over the RF link to the receiver on the aircraft.

See the illustration below – the intention behind this configuration is that the student can practice flying the
aircraft while the instructor can take back control at any time.

3

Figure: your two TAs illustrating RC flight in a trainer configuration

Using the supplied cable, connect the trainer port of your input transmitter to an oscilloscope, and in your
writeup, describe the PPM signals. What do each of the channels correspond to, and what are their minimum
and maximum ranges? What is the total length of the individual PPM frames, and what is the minimum length of
the idle pulse?

For our purposes, we will be using the ZedBoard as an intermediate processing step between a pair of student
and instructor transmitters, and will be connecting the trainer ports directly to PMOD pins on the ZedBoard.
Based on the ZedBoard documentation and your oscilloscope measurement of the trainer port, what concerns
do you have about making this connection? Be specific, and confirm with your TA before continuing.

4) Project Checkout. Although we have not provided any source code or project files for this assignment, we do
provide a zip file containing useful documentation. This includes documentation related to the RC controller,
Quadcopter, voltage level adapter, and creating and packaging your own IP cores, and VHDL tutorials. This file is
called MP-1.zip and is linked to the course website.

4

5) System and IP Creation. Similar to the process we followed in MP-0, open VIVADO and create a new project
that targets the Zedboard. Once the project opens, we will be creating a new hardware IP core to interface with
the ARM-based Processing System via the AMBA Bus. VIVADO has a tool to aid you in creating IP cores with an
AMBA interface. We will be specifically connecting our IP core as an AXI-Lite device.

1. Select: Tools -> “Create and Package New IP …”
2. On the next screen that opens, Click “Next”.
3. The screen below when then open. Select “Create AXI4 peripheral”, as shown, and then Click “Next”

4. On the next window (see below), since we are creating an IP core to transmit PPM data over the

AMBA AXI-light bus, name your component axi_ppm. Click “Next”.

5

5. For the bus “Interface Type”, select “Lite” for AXI4-Lite. Since we will be reading and writing register
values for this peripheral at a relatively low speed (~1KB/sec), there is no need for a higher
throughput option. Make sure the Interface Mode is “Slave”, and increase the Number of Registers
to 16. These are Memory Mapped registers to be used to pass information between the ARM
processor software and your hardware IP core. Explore the drop-down box options to get a feel for
what other AXI4 interface options are supported. Click “Next”.

6. Select “Edit IP”, and then Click “Finish”

6

7. A new project will open, as shown below, to allow you to Edit a skeleton of an AXI-Lite IP core.
Notice the two VHDL source files in the “Sources” pane. You will be examining these two files to
understand the structure for how the IP core connects to the AMBA bus, and for determining where
to place your PPM logic for decoding and generating PPM signals. The “Packaging Steps” will be
used to update your IP core before packaging it to be included in your MP-1 system as an IP
component.

8. Use the “Sources” pane to navigate the axi_ppm peripheral’s structure. 1) In your write up,

provide a structural diagram of the axi_ppm design, from the top-level AMBA AXI interface down
to where you user logic will reside. 2) How does an address on the AMBA bus generate a read or
write enable signal for the slave registers in your design? 3) How will you PPM state machine get
access to the IP core’s Memory Mapped registers.

7

As previously mentioned, we are using the ZedBoard as an intermediate PPM processing step between the pair
of transmitters and the quad UAV. Specifically, we are connecting the trainer port of the “input” (student)
transmitter to one of the PMOD data ports, and another PMOD data port to the trainer port of the “output”
(instructor) transmitter.

Note the Sparkfun Logic Level converter sitting between the input transmitter and the PMOD interface! Based
on this setup, modify your axi_ppm module to implement the following functionality:

1. At the top level, add an PPM_Input and PPM_Output port that will be used to bring into the FPGA
and send out of it a PPM signal.

2. Use slv_reg0 as a general configuration register. For now, when slv_reg0(0) is equal to ‘0’, the core
operates in a “hardware relay” mode. In this mode, pass PPM_Input directly to PPM_Output.

3. Create a Capture_PPM Finite State Machine that samples PPM_Input. When the PPM values for 6
channels have been detected, stores the corresponding cycle counts into slv_reg10 through
slv_reg15. These registers will only be readable (not writeable) via software, so you can sever their
write connection to the AMBA AXI.

4. Once a new frame of PPM values has been captured (ch1 through ch6), increment a counter in
slv_reg1. This register will be polled by software to easily determine when new PPM data is
available.

5. Create a Generate_PPM Finite State Machine that takes cycle counts stored in slv_reg20 through
slv_reg25 and generates an appropriate signal for ch1 through ch6 on sw_PPM_Output. These
registers will be writeable via software.

6. When slv_reg0(0) is equal to ‘1’, we are in “software relay” mode. The sw_PPM_Output value
should be connected to PPM_Output.

Starting from the generic FSMs in your HW-1 write-up, update the User Logic module such that the design can
appropriately capture and generate PPM values for the Hobby King 6ch transmitter as described above.

8

Note making these changes to you User Defined logic is not a trivial task. Some suggestions as you implement
and test this module:

a) While it might be tempting to looking for the rising or falling edge of the PPM_Input port in order to
store those values, FPGA synthesis tools treat all signals that trigger code on an edge (e.g. the
rising_edge or falling_edge function in VHDL, @posedge and @negedge in Verilog) as a
clock signal, which is not appropriate for this design. Instead, sample PPM_Input and wait until a
transition has been stable for multiple clock cycles.

b) Create a testbench! There are a number of ways you can do this. See the VIVADO Logic Simulation

Tutorial for one example (MP-1/docs/Tools/ug937-vivado-design-suite-
simulation-tutorial).

c) To minimize the chance of synthesis – simulation mismatches (in which a design that appears to
work perfectly in behavioral simulation exhibits incorrect functionality once mapped to hardware),
use the two process FSM style as described in chapter 7 of the Free Range VHDL tutorial, available
under MP-1/docs/Tools/. In this style, one combinational process sets the next state and
output values, and a second sequential process registers the current state. In the combinational
process, make sure that every output signal is assigned a default value so as to avoid inferring
latches.

6) System Completion. After you are fairly confident in your axi_ppm module, add it to your MP-1 system
project as an IP core. Note that while the core will be automatically connected to the AXI bus, you will need to
connect the PPM_Input and PPM_Output ports to external ports on the design, and constrain these external
ports to the appropriate PMOD pins on the FPGA.

After correctly integrating the core into your system project, you are ready to export the design to SDK by
clicking the “Export Design” button. As before, the default directory for this option should be. Then run ok – click
“Launch SDK”.

7) Control Software. In SDK, create a new Application Project named rc_control.

Your rc_control project should demonstrate the following modes:

1) When SW0 is set to 0 put the system in hardware relay mode. Otherwise, set it to software relay

mode. As previously mentioned, in hardware relay mode the axi_ppm module directly passes
PPM_Input to PPM_Output. In software relay mode, the CPU reads the most recent PPM frame
(stored in slave registers 10 through 15) and copies the values to slave registers 20 through 25,
which are read by the axi_ppm module to generate PPM_Output. Quadcopter flight should not be
appear any different in these two modes.

2) If the middle button (BTNC) is pressed, exit the application. This is in general a good idea for all apps
that feature an infinite control loop, as the Processing System occasionally locks (requiring a
ZedBoard power cycle) up even when the application terminate button is pressed.

3) When SW1 is set to 1, put the system in software debug mode. In this mode the software outputs
(over UART) the current value of the PPM channels stored in the slave registers in axi_ppm.

4) SW2 turns on software record mode. In this mode, the down button (BTND) stores the next PPM
frame in an array and increments the array index, and the up button (BTNU) rewinds the recording
by decrementing the index to this array.

5) SW3 turns on software play mode. In this mode, the right button (BTNR) transmits any stored PPM
values over the axi_ppm, while the left button (BTNL) decrements the current play index.

9

6) SW4 turns on software filter mode. In this mode, any values to be transmitted (via) software to the
axi_ppm are first analyzed to determine if the quad will be put in an unstable position.

Note that VIVADO/SDK does create a software driver for the axi_ppm module, which can be found in in your
list of devices for the BSP. You may use this driver by copying it into your rc_control software project,
although this isn’t necessary since the axi_ppm module is a simple memory-mapped peripheral.

What to submit: a .zip file containing your modified source files (modifications to the two AXI vhdl
files, and any other VHDL file you created, MP-1.xdc, and rc_control.c) and your writeup in PDF
format containing the highlighted sections of this document. In the Blackboard submission, list each team
member with a percentage of their overall effort on MP-1 (with percentages summing to 100%).

What to demo: at least one group member must be available to demo the current state of your
implementation. A full demo score requires a system that can fly using the various hardware and software
modes, but partial credit will be given for effort. Be prepared to briefly discuss your source code.

BONUS credit. MP-1 has two separate bonus point criteria. The first is for the group with the best automated
flight longevity. Using a combination of software record, software play, and software filter modes, how long can
you keep your quad in the air without using the input transmitter? To be eligible for these bonus points, the
quad has to land safely after its automated flight. (25 bonus points).

The second criterion is advanced diagnostics. In your software debug mode, the ZedBoard transmits over UART
the current PPM values for the six RC channels. While this is useful for debugging the system, it does not provide
much in terms of any useful diagnostics for the flight itself. Upgrade the diagnostic capability of the system,
through some combination of software running on the ZedBoard and your host workstation. The teams with the
most useful data diagnostics visualization as determined by the TAs will be eligible for this bonus. (25 bonus
points).

Each group is limited to 100 bonus points for the entire semester.

