
CprE 488 – Embedded Systems Design

MP-2: Digital Camera Design

Assigned: Monday of Week 6
Due: Monday of Week 8

Points: 100 + bonus for additional camera features

[Note: at this point in the semester you should be fairly comfortable with using the Xilinx VIVADO development
environment, and so these directions will only expand upon the parts that are new. The goal of this Machine
Problem is for your group to become more familiar with three different aspects of embedded system design:

1. IP integration – you will work with several different IP cores that interface on the AXI Stream bus.
2. Digital image processing – you will gain exposure to some of the basic computational image processing

kernels, and will build a digital camera by combining the individual components.
3. HW/SW tradeoffs – you will analyze the performance tradeoffs inherent in an embedded camera system

as you first design software components and iteratively replace them with equivalent hardware IP cores.]

1) Your Mission. You’ve had a great run as a Chemical Process Engineer at Eastman Kodak. While it’s true that
cameras using Polaroid and other film-based technology are not as popular as in their heyday, look on the bright
side! You have a generous pension plan, great coworkers, and a modest 4 bedroom home in lovely Rochester,
NY. With mere months to go until you can start enjoying your retirement, you’re surprised by an impromptu
meeting request by the CEO. The (one-sided) conversation starts a bit ominously, and proceeds at a rapid pace:
“Sit down, we need to talk. They say you’re my most capable engineer. Now I keep hearing about these so-called
digital cameras. I don’t know what that is, and frankly, new technology scares me. So I need a prototype on my
desk in no more than 14 days – no excuses!”

It’s time to get to work. You know a little bit about camera optics (and certainly HW-2 provided a quick
refresher), but how to transform that to a useful digital output is well outside your comfort zone. Fortunately,
you have a skeleton project that provides the basic framework. Your task is to use system design techniques to
implement an image processing pipeline and other functionality commonly found in digital cameras.

2) Getting Started. The ZedBoard wasn’t sufficiently complicated by itself, so we’ve coupled it with the Avnet
FMC-IMAGEON card. The FMC-IMAGEON connects via the FPGA Mezzanine Card (FMC) connector on the
ZedBoard, and provides the following features:

• Video input via two sources: the ON Semiconductor VITA family of image sensors, and an HDMI input
interface

• Video output via an HDMI output interface

• A configurable video clock synthesizer

• I2C interfaces for FMC board configuration as well as for reading from an IPMI identification EEPROM

• SPI interface for Camera Sensor configuration

2

The FMC connector’s pins are directly routed to the Zynq FPGA on the ZedBoard, and so the I2C and other
peripheral controllers need to be instantiated in our VIVADO design. Make sure the ZedBoard is turned off while
plugging in the FMC-IMAGEON. Note: that the HDMI output controller can become incorrectly configured when
a new software application is downloaded, so when testing new software designs you will want to first re-
download the FPGA bitstream and/or reboot the ZedBoard.

Figure: ON Semiconductor Image Sensor with HDMI Input/Output FMC Bundle – photo and block diagram.
They’re quite expensive so please don’t break it. Pretty pretty please.

Given the complexity of this assignment, we have provided a starter VIVADO project that you can use as the
baseline for implementing the digital camera functionality. Download the provided MP-2.zip file, unzip, and
peruse the directory structure. You will find another zip file called mp2.xpr.zip. This contains a base project with
an initial design for HDMI video output. Unzip this zip file and open the project in Vivado using Open Project,
then find the xpr file within the project folder.

3) Design Test and Analysis. The initial design provides a Test Pattern Generator (TPG) that creates a 1080p
image, which is streamed into DRAM via our old the friend the Video Direct Memory Access (VDMA) module. A
software loop performs some simple processing on the incoming video stream, and the VDMA takes the
processed pixels and streams them to the HDMI out on the FMC-IMAGEON card.

The design is already 100% functional, so you just need to 1) Generate a bitstream, 2) Export HW (Include
Bitstream), 3) Launch SDK – but don’t walk away! While the system is building, analyze the design using the
Block Diagram view, and Implementation view, as well as directly through the
zedboard_fmc_imageon_gs.xcd file. In your writeup provide the following:

• A detailed system diagram that illustrates the interconnection between the various modules in the
system, both at the IP core level (i.e. the components in your VIVADO design) as well as the board
level (i.e. the various chips that work together to connect the output video to your monitor). The
documents found in MP-2/docs/Camera will be of assistance in understanding the various

components in the FMC-IMAGEON board, and the IP core documentation is found in MP-

2/docs/IP.

• A detailed description of how the hardware in the starter MP-2 design is intended to operate. Make
sure to describe the role of the various I2C interfaces, how the Video Timing Controllers (VTCs) are
being used, and what differentiates this VDMA from the version we used in MP-0. Also, explain the
role of the various clocks in the system (be specific).

3

After bitfile generation completes [Note: OK if this bitfile has some timing violations], and you have Exported the
Hardware and Launched Vitis, we need to set up the software side of the project. Use the follow steps:

1) Create a New Platform Project. Call it TPG, and associated it with your exported hardware (.xsa file)
2) Create a New Applicate Project. Call it MP2-TPG. Select the “Hello World” Template
2) Delete “hellowold.c”
3) In the MP2 file structure you downloaded copy all the files in the directory sw/camera_app/src

and paste them into the MP2-TPG/src directory.
4) Add the Repository for the Camera/HDMI software drivers to the project path

a) Go to Xilinx -> Repositories. Select New under “Local Repositories”.

b) Navigate to and select in the MP2 file structure: sw/ip_repo_sw,

 i) Click “Rescan Repositories”
ii) Click “Apply”
iii) Click “Apply and close”

5) Add the drivers to your MP2-TPG bsp:
a) Double click on MP2-TPG.prj, Click “Navigate to BSP Settings”, Click “Modify BSP Settings”
b) Check boxes for: 1) fmc_iic_sw, 2)fmc_imageon_sw, 3)fmc_ipmi_sw, 4) onsemi_vita_sw, Click OK

6) Rebuild the MP2-TPG project:
a) Right click and select “Clean Project”
b) Right click and select “Build Project”

Download the bitfile and camera_app executable to your board to ensure that the starter design is working

correctly. Modify the test pattern that is being generated to demonstrate your understanding of the general
camera_app structure. Provide at least two modifications: one which configures the TPG core directly (see the

provided TPG datasheet for several examples of this), and one which uses the software processing loop in

camera_app.c to modify the incoming video stream. Describe in your writeup what changes you made, and

save a copy of any files modified (presumably only camera_app.c and fmc_imageon_utils.c) during
this process into a folder named part3/.

4) Grayscale Camera. Navigating back to VIVADO, it is time to interact with the Image Sensor on the FMC-
IMAGEON board. The following gives detailed directions for how to connect to the Camera sensor. Also a nice
detailed PDF of what your system should look like after these steps is provided in the top level of the MP2 file
structure (Gray-Scale-PassThrough.pdf).

0) Add the MP2 IP directory to VIVADO’s IP repo: Tools->Settings->IP -> Repository. This will allow you to add
the camera specific IP blocks to your block design

1) Add the VITA SPI Controller IP block

 i) The default name of the component should be "onsemi_vita_spi_0", if not then update it.
 ii) Make the "IO_SPI_OUT_spi" port an External Connection ("Make External").
 iii) Rename the created port to "IO_VITA_SPI", allowing the bus name to match the xdc constraint file
 iv) Connect the "oe" pin to 1.
 v) Connect "s00_axi_aresetn" to the "peripheral_aresetn" of the 76 MHz Processor System Reset block
vi) Connect the s00_axi_aclk to the 76 MHz clock (FCLK_CLK0)
vii) Connect the S00_AXI bus to the AXI Interconnect (easiest way is to use the "Run Connection Automation"
and selcet teh FCLK_CLK0 option for the interconnect)
viii) Uncomment the "SPI for Camera configuration" section of the xdc constriants file

4

2) Add the VITA Camera Receiver IP block
i) The default name of the component should be "onsemi_vita_cam_0", if not then update teh name to this.
ii) Make the IO_CAM_IN port an Exteranl Connection ("Make External").
iii) Rename the created port to IO_VITA_CAM, this will allow the name of this bus to match what is in the
xdc constraint file.
iv) Connect the "oe" pin to 1.
v) Connect the "s00_axi_aresetn" to the "peripheral_aresetn" of the 76 MHz Processor System Reset block
vi) Connect the s00_axi_aclk to the 76 MHz clock (FCLK_CLK0)
vii) Connect the S00_AXI bus to the AXI Interconnect (easiest way is to use the "Run Connection
Automation" and select the FCLK_CLK0 option for the interconnect)
viii) Connect the "trigger pin" to 0.
ix) Connect the "clk" pin to pin "clk_out1" of the clk_wiz_0 component
x) Connect the "reset" pin to the "peripheral_reset" of the 148 MHz Processor System Reset block
xi) In the ZYNQ7 Processing System block enable FCLK_CLK2 and set to 200 MHz
xii) Connect pin "clk200" to the "FCLK_CLK2" pin of the ZYNQ7 Processing System block
xiii) Configure this IP core as follows: Default setting should be fine and be set to: Video Data Width = 8, VITA
Data Channels = 4
xiv) Uncomment the "Camera data, clocking, reset, trigger, and sync" section of the xdc constraints file
(Except for the one labeled "phjones: NOT USED").

3) Add the Video In to AXI4-Stream IP block

i) The default name of the component should be "v_vid_in_axi4s_0", if not then update teh name to this.
ii) Configure this IP core as follows: Video Format = Mono/Sensor, Input Component Width = 8, Output
Component Width = 8, FIFO Depth = 4096, Clock Mode = Common
iii) Connect the "vid_io_in_ce", "aclken", and "axis_enable" pin to 1.
iv) Connect the "aclk" pin to pin "clk_out1" of the clk_wiz_0 component
v) Connect the "aresetn" pin to the "peripheral_aresetn" of the 148 MHz Processor System Reset block
vi) Connect the "vid_io_in" pin to pin "VID_IO_OUT" the onsemi_vita_cam_0 component.
vii) Disconnect the pins of the v_tpg_0 component, using "Disconnect Pin" for each pin (Note: do not just
delete the commonent, as the tool may move more wires than you want).
vi) Delete the v_tpg_0 component
vii) Configure component "axis_subset_converter_0" as follows: Slave Interface Signal Properties: TDATA
Width = 1, Master Interface Signal Signal Properties = 2. Extra Settings, TDATA Remap String =
8'b10000000,tdata[7:0]
viii) Connect the "video_out" pin to the pin "S_AXIS" of component axis_subset_converter_0

4) Set FCLK_CLK0 of the Processing System to 75 MHz (It will generate a 76’ish MHz clock)

5) Check that all lines of the XDC file are uncommented, except for the one labeled as "phjones: UNUSED"

Questions:
1) Note that several of these ports in the XDC file are paired together, with one port ending in _p and the other
ending in _n. In your writeup, briefly describe what this pairing of signals signifies, and what this configuration is

typically used for.

2) We convert the 8-bit output of the “Video In to AXI4-Stream” IP core to 16-bits to be given to the VDMA by
appending the 8-bit value “10000000” (see step 3.vii),. Explain why this is an appropriate value to append, and

why appending “00000000” would not make sense.

5

Confirm that your Block Design passed the validate check, and then follow the typical steps for building a bitfile
(See MP-0 tutorial if you need a reminder on these steps), then Export the Hardware and Launch SDK. While you
wait, meditate on what you have learned.

Things on the software side are not nearly as complicated. In fmc_imageon_utils.c, uncomment the

functionality for the vita receiver initialization code, and make sure you call fmc_imageon_enable_vita() instead
of fmc_imageon_enable_tpg(). Note that since the appropriate libraries do not get included until the core is
added to the project, you will also need to uncomment the vita-related code in camera_app.h and
camera_app.c as well. Remove any previous transformation code in camera_loop(), and test that your

design works as expected. In your writeup, briefly explain why the camera at this stage is not outputting any
color.

5) Color Conversion Software. As discussed in HW-2, we can colorize this grayscale camera by applying a Bayer
filter.

A) Matlab prototype of Color Conversion Software:

• Use Matlab to create a “Bayer” image that emulates what the camera will provide your system. You can

create such a test image by starting with a RGB 24-bit BMP color image (choose an image) and

converting it to a “Bayer” image by just using a signal color component from each pixel in the color

image based on the “Bayer Pattern” (as a quick estimate) or you could apply the reverse transformation

that would be applied by the CFA.

• Now use Matlab to implement an algorithm to convert this “Bayer” image into a 4:2:2 Color image.

• Note: you will find the IP core documentation useful for details as you prototype your conversation

algorithm.

• Provide your Matlab Prototype software and your original RGB image, corresponding Bayer image, and

final output of your conversion algorithm in a folder named part5/

B) Create a software implementation for the Bayer color filter array in function camera_loop(), based on your
Matlab algorithm prototype. Describe in your writeup what changes you made, and save a copy of any files
modified (presumably only camera_app.c) during this process into a folder named part5/. While you have

already derived a pseudocode implementation for this operation, there are several complicating details:

• Although we are streaming 16-bit values to the VDMA (to be processed via software), based on our
system configuration above, only every other byte represents the vita camera output.

• The output of your Bayer pattern will be an RGB image, presumably with a 24-bit pixel
representation (since you can directly capture the 8-bit R, G, or B component). However, both the
VDMA and the HDMI output is configured to use 16-bit pixels. Specifically, the HDMI is expecting 16-
bit values in a 4:2:2 YCbCr pattern.

• YCbCr is a family of color spaces used as part of the color image pipeline in video and digital
photography systems. The ‘Y’ component corresponds to the relative luminance, with ‘Cb’ and ‘Cr’
corresponding to the blue-difference and red-difference chroma components. Note that YCbCr is
not a color space in the strict sense that RGB is; it is more of an encoding scheme for a color space
(such as RGB). The matrix equation for this conversion is given as follows:

6

[𝑌 𝐶𝑏 𝐶𝑟] = [
0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

] ∙ [
𝑅
𝐺
𝐵
] + [

16
128
128

]

• The YCbCr 4:2:2 pattern is an example of an encoding scheme referred to as chroma subsampling:
http://en.wikipedia.org/wiki/Chroma_subsampling#4:2:2. Because the human visual system is less
sensitive to the position and motion of color than it is to luminance, bandwidth can be optimized by
storing more luminance detail than color detail. Look at the VDMA initialization code in function
fmc_imageon_enable(), and infer from the Red, Green, and Blue examples how the 16-bit 4:2:2
YCbCr format is encoded. Briefly describe this in your writeup, and use this format as the output of
your camera_loop() conversion pass.

In your writeup, describe the performance of your software-based color conversion (in terms of frames per
second), and how you measured it. Overall this is a non-trivial piece of software, so put in a good faith effort for
this part and in your writeup, describe your testing methodology. If you get really stuck, fork your project so that
you can continue to work on the remaining system design parts.

6) Image Processing Pipeline. Although there are all sorts of software optimizations that can be applied to the
color filter array in the previous section, the overall performance will likely remain insufficient for our digital
camera needs. Fortunately for us, we can build a hardware image processing pipeline that should be able to
keep up with the input and output throughput requirements. Comment out the relevant camera_loop() code,
and switch back to VIVADO.

The three cores you will need to integrate to your project are: 1) Sensor Demosaic (v_demosaic_0) to convert
the Bayer pattern pixel stream of the camera sensor into an RGB pixel stream, 2) Video Processing Subsystem IP
configured for Color Space Conversion Only (v_proc_ss0) to convert the RGB pixel stream to 4:4:4 YCrCb pixels,
and 3) Video Processing Subsystem IP configured for 422-444 Chroma Resampling Only (v_proc_ss1) to convert
the 4:4:4 pixel stream to 4:2:2 pixels. Note the YCrCb format as opposed to YCbCr. At this point in the semester,
you should be sufficiently experienced in VIVADO to be able to integrate these cores without a detailed
walkthrough.

The image pipeline should proceed from vita -> vid_in -> v_demosaic_0 -> v_proc_ss0 (Color Conversion Only) ->
v_proc_ss1 (422-444 Chroma Resampling Only) -> axis_subset_converter -> vdma_S2MM -> vdma_MM2S ->
vid_out -> hdmi_out. Provide a diagram for this awesome pipeline in your writeup, making sure to label the bit
width of the relevant signals.

*Note: You will need to update the axis_subset_converter Slave Interface for TDATA to be 3, to match the
width of the 422-444 Chroma Resampling Only IP block. Yes this is a bit odd, but since this IP block can be
configured using software to convert both directions (i.e. 422->444, or 444->422) they have made the input and
out interfaces fixed to 24-bits in size.

http://en.wikipedia.org/wiki/Chroma_subsampling#4:2:2

7

Here are screen shots of recommended settings for these three IP cores:

Demosaic:

Video Processing Subsystem (Color Conversion Only):

Video Processing Subsystem (422-444 Chroma Resampling Only):

8

After you rebuild your design, then Export Hardware, and Launch Vitis. Most of the image pipeline-related code
is already provided for you in the camera_app project, so just uncomment out the headers, configuration

data, and pipeline enable calls in camera_app.c, camera_app.h, and fmc_imageon_utils.c. You will have to
investigate the initialization code for the Demosaic, Chroma Resampler IP core. The Demosiaic should be very
straight forward using its datasheet. The Video Processing Subsystem configure as Chroma Resampler Only
almost as straight forward, but you will need to dig through the Xilinx header files a bit to find appropriate
values for configuring a couple of registers. In your writeup, describe the performance of your image processing
pipeline (in terms of frames per second), and how you measured it.

7) Making the Camera. At this point you’ve put in a considerable amount of effort, but the current system only
implements a video pass-through. Create a new function called camera_interface() which adds the following
user interface functionality:

1. Pressing the middle button should capture the current frame as a raw image. Store up to 32 images
(in memory), and when a new image is captured, it should be displayed on the screen for 2 seconds.

2. Have one of the switches activate playback mode. In this mode, the left and right buttons rotate
through the previously captured images.

Provide a copy of any modified code for this section in a folder named part7/.

What to submit: a .zip file containing 1) A cleaned archive of your xpr project, 2) Your updated
design_1_wrapper.vhd and zedboard_fmc_imageon_gs.xdc files, 3) your Matlab prototype for color conversion
(including the image you converted), 4) your modified source files (the previously mentioned directories with
changes to camera_app.c and fmc_imageon_utils.c), and 5) your writeup in PDF format containing

the highlighted sections of this document. In the Canvas submission, list each team member with a percentage
of their overall effort on MP-2 (with percentages summing to 100%).

What to demo: at least one group member must be available to demo the current state of your
implementation. A full demo score requires a system that can capture images using the completed hardware
pipeline, but partial credit will be given for effort. Be prepared to briefly discuss your source code.

BONUS credit. MP-2 has two separate bonus point criteria. The first is for extra camera features. Consider what
additional features a typical point-and-shoot camera has over our simple MP-2 implementation. Some possible
examples (and their bonus point worth):

• A video mode, which records and can replay up to 5 seconds of 1080p video. (10 bonus points).

• A digital zoom mode, which uses the up and down buttons to zoom in and out of the current scene.
(10 bonus points).

• Various analog and digital adjustments for the gain, exposure, and other common user-configurable
digital camera settings. (2 bonus points each: up to 8pts)

The second MP-2 bonus point criterion is additional image processing pipeline stages. Similar to the steps
followed in part 6), to be eligible for bonus points each new pipeline stage will need a comparison between a
software and hardware-based implementation. Of particular interest is edge detection using Sobel-based or
Laplacian-based filters for which VIVADO has an appropriate core: (http://en.wikipedia.org/wiki/Sobel_operator,
http://en.wikipedia.org/wiki/Discrete_Laplace_operator) (25 bonus points).

Each group is limited to 100 bonus points for the entire semester.

http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Discrete_Laplace_operator

