
CprE 488 – Embedded Systems Design

Lecture 2 – Embedded Platforms

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

Don’t reinvent the wheel, unless you plan on learning more about wheels. – Jeff Atwood

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-02.2 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Embedded systems today are characterized by rapidly
expanding functionality coupled with shrinking time to market

• Hardware capabilities (and accompanying software needs) are
growing faster than designers can keep up

The Growing Designer Productivity Gap

log

1
9

8
1

1
9

8
5

1
9

8
9

1
9

9
3

1
9

9
7

2
0

0
1

2
0

0
5

2
0

0
9

2
0

1
3

2
0

1
7

2
0

2
1

LoC SW/Chip

Gates / Chip

Gates / Day

LoC / Day

Additional SW required for HW

2x/10 months

Technology capabilities

2x/36 months

HW design productivity

Filling with IP and memory

HW design productivity

SW productivity

2x5 years

Lect-02.3 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Intellectual Property (IP) reuse:
– Pre-designed hardware modules – either soft cores

(e.g. source, netlists) or hard cores (transistor or
other layout)

– Range in functionality from simple multipliers, to
memories, to interfacing logic, to processors

– Pre-designed software as well (e.g. drivers, OS)
– Typically follow some set interfacing standards

• Platform-based design:
– Design philosophy that focuses on IP-centric design

and reuse
– Platform: a customizable design for a particular type

of system, consisting of embedded processors,
peripherals, and software

Coping with Complexity

Lect-02.4 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Tegra X1 – NVIDIA’s
latest mobile “processor”

• Main processing, I/O,
and memory hardware
IP cores integrated onto
a single chip:
– System-on-Chip (SoC)
– Still part of a larger

embedded platform (e.g.
a tablet)

• Significant portion of the
chip is dedicated to
specialized hardware

• Previous Tegra iterations
were not especially
successful – limited
software ecosystem

An Example Platform

ARM Cores

More ARM
Cores “CUDA”

GPU
Cores

R
A
M

 I
n
te

rf
a
ce

 R
A
M

 In
te

rfa
ce

Video Encode/Decode HDMI + Audio

“CUDA”
GPU
Cores

Lect-02.5 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Typically a few CPU cores with other specialized functions,
connected via an on-chip network

• Optimized for a particular application domain (e.g. mobile
phone, tablet, desktop)

• SoCs make sense only in high-volume, multi-generational
applications, where they are mandatory for low cost

• To use SoCs effectively, a manufacturer must have:
– A reliable source of IP (CPU/cache, on-chip networks, device

and memory controllers)
– Design tools to aggregate and interconnect the IP
– Product designers to specify the functions and employ the tools

• What isn’t needed?
– A silicon fabrication facility
– A final product assembly plant

SoC Requirements

Lect-02.6 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Platform-based design

– Platform case study: Apple iPhone 6 plus

– Platform case study: Digilent ZedBoard

• Bus-based communication architectures

– AMBA

• Direct Memory Access

• Reading: Wolf chapter 4

This Week’s Topic

Lect-02.7 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Case Study: The Apple iPhone 6 Plus

becomes...

Apple iPhone 6 Plus 128GB

• In competitive markets, low-level platform details are
typically not provided by manufacturers

• Fortunately, there exist companies that specialize in
tearing apart platforms (e.g. IHS) and reverse-
engineering SoCs (e.g. Chipworks)

Lect-02.8 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Main processor

• DRAM memory

• Sensor coprocessor

• Accelerometers, gyros, and compass

iPhone 6 Plus – Main PCB Components

Front side

Back side

• WiFi and Bluetooth

• 4G LTE Modem

• RF and power amplifiers

• Audio codec

Lect-02.9 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

iPhone 6 – Apple A8 SoC

• Apple has a “full” IP license from
ARM, meaning they can create any
ARM ISA-compatible CPU core

• Dual-ARM cores (some ARMv8
variant with 64-bit instructions)

– Clock speed – 1.38 GHz

– 64 KB L1 instruction and data
caches, 1 MB L2 cache, 4 MB L3
cache (shared between CPU and
GPU)

• PowerVR Series 6XT GPU –
integrated as IP core from
Imagination Technologies

• Various IP for DRAM interfacing,
other peripherals

Apple A8 Processor Floorplan
(image courtesy Chipworks)

Lect-02.10 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

iPhone 6 – Platform View

DRAM (Main
Memory)

Wireless
Data

Apple A8 CPU /
GPU

Cellular
Communication

DMA,
Timers, etc.

Apple M8
“Motion”

Coprocessor

Other Sensors
and Peripherals

Secondary
Bus

Main Bus

Lect-02.11 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Buses are the simplest and most widely used SoC
interconnection networks

• Bus:
– A collection of signals (wires) to which one or more

communicating IP components are connected

– A protocol associated with that communication

• Only one IP component can transfer data on the
shared bus at any given time

On-Chip Communication Architectures

Micro-

controller

Digital

Signal

Processor

Input/

Output

Device

Memory

Bus

Lect-02.12 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Bus Terminology

Lect-02.13 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Master (or Initiator)
– IP component that initiates a read or write data transfer

• Slave (or Target)
– IP component that does not initiate transfers and only

responds to incoming transfer requests

• Arbiter
– Controls access to the shared bus
– Uses an arbitration scheme to select master to grant

access to bus

• Decoder
– Determines which component a transfer is intended for

• Bridge
– Connects two buses
– Acts as slave on one side and master on the other

Bus Terminology (cont.)

Lect-02.14 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• A bus typically consists of three types of signal lines:
– Address

• Carry address of destination for which transfer is initiated
• Can be shared or separate for read, write data

– Data
• Carry information between source and destination components
• Can be shared or separate for read, write data
• Choice of data width critical for application performance

– Control
• Requests and acknowledgements
• Specify more information about type of data transfer
• Ex: byte enable, burst size, cacheable/bufferable, write-

back/through, …

Bus Signal Lines
address lines

data lines

control lines

Lect-02.15 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Shared bus

• Hierarchical shared bus
– Improves system throughput
– Multiple simultaneous transfers

Types of Bus Topologies

Lect-02.16 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Full crossbar bus

• Advantages? Disadvantages?

Types of Bus Topologies (cont.)

• Ring bus

Lect-02.17 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Bus Clocking

• Synchronous Bus
– Includes a clock in control lines

– Fixed protocol for communication
that is relative to clock

– Involves very little logic and can
run very fast

– Requires frequency converters
across frequency domains

• Asynchronous Bus
– Not clocked

– Requires a handshaking protocol

• performance not as good as that
of synchronous bus

• No need for frequency converters,
but does need extra lines

– Does not suffer from clock skew like
the synchronous bus

Lect-02.18 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Decoding and Arbitration

• A bus implementation includes logic for both
decoding and arbitration (either distributed or
centralized):
– Decoding – determining the target for any transfer

initiated by the master
– Arbitration – deciding which master can use the

shared bus if more than one master requested bus
access simultaneously

A centralized arbitration /
decoding scheme

Lect-02.19 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Bus standards are useful for defining a specific
interface and data transfer protocol

• Ideally, all IP in a design are compatible

• In reality, several competing standards for SoC design:
– CoreConnect (IBM)

– AMBA (ARM)

– Wishbone (OpenCores)

– Avalon (Altera)

– Quick Path (Intel)

– HyperTransport (AMD)

– STBus (STMicroelectronics)

Bus Standards

Lect-02.20 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

AMBA

• Advanced Microcontroller Bus Architecture (AMBA)
• Multiple versions (typically dependent on choice of processor IP)

– v1 – Advanced System Bus (ASB), Advanced Peripheral Bus (APB)
– v2 – ASB, APB, Advanced High-performance Bus (AHB)
– v3 – Advanced eXtensible Interface (AXI), APB, Advanced Trace Bus

(ATB)
– v4 – AXI Coherency Extensions (ACE), AXI, AXI-Stream, APB, ATB
– v5 – Coherent Hub Interface (CHI), ACE

AMBA v2 example

Lect-02.21 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Split ownership of Address and Data bus

AMBA AHB Operation

Lect-02.22 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Data transfer with wait states

AMBA AHB Operation (cont.)

Lect-02.23 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Transaction pipelining increases bus
bandwidth

AHB Pipelining

Lect-02.24 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• 1 unidirectional
address bus
(HADDR)

• 2 unidirectional
data buses
(HWDATA,
HRDATA)

• At any time only
1 active data bus

High-Level AHB Architecture

centralized arbitration / decode

Lect-02.25 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Arbitration protocol specified, but not the
arbitration policy

AHB Arbitration

HBREQ_M1

HBREQ_M2

HBREQ_M3

Arbiter

Lect-02.26 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Bursts cut down on arbitration, handshaking
time (improving performance)

AHB Burst Transfers

Lect-02.27 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• No (multi-cycle) bursts or pipelined transfers

APB State Diagram

When AHB wants

to drive a transfer

One cycle penalty for

APB peripheral address

decoding

Transfer occurs here

Lect-02.28 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

AHB-APB Bridge
A

H
B

 s
ig

n
a
ls

High performance Low power (and performance)

Lect-02.29 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

AHB-APB Bridge

High performance Low power (and performance)

Lect-02.30 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Incremental improvements to AMBA since v2
• AMBA AXI – introduces separate read/write address, out-

of-order operation

• AHB burst:
– Address and data are locked together (single pipeline stage)
– HREADY controls intervals of address and data

• AXI burst:

AHB vs. AXI

Lect-02.31 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Out of order completion
• With AHB:

– If one slave is very slow, all data is held up
– SPLIT transactions provide very limited improvement

• With AXI:
– Multiple outstanding addresses, out of order (OO)

completion allowed

AHB vs. AXI (cont.)

Lect-02.32 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Direct Memory Access (DMA) performs data
transfers without executing instructions

– CPU sets up transfer

– DMA engine fetches, writes

• DMA controller is a separate unit on the bus

Buses and DMA

Lect-02.33 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• CPU sets DMA registers for start address, length

• DMA status register controls the unit

• Once DMA is bus master, it transfers automatically

– May run continuously until complete

– May use every nth bus cycle

• In the meantime, CPU carries on with other work

DMA Operation

Lect-02.34 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• Field-Programmable Gate Arrays (FPGAs)
– Clean-slate design at the gate (logic) level
– High volumes, since differentiated designs can be produced with the

same chips
– Simple silicon, so can be introduced rapidly in a new process

• Energy efficiency is not as great as with full-custom or ASIC
designs
– But is frequently good enough, particularly for algorithms that don’t

work well in software running on a general purpose CPU (e.g.
compression, crypto)

– So modern FPGAs contain “hard” functions that can be interconnected
(and powered down when not used)
• CPU cores (Xilinx Zynq family has 2 ARM cores with caches)
• DSPs (hundreds)
• Embedded RAM (megabits)
• External DRAM controllers
• Controllers for common I/O standards (e.g. Ethernet)

• Lots of logic, but:
– Can’t use all the logic; wires are usually the thing that limits a design
– You pay for logic that you don’t use

Another Approach to System Design

Lect-02.35 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Introduction to the FPGA (cont.)

• Major players in the FPGA industry:

– Chipmakers – device families

• Xilinx – Spartan [II/3/6], Virtex [E/II/II-Pro/4/5/6/7]

• Microsemi – eX, MX, SX, Axcelerator, Fusion ProASIC

• Altera – APEX, FLEX, Arria [II/V], Cyclone [II/III/IV/V], Stratix,
Stratix [II/III/IV/V]

• Lattice – ECP3, SC/M, XP2

Altera Stratix IV EP4S40G5

– Software developers – CAD tools

• 1st-party tools from Xilinx, Altera,
etc.

• Synopsys – Synplify Pro, Synplify
Premier

• Mentor Graphics – HDL Designer,
Precision RTL, ModelSim

Lect-02.36 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

FPGA Architecture

• FPGAs are composed of the following:

– Configurable Logic Blocks (CLBs)

– Programmable interconnect

– Input/Output Buffers (IOBs)

– Other stuff (clock trees, timers, memory, multipliers,
processors, etc.)

• CLBs contain a number of Look-Up Tables (LUTs) and
some sequential storage

– LUTs are individually configured as logic gates, or can be
combined into n bit wide arithmetic functions

– Architecture specific

Lect-02.37 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

LUT-based Logic Element

carry
logic

4-LUT

DFF

I1 I2 I3 I4

Cout
Cout

OUT

• Each LUT operates on four
one-bit inputs

• Output is one data bit

• Can perform any Boolean
function of four inputs

• 224
 = 65536 functions

(4096 patterns)

• The basic logic element can be more complex
(multiplier, ALU, etc.)

• Contains some sort of programmable interconnect

Lect-02.38 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

FPGA Architecture (cont.)

• Input/Output Buffers
(IOBs)

• Configurable Logic
Blocks (CLBs)

• Programmable
interconnect mesh

• Generic island-style
FPGA architecture

Lect-02.39 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Optimized Resources: Dedicated Logic

Embedded Memory
8

12

96 bits, 300 MHz

Lect-02.40 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Optimized Resources: Dedicated Logic

Dedicated
memory

block

Embedded Memory
8

12

18 Kbits, 550 MHz

Lect-02.41 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Optimized Resources: Dedicated Logic

Multiplication

Type # LUTs Latency Speed

LUT ~400 5 clks 380 MHz

Dedicated
18x18 Multiplier

0 3 clks 450 MHz

Virtex-5 (6-LUTs)

18x18 multiply

Very rough estimate of Silicon area comparison

(assuming SX95 andLX110 have about the same die size)

6-LUT 6-LUT

6-LUT 6-LUT

18x18

Multiplier

In other word you can replace

one LUT based 18x18 multiplier

With 100 dedicated 18x18

Multipliers!!!

Lect-02.42 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Optimized Resources: Dedicated Logic

Processor

PowerPC hard-core MicroBlaze soft-core

• 500 MHz

•Super scalor

•Highspeed 2x5 switch fabric

• 250 MHz

• Simple scalar

Lect-02.43 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Xilinx Extensible Processing Platform

• Coupling of dual-core ARM Cortex-A9 with reconfigurable
logic

• “Processing System” is fully integrated and hardwired, and
the platform can behave like a typical processor by default

• ARM CPU can control reconfiguration of programmable
logic region

Digilent ZedBoard Xilinx Zynq Extensible Processing Platform

Lect-02.44 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

Software Development Flow

• IP-centric flow (both HW and SW)

• System Architect, Logic Designer, and Software Developer
can work in parallel

Lect-02.45 CprE 488 (Embedded Platforms) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Sudeep Prasicha (Colorado State)

– Nikil Dutt (UC-Irvine)

Acknowledgments

