CprE 488 – Embedded Systems Design

Lecture 1 – Introduction

Phillip Jones Electrical and Computer Engineering Iowa State University

www.ece.iastate.edu/~phjones

rcl.ece.iastate.edu

The trouble with computers, of course, is that they're very sophisticated idiots. They do exactly what you tell them at amazing speed – The Doctor

What is an Embedded System? (CPRE 288 reminder)

- Your Definition?
- What are some properties of an Embedded System?

Quadcopter

Micro SD Card?

Blu-Ray / Remote

Programmable Thermostat

Roomba

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

• 1) Your Definition? 2) What are some Embedded System properties?

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

What is an Embedded System? (CPRE 288 reminder)

- Your Definition?
- What are some properties of an Embedded System?

Blu-Ray / Remote

Programmable Thermostat

Roomba

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

What is an Embedded System?

- The textbook definitions all have their limits
- An **embedded system** is simultaneously:
 - 1. "a digital system that provides service as part of a larger system" *G. De Micheli*
 - 2. "any device that includes a programmable computer but is not itself a general-purpose computer" – *M. Wolf*
 - 3. "a less visible computer" E. Lee
 - 4. "a single-functioned, tightly constrained, reactive computing system" *F. Vahid*
 - 5. "a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints" – *Wikipedia*

Perspective Matters!

 These definitions quickly become blurred when changing perspective:

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Another Practical Definition

An embedded system is a computing system that uses an ARM processor
 Smart
 Mobile**
 DTVs/
 Servers***
 Desktops

- Multiple caveats:
 - There is a significant 8-bit embedded market as well (e.g. PIC, Atmel, 8051)
 - ARM is also attempting to grow into the desktop and server market

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Scale of Embedded Devices

 Even as Electrical and Computer Engineers it can be easy to understate the scale (both in terms of size and ubiquity) of embedded devices

- SanDisk microSD card
- 100 MHz ARM CPU

Apple Lightning Digital AV Adapter

Lect-01.9

• 256 MB DDR2, ARM SoC

This Course's Focus

- Embedded system design the methodologies, tools, and platforms needed to model, implement, and analyze modern embedded systems:
 - Modeling specifying what the system is supposed to do
 - Implementation the structured creation of hardware and software components
 - Analysis understanding why the implementation matches (or fails to match) the model
 - Design is not just hacking things together (which is admittedly also fun)
- What makes embedded system design uniquely challenging?
 - System reliability needs:
 - Can't crash, may not be able to reboot
 - Can't necessarily receive firmware / software updates
 - System performance and power constraints:
 - Real-time issues in many applications
 - (Potentially) limited memory and processing power
 - System cost:
 - Fast time to market on new products
 - Typically very cost competitive

Jones, Spring 2019 © ISU

CprE 488 Survival Skills

Necessary Skill	Gained From
Software Development (General)	MAN I SUCK AT THIS GAME
Pointers	CAN YOU GIVE ME
Memory and Peripheral Interfacing	1 0x3A28213A
CPU Architecture	Ox 6339392C, Ox 7363682E,
HDL Design	I HATE YOU.
Circuits and Signals	
Critical Thinking	
Planning and Hard Work	

- Any course that claims to teach you how to design embedded systems is somewhat misleading you, as the technology will continue to undergo rapid change
- Our goal: provide a fundamental understanding of existing design methodology coupled with some significant experience on a current state-of-the-art platform

CprE 488 – Meet the Staff

Instructor

Prof. Phillip Jones phjones@iastate.edu Office Hours: TBA (329 Durham)

Jonathan Tan phjones@iastate.edu

Office Hours: TBA (2041 Coover)

TA

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

CprE 488 – Resources

 Main text: M. Wolf. Computers as Components (3rd or 4th edition): Principles of Embedded Computing System Design, Morgan Kaufmann, 2017.

- We are here to help, but communication is key!
- Key online resources:
 - Class webpage: <u>class.ece.iastate.edu/cpre488</u> contains lecture notes, assignments, documentation, general schedule information (Note: HW0 is due this Friday!!)
 - Canvas space: <u>https://canvas.iastate.edu</u> is heavily used for announcements, discussion, online submission, grading
 - Class wiki: <u>wikis.ece.iastate.edu/cpre488</u> updated (by you!) to include general tips and tricks and project photos/videos

Weekly Layout (Office hours to add)

	Monday	Tuesday	Wednesday	Thursday	Friday
9 am					
10 ⁰⁰					Lab Sec 2
11 ⁰⁰					
12 ^{pm}					
1 ⁰⁰		Lecture		Lecture	
2 ⁰⁰					
3 00					_
4 ⁰⁰					
				Lab Sec 1	
7 ⁰⁰					
	Jones, Spring 20)19 © ISU	CprE 48	38 (Introduction)	Lect-01.14

FPGA Design Tools

Lecture Topic Outline

- ✓ Lect-01: Introduction
- Lect-02: Embedded Platforms
- Lect-03: Processors and Memory
- Lect-04: Interfacing Technologies
- Lect-05: Software Optimization
- Lect-06: Accelerator Design
- Lect-07: Embedded Control Systems
- Lect-08: Embedded OS

Machine Problems (MPs)

- 5 team-based, applied assignments
 - Graded on completeness and effort
 - Significant hardware and software components
 - Two weeks each, with in-class and in-lab demos
- Tentative agenda:
 - MP-0: Platform Introduction
 - MP-1: Quad UAV Interfacing
 - MP-2: Digital Camera
 - MP-3: Target Acquisition
 - MP-4: UAV Control

Course Project

- Student-proposed, student-assessed embedded system design project
- Essentially a capstone project integrating your knowledge in digital logic, programming, and system design
- Something reasonable in a 3-4 week timeframe, likely leveraging existing lab infrastructure
- Deliverables:
 - Project proposal presentation and assessment rubric (week 9)
 - Project presentation and demo (10 minutes, week 15)
 - Project page on class wiki, with images / video (continuous)

Grading Policies

• Grade components:

- Machine Problems [5x] (40%)
- Homework
- Class Participation
- Midterm Exams [2x]
- Final Project (15%)

- At first glance, CprE 488 appears to be quite a bit of work!
 - Yes. Yes it is. 🙂
 - The lab/final project component is probably the most important

(10%)

(5%)

(30%)

- Historically speaking, if you are a valuable dedicated member of your lab team, you will likely do well in the class
- Goals as your instructor:
 - To create a fun, yet challenging, collaborative learning environment
 - To motivate the entire class to a 4.0 GPA
 - To inspire you to learn more (independent study / MS thesis ideas?)

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Student Thoughts from past Semesters

What students heard from others before registering CPRE488: <u>See</u>
 <u>Discord posts.</u>

Student Thoughts from past Semesters

- What students heard from others before registering CPRE488: <u>See Discord</u>
- <u>What students had to say after taking CPRE 488:</u>
- The lab takes a lot of work outside of class, but I knew that going in so it was not a surprise.
- The labs were great, but man were they long. You already knew that...
- This class takes a LOT of time. The teacher was very upfront about this, and did not try to hide it at all.
- This class takes an insane amount of outside work, but this was made clear to us the very first lecture.
- This class was a lot more work than I was expecting, but it was all worth it for the results we got to see at the end.
- This has been an amazing class to be a part of. While very challenging and time consuming, this class has provided the most career important teaching and skills than any other class I've taken at ISU

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Some High-Level Challenges

- How much hardware do we need?
 - How fast is the CPU? How large is Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

Design Considerations: Mars Rovers

Mars Sojourner Rover (1997)

- About 25 pounds
- 25 x 19 x 12 inches
- 8-bit Intel 80C85
 - 100 KHz

Opportunity/ Spirit (2004)

- About 400 pounds
- 5.2 x 7.5 x 4.9 ft
- 32-bit Rad6000
 - 20 MHz
 - cost: ??

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Some High-Level Challenges

- How much hardware do we need?
 How big is the CPU? Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

Some High-Level Challenges

- How much hardware do we need?
 How big is the CPU? Memory?
- How do we meet our deadlines?
 - Faster hardware or cleverer software?
- How do we minimize power?
 - Turn off unnecessary logic?
 - Reduce memory accesses?
 - Data compression?
- Multi-objective optimization in a vast design space

- Exploring Martian surface (Power consumption)
 - Movement
 - Communications
 - Computation

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Energy / Power

- Quadcopter Battery
 - Capacity: ~2000mAh
 - Voltage: 7.4V
 - Quad
 - On average requires 20A
 - Average Watts required?
 - Average Flight time?

Energy / Power

- Quadcopter Battery
 - Capacity: ~2000mAh
 - Voltage: 7.4V
 - Quad
 - On average requires 20A
 - 20A * 7.4V = 148 W
 - 2000/20,000=.1 hr=6 min

- Exploring Martian surface (Power consumption)
 - Movement: (??)
 - Communications: (??)
 - Computation: (??)
- Power Available
 - Solar panels (140W, 4-hours/day)
 - Battery storage

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
 - Battery storage

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
- Capabilities
 - 3,500 12,000 bit/s to Earth
 - ~120,000 bit/s to Orbiter

- Exploring Martian surface (Power consumption)
 - Movement: 100 W
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - Computation: 20W@20Mhz, 5W@2.5MHz
- Power Available
 - Solar panels (140W, 4-hours/day)
- Capabilities
 - 3,500 12,000 bit/s to Earth
 - ~120,000 bit/s to Orbiter
- Task
 - Image transmission:1024x1024 12-bit-pixels

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Lect-01.35

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb							
Rov->Earth							

CprE 488 (Introduction)

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Lect-01.36

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5						
Rov->Earth	100						

CprE 488 (Introduction)

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5			600			
Rov->Earth	100			10,000			

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Lect-01.38

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5			600	<mark></mark>		
Rov->Earth	100			10,000	<mark></mark>		

CprE 488 (Introduction)

Jones, Spring 2019 © ISU
- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100		600			
Rov->Earth	100	1,000		10,000	<mark></mark>		

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

- Communicating with Earth or Orbiter
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100		600	6		
Rov->Earth	100	1,000		10,000	10		

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100		600	6		
Rov->Earth	100	1,000		10,000	10		

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6		
Rov->Earth	100	1,000	100,000	10,000	10		

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Lect-01.43

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	

CprE 488 (Introduction)

Jones, Spring 2019 © ISU

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- Which channel sends the most images per day?
 - Time to send 1 image to Earth, to Obiter
 - How many pics per day (Earth and Obiter)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	<mark>1,000,000</mark>	

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Jones, Spring 2019 © ISU

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter; <u>10,000 bit/s</u> to Earth
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels
- Constraints
 - 3 hour window/day for Earth transmission
 - 10 min window/day for Obiter transmission
- How could you get a better image rate?

Lect-01.4

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	
Rov->Orb	5	100	500	600	6	3,000	
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000	

CprE 488 (Introduction)

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)		
Rov->Orb	5	100	500	600	6	3,000		
Rov->Earth	100	1,000	100,000	10,000	10	1,000,000		
Jo	nes, Spring	2019 © I	SU		CprE 4	488 (Introduct	ion)	Lect-01.46

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)		
Rov->Orb	5	<mark>100</mark>	<mark>500</mark>	600	<mark>6</mark>	3,000		
Rov->Earth	100	<mark>1,000</mark>	<mark>100,000</mark>	10,000	<mark>10</mark>	1,000,000		
Jo	nes. Sprina	2019 © I	SU		CprE 4	488 (Introduct	ion)	Lect-01.47

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)		
Rov->Orb	5	10	50	600	~60	3,000		
Rov->Earth	100	100	10,000	10,000	~100	1,000,000		
10	nes. Sprina	2019 © I	SU		CprF 4	488 (Introduct	ion)	Lect-01.48

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image

Compress 1 pixel per clock. (<u>Overhead</u>)

- How long to compress 1 image?
- How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000		
Rov->Earth	100	100	10,000	10,000	~100	1,000,000		
Jo	nes, Spring	2019 © IS	SU		CprE 4	488 (Introduct	tion)	Lect-01.49

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image

Compress 1 pixel per clock. (<u>Overhead</u>)

- How long to compress 1 image?
- How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u></u>	
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u></u>	
Jones, Spring 2019 © ISU					CprE 4	488 (Introduct	tion)	Lect-01.50

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image

Compress 1 pixel per clock. (<u>Overhead</u>)

- How long to compress 1 image?
- How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u>.05</u> / <u>.4</u>	
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u>.05</u> / <u>.4</u>	
Jo	ones, Spring	2019 © I	SU		CprE 4	488 (Introduct	tion)	Lect-01.51

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image
- **Compress 1 pixel per clock.** (<u>Overhead</u>)
 - How long to compress 1 image? O(3s/24s), E(5s/40s)
 - How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u>.05</u> / <u>.4</u>	
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u>.05</u> / <u>.4</u>	
Jo	nes, Spring	2019 © I	SU		CprE 4	488 (Introduct	ion)	Lect-01.52

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image
- **Compress 1 pixel per clock.** (<u>Overhead</u>)
 - How long to compress 1 image? O(3s/24s), E(5s/40s)
 - How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u>.05</u> / <u>.4</u>	
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u>.05</u> / <u>.4</u>	
Jo	nes, Spring	2019 © IS	SU		CprE 4	488 (Introduct	ion)	Lect-01.53

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- Compression: ICER (Compression Incremental cost-effectiveness Ratio): ~1 bit/pixel
 - 1,000,000 bits/image

Jones, Spring 2019 © ISU

- Compress 1 pixel per clock. (Overhead)
 - How long to compress 1 image? O(3s/24s), E(5s/40s)
 - How much Energy to compress 1 image?

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u>.05</u> / <u>.4</u>	<u>1/2</u>
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u>.05</u> / <u>.4</u>	<u>1/2</u>
			~			400 (7		

CprE 488 (Introduction)

_ect-01.54

- Communicating with Earth or Orbiter (5,000 J / day budget)
 - Communications: Rover-Orbiter (5W), Rover-Earth (100W)
 - <u>100,000 bits/s</u> to Obiter (10 min), <u>10,000 bit/s</u> to Earth (3 hr)
 - Computation: 20W@20Mhz, 5W@2.5MHz
 - Image Size: 1000x1000 10-bit-pixels=10,000,000 bits/image
- **Compression:** ICER (Compression Incremental cost-effectiveness Ratio): ~ 1 bit/pixel
 - 1,000,000 bits/image
- **Compress 1 pixel per clock.** (<u>Overhead</u>)
 - How long to compress 1 image? O(3s/24s), E(5s/40s)
 - How much Energy to compress 1 image?O(60J/120J),E(100J/200J)

Channel	Power (W=J/s)	Time/ pic (s)	Energy/ pic (J)	Time/ day (s)	Pics /day	Energy /day (J)	Comp time /pic (s)	Comp Eng /pic (J)
Rov->Orb	5	10	50	600	~60	3,000	<u>.05</u> / <u>.4</u>	<u>1/2</u>
Rov->Earth	100	100	10,000	10,000	~100	1,000,000	<u>.05</u> / <u>.4</u>	<u>1 / 2</u>
Jo	nes, Spring	2019 © I	SU		CprE 4	488 (Introduct	tion)	Lect-01.55

Illustrative Design Exercise

 An illustrative example of embedded system design inspired by <u>Chapter 1</u> of the M. Wolf textbook

GPS Navigation Unit

Jones, Spring 2019 © ISU

Major Steps in the Design Process

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Abstraction Levels

Abstraction Levels [cont]

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Abstraction Levels [cont]

- Growing system complexities
- Move to higher levels of abstraction [ITRS07, itrs.net]
 - Electronic system-level (ESL) design

Source: R. Doemer, UC Irvine

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Major Steps in the Design Process

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Requirements

- Plain language description of what the user wants and expects to get
- May be developed in several ways:
 - Talking directly to customers (User Research)
 - Talking to marketing representatives
 - Providing prototypes to users for comment

Functional vs. Non-Functional Requirements

- Functional requirements:
 - output as a function of input
- Non-functional requirements:
 - time required to compute output;
 - size, weight, etc.;
 - power consumption;
 - reliability;
 - etc.

GPS Navigation Unit Requirements

• Example: Table for summarizing metrics of interest

Name	GPS moving map
Purpose	
Inputs	
Outputs	
Functions	
Performance	
Manufacturing cost	
Power	
Physical size and weight	

GPS Navigation Unit Requirements

- Functionality: Hand held. Show major roads & landmarks.
- User interface: At least 400 x 600 pixel screen. Three buttons max. Pop-up menu.
- Performance: Map should scroll smoothly. No more than 1 sec power-up. Lock onto GPS within 15 seconds.
- Cost: \$120 store price = approx. \$40 cost of goods sold.
- Physical size/weight: Should fit in hand
- Power consumption: Should run for 8 hours on four AA batteries
- Any others?

Requirements: Summary & Prototype

GPS moving map							
Consumer-grade moving map for driving use							
Power button, two control buttons							
Back-lit LCD display 400 × 600							
Uses 5-receiver GPS system; three user-selectable resolutions; always displays current latitude and longitude							
Updates screen within 0.25 seconds upon movement							
\$40 0.2 [™] RT-9A S (Downtown) ↑↑ RT-9A S (Downtown)							
100 mW							
No more than $2'' \times 6''$, 12 ounces							
	GPS moving mapConsumer-grade moving map for driving usePower button, two control buttonsBack-lit LCD display 400 × 600Uses 5-receiver GPS system; three user-selectable resolutions; always displays current latitude and longitudeUpdates screen within 0.25 seconds upon movement\$40100 mWNo more than 2" × 6", 12 ounces						

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Major Steps in the Design Process

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

GPS Specification

- What should system include:
 - What is received from GPS;
 - Map data;
 - User interface;
 - Operations required to satisfy user requests;
 - Background operations needed to keep the system running
- Often described using mechanisms such as:
 - -UML
 - Data/Control Flow diagrams, Compute Model (FSM)
 - Formal Method language (1st order logic, LTL)

System Specification

- Capture requirements
 - Functional
 - Free of any implementation details
 - Non-functional
 - Quality metrics, constraints
- Formal representation
 - Models of computation
 - Allow analysis of properties
 - Executable
 - Can validate using simulation
 - Can verify with formal methods
- Used for application development
 - Precise description of desired system behavior

Major Steps in the Design Process

Jones, Spring 2019 © ISU

System Architecture

- Processing elements (PEs)
 - Processors
 - General-purpose, programmable
 - Digital signal processors (DSPs)
 - Application-specific instruction set processor (ASIP)
 - Custom hardware processors
 - Intellectual property (IP)
 - Memories
- Communication elements (CEs)
 - Transducers, bus bridges
 - I/O peripherals
- Busses
 - Communication media
 - Parallel, master/slave protocols
 - Serial and network media

Multi-Processor Systemon-Chip (MPSoC)

Mem

Jones, Spring 2019 © ISU

CPU

P3

GPS Unit System Architecture (Diagram)

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

GPS Unit Architecture

Major Steps in the Design Process

Jones, Spring 2019 © ISU

CprE 488 (Introduction)
Component Design/Implementation

CPU

Arbiter

Program

EXE RTOS IC

Hardware

- Microarchitecture
- Register-transfer level (RTL)
- Software binaries
 - Application object code
 - Real-time operating system (RTOS)
 - Hardware abstraction layer (HAL)

- Pins and wires
- Arbiters, muxes, interrupt controllers (ICs), etc.
- Bus protocol state machines

Mem

Bridge

- Manufacturing
- Prototyping boards

CprE 488 (Introduction)

Lect-01.75

Major Steps in the Design Process

Jones, Spring 2019 © ISU

CprE 488 (Introduction)

Component Design and System Integration

- Must spend time architecting the system before implementing

 Draw pictures/diagrams at various levels of detail
- Evaluate Component Sourcing Options:
 - Ready-made,
 - Modified from existing designs,
 - Designed from scratch
- Putting components together early
 - Many bugs appear only at this stage
- Have a plan for integrating components to uncover bugs quickly, test as much functionality as early as possible

Important questions to keep in mind

- Does it really work?
 - Is the specification correct?
 - Does the implementation meet the spec?
 - How do we test for real-time characteristics?
 - How do we test on real data?
- How do we work on the system?
 - Observability, controllability?
 - What is our development platform?

Acknowledgments

- These slides are inspired in part by material developed and copyright by:
 - Marilyn Wolf (Georgia Tech)
 - Frank Vahid (UC-Riverside)
 - A. Gerstlauer (UT-Austin)
 - Daniel Gajski (UC-Irvine)
 - Ed Lee (UC-Berkeley)
 - James Hamblen (Georgia Tech)