
CprE 488 – Embedded Systems Design

Lecture 5 – Embedded Operating Systems

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

...the Linux philosophy is “laugh in the face of danger”. Oops. Wrong one. “Do it
yourself”. That’s it. – Linux Torvalds

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/

Lect-05.2CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

• We have already run into some limitations of the
standalone process model:
– Single application, growing in complexity quickly
– Lots of polling loops, deep nested ‘if’ statements

• We could continue in this direction, but a modern
Operating System (OS) provides streamlined
mechanisms for:
– Preemptive multitasking
– Device drivers
– Memory management
– File systems

• It would be insane to try to cover all the major issues
involved in embedded OS in a single lecture

Motivation

Lect-05.3CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

• Embedded Operating System features
– Processes and scheduling

• Context switching

• Scheduler policies

• Real-Time Operating Systems (RTOS)

– Atomic operations

– Inter-processes communication

– Virtual memory

– Examples along the way:
• Linux, POSIX, freeRTOS.org

• ARM architecture support

• Reading: Wolf chapter 6, 3.5

This Week’s Topic

Lect-05.4CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Reactive Systems

• Respond to external events:
– Engine controller

– Seat belt monitor

• Requires real-time response:
– System architecture

– Program implementation

• May require a chain reaction among multiple
processors

Lect-05.5CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Tasks and Processes

• A task is a functional
description of a
connected set of
operations

• Task can also mean a
collection of processes

• A process is a unique
execution of a program

– Several copies of a
program may run
simultaneously or at
different times

• A process has its own
state:

– registers

– memory

• The operating system
manages processes

Lect-05.6CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

• A process can be in one of three states:

– executing on the CPU

– ready to run

– waiting for data

Process State

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preempted
gets
CPU

Lect-05.7CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Embedded vs. General-Purpose Scheduling

• Workstations try to avoid starving processes
of CPU access

– Fairness == access to CPU

• Embedded systems must meet deadlines

– Low-priority processes may not run for a long
time

Lect-05.8CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

• Timer interrupt gives
CPU to kernel

– Time quantum is
smallest increment of
CPU scheduling time

• Kernel decides what
task runs next

• Kernel performs
context switch to new
context

Preemptive Scheduling

Lect-05.9CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Context Switching

• Set of registers that define a process’s state is
its context

– Stored in a record

• Context switch moves the CPU from one
process’s context to another

• Context switching code is usually assembly
code

– Restoring context is particularly tricky

Lect-05.10CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

freeRTOS.org Context Switch

Lect-05.11CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

freeRTOS.org Timer Handler

void vPreemptiveTick(void) {

/* Save the context of the current task. */

portSAVE_CONTEXT();

/* Increment the tick count - this may wake a task. */

vTaskIncrementTick();

/* Find the highest priority task that is ready to run. */

vTaskSwitchContext();

/* End the interrupt in the AIC. */

AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC->PITC_PIVR;

portRESTORE_CONTEXT();

}

Lect-05.12CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

ARM Context Switch

; Dump user registers above R13.

; Pick up the user status

; and dump with return address below.

; Load next process info pointer.

; If it is zero, it is invalid

; Pick up status and return address.

; Restore the status.

; Get the rest of the registers

; and return and restore CPSR.

; Insert "no next process code" here.

STM sp, {R0-lr}^

MRS R0, SPSR

STMDB sp, {R0, lr}

LDR sp, [R12], #4

CMP sp, #0

LDMDBNE sp, {R0, lr}

MSRNE SPSR_cxsf, R0

LDMNE sp, {R0-lr}^

NOP

SUBSNE pc, lr, #4

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits
long

A subset of these registers is accessible in
each mode
Note: System mode uses the User mode
register set.

Lect-05.13CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Real-Time Systems

• What is a real-time system?

• Which of the following is real-time?
– A program that processes 100 video frames per

second?

– A program that that process 1 video frame per 10
seconds?

• A better name
– “Get things done on time” Systems

• They are about getting things done on time, not
getting things done fast

Lect-05.14CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Real-Time Systems: Key Terms/Concepts
• Task

– Cost: time for processor to complete task without
interruptions

– Release time: when task is ready to be run

– Deadline: time by which task needs to completed

– Period: time between release times

• Task-set schedule: order in which tasks are allocated the CPU

• Scheduling policy (algorithm): means by which (i.e. rules
followed) to create a task-set schedule

Lect-05.15CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling: Period vs Aperiodic

• Periodic process: executes on every period

• Aperiodic process: executes on demand

• Analyzing aperiodic process sets is harder---
must consider worst-case combinations of
process activations

Lect-05.16CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Timing Requirements on Processes

• Period: interval between process activations

• Initiation interval: reciprocal of period

• Initiation time: time at which process
becomes ready

• Deadline: time at which process must finish

• What happens if a process doesn’t finish by
its deadline?

– Hard deadline: system fails if missed

– Soft deadline: user may notice, but system
doesn’t necessarily fail

Lect-05.17CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Priority-driven Scheduling

• Each process has a priority

• CPU goes to highest-priority process that is
ready

• Priorities determine scheduling policy:

– Fixed (Static) priority

– Time-varying (Dynamic) priorities

Lect-05.18CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Priority-driven Scheduling Example

• Rules:

– Each process has a fixed priority (1 highest)

– Highest-priority ready process gets CPU

– Process will not self stop (i.e. block) until done or
is preempted by a high priority process

• Processes

– P1: priority 1, execution time 10, release time 15

– P2: priority 2, execution time 30, release time 0

– P3: priority 3, execution time 20, release time 18

Lect-05.19CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Priority-driven Scheduling Example (cont.)

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

P1: priority 1, execution time 10, release time 15

P2: priority 2, execution time 30, release time 0

P3: priority 3, execution time 20, release time 18

Lect-05.20CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

The Scheduling Problem

• Can we meet all deadlines?

– Must be able to meet deadlines in all cases

• How much CPU horsepower do we need to
meet our deadlines?

Lect-05.21CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

CPU Utilization

• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• What is the CPU utilization of T1?

𝑻𝒂𝒔𝒌_𝑪𝑷𝑼_𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =
𝑻𝒂𝒔𝒌_𝑪𝒐𝒔𝒕

𝑻𝒂𝒔𝒌_𝑷𝒆𝒓𝒊𝒐𝒅

Lect-05.22CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (no preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a Task needs to run, the higher the
priority (allow NO preemption)

– Is there a release pattern that can cause a task to miss a deadline?

Lect-05.23CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (no preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a Task needs to run, the higher the
priority (allow NO preemption)

– Is there a release pattern that can cause a task to miss a deadline?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3

Lect-05.24CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (no preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a Task needs to run, the higher the
priority (allow NO preemption)

– Is there a release pattern that can cause a task to miss a deadline?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3

Lect-05.25CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (with preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a task needs to run, the higher the
priority (allow preemption)

– Draw out schedule and see if we miss a deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3

Lect-05.26CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (with preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a task needs to run, the higher the
priority (allow preemption)

– Draw out schedule and see if we miss a deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3

Lect-05.27CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Metrics

• How do we evaluate a scheduling policy:

– Ability to satisfy all deadlines (Feasibility)

– Often a trade-off between:

• Task set CPU utilization (i.e., time doing “useful” work)

• Scheduling overhead (time to make scheduling decision)

Lect-05.28CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Metrics: Feasibility

• For previous preemption example

– How long do we have to draw out the schedule before we
know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and 7ms?

– For a general task set, how long do we have to draw out the
schedule?

Lect-05.29CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Metrics: Feasibility

• For previous preemption example

– How long do we have to draw out the schedule before we
know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and 7ms?
Answer: 84 ms

– For a general task set, how long do we have to draw out the
schedule?
Answer: Lowest common multiple of Task periods (a
task set’s Hyper Period). This is the time it takes before all
Tasks release times synchronize after time = 0

• Is there a better way to determine is feasible (i.e. schedule
using a given policy)? Yes! RMA / RMS

Lect-05.30CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Rate Monotonic Scheduling (RMS)

• RMS (Liu and Layland [1973]): widely-used, analyzable
scheduling policy

• Analysis is known as Rate Monotonic Analysis (RMA)

– All processes run on single CPU

– Zero context switch time

– No data dependencies between processes

– Process execution time is constant

– Process deadline is at end of its period

– Highest-priority ready process runs

– Processes with lower periods have higher priority

Lect-05.34CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

RMS Priorities

• RMS gives an optimal (fixed/static) priority assignment:

– Shortest-period process gets highest priority

– Priority inversely proportional to period

– Break ties arbitrarily

• No fixed-priority scheme does better:

– In other words, if RMS does not give you a feasible
schedule, then no static priority assignment approach can

Lect-05.35CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

RMS CPU Utilization

• CPU utilization for a Task set of n tasks:

• For RMS: Independent of number of tasks in the set, RMS is
guaranteed to give a feasible scheduled if CPU Utilization is less
than 69%:

– If the Task set Utilization <= 69%, then RMS is guaranteed
to meet all deadlines

– If Utilization > 69%, then must draw schedule for the
Lowest Common Multiple (LCM) of the Task set periods.

– Positive: Quick way to determine Feasibility

– Negative: Gives up about 30% of CPU Utilization

𝑪𝑷𝑼 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒂𝒔𝒌 𝑺𝒆𝒕 =෍

𝒊=𝟏

𝒏
𝑪𝒐𝒔𝒕𝒊

𝑷𝒆𝒓𝒊𝒐𝒅𝒊
=෍

𝒊=𝟏

𝒏

𝑪𝑷𝑼_𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏_𝑻𝒂𝒔𝒌𝒊

Lect-05.36CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Earliest-Deadline-First Scheduling

• EDF: dynamic priority scheduling scheme

– Process closest to its deadline has highest priority

– Must recalculate process priorities at every timer interrupt

• EDF guaranteed to give a feasible schedule, if a Task-set’s CPU
utilization is less than or equal to 100%

Lect-05.37CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

Lect-05.38CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

Lect-05.39CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.40CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.41CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.42CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.43CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.44CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.45CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.46CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.47CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.48CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.49CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.50CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.51CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.52CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.53CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.54CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.55CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.56CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (Now try EDF)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

Lect-05.57CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Metrics

• How do we evaluate a scheduling policy:

– Ability to satisfy all deadlines (Feasibility)

– Often a trade-off between:

• Task set CPU utilization (i.e., time doing “useful” work)

• Scheduling overhead (time to make scheduling decision)

Lect-05.58CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

EDF Implementation

• On each timer interrupt:

– Compute time to deadline for each task

– Choose process closest to deadline

• Generally considered too expensive to use in practice

– EDF guarantees meeting all task deadlines if task set CPU utilization is
less than or equal to 100%, but a major underlining assumption is that
updating priorities at each timer interrupt take zero CPU time.

• For fine grain timer ticks (i.e., short time between timer interrupts),
the overhead for re-computing priorities can easily cost more CPU
time than the task set!!

• Note for RMS: If task periods of a task set are “Harmonic”
(i.e., period of each task is a multiple of each task with a
smaller period), then RMS is guaranteed to schedule a task
set with up to 100% utilization

Lect-05.59CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Concerns

• Task Context Switching Time: Both EDF and RMS assume zero
time for task context switching. In a real system one must be careful
that indeed the time for context switching is MUCH smaller than the
period of the tasks in the system. This can be a little tricky to account
for in a real system.

– Non-zero context switch time can push limits of a tight schedule

– Hard to calculate effects---depends on order of context switches

– In practice, OS context switch overhead is often small (hundreds of clock
cycles) relative to many common task periods (10’s ms – sec’s)

• Some microcontrollers (e.g. ARM), have special instructions, and
hardware mechanisms to help keep context switch time small.

• What if your set of processes is not schedulable?

– Change deadlines in requirements

– Reduce execution times of processes

– Get a faster CPU

Lect-05.60CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Fixed Priority Concern: Priority Inversion

• Priority inversion: low-priority process keeps high-priority process from
running. Thus the low-priority task indirectly acts as though it is a high-
priority process.

– This can happen if a low-priority process has a lock (control) of a
resource that a higher priority process needs.

– Can cause deadlock

• Example from Textbook, chapter 6

– Assume three processes, with P1 highest priority, P2 next highest, and
P3 lowest priority.

• 1) P3 takes control of resource A (e.g. a Network card)

• 2) P2 then preempts P3, while P3 still has control of resource A

• 3) P1 preempts P2, and runs until it needs resource A, then blocks

• 4) P2 run to completion, since P1 is no longer ready to run

• 5) P3 runs until it releases control of resource A

• 6) Now P1 can stop blocking on resource A and run

Lect-05.61CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Solving Priority Inversion
• Priority Inheritance: Have process inherit the priority of the highest process

that may ever need a given System resource, while using System resource.

– Assume three processes, with P1 highest priority, P2 next highest, and P3
lowest priority. Now use Priority Inheritance.

• 1) P3 takes control of resource A (e.g. a Network card)

– Since P1 may need resource A, give P3 the priority level of P1

• 2) P2 becomes ready, but will not preempt P3

• 3) P3 finishes with resource A, and has it priority set back to its original
level.

• 4) P2 can now preempt P3, and P2 runs until

• 3) P1 preempts P2, and P1 runs to completion

• 4) P2 run to completion, assuming P1 does not restart

• 5) P3 runs to completion, assuming P1 or P2 do not restart

– Note: can still have deadlock occur.

• Priority Ceilings (summary of idea): Process can only enter a critical section
of code (e.g. lock a resource), if no other higher priority process has locked a
resource that it may need.

– Solves deadlock issue: But a more complex protocol.

Lect-05.93CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Fred Kuhns (Washington University in St. Louis)

– Steve Furber (University of Manchester)

– Ed Lee (UC-Berkeley)

Acknowledgments

	Slide 1: CprE 488 – Embedded Systems Design Lecture 5 – Embedded Operating Systems
	Slide 2: Motivation
	Slide 3: This Week’s Topic
	Slide 4: Reactive Systems
	Slide 5: Tasks and Processes
	Slide 6: Process State
	Slide 7: Embedded vs. General-Purpose Scheduling
	Slide 8: Preemptive Scheduling
	Slide 9: Context Switching
	Slide 10: freeRTOS.org Context Switch
	Slide 11: freeRTOS.org Timer Handler
	Slide 12: ARM Context Switch
	Slide 13: Real-Time Systems
	Slide 14: Real-Time Systems: Key Terms/Concepts
	Slide 15: Scheduling: Period vs Aperiodic
	Slide 16: Timing Requirements on Processes
	Slide 17: Priority-driven Scheduling
	Slide 18: Priority-driven Scheduling Example
	Slide 19: Priority-driven Scheduling Example (cont.)
	Slide 20: The Scheduling Problem
	Slide 21: CPU Utilization
	Slide 22: Scheduling Example (no preemption)
	Slide 23: Scheduling Example (no preemption)
	Slide 24: Scheduling Example (no preemption)
	Slide 25: Scheduling Example (with preemption)
	Slide 26: Scheduling Example (with preemption)
	Slide 27: Scheduling Metrics
	Slide 28: Scheduling Metrics: Feasibility
	Slide 29: Scheduling Metrics: Feasibility
	Slide 30: Rate Monotonic Scheduling (RMS)
	Slide 34: RMS Priorities
	Slide 35: RMS CPU Utilization
	Slide 36: Earliest-Deadline-First Scheduling
	Slide 37: Scheduling Example (First try RMS)
	Slide 38: Scheduling Example (First try RMS)
	Slide 39: Scheduling Example (First try RMS)
	Slide 40: Scheduling Example (First try RMS)
	Slide 41: Scheduling Example (First try RMS)
	Slide 42: Scheduling Example (First try RMS)
	Slide 43: Scheduling Example (First try RMS)
	Slide 44: Scheduling Example (First try RMS)
	Slide 45: Scheduling Example (Now try EDF)
	Slide 46: Scheduling Example (Now try EDF)
	Slide 47: Scheduling Example (Now try EDF)
	Slide 48: Scheduling Example (Now try EDF)
	Slide 49: Scheduling Example (Now try EDF)
	Slide 50: Scheduling Example (Now try EDF)
	Slide 51: Scheduling Example (Now try EDF)
	Slide 52: Scheduling Example (Now try EDF)
	Slide 53: Scheduling Example (Now try EDF)
	Slide 54: Scheduling Example (Now try EDF)
	Slide 55: Scheduling Example (Now try EDF)
	Slide 56: Scheduling Example (Now try EDF)
	Slide 57: Scheduling Metrics
	Slide 58: EDF Implementation
	Slide 59: Scheduling Concerns
	Slide 60: Fixed Priority Concern: Priority Inversion
	Slide 61: Solving Priority Inversion
	Slide 93: Acknowledgments

