
CprE 488 - Embedded Systems Design 
MP-4: UAV Control (ver. 2.0) 

Assigned: Monday of Week 10 

Due: Monday of Week 12 

Points: 100 + bonus points 

Note: the goal of this Machine Problem is for you to work with your group to increase your 

exposure to three different aspects of embedded system design: 

1. Implementing Embedded Control — you will learn to implement control theory into a 

discrete system capable of running on a microcontroller. 

2. Understanding PID Control Basics — you will tune PID loops to gain familiarity with the 

impact of different values. 

3. Debugging over telemetry — you will learn to debug systems using parameter logging 

over wireless communication. 

Your Mission 

A MAN HAS FALLEN INTO THE RIVER IN LEGO CITY! Start the new rescue quadcopter! 

HEY! Program and tune the quadcopter, and off to the rescue! Prepare the lifeline, lower the 

stretcher, and make the rescue! The Crazyflie collection from MicroCART! 

Say hello to your Crazyflie drone! The goal at the end of this lab is to be able to smoothly control 

the Crazyflie with the algorithms that you will write and test. First, we will give you a brief 

overview of the Crazyflie system and how to set up the development environment for this lab.  

This lab has been developed over the course of several years by the MicroCart Senior Design 

project. The MicroCart Youtube Channel has many videos you may find helpful in case you get 

stuck during this lab, or for ideas you can do for extra credit.  

  

https://www.youtube.com/watch?v=Rl1HcsdVf0w
https://www.youtube.com/@microcart8754


Part 0: Meet the Crazyflie. 

There is only one physical button on the Crazyflie, the power button. To start the Crazyflie:  

1. Plug in a charged battery  

2. Press the power button located near the front 

right arm of the drone  

3. Wait for all four props to do a short spin and 

the startup tone to play.  

4. Place the Crazyflie on a flat surface to allow its 

sensors to calibrate. This is indicated by the 

flashing red LED. If it flashes quickly, then the 

sensors have been calibrated properly and the 

drone is ready to fly. If the LED flashes slowly, 

then the sensors have not been calibrated yet. 

If some hardware is damaged on the Crazyflie 

it may fail to pass its self check on startup. This 

is indicated by the red led flashing quickly 5 

times. In this case the hardware may be 

inoperable. If this is the case, notify a TA or the 

instructor.  

5. Always secure the CrazyFlie to a test-stand 

during PID tuning, and Controller 

development 

Figure 1. Crazyflie top down diagram 

 

LED Lights Diagnostic 

flashing red LED Calibrating 

Slow flashing LED Sensors have not been calibrated 

Red LED flashing 5 times quickly Failed to pass self checkup. Talk to TA if this 
happens 

 

 

Crazyflie System Overview  

This is the complete Crazyflie control system. You will only be modifying a small portion of it, but 

it will be helpful to understand the full scope of the system you are interfacing with.  



 
Figure 2. Crazyflie control diagram 

The control process starts with the state estimator module receiving sensor data and using it to 

calculate the drone's current attitude (its rotation, i.e. roll, pitch, and yaw). The state estimator 

then sends the calculated attitude to the state controller module, which also receives a setpoint 

from the commander module (in our case, this is user input specifying the desired attitude or 

attitude rate and thrust). The state controller module contains a cascading PID controller that 

uses the inputs from the state estimator to calculate the actuation force needed. That is then 

sent to the power distribution module where the actuation force is converted to motor power 

then the loop starts over again.  

You will be implementing the State Controller’s cascading PID in part 2 of this lab. 

 
Figure 3. Cascading PID diagram 

 

The Crazyflie runs off of a cascaded PID system where the output of the first PID controller is 

then used as an input for a second PID controller. This layout can be seen in figure 3, the output 

from the attitude PID controller, the desired attitude rate, becomes the input of the attitude rate 

PID controller. In part 2, you will be implementing the attitude and attitude rate PID controllers 

for roll, pitch, and yaw. In part 1, you will be determining the PID values that should be present 

in the controllers by using a working PID controller before implementing it yourself. 

 

Crazyflie Connection Setup Guide 

The tools needed to flash, interact with, and fly the crazyflie have been packaged into a virtual 

image for your convenience.  



Step 1: Open the Virtual Machine. 

The virtual machine has been configured to have the necessary utilities to develop the Crazyflie 

firmware. Below are detailed instructions for completing different tasks within the virtual 

machine. Login username is bitcraze and password is crazyflie. Add the VM Image from the 

C:/Temp/MP4Image/BaseFolder folder. To do this you click the big green plus button to add VM 

Image and not the “Import” button. If you would like more information about the VM or to 

download the VM on your personal computer see Appendix B. The virtual machine is 

immutable, which means that if you do not save any files you change elsewhere they will 

be reset on startup. For this reason it is recommended that you use git or Google Drive 

or a shared folder to save work. This is more important for Part 2 but is still worth mentioning 

now. 

Step 2: Flashing the Crazyflie.  

It is possible that another version of the quad software is currently flashed onto the crazyflie. In 

order to ensure that the Lab_Part_1 version of the software is installed, follow these steps. 

1. Navigate to the Crazyflie firmware folder, ex: 

‘~/Desktop/Lab_Part_1/crazyflie_software/crazyflie-firmware-2021.06/’ 

2. Plug in the Crazyradio into the usb port 

3. In the bottom right corner of the VM there is a USB icon, make sure the Bitcraze 

Crazyradio is selected under this menu 

a. The menu is accessed by right clicking the icon. Clicking on a device 

places a checkmark signifying it is mapped to the VM 

b. This can be finicky, may have to physically reconnect the radio a couple 

of times for it to connect successfully to the VM 

  Note: You can also add the USB by going to: 

a. Open Oracle  VM VirtualBox Manager 

b. Click on Settings  

c. Click on USB 

d. make sure the Bitcraze Crazyradio is selected under this menu 

4. Create the file ‘crazyflie_software/crazyflie-firmware-

2021.06/tools/make/config.mk’ if it doesn’t already exist and open with VS code 

5. Add CLOAD_CMDS=-w radio://0/<radio_channel>/2M/E7E7E7E7E7 to the file 

and replace <radio_channel> with your Crazyflie’s radio channel 

a. Your radio channel can be found in this spreadsheet Crazyflie Radio Map 

which is mapped to the drone number located on the bottom of the drone. 

b. This is a one time process and should not have to be done for any 

subsequent flashes unless you change which drone you are using or 

what folder you are flashing from 

6. Make sure the Crazyflie is powered on and running 

7. ONLY for Part 2 of the lab, compile the Crazyflie firmware with make 

CONTROLLER="Student" from the root of the Crazyflie firmware before 

proceeding. 

https://docs.google.com/spreadsheets/d/1s-LTBSU4LJ8Qs5JKpIU29xyBuBOk2Xo3C-WVXeCyAOQ/edit#gid=0


8. Run make cload from the ‘/crazyflie-firmware-2021.06/’ firmware folder to begin 

flashing the compiled firmware to the Crazyflie specified earlier. 

Step 3: Setting up the test stand 

With the drone flashed, we are almost ready to begin tuning the PID values, however we first 

want to ensure that the drone is secured about whatever axis we will be tuning the rotation for. 

The test stand is used to secure the drone about an axis of rotation and to also measure the 

rate of rotation and exact position of the drone. 

Step 3a: Test Stand Components  

The test stand for MP-4 is a bit more complex than the ones used in MP-1, and consists of three 

major components, plus a couple wires to connect them. The test stand base holds the rotary 

encoder used to measure position, and can be used in two different configurations depending 

on the drone orientation needed.  

 

The test stand mount attaches to the encoder shaft, and holds the Crazyflie drone in place 

through friction. There are two different mounts, which can hold the drone in either a horizontal 

or vertical position.  

 
Figure 4: Drone Holders 

Step 3b: Secure Drone 

Before starting the ground station, secure the drone to a mount. If you would like more 

information about the test stand see Appendix C. 

Step 4: Starting the Ground station. 

The ground station software is what you will mainly be using to communicate with the Crazyflie. 

It has been pre installed and set up on the virtual machine for this lab.  



You need to know the channel that a Crazyflie is connected to. Here is a sheet that lists the 

channels of each drone. Crazyflie Radio Map. 

To connect to a Crazyflie and open the GUI, make sure the Crazyflie is powered on and the 

crazyradio is available in the vm, then run the command crazycart <radio_channel>. If 

everything connects successfully, the GUI will open. Below are some details on how to perform 

tasks in the GUI. 

  

https://docs.google.com/spreadsheets/d/1s-LTBSU4LJ8Qs5JKpIU29xyBuBOk2Xo3C-WVXeCyAOQ/edit?usp=sharing


Step 5: Connect to the backend 

You will need to verify that the GUI connected to the backend every time  

1. Navigate to the backend tab 

2. Verify text box says ./BackEnd 

3. Verify the connect button has been clicked (to connect the test stand to the GUI 

is also on this tab) 

 
Figure 5. Connect Backend 

  



Step 6: Get/Set Parameters 

Lets you view and set parameters of the Crazyflie 

1. After connecting to the backend, navigate to the param tab 

2. The top half lets you view the parameter values of the Crazyflie while the bottom 

half lets you set those same parameters 

3. You first have to select the group that the parameter is part of then you can 

select a specific parameter in that group  

a. Alternatively, the key parameters used in MP-4 can be quickly set by altering a 

JSON file. Open ‘~/Desktop/groundstation/mp-4Params.json’ and fill in the file 

with valid values. Next, press the ‘Set Param from JSON file’ button and wait a 

few seconds. The ‘Complete’ text will darken once the list of parameters is set. 

 
 Figure 6: Parameters Tab 

 

  



Step 7: Sending setpoints  

Sends setpoints to the drone 

1. Navigate to the control tab 

2. Make sure manual setpoint is selected 

3. You can enter desired pitch/roll/yaw and slide the thrust in the boxes below 

4. You then chose if you want to send a rate or angle setpoint then click apply to 

send it 

5. Clicking stop will send a stop setpoint (all inputs 0) to the drone 

 
Figure 7: Manual Setpoints 

  



Step 8: Graphing Log Variables 

Log variables are the main form of feedback and debugging used in this lab. They will be used 

to tune PID values and debug code. 

1. See Adding New Logging Variables if needed 

2. With the crazyflie connected, navigate to the Control tab 

3. In the side bar you can specify up to 5 variables from active logging blocks to 

plot on the right 

 
Figure 8. Logging variables 

4. Once variables are selected click start logging to capturing data 

5. Press the stop logging button when you are done capturing data. 

6. The data will be displayed in close to real time. After plotting has stopped 

you can zoom in and move around the graph. 

7. If nothing is plotted after clicking start logging, refreshing the log block 

can help, see Adding New Logging Variables 

http://class.ece.iastate.edu/cpre488/labs/MP4/cpre488_MP-4/LabDocVer2.html#h.urt9wxeblsb


Part 1: Tuning the PID Controller 

PID control utilizes a measurement of state of a system, and the comparison of that 

measurement with a setpoint to determine an error value. By multiplying, integrating or 

observing the slope of this error a PID controller can be developed. The drone uses a series of 

nested PID controllers to control yaw, pitch and roll, both as attitude rates and attitude. Each 

rate, or attitude axis requires Kp, Ki and Kd values to act as the coefficients for the PID 

controller. Your goal for part 1 of the lab is to find Kp, Ki and Kd values for each of these 

controllers that enable robust control of the quadcopter. The values you choose will be driven 

by: 1) your observations of the quadcopter's response to changing setpoints, and 2) your 

intuitive understanding for how each coefficient should mathematically impact the quadcopter's 

response. It may be helpful to read Using the Test Stand for background information on how to 

utilize it while tuning. 

 

Tip: Begin with Kp, and then move to Kd values before Ki. When adjusting values, try first to 

adjust by an order of magnitude (multiply or divide by 10) before making smaller adjustments. 

Many Ki values can stay as very small or zero. Not all PID’s require all or even two coefficients 

to be non zero. In general Ki values are used to improve the disturbance within the system.  Since 

we are tuning the system with a low disturbance factor the Ki values do not need to be large. 

Attitude Rate Control  

We will begin by tuning the attitude rate controller. This controls the rate of rotation of the yaw 

pitch and roll.  

 

Tip: When tuning your rate controller, allow for a “looser” control. In other terms, the percent 

overshoot and settling time can be a bit larger than typically desired. This allows us to tune the 

attitude controller “tighter” later. As the attitude PIDs and rate PIDs have somewhat competing 

goals, there is a limit to how tightly both can be simultaneously tuned.  



 
Figure 9: Roll, Yaw and Pitch Diagram (source)  

Step 1: Yaw Rate  

First you will learn how to measure yaw rate with the test stand. Put the test stand so that it is 

standing with the three legs on the ground with the attachment that will hold the drone parallel to 

the ground, as figure 10 shows. 

 

 
Figure 10: Yaw rate test stand setup 

 

https://highsierrapilots.club/tahoe-minden-reno-discovery-flight/roll-pitch-yaw-diagram/


Now, connect to the Crazyflie and open the groundstation GUI. We will be graphing the test 

stand rotation rate and the yaw attitude rate setpoint. Details on how to use the test stand and 

how to set up plotting can be found in Appendix C.  

 

You can now send yaw rate setpoints and thrust setpoints via the ground station which will tell 

the Crazyflie to rotate at a certain speed, the test stand sensor will then measure the actual rate 

and display that on the GUI. However, with no PID constants set, the Crazyflie will not respond 

to setpoints. Your task is to change these constants through the GUI by setting parameters.  

 

Relevant logging variables:  

● MicroCART.Test_stand  

○ This is the test stand data  

● ctrlStdnt.yawRate  

○ This is the yaw rate setpoint  

● Optional - ctrlStdnt.r_yaw 

○ This is the crazyflie’s on-board sensor for yaw rate measurements  

 

Be sure to write down the PID values you find while tuning! They will be used in the second half 

of the lab and are required for submission. Also, the PID values are reset when the Crazyflie 

reboots, so be sure to write them down frequently! Additionally, there is a option to save your 

values through the use of a .json file. This is especially helpful to keep your PID value. 

 

Relevant parameters:  

Group: s_pid_rate  

● yaw_kp  

● yaw_ki  

● yaw_kd  

 

Tip: If the ground station becomes unresponsive or stops sending setpoints to the crazyflie, 

stop it by pressing ctrl + c in the terminal you launched it and restart it. The PID constants are 

stored in the crazyflie’s memory so they should be unchanged, unless the quadcopter is power 

cycled.  

 

Your goal for this part of the lab is to demonstrate that you can send a yaw rate setpoint to the 

Crazyflie and then verify through the GUI ground station that the Crazyflie follows that setpoint 

closely.  

Step 2: Pitch Rate 

Now change the mount attachment so that the Crazyflie will be held vertically and the left or 

right side of the drone is facing the table, as shown in figure 11. 

 



 
Figure 11: Pitch rate test stand setup 

 

You will now be tuning pitch rate, this is how fast the Crazyflie tilts up or down. Repeat the 

process you did for tuning the yaw rate, but with the appropriate pitch rate parameters and 

logging values.  

 

Note: The e_stop parameter under the sys group should be set to 0.  The e_stop, electronic 

stop, is a safety feature which turns off the quadcopter if it flips. Setting the e_stop to 0 will 

prevent the crazyflie from automatically rebooting when it detects tumbling. 

 

Relevant logging variables:  

● MicroCART.Test_stand  

○ This is test stand data  

● ctrlStdnt.pitchRate  

○ This is the pitch rate setpoint  

● Optional  

○ ctrlStdnt.r_pitch  

■ This is the crazyflie’s on-board sensor for pitch rate 

measurements 

 

Relevant parameters:  

Group: s_pid_rate  

● pitch_kp  

● pitch_ki  

● pitch_kd  

Step 3: Roll Rate 

Change the orientation of the drone so that the front or back is facing the table. 



 

 
Figure 12: Roll rate test stand setup 

You will now be tuning roll rate, which is how fast the Crazyflie tilts to the side. Repeat the 

process you did for tuning the yaw rate and pitch rate, but with the appropriate roll rate 

parameters and logging values.  

 

Remember to set the e_stop parameter under the sys group to 0 

 

Relevant logging variables:  

● MicroCART.Test_stand  

○ This is test stand data  

● ctrlStdnt.rollRate  

○ This is the roll rate setpoint  

● Optional - ctrlStdnt.r_roll  

○ This is the crazyflie’s on-board sensor for roll rate measurements  

 

Relevant parameters:  

Group: s_pid_rate  

● roll_kp  

● roll_ki  

● roll_kd  

Attitude Position Control  

We will now tune how the Crazyflie holds a specific attitude angle. Recall from Figure 3 that the 

attitude PID controller provides the input setpoint to the attitude rate controller. Therefore, it is 



important that the rate controller works well and all attitude rate PID values are set before 

continuing.  

Step 4: Yaw Attitude 

Change the test stand setup to how you measured yaw rate. You will now be tuning yaw, which 

is the angle that the Crazyflie is oriented. This is done similarly to yaw rate except you will be 

sending degrees rather than degrees per second setpoints. Note, there is a button built into the 

test stand for setting the 0 point of rotation, this can be used to approximately sync up the test 

stand angle measurement with the Crazyflie’s built-in measurement. In the end you will 

demonstrate that you can make the Crazyflie rotate to and hold a specific yaw angle, confirming 

it through the GUI ground station.  

 

Relevant logging variables:  

● MicroCART.Test_stand  

○ This is test stand data  

● ctrlStdnt.yaw  

○ This is the yaw setpoint  

● Optional - stateEstimate.yaw  

○ This is the crazyflie’s state estimator for yaw angle  

 

Relevant parameters:  

Group: s_pid_attitude 

● yaw_kp  

● yaw_ki  

● yaw_kd  

Step 5: Pitch Attitude  

For this part of the lab we will turn the test stand on its side and attach the other mount that will 

hold the Crazyflie parallel to the floor. Ensure the left or right side of the drone is facing the test 

stand, as shown in figure 13. 

 



 
Figure 13: Pitch test stand setup 

 

Repeat the process you did for tuning the yaw, but with the appropriate pitch parameters and 

logging values. You will demonstrate that you can make the Crazyflie rotate to and hold a 

specific pitch angle, confirming it through the GUI ground station.  

 

Remember to set the e_stop parameter under the sys group to 0  

 

Relevant logging variables:  

- MicroCART.Test_stand  

- This is test stand data  

- ctrlStdnt.pitch  

- This is the pitch setpoint  

- Optional - stateEstimate.pitch  

- This is the crazyflie’s state estimator for pitch angle  

 

Relevant parameters:  

Group: s_pid_attitude  

● pitch_kp  

● pitch_ki  

● pitch_kd  



Step 6: Roll Attitude  

To measure the roll you will turn the drone 90 degrees such that the back or front of the drone is 

facing the test stand, as figure 14 shows. 

 
Figure 14: Roll test stand setup 

 

Repeat the process you did for tuning the yaw and pitch, but with the appropriate roll 

parameters and logging values. You will demonstrate that you can make the Crazyflie rotate to 

and hold a specific roll angle, confirming it through the GUI ground station.  

 

Remember to set the e_stop parameter under the sys group to 0  

 

Relevant logging variables:  

- MicroCART.Test_stand - This is test stand data  

- ctrlStdnt.roll - This is the roll setpoint  

- Optional - stateEstimate.roll - This is the crazyflie’s state estimator for roll angle  

 

Relevant parameters:  

Group: s_pid_attitude  

● roll_kp  

● roll_ki  

● roll_kd 



Step 7: Maiden Voyage. 

Now you are ready to test how well your PID values work in flight.  You will be fine tuning your 

values through test flights! 

 

At this point you should be able to fully control all axes of the drone through a gamepad. Before 

you take off for real, it's always a good idea to check that your inputs do what you think they do 

while on the test stand. Gamepad control uses a mixed setpoint setup where pitch and roll are 

given as absolute angles, and yaw is given as a rate. Once everything looks ok on the test 

stand, carefully try to take off and get a feel for how she handles. Enable estop by setting the 

parameter to “1” before flying off the test stand. Be aware of others in the lab and try not to 

crash it too hard. 

 

 

Step 7a: Gamepad Control  

Control Crazyflie with gamepad: This video can also be used as an example. 

1. Be sure to pass the usb gamepad to the VM by clicking the USB symbol in the bottom 

right of the window and selecting the gamepad  

2. Navigate to the Gamepad tab  

3. The provided gamepad should be configured already, if not you can click the configure 

tab then move the joystick to the max and min value to calibrate it 

Tip: It may be useful to add a negative to the scales of the axes in order to invert joystick 

controls. 

 
Figure 15: Gamepad Menu 

https://www.youtube.com/watch?v=Nvvi2oN-t7c


4. Navigate to the control tab and select the gamepad control button after you have plugged in 

your controller. The ground station will immediately start sending setpoints to the crazyflie. The 

thrust joystick should be held to zero when switching to gamepad control to avoid unexpected 

takeoffs. 

 

 
Figure 16: Gamepad Selection 

Part 2: Understanding the controller.   

For this part of the lab you will be writing your own control algorithms. Be sure to set up code 

exporting from the VM so you don’t lose your work. The virtual machines are all 

immutable, which means that if you do not save your work elsewhere it will be deleted at 

reboot. All locations where you will need to write new code have been commented with 488 

TODO. You can use VS code’s built-in search function to find all occurrences to make sure you 

haven’t missed anything.  

 

*Make sure to flash the drone with lab part2’s firmware.* Flashing the drone 

Background 

Before beginning, it is recommended to read through the files you will be changing and the 

corresponding data structures. 

Background: Controller Layout 

The high level student controller, defined in controller_student.c, manages setting up 

setpoints and forwarding them to the attitude controller, whose output gets fed into the attitude 

rate controller. Both the attitude and attitude rate controller are defined in 

student_attitude_controller.c. The attitude and attitude rate controller utilize the base 

pid algorithms defined in student_pid.c. The output from the attitude rate controller gets 



passed back to the high level student controller where it then gets forwarded to other modules 

outside the scope of this lab. 

 
Figure 17: Student Controller Sequence Diagram 

Background: Understanding the Code  

As a part of writing your own algorithms, it is important to understand the data structures used in 

the firmware. Additionally, it can be useful to specify what logging information to send to the 

ground station. Below are details on both subjects which will help in the development of your 

algorithms. Additionally there are some further details on compiling the Crazyflie firmware 

below. 

Background: Data Structures 

There are four main structs that you will have to be familiar with that the state controller uses to 

communicate with other modules defined in the /src/modules/interface/stabilizer_types.h 

file. A small but important struct is the attitude struct, containing roll, pitch, and yaw values as 

floats and has a timestamp. Depending on the control context (viewable in the setpoint.mode 

struct) the values in this struct can represent degrees, or degrees per second for each axis. 

 



 
Figure 18: Attitude struct 

 

The first main struct is the state struct: it contains Crazyflie's current attitude and other 

parameters not relevant to this lab. Note that the current attitude rate is not available in the state 

struct. For this value you will need to read directly from the gyroscope described in the 

sensorData struct. 

 

 
Figure 19: State struct 

The sensor data struct contains raw data from several sensors, including the gyroscope. You 

will need to access information contained in this struct for some of your rate PID calculations.  

 



 
Figure 20: Sensor data struct 

The next major struct that you will interact with is the setpoint struct. The struct contains the 

setpoint information from the commander module which received setpoints from the ground 

station. Similar to other structs, it contains many fields of information you do not have to worry 

about. The important fields are attitude, attitude rate, and thrust. The others like velocity and 

acceleration are not used because you will be implementing an attitude controller, not a position 

or velocity controller.  

 

Additionally, the mode struct controls how the data in the setpoint struct is interpreted. The 

modes are set automatically by the ground station based on the control method. For this lab, we 

are concerned with only two or three control modes, attitude control, attitude rate control, and 

mixed attitude control.  

Background: Control Modes 

Attitude control If:  

● setpoint.mode.x y and z are set to modeDisable  

● AND  

● setpoint.mode. roll pitch and yaw are set to modeAbs  

 

Then, the controller will use the values given by setpoint.attitude.  

 

Attitude rate control If:  

● setpoint.mode.x y and z are set to modeDisable  

● AND  

● setpoint.mode. roll pitch and yaw are set to modeVelocity  

 

The controller will use the values given by setpoint.attitudeRate. This mode ignores most of the 

control algorithm and only uses the attitude rate controller to stabilize and control the quad. This 

mode is useful if you want to hold a steady rotation speed of the quad body, this is what some 

other quads call “acro mode”.  

 



Mixed Attitude control If  

● setpoint.mode.x y and z are set to modeDisable  

● AND  

● setpoint.mode. roll and pitch are set to modeAbs and setpoint.mode.yaw is set to 

modeVelocity  

 

This allows the roll and pitch to be specified as a rate and the yaw to be an angle. This is the 

method used when a gamepad controller is used.  

 
Figure 21: Setpoint Struct 

The last struct is the control struct. This is the output of your control algorithm and represents 

the force to apply to the drone’s body. It is sent to the power distribution module which converts 

it into motor commands. Note that these are 16 bit int values, so a conversion must take 

place from a float.  

 



 
Figure 22: Control struct 

 

Background: Logging Instructions 

1. At the bottom of the controller_student.c and student_attitude_controller.c you will see a 

list of log commands. It should look like this in structure but with many more LOG_ADD 

commands and a couple of groups.  

 

 
Figure 23: Sample Log Group 

 

2. This is how information is communicated to the ground station such as current yaw, 

pitch, roll and other information  

3. In the spot currently NULL you will put a pointer to the address of the global variable you 

want to log (ex: you have named your output pitch variable outPitch, you would put 

&outPitch in the field and it would look like the following) 

 

 
Figure 24: Sample Log Add 

 

4. Now you know how to send information to the GUI ground station :)  

5. The parameter macros below the logging are how the GUI sets constants in the 

firmware, like you did with the PID constants in part 1.  

6. Some of the controllers used in part 2 will not function correctly without logging actual 

values. Ensure that all addresses inserted are not null. 



Background: Compiling The Crazyflie Firmware 

The crazyflie firmware can be compiled from the firmware root folder, 

/Lab_Part_2/crazyflie_software/crazyflie-firmware-2021.06/ by running make 
CONTROLLER=”Student”. After successful compilation, the binary files will be placed in the 

root of the firmware folder and can then be flashed to the crazyflie by following the instructions 

above.  

 

make unit can also be used to run unit tests on the firmware, the unit tests are defined in 

/Lab_Part_2/crazyflie_software/crazyflie-firmware-2021.06/test/. You are free to add 

additional unit tests to debug, however it is not required. 

Writing the controller code. 

Now that you understand the structure of the firmware, it's time to start writing your own 

algorithms. You may want to review Flashing the Crazyflie, when you’re ready to compile run 

make CONTROLLER="Student" from the root of the Crazyflie firmware.  

 

Below is the suggested order of additions to make to the firmware. 

Step 1: General PID 

Note, for this section you should use the PID constants you found in part 1 for known good 

values. You can set the default values in the student_pid.h file. However the constants you 

discovered earlier may have some assumptions built in so it may be necessary to re-tune the 

controller if a significantly different algorithm is used.  

1. The first thing that you will write is a general PID function and struct. The PID struct that 

we provide you will be empty and you will decide on what should be included in it, that is 

defined in student_pid.h. You are encouraged to make as many helper functions that 

you would like in your student_pid.c file to help with roll, pitch and yaw calculations.  

2. The first thing I would recommend writing is the PidObject struct in student_pid.h. 

This struct is used to hold the data that is used for all other PID calculations so it is 

required to write many of the other functions.  

3. Next, write the basic getters and setters for the PidObject in student_pid.c.  

4. Now we can actually write the PID algorithm in the studentPidUpdate function.  

5. At this point, you should have filled out everything in student_pid.c and 

student_pid.h, make sure all of the “488 TODO” comments have been fulfilled in 

these files.  

Step 2: Student Attitude Controller  

The attitude controller and attitude rate controller have their main functions in 

student_attitude_controller.c, this is where you should begin working. 

1. Complete the initialization function for the attitude controller. 

2. Implement the student attitude rate controller PID. 



3. Test rate controller 

4. Next, write the student attitude controller PID. 

5. Test attitude controller 

6. Then finish the reset PID value helper functions 

7. Finally, fill in the logging parameter addresses. Then make sure all of the “488 TODO” 

comments have been fulfilled in these files. 

Step 3: Student Controller, Bringing it all together  

Now we need to bring everything together in the controller_student.c file.  

1. Start by reading in the setpoints for roll, pitch and yaw angles as desired values. For 

mixed attitude mode, the yaw angle should change from the current angle based on the 

rate given. Also, set the desired thrust. 

2. Use the attitude PID controller to set the desired attitude rate to the value calculated. If 

the controller is in velocity mode, overwrite the attitude rates with the setpoints provided. 

3. Next, input the desired attitude rates into the PID controller and use the outputs to set 

the command variables for roll, pitch, and yaw. Set the output thrust. 

4. Copy the values into separate variables for logging purposes. 

5. Complete the logging parameters by filling in the addresses. 

 

At this point, you should have filled out everything in all files, make sure all of the “488 TODO” 

comments have been fulfilled.  

 

Step 4: Final Check  

Before you go flying your Crazyflie for real, it's a good idea to verify everything works as 

intended on the test stand. Attach the drone to the test stand and briefly check that all axes 

respond how you expect. For this step you can use manual setpoints or a gamepad connected 

to the ground station, see here for details on using a gamepad with the ground station.  

 

If all looks good, take her for a spin and see how she handles! Be careful of others in the lab 

and try not to crash it too hard!  

 

What to submit: 

● Kp, Ki, and Kd constants for yaw rate, pitch rate, roll rate, yaw, pitch, and roll  

● All documents that were edited in the firmware to complete part 2, see final export for 

details If you’re hungry for further challenges, take a look at the extra credit section of 

this lab.  



BONUS credit.  

1. Give feedback on this lab (+5 points) 

a. This is a new lab developed by the MicroCART team as a senior design project. 

We would appreciate some feedback on what you enjoyed about the lab and 

what can be improved.  

b. Google Form Link  

2. Test Stand Data Visualization (+10 points) 

a. As in MP-1, extra credit may be awarded to teams that make a creative 

visualization for the test stand position or rate data.  

3. Manual flight obstacle course (+5 points) 

a. If teams can demonstrate their stable control algorithm by manually flying 

through an obstacle course extra points can be awarded. Film your obstacle runs 

and submit.  

4. Autonomous flight (+10 points) 

a. The Crazyflie has many autonomous capabilities that we have not even touched 

in this lab. Extra credit will be awarded if you can write a short script to takeoff, fly 

to some xyz coordinates using a positioning system. If you are interested, talk to 

your TA about setting up the positioning system in the lab. 

b.  You could write a short script that uses the ground station CLI to send 

commands over and over or you could use the crazyflie python library to send 

high level commands to the Crazyflie.  

i. An additional circuit board, the flow deck, or the lighthouse deck is 

required to use the crazyflie python library. If you wish to pursue this, talk 

to a TA and they can acquire a flow deck from the MicroCART team 

(microcart-f2021@iastate.edu).  

ii. A test stand that has been made for the purpose of tuning a positional 

controller has been made to assist with this task should you use the 

lighthouse deck. Ask your TA for more information. 

iii. Details on writing python scripts for the crazyflie can be found on the 

MICROCart seniors design team git repo. Talk to your TA for more details 

 

 

  

https://forms.gle/JxkrBnFRT56MCH3b8


Appendix A 

The Crazyflie is a versatile, open source quadcopter platform by Bitcraze. The platform has 

been specially adapted to meet the needs of this lab but has far more capabilities. If interested 

in exploring the platform further, check out their website here. 

Crazyflie Status Sheet 

The current status of quadcopters and their radio channel can be found at Crazyflie Radio Map. 

Crazyflie LED Codes  

One of the main ways the Crazyflie communicates its status is with the four LEDs mounted to 

the surface.  

 

 

LED code Meaning 

2 solid BLUE  All normal, indicates the back of the Crazyflie  

2 Slow flashing BLUE (1 hz)  Crazyflie is in bootloader mode and is ready 
to be flashed by radio 

1 Fast flashing BLUE (2 hz)  Crazyflie is in DFU mode and is ready to be 
flashed by USB  

Back left BLUE flashing Charging while plugged into USB. Percentage 
of time LED is on indicates battery level.  

1 slow flashing RED (0.5 hz)  Crazyflie is on but sensors are not calibrated. 
Place on a flat surface and keep still to 
calibrate  

1 fast flashing RED (2 hz)  Sensors are calibrated and ready to fly  

5 short RED pulses followed by a gap Self test failed, hardware may be damaged, 
notify a TA or the instructor 

1 solid RED  Low battery  

5 short GREEN pulses  Self test passed, all normal  

 

 

https://www.bitcraze.io/products/crazyflie-2-1/
https://docs.google.com/spreadsheets/d/1s-LTBSU4LJ8Qs5JKpIU29xyBuBOk2Xo3C-WVXeCyAOQ/edit#gid=0


Appendix B 

Virtual Machine Details 

The virtual machine has been configured to have the necessary utilities to develop the Crazyflie 

firmware. Below are detailed instructions for completing different tasks within the virtual 

machine. Login username is bitcraze and password is crazyflie 

Adding the Virtual Machine Instance 

The virtual machine is installed on the lab computers as an immutable virtual machine. In order 

to access it you may need to add it to virtual box. Click “Add” and navigate to 

C:/Temp/MP4Image/BaseFolder and click the vbox file. The virtual machine should now be 

available. 

Importing the Virtual Machine Instance 

The file is stored as a .txt on the course website but must be renamed to a .ova. If you are a 

windows user you can use the ren original_filename.txt new_filename.ova command.  

 

New users will not be able to see the VM instance until it is imported. 

1. Open Virtual box application 

2. Go to Import 

3. Navigate to the VM installation, <path-to-ova-file> 

4. Open the .ova file 

5. The virtual machine should now be available 

Folder Sharing with the Virtual Machine 

 Go to VM settings, machine → settings then shared folders 

 On the far right click the blue folder with a green cross to add a new shared 

folder 

 Set the folder path to a folder on the windows system to share with the VM 

 Select Auto-mount 

 For the mount point enter ‘/home/bitcraze/shared-folder’ or some other specified 

mount point 

 Select make permanent 

 This option is only available while the vm is running 

 Select ok on both dialog boxes to complete the shared folder setup 



 You should now be able to navigate to /home/bitcraze/shared-folder in the VM 

and see the files in your shared folder 

Exporting Code From the Virtual Machine 

Due to the read only VM image, you must export your work from the VM before shutting 

down. The VM will be reset on reboot and all changes will be reverted. 

There are two options to maintain and export your changes from the virtual machine. The first is 

to use a local git repository stored on your x drive or a usb flash drive. This minimizes network 

usage. The second option is to use a standard GitHub or GitLab repository. This option is best 

for working with other people in your group at the same time. If you do use the second option 

we ask you make your repo private. 

        With a bare git repository on the host machine 

 Create a bare repository on your x drive or a removable media device 

 ‘git init --bare my_repo_name.git’ 

 This will create a folder called my_repo_name.git with no working 

tree. 

 Share this folder with the VM and mount it at ‘/home/bitcraze/transfer-

repo.git‘, see details on sharing a folder with the VM 

 Once the bare repository is accessible from within the VM, the Microcart 

repository should already be setup to use 

‘/home/bitcraze/transfer-repo.git’ as a remote, check this with 

‘git remote -v’ 

 Commit and push your changes to your shared folder 

 If this fails try setting the remote url again with ‘git remote 

set-url origin <absolute path to shared folder>’ 

 Your changes will now be on the bare repo in your shared folder, these 

changes can now be reapplied later 

 This can be verified by navigating to 

‘/home/bitcraze/transfer-repo.git’ and running git 

log Lab_Part_2 

        With normal GitHub/GitLab repository 

 Note: the first commit may take a while as all the git history must be 

uploaded 

 Create a new private blank repo on github or gitlab, obtain the url or ssh 

address to the repo 

 In the Lab_Part_* folder run ‘git remote set-url origin <address of remote 

repo>’ 

 Note this set-url command must be run each time the VM is 

rebooted due to the immutable hard drive setup 

 Commit and push your changes as normal 



Importing Work Into the Virtual Machine 

       With a bare git repository on the host machine 

 Ensure the bare repository is accessible within the VM, see details on 

sharing a folder with the VM, mount it at ‘/home/bitcraze/transfer-

repo.git’ 

 The Microcart repo should already be setup to use 

‘/home/bitcraze/transfer-repo.git’ as a remote 

 From within the Lab_Part_* folder run ‘git pull’ 

       With normal GitHub/GitLab repository 

 Set the remote repository with ‘git remote set-url origin <address of 

remote repo>’ 

 From within the Lab_Part_* folder run ‘git pull’ 

Final export from the virtual machine 

Final export will copy all files that have been modified since the original state of the Microcart 

repo. 

 Ensure folder sharing and your git repository are setup correctly 

 Commit all changes within the git repository to be exported 

 From the root of the Lab_Part_2 folder, Run ‘cp -pv --parents $(git 

diff Lab_Part_2_tag --name-only) <DESTINATION-DIRECTORY>’ 

 The destination should be a shared folder other than your transfer repo 

so the files are accessible from the host machine 

 This will copy all modified files since the Lab_Part_2_tag into the 

destination directory 

 

 

Appendix C 

The test stand control board reads the rotary encoder value, and transmits either positional or 

rotation rate data to the computer.  

http://class.ece.iastate.edu/cpre488/labs/MP4/cpre488_MP-4/LabDocVer2.html#h.flfux4ko3ja0


 
Figure 25: Test Stand Control Board 

Utilizing the Test Stand 

1. Start the Crazyflie drone on a flat surface before you attach it to the desired mount  

2. Attach the drone to the mount by inserting each pair of clear plastic legs to a 

corresponding slot in the mount. If you’re using the vertical drone mount, make sure that 

the drone is mounted appropriately to measure either pitch or roll  

3. Once the drone is mounted, insert the shaft of the mount into the hole on the top of the 

test stand base, making sure it fits snugly and doesn’t rub against the sides.  

4. Plug the small three pin end of the gray cable into the rotary encoder. While you are able 

to only insert the plug in the correct orientation, please do not force the plug if you are 

met with resistance. Both the cable and the rotary encoder are fairly expensive, and we 

have limited replacements  

5. Plug the other end of the gray cable into the 5 pin connector on the test stand control 

board. Make sure to pay attention to the orientation of the connector, since this end of 

the cable can be plugged in backwards, although doing so shouldn’t harm anything. 

Make sure that the black wire on the cable connects to the connector pin with the square 

solder pad. 

 

 



Figure 26: Test Stand Connection 

6. Finally, connect the Arduino Nano to your PC using a mini USB cable and press the 

“Connect Test Stand” button on the GUI. 

Using the Test Stand  

The test stand has two modes, where it reports either positional data or the rotation rate (in 

deg/sec). The LED labeled “L” on the Arduino Nano is used as a mode indicator, and is on 

when the control board is in position mode, and off when in rate mode. You can switch 

between modes by pressing and holding the black pushbutton mounted to the control 

board PCB. Additionally, the black pushbutton is used in positional mode to zero the reported 

reading (sort of like “tare” on a digital scale). Short pressing the button while in positional 

mode will reset the reading to treat the drone’s current position as zero. While you will be 

able to see the reported data in the GUI, you can read the data reported by the controller by 

connecting to its COM port with PuTTY (or similar) at a baud rate of 9600. 

 

 

 

 

  



Appendix D 

Operating the Ground Station 

The Ground Station can be opened using the command crazycart <radio number> using the 

radio number corresponding to your quadcopter. 

Adding New Logging Variables 

The crazyflie uses what are called “Log Blocks” to define what variables are logged and sent to 

the ground station. A log block specifies what values to send and at what rate. Log blocks can 

be paused and resumed after initial setup. Note the crazyflie communication has a limited 

bandwidth, only enabling around 10 logging variables at a time. 

1. Navigate to the Log Blocks tab 

 
Figure 27: Log Blocks Tab 

2. The list on the left shows all available logging variables from the Crazyflie firmware 

3. To view and modify what logging variables are sent, click the “Open Logging Block 

Setup File” 



 
Figure 28: Logging Blocks File 

a. The logging blocks have a defined format that must be followed 

i. A block definition starts with START BLOCK 

ii. The next line is the logging block integer id, it must be unique to other 

logging blocks defined 

iii. The next line is the name of the logging block, this can be any string 

you’d like 

iv. The next line is an integer defining the rate of the logging block, a higher 

number pushes more data to the ground station. Note, too high of a rate 

can overload the graphing visualization and cause the GUI to slow 

down. Safe values are below 100. 

v. The following lines define the variables that are in the logging block, 

these are defined by the firmware and can be viewed in the large list 

mentioned above. Any number of variables can be in the log block and 

they do not have to be from the same logging group. 

vi. A block definition ends with END BLOCK 

vii. Any lines that are outside of a block definition are ignored 

4. Save and close the logging block definition file 

5. Click Refresh Log Blocks to send the new definition file to the crazyflie 

6. The drop down on the right should now show your new logging block and will be active 



 
Figure 29: Log Block Commands 

7. If needed, you can increase available bandwidth during logging by pausing all other log 

blocks, selecting your new one from the drop down, and resuming it. 

a. The stop all log blocks removes the log blocks from the Crazyflie. You will need 

to pause each log block one by one 

 

Command Line Interface (CLI)  

The CLI is the base of the communication with the Crazyflie drone. It can optionally be used for 

basic tasks. You shouldn’t need to interact with the CLI during the course of the lab, but it can 

be useful for debugging if something goes wrong. It can be opened by adding a “nogui” flag to 

the end of the crazyCART script. crazycart nogui Run commands with ./Cli ... Further usage 

details can be found by appending --help to the end of a command. The following commands 

are currently implemented.  

 

Command  Description 

./Cli outputoverride  <enable> <Time> 
<Throttle> <Pitch> <Roll> <Yaw> 

output override will send a setpoint that lasts 
a set amount of time with the specified 
throttle, roll pitch and yaw. With enable set to 
1 it will send the setpoint as a rate and 2 will 
send the setpoint as an angle  

./Cli getparam <block_id|’block_name’> 
<param_id|’param_name’> 

Get param will get the value of specified 
param. Note only the param id is used for this 
command. The param id is found in the 



logging TOC, use getlogfile 1 command to 
find this file  

./Cli setparam <block_id|’block_name’> 
<param_id|’param_name’> <value> 

Set param will set the value of the specified 
param  

./Cli getlogfile <id> Get log file will get a certain log specified by 
the id of  
0: data log  
1: param id  
2: logging toc 

./Cli logblockcommand <id> The log block command performs specific 
tasks on log files for the specified id of  
0: delete all log blocks  
1: refresh all log blocks  
2: load log blocks  
3: delete log block  
4: resumelog block  
5: pause log block 

 

 

 

 

Document Version Changelog  

- Version 1.1  

- Changed optional logging variables in lab part one from gyro.x, y, z to 

ctrlStdnt.r_roll, r_pitch, r_yaw  

- Changed git instructions for vm to use “Lab_Part_* folder” instead of “Microcart 

folder”  

- Updated student controller sequence diagram to have desired attitude rate being 

passed to the attitude rate controller  

- Removed “Test Stand Control Board Rate mode” extra credit & replaced it with 

test stand visualization extra credit 

- Version 1.2 (sdmay23-45) Last updated 3/19 

- Reorganized document for readability by adding appendices at the end. 

- Added additional tips to help students progress through the lab more efficiently. 


