
CprE 488 – Embedded Systems Design

MP-3: Embedded Linux

Assigned: Monday of Week 8
Due: Monday of Week 10

Points: 100 + bonus for target recognition capabilities

[Note: to this point in the semester we have been writing bare metal code, i.e. applications without anything
more than the most basic system software (“standalone” mode in Xilinx terms). While this comes with several
advantages due to its simplicity, it is fairly common for embedded systems to run an Operating System (OS). As
the complexities of an OS are significant enough to merit their own course, in this class we are focusing more on
practical aspects of porting an OS (Linux) to an (ARM-based) embedded system. Specifically, the goal of this
Machine Problem is for your group to gain familiarity with three different aspects of embedded system design:

1. Linux bring up – you will work through the stages of configuring, compiling, and booting for an open
source Linux kernel targeting the Xilinx ZedBoard.

2. Linux driver development – you will adapt a template to develop a driver for a USB-powered missile
launcher.

3. Linux system programming – you will write applications that target conventional Linux device drivers.

1) Your Mission. It was bound to happen sooner or later. I am of course speaking of an alien invasion. Having
already laid waste to the 100 most populous cities in the United States, the aliens have moved on to central
Iowa. Holed up in Coover Hall, you and your friends have miraculously discovered the aliens’ hidden weakness:
foam-tipped darts! It’s arguably no less plausible than the plot of Independence Day or even Signs.

The only thing standing between the aliens and their goal of taking over campus is you, your ZedBoard, and a
USB missile launcher. Unlike simpler interfaces we have used earlier in the semester, USB devices are typically
complex enough to require an Operating System to control their behavior. For that reason, you will port Linux to
the ZedBoard, adapt a USB driver for your USB missile launcher, and develop an automated sentry system using
the Linux code base and the camera system from MP-2. You only have two weeks of supplies remaining – so it is
definitely time to get to work!

The Dream Cheeky Thunder USB Missile Launcher: humanity’s last hope. Images not to scale.

2
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

2) Getting Started. As opposed to using an existing distribution that includes common binaries via a package
management system, we are porting Linux directly from the main kernel source tree. This process is sometimes
referred to as Open Source Linux (OSL)1. While this may seem like a daunting task, consider the following
simplifying characteristics of our ZedBoard:

• There is a well-defined solid-state boot sequence for the system, namely when jumpers “MIO4” and
“MIO5” are connected to 3V3, a small boot ROM copies code from a file named BOOT.BIN on the

sdcard and starts executing instructions starting from address 0.

• The Processing System side of the Zynq FPGA is fairly conventional: two ARM cores with commonly-
found features (e.g. timers, DMA), and interfaces (e.g. DRAM, USB, UART). Ignoring the programmable
logic side of the Zynq, we can make use of the very stable ARM branch of the Linux kernel.

• The Xilinx tools provide some automation capability to specify drivers for IP cores instantiated in
programmable logic. In the absence of drivers, the simple memory-mapped nature of the AXI bus allows
us to access our soft-IP core peripherals via explicit pointer references to /dev/mem.

The files to get you started with this MP are located here:
- MP-3.zip: Has Documentation, starter exported hardware platform (.xsa, and bitfile) with LEDs, switches, and
buttons configured, and Linux devices driver starter code.

Unzip MP-3.zip, and become familiar with the directory structure, and where information is located.

For the first part of this lab, you will be primarily following the PetaLinux Tools Reference Guide (ug1144) to
configure, build, and boot a Linux kernel on to the Zedboard.

Petalinux development: This nicely bundles the needed embedded Linux tools for compiling a Linux kernel, and
performing Linux device driver development, and application development. Note: this toolset only runs in
Linux. We have installed these tools for easy access onto the “Engineering Linux” VDI machines. Of course, you
can install petalinux on your own personal machines if you would like (just make sure to install 2020.1)

• “Engineering Linux” VDI machine:
o Directions for installing the VDI software: https://etg.ece.iastate.edu/vdi/
o Or you can go here: https://vdi.engineering.iastate.edu

▪ This link appears to give you the option to launch the VDI on a client running locally on
your machine, or you can access it via a webpage.

• Use your X drive: Make sure to use you X: instead of your U: for MP3. Building the Linux kernel may
take up to 100 GB of space, and you have MUCH more space on you X:. I think your U: maxes at a few
GB.

While the PetaLinux Tools Reference Guide (ug1144) is the main location for learning how to use the tools,
please refer to the following quick reference notes found in the MP3 release folder: petalinux-quick-ref.txt

In your writeup, briefly explain how this Make process was configured to appropriately use a cross-compiler
targeting the ARM architecture.

https://etg.ece.iastate.edu/vdi/
https://vdi.engineering.iastate.edu/

3
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

3) Booting Linux. Once you have built and packaged your Linux Kernel using Petalinux, copy the files required to
boot Linux to an SD card: BOOT.BIN, image.ub, boot.scr

After copying these files to the top level of your ZedBoard’s SD card, connect it back to the board. Making sure
that PuTTY is open, power on the board. In your writeup, provide an annotation explaining some of the boot
messages that print out as Linux is booting on your ZedBoard. The output is over 200 lines long, so annotate at
least 30 of the messages in your report. Note that the PS-RST button on the ZedBoard is quite useful for this
assignment, as it will restart the boot process from the beginning. There is no need to use the USB JTAG cable to
download bitfiles or executables.

Note: Once booted you will be prompted for a username and password: root for both.

Plugging in the USB missile launcher into the USB-OTG port announces that a new device has been found and
recognized. Include these kernel messages in your writeup and attempt to provide some meaning to the output.

4) Controlling Simple Peripherals. While the Linux kernel we have now successfully ported to the ZedBoard does
provide simple drivers for the AXI-GPIO peripherals we have connected to the buttons, LEDs, and switches in the
programmable logic, there is no need to use these. We know from MP-0 that these peripherals are simple
memory-mapped devices.

In most embedded Linux configurations, access to physical memory is provided using a character device file
located in /dev/mem. While the “correct” way to access devices is to use their associated driver, by directly

accessing /dev/mem as root we can read or write from any location in memory. Later we will use the mmap()

system function to create a new mapping between the physical memory address space and the virtual memory
space of our applications, but for now we can do so by calling the devmem utility:

zynq> devmem 0x0

0xE59F0000

Read up on the devmem utility, and confirm via experimentation that you are able to read the state of the

buttons and switches, and write patterns to the LEDs. Create a simple shell script that has the following
functionality:

• The script continuously polls the buttons and switches.

• When no buttons are pressed, the LEDs should reflect the current state of the switches.

• When 1 button is pressed, the LEDs should reflect the inverse of the current state of the switches.

• When more than 1 button is pressed, the LEDs should be all 1s.

Note that the sdcard is automatically mounted in the /mnt directory on the ZedBoard, and this is the only solid-

state storage available for you to save files. So place this script (called LEDfun.sh) on the sdcard and submit it

with your MP-3 submission .zip file.

4
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

5) USB Driver Development. Linux differentiates between drivers compiled directly into the kernel (static kernel
modules) and so-called loadable kernel modules. These loadable kernel modules have the advantage of flexible
development since they do not require a full kernel rebuild and reboot. The main disadvantage over the static
kernel is a slight performance penalty associated due to more fragmented kernel memory, but for our purposes
this overhead is trivial.

When we plugged the USB missile launcher into our USB-OTG port in step 4), we noticed that it was “claimed”
by the hid-generic driver (which is typically used for generic USB human interface devices such as joysticks and
keyboards). While there are many ways we could modify the kernel to prevent this from happening, for
purposes of simplicity, we will manually unbind this driver each time we reboot Linux (it will save you time and
headaches if you create another quick shell script for the commands in this section):

zynq> echo “1-1:1.0” > /sys/bus/usb/drivers/usbhid/unbind

The command structure for many USB devices is complex enough that a simple memory-mapped interface is not
appropriate. For this reason we will be creating a simple character device driver and dynamically loading it as a
kernel module. It is recommended you (again) read through Chapters 1-3 and 13 of the Linux Device Drivers
book before proceeding. Post on Blackboard any questions you may have as you read through these chapters.
Given the limited capabilities for debugging and the lack of recovery when something goes wrong, the USB
driver module development is the most challenging part of this assignment.

The Linux kernel source includes a skeleton code for a USB driver, which we have placed in the MP-3/drivers

directory. Copy this file (usb-skeleton.c) to a file named launcher_driver.c and start editing. In your

write-up, summarize the changes that you’ve made. Some pointers and requirements:

• You do not need to reverse engineer the missile launcher USB protocol (although that would also
make for a fun assignment). The file launcher_commands.h includes the command codes – of

which we will only be using UP, DOWN, LEFT, RIGHT, STOP, and FIRE.

• The Makefile is also already in place, which compiles the launcher_driver kernel module as

well as an example user application that you can use to test your driver.

• Replace every reference to the “skel” skeleton device with an appropriate launcher-specific
equivalent. For starters, line 27 defines a USB_SKEL_VENDOR_ID. Instead, use the
LAUNCHER_VENDOR_ID provided in launcher_commands.h. Do not do a global replace, make

these changes manually so you gain some understanding of how the skeleton code works.

• We don’t need to use any of the “read” functionality, but it’s probably more effort to properly
remove those callbacks than it is to just ignore them. Same with the “write_bulk” functionality.

• Our device does not have any bulk or isochronous endpoints, and just 1 input interrupt endpoint.
Consequently you can simplify the code in launcher_probe() (or just comment out the error
handling) to setup a control URB.

• The “write” operations are packed into a control URB and sent to the device. In function
launcher_write(), you will need to receive the user data and call usb_control_msg():

o The call to usb_control_msg() should replace the calls that fill and submit a bulk urb in
function launcher_write().

o We are always sending 8 byte messages, with byte 0 being 0x02
(LAUNCHER_CTRL_CMD_PREFIX), byte 1 corresponding to the user input byte (the
command), and the rest of the bytes being 0x0.

• Add a valid MODULE_AUTHOR and MODULE_DESCRIPTION.

5
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

The following blog provides some details on the type of changes to the USB skeleton driver code you will need
to make: http://matthias.vallentin.net/blog/2007/04/writing-a-linux-kernel-driver-for-an-unknown-usb-device/
(note – the code listed there will not directly work for our device, so do not attempt to just copy/paste).

Once you have some confidence that your driver is correct, copy the launcher_driver.ko and launcher_fire
executable to your SD card, and after Linux has booted on the ZedBoard, unbind the usb-hid driver as directed
above, and insert your kernel module into the running kernel:

zynq> insmod <location-of-your-ko-file>/launcher-driver.ko

If everything’s working, the new character device driver should show up as /dev/launcher0. Before

continuing, place your face 5 inches away from the missile launcher and confirm that the following command
has the appropriate effect:

zynq> echo –en ‘\x10’ > /dev/launcher0

This method of accessing the character device for our launcher, while valid, is limited to the speed of the shell
environment. A lower latency method of access can be had by directly accessing the file /dev/launcher0

using standard C system calls in our application, as is illustrated in launcher_fire.c. Walk through this file

and in your writeup, describe how it generally works.

This code only just fires the launcher. Create a new application (launcher-fire-buttons.c) which uses

the 5 pushbuttons to direct the launcher, with the center button acting as the “fire” button. The mmap()
function will allow you to map the physical memory address for the buttons, so check the man page to learn
how to use it correctly. Also, make sure to update your Makefile to compile this application. Part of your team
can skip ahead to part 7) at this point, as we are heading back to VIVADO/Vitis and modify the base system.

6) Sentry System. So far we have been able to keep the aliens at bay due our superior engineering skillset and
attentive patrols. To return to a life of normalcy, however, it would be preferable to have an automated sentry
system to drive the aliens further away. Fortunately, we have the camera infrastructure from MP-2 at our
disposal!

1. Open your MP2 in Vitis
2. Create a first stage boot loader project

a. File -> New -> Application Project
b. Select the platform you want to use (e.g., color pipeline platform)
c. Select the “Zynq FSBL” template option, in the past we have typically selected the “Hello World”

option. Note, if you get a message about not having a xilffs component you will need to add it to
your platform’s BSP (i.e., the platform.spr of the Platform project you want to use)

http://matthias.vallentin.net/blog/2007/04/writing-a-linux-kernel-driver-for-an-unknown-usb-device/

6
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

For better or for worse, the various peripherals we used in the MP-2 assignment (color filter array, timing
controllers, color resampling) do not have much in the way of driver support in the Linux kernel. For this reason
there is little value in updating our device tree to represent the MP-2 system. We can however, access the
framebuffer memory in Linux by adapting the mmap() approach from the previous section.

There are a few complicating factors when integrating the MP-2 camera system into MP-3:

1. We need to run the camera_app software infrastructure from MP-2, but our BOOT.BIN is already

associated with launching the u-boot.elf for Linux. Make sure this sentence makes sense before

continuing.
2. One workaround is to directly copy the files from camera_app into a new FSBL application, so that

the initialization of the camera-related peripherals can occur before Linux hand-off. Do that – the
appropriate place to call your camera_app functionality is in function FsblHookBeforeHandoff() in
fsbl_hooks.c.

3. The first compile error you’ll receive when doing so relates to there being multiple defined main()
functions. Rename your main() in camera_app.c to camera_main(), and call that directly in

FsblHookBeforeHandoff(). Remove any calls to your camera_loop() from MP-2.
4. Congratulations – more compile errors! These can be fixed via the suggestions on the class wiki for

MP-3.
5. Once you have fixed all the errors, Vitis will provide you with a .elf file that you can use in the

Petalinux flow. Previously when you did the petalinux package step, you just used the default for the
--fsbl option, now you will provide the .elf file you just created.

Re-generate your BOOT.BIN, (i.e., Update you PetaLinux project using the appropriate .xsa, .bit, and .elf files)

and load up Linux. Create a new application, called launcher_fire_camera.c, which uses the camera

framebuffer and USB missile launcher driver to act as an automated sentry system. Your sentry should have the
following features (in your writeup, describe the general algorithm you implemented):

• We have various dartboard-style targets printed out that your application should be able to detect.
There are 7 variants (red, blue, green, cyan, magenta, yellow, and black) – select whichever color you
believe will be easiest to detect in software.

• Color detection is not as simple as checking “if (pixel == RED)”. Printing ink on paper is not an exact
science, and even if it were, the targets are laminated and are somewhat shiny. Err on the side of false
positives versus waiting for precise matches.

• There are three framebuffers in the system, but since we are not doing in-loop camera processing (MP-2
style), you can read any of the three buffers using mmap() and expect to get relatively accurate data.

• Your application needs to take this detection result (presumably an X,Y framebuffer coordinate) and
direct the missile launcher to fire in that location. Don’t over-engineer this part either – the darts when
fired have a pretty wide margin of error, at least after they’ve been heavily played with by toddlers over
a long weekend.

• You can assume a slow moving target at a 3 foot range.

What to submit: a .zip file containing your modified source files (your final LEDfun.sh,

launcher_driver.c, launcher_fire_buttons.c, and launcher_fire_camera.c) and your

writeup in PDF format containing the highlighted sections of this document. In the Blackboard submission, list
each team member with a percentage of their overall effort on MP-3 (with percentages summing to 100%).

7
1Suggested motto: “Open Source Linux – for when Gentoo is too boring and simplistic”

What to demo: at least one group member must be available to demo the current state of your
implementation. A full demo score requires a system that can fire the USB rocket launcher based on some
camera-driven feedback, but partial credit will be given for effort. Be prepared to briefly discuss your source
code.

BONUS credit. MP-3 has two bonus point criteria. The first is detection accuracy. How far away can your
camera system detect one of the provided targets (assuming a slowly moving target)? For each foot of distance
beyond the 3 foot minimum in which you can consistently detect a target, you will earn 2 bonus points. (up to
20 bonus points)

The second MP-3 bonus point criterion is based on sentry precision. Assuming accurate object detection at the 3
foot minimum, can you reliably hit the target with your launcher? (10 bonus points).

Each group is limited to 100 bonus points for the entire semester.

