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• Embedded systems today are characterized by rapidly 
expanding functionality coupled with shrinking time to market 

• Hardware capabilities (and accompanying software needs) are 
growing faster than designers can keep up 

The Growing Designer Productivity Gap 
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• Intellectual Property (IP) reuse: 
– Pre-designed hardware modules – either soft cores 

(e.g. source, netlists) or hard cores (transistor or 
other layout) 

– Range in functionality from simple multipliers, to 
memories, to interfacing logic, to processors 

– Pre-designed software as well (e.g. drivers, OS) 
– Typically follow some set interfacing standards 

 

• Platform-based design: 
– Design philosophy that focuses on IP-centric design 

and reuse 
– Platform: a customizable design for a particular type 

of system, consisting of embedded processors, 
peripherals, and software 

Coping with Complexity 
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• Tegra X1 – NVIDIA’s 
latest mobile “processor” 

• Main processing, I/O, 
and memory hardware 
IP cores integrated onto 
a single chip: 
– System-on-Chip (SoC) 
– Still part of a larger 

embedded platform (e.g. 
a tablet) 

• Significant portion of the 
chip is dedicated to 
specialized hardware 
 

• Previous Tegra iterations 
were not especially 
successful – limited 
software ecosystem 

An Example Platform 
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• Typically a few CPU cores with other specialized functions, 
connected via an on-chip network  

• Optimized for a particular application domain (e.g. mobile 
phone, tablet, desktop) 

• SoCs make sense only in high-volume, multi-generational 
applications, where they are mandatory for low cost 
 

• To use SoCs effectively, a manufacturer must have: 
– A reliable source of IP (CPU/cache, on-chip networks, device 

and memory controllers) 
– Design tools to aggregate and interconnect the IP 
– Product designers to specify the functions and employ the tools 
 

• What isn’t needed? 
– A silicon fabrication facility 
– A final product assembly plant 

 

SoC Requirements 
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• Platform-based design 

– Platform case study: Apple iPhone 6 plus 

– Platform case study: Digilent ZedBoard 

• Bus-based communication architectures 

– AMBA 

• Direct Memory Access 

 

 

• Reading: Wolf chapter 4 

This Week’s Topic 
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Case Study: The Apple iPhone 6 Plus 

becomes... 

Apple iPhone 6 Plus 128GB 

• In competitive markets, low-level platform details are 
typically not provided by manufacturers  

• Fortunately, there exist companies that specialize in 
tearing apart platforms (e.g. IHS) and reverse-
engineering SoCs (e.g. Chipworks) 
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• Main processor 

• DRAM memory 

• Sensor coprocessor 

• Accelerometers, gyros, and compass 

iPhone 6 Plus – Main PCB Components 

Front side 

Back side 

• WiFi and Bluetooth 

• 4G LTE Modem 

• RF and power amplifiers 

• Audio codec 
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iPhone 6 – Apple A8 SoC 

• Apple has a “full” IP license from 
ARM, meaning they can create any 
ARM ISA-compatible CPU core 

• Dual-ARM cores (some ARMv8 
variant with 64-bit instructions) 

– Clock speed – 1.38 GHz 

– 64 KB L1 instruction and data 
caches, 1 MB L2 cache, 4 MB L3 
cache (shared between CPU and 
GPU) 

• PowerVR Series 6XT GPU – 
integrated as IP core from 
Imagination Technologies 

• Various IP for DRAM interfacing, 
other peripherals 

 

Apple A8 Processor Floorplan 
(image courtesy Chipworks) 
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iPhone 6 – Platform View 

DRAM (Main 
Memory) 

Wireless 
Data 

Apple A8 CPU / 
GPU 

Cellular 
Communication 

DMA, 
Timers, etc. 

Apple M8 
“Motion” 

Coprocessor 

Other Sensors 
and Peripherals 

Secondary 
Bus 

Main Bus 
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• Buses are the simplest and most widely used SoC 
interconnection networks 

• Bus: 
– A collection of signals (wires) to which one or more 

communicating IP components are connected 

– A protocol associated with that communication 

• Only one IP component can transfer data on the 
shared bus at any given time 

 

On-Chip Communication Architectures 

Micro- 

controller 

Digital 

Signal 

Processor 

Input/ 

Output 

Device 

Memory 

Bus 
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Bus Terminology 



Lect-02.13 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU 

• Master (or Initiator) 
– IP component that initiates a read or write data transfer 

• Slave (or Target) 
– IP component that does not initiate transfers and only 

responds to incoming transfer requests  

• Arbiter 
– Controls access to the shared bus 
– Uses an arbitration scheme to select master to grant 

access to bus 

• Decoder 
– Determines which component a transfer is intended for  

• Bridge 
– Connects two buses 
– Acts as slave on one side and master on the other 

 

Bus Terminology (cont.) 
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• A bus typically consists of three types of signal lines: 
– Address 

• Carry address of destination for which transfer is initiated 
• Can be shared or separate for read, write data 

– Data 
• Carry information between source and destination components 
• Can be shared or separate for read, write data 
• Choice of data width critical for application performance 

– Control 
• Requests and acknowledgements 
• Specify more information about type of data transfer 
• Ex: byte enable,  burst size, cacheable/bufferable, write-

back/through, … 

Bus Signal Lines 
address lines 

data lines 

control lines 
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• Shared bus 
 
 
 
 
 
 
 
 
 

• Hierarchical shared bus 
– Improves system throughput 
– Multiple simultaneous transfers 

Types of Bus Topologies 
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• Full crossbar bus 

 

 

 

 

 

 

 

• Advantages? Disadvantages? 

Types of Bus Topologies (cont.) 

• Ring bus 
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Bus Clocking 

• Synchronous Bus 
– Includes a clock in control lines 

– Fixed protocol for communication 
that is relative to clock 

– Involves very little logic and can 
run very fast 

– Requires frequency converters 
across frequency domains 

• Asynchronous Bus 
– Not clocked 

– Requires a handshaking protocol 

• performance not as good as that 
of synchronous bus 

• No need for frequency converters, 
but does need extra lines 

– Does not suffer from clock skew like 
the synchronous bus 
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Decoding and Arbitration 

• A bus implementation includes logic for both 
decoding and arbitration (either distributed or 
centralized): 
– Decoding – determining the target for any transfer 

initiated by the master 
– Arbitration – deciding which master can use the 

shared bus if more than one master requested bus 
access simultaneously 
 

A centralized arbitration / 
decoding scheme 
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• Bus standards are useful for defining a specific 
interface and data transfer protocol 

 

 

• Ideally, all IP in a design are compatible  

• In reality, several competing standards for SoC design: 
– CoreConnect (IBM) 

– AMBA (ARM) 

– Wishbone (OpenCores) 

– Avalon (Altera) 

– Quick Path (Intel) 

– HyperTransport (AMD) 

– STBus (STMicroelectronics) 

 

 

 

Bus Standards 
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AMBA 

• Advanced Microcontroller Bus Architecture (AMBA) 
• Multiple versions (typically dependent on choice of processor IP) 

– v1 – Advanced System Bus (ASB), Advanced Peripheral Bus (APB) 
– v2 – ASB, APB, Advanced High-performance Bus (AHB) 
– v3 – Advanced eXtensible Interface (AXI), APB, Advanced Trace Bus 

(ATB) 
– v4 – AXI Coherency Extensions (ACE), AXI, AXI-Stream, APB, ATB 
– v5 – Coherent Hub Interface (CHI), ACE 

 

AMBA v2 example 
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• Split ownership of Address and Data bus 

AMBA AHB Operation 
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• Data transfer with wait states 

AMBA AHB Operation (cont.) 
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• Transaction pipelining increases bus 
bandwidth 

AHB Pipelining 
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• 1 unidirectional 
address bus 
(HADDR) 

• 2 unidirectional 
data buses 
(HWDATA, 
HRDATA) 
 

• At any time only 
1 active data bus 
 

High-Level AHB Architecture 

centralized arbitration / decode 
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• Arbitration protocol specified, but not the 
arbitration policy 

AHB Arbitration 

HBREQ_M1 

HBREQ_M2 

HBREQ_M3 

Arbiter 
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• Bursts cut down on arbitration, handshaking 
time (improving performance) 

AHB Burst Transfers 
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• No (multi-cycle) bursts or pipelined transfers 

APB State Diagram 

When AHB wants 

to drive a transfer 

One cycle penalty for 

APB peripheral address 

decoding 

Transfer occurs here 
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AHB-APB Bridge 
A

H
B

 s
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High performance Low power (and performance) 
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AHB-APB Bridge 

High performance Low power (and performance) 
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• Incremental improvements to AMBA since v2  
• AMBA AXI – introduces separate read/write address, out-

of-order operation 
 

• AHB burst: 
– Address and data are locked together (single pipeline stage) 
– HREADY controls intervals of address and data 

 
 

 
 
• AXI burst: 

AHB vs. AXI 
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• Out of order completion 
• With AHB: 

– If one slave is very slow, all data is held up 
– SPLIT transactions provide very limited improvement 

 
 
 
 

• With AXI: 
– Multiple outstanding addresses, out of order (OO) 

completion allowed 
 

AHB vs. AXI (cont.) 
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• Direct Memory Access (DMA) performs data 
transfers without executing instructions 

– CPU sets up transfer 

– DMA engine fetches, writes 

• DMA controller is a separate unit on the bus 

 

Buses and DMA 



Lect-02.33 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU 

• CPU sets DMA registers for start address, length 

• DMA status register controls the unit 

• Once DMA is bus master, it transfers automatically 

– May run continuously until complete 

– May use every nth bus cycle 

• In the meantime, CPU carries on with other work 

 

DMA Operation 
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• Field-Programmable Gate Arrays (FPGAs) 
– Clean-slate design at the gate (logic) level 
– High volumes, since differentiated designs can be produced with the 

same chips 
– Simple silicon, so can be introduced rapidly in a new process 

• Energy efficiency is not as great as with full-custom or ASIC 
designs 
– But is frequently good enough, particularly for algorithms that don’t 

work well in software running on a general purpose CPU (e.g. 
compression, crypto) 

– So modern FPGAs contain “hard” functions that can be interconnected 
(and powered down when not used) 
• CPU cores (Xilinx Zynq family has 2 ARM cores with caches) 
• DSPs (hundreds) 
• Embedded RAM (megabits) 
• External DRAM controllers 
• Controllers for common I/O standards (e.g. Ethernet) 

• Lots of logic, but: 
– Can’t use all the logic; wires are usually the thing that limits a design 
– You pay for logic that you don’t use 

Another Approach to System Design 
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Introduction to the FPGA (cont.) 

• Major players in the FPGA industry: 

– Chipmakers – device families 

• Xilinx – Spartan [II/3/6], Virtex [E/II/II-Pro/4/5/6/7] 

• Microsemi – eX, MX, SX, Axcelerator, Fusion ProASIC 

• Altera – APEX, FLEX, Arria [II/V], Cyclone [II/III/IV/V], Stratix, 
Stratix [II/III/IV/V] 

• Lattice – ECP3, SC/M, XP2  

Altera Stratix IV EP4S40G5 

– Software developers – CAD tools 

• 1st-party tools from Xilinx, Altera, 
etc. 

• Synopsys – Synplify Pro, Synplify 
Premier 

• Mentor Graphics – HDL Designer, 
Precision RTL, ModelSim  
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FPGA Architecture 

• FPGAs are composed of the following: 

– Configurable Logic Blocks (CLBs) 

– Programmable interconnect 

– Input/Output Buffers (IOBs) 

– Other stuff (clock trees, timers, memory, multipliers, 
processors, etc.) 

• CLBs contain a number of Look-Up Tables (LUTs) and 
some sequential storage 

– LUTs are individually configured as logic gates, or can be 
combined into n bit wide arithmetic functions 

– Architecture specific 
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LUT-based Logic Element 

carry 
logic 

4-LUT 

DFF 

I1 I2 I3 I4 

Cout 
Cout 

OUT 

• Each LUT operates on four 
one-bit inputs 

• Output is one data bit 

• Can perform any Boolean 
function of four inputs 

• 224
 = 65536 functions 

(4096 patterns) 

• The basic logic element can be more complex 
(multiplier, ALU, etc.) 

• Contains some sort of programmable interconnect 
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FPGA Architecture (cont.) 

• Input/Output Buffers 
(IOBs) 

• Configurable Logic 
Blocks (CLBs) 

• Programmable 
interconnect mesh 

• Generic island-style 
FPGA architecture 
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Optimized Resources: Dedicated Logic 

Embedded Memory 
8 

12 

96 bits, 300 MHz 
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Optimized Resources: Dedicated Logic 

Dedicated 
memory 

block 

Embedded Memory 
8 

12 

18 Kbits, 550 MHz 
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Optimized Resources: Dedicated Logic 

Multiplication 

Type  # LUTs Latency Speed 

LUT  ~400 5 clks 380 MHz 

Dedicated  
18x18 Multiplier 

0 3 clks 450 MHz 

Virtex-5 (6-LUTs) 

18x18 multiply 

Very rough estimate of Silicon area comparison  

(assuming SX95 andLX110 have about the same die size) 

6-LUT 6-LUT 

6-LUT 6-LUT 

18x18 

Multiplier 

In other word you can replace  

one LUT based 18x18 multiplier  

With 100 dedicated 18x18  

Multipliers!!! 
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Optimized Resources: Dedicated Logic 

Processor 

PowerPC hard-core MicroBlaze soft-core 

• 500 MHz 

•Super scalor 

•Highspeed 2x5 switch fabric 

• 250 MHz 

• Simple scalar 
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Xilinx Extensible Processing Platform 

• Coupling of dual-core ARM Cortex-A9 with reconfigurable 
logic 

• “Processing System” is fully integrated and hardwired, and 
the platform can behave like a typical processor by default 

• ARM CPU can control reconfiguration of programmable 
logic region 

Digilent ZedBoard Xilinx Zynq Extensible Processing Platform 
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Software Development Flow 

• IP-centric flow (both HW and SW) 

• System Architect, Logic Designer, and Software Developer 
can work in parallel 
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• These slides are inspired in part by material 
developed and copyright by: 

– Marilyn Wolf (Georgia Tech) 

– Sudeep Prasicha (Colorado State) 

– Nikil Dutt (UC-Irvine) 

Acknowledgments 


