CprE 488 – Embedded Systems Design

Exam 2 Review

Joseph Zambreno Electrical and Computer Engineering Iowa State University

www.ece.iastate.edu/~zambreno rcl.ece.iastate.edu

This is the end. My only friend, the end. – The Doors

Announcements

- Exam 2: Thursday 4/26, in class
 - 1 page of notes (8.5x11", single sided, hand-written)
 - 75 minutes
 - No electronic devices, except calculator
 - 15% of your overall grade
- Final demo day: Tuesday 5/1, Noon-2pm (Coover 2041)
 - Submit any and all final materials by 11:59pm on 4/30
 - Demo format:
 - Show off your design (platform and code), have some slides to explain the big picture and finer points of the project
 - Live demo
 - Self-evaluation of your rubric
 - Schedule and timing:
 - 10 minutes x 12 groups = 120 minutes (likely scenario)
 - 20 minutes x 12 groups = 240 minutes (can't do it)

Exam Focus

• Main topics:

- Interfacing Technologies (Lect-04, first half)
- Embedded Operating Systems (Lect-05)
- Software Optimization (Lect-06)
- Embedded Control Systems (Lect-07)
- Hardware Acceleration (Lect-08)
- Questions will cover:
 - Conceptual topics (textbook readings and lecture topics)
 - In-class exercises
 - Understanding of lab experiences

Textbook

- Section 9.3: Interfacing
- Section 3.5: Memory System Mechanisms (mostly 3.5.2)
- Chapter 6: Processes and Operating Systems
- Chapter 5: Program Design and Analysis
- Sections 10.4-10.5: Accelerators and Coprocessors

I just know I left it around here, somewhere...

Zambreno, Spring 2017 © ISU

CprE 488 (Exam 2 Review)

Review.4

Relevant Labs

• MP-2: Digital Camera Design

- Color space conversion
- Image processing pipeline
- Image framebuffers and VDMA
- Embedded software and optimization

• MP-3: Target Acquisition

- Embedded Linux bring-up
- The ARM device tree
- Virtual memory and I/O
- USB driver development
- MP-4: UAV Control
 - Intuition and practicalities for PID control
 - Working with accelerometers and gyroscopes
 - Understanding Bluetooth

Lectures (Week 7)

- Embedded Operating Systems
 - Processes and scheduling
 - Atomic operations and inter-process communication
 - Virtual memory
 - ARM architecture support

EX: Embedded Operating Systems

- 1. What is the purpose of a context switch? Using assembly (pseudocode is acceptable), describe the main steps required to perform a context switch on an ARM processor running Linux. Do not use any non-conventional instructions unless you can clearly explain what they are doing.
- 2. For the periodic processes and deadlines given below:
 - Schedule the processes using RMS
 - Schedule using EDF and compare the number of context switches required for EDF and RMS

Process	Cost (ms)	Deadline (ms)
P1	2	30
P2	5	40
Р3	7	120
P4	5	60
P5	1	15

Lectures (Week 9)

- Software Optimization
 - Understanding processor performance
 - Early optimizations (redundancy elimination, operator simplification)
 - Loop restructuring
 - Data representation

EX: Software Optimization

 Explain how loop unrolling, loop unswitching, and loop fusion can be applied by a compiler to the C code segment below. Describe the potential benefit and any possible disadvantages from applying these optimizations aggressively for (i = 0; i < N; i++).

Lectures (Week 11)

- Embedded Control Systems
 - Open-loop vs. closed-loop
 - PID control (continuous-time and discrete-time form)
 - Understanding P vs I vs D components
 - Nested PID (inverted pendulum example)
 - Model-based control

EX: Control Systems

 Assuming a PID controller is used to apply a force to move an object to a desired location. For the plot below (showing the response of the object when moved from 0 to 1), what PID settings would likely result in the observed behavior?

Lectures (Week 14)

- Hardware Acceleration
 - Motivation: Moore vs. Dennard vs. Amdahl
 - Performance analysis
 - Coprocessors vs. accelerators
 - Some common techniques and challenges
 - Case studies

EX: Hardware Acceleration

- For a randomly generated 32-bit value, how long (in terms of ARM instructions) would the following code take?
- What would a corresponding HW accelerator look like? What would the potential performance savings be?

```
int32_t hamming_distance(uint32_t x, uint32_t y) {
    int32_t dist = 0; uint32_t val;
    val = x ^ y; // XOR
```

```
// Count the number of bits set
while (val != 0) {
    if(val & 1)
    {
        dist++;
    }
    val = val >> 1; // ?? val &= val - 1; ??
}
return dist;
```

}