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• We have already run into some limitations of the 
standalone process model:
– Single application, growing in complexity quickly
– Lots of polling loops, deep nested ‘if’ statements

• We could continue in this direction, but a modern 
Operating System (OS) provides streamlined 
mechanisms for:
– Preemptive multitasking
– Device drivers
– Memory management
– File systems

• It would be insane to try to cover all the major issues 
involved in embedded OS in a single lecture

Motivation
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• Embedded Operating System features
– Processes and scheduling

• Context switching

• Scheduler policies

• Real-Time Operating Systems (RTOS)

– Atomic operations

– Inter-processes communication

– Virtual memory

– Examples along the way:
• Linux, POSIX, freeRTOS.org

• ARM architecture support

• Reading: Wolf chapter 6, 3.5

This Week’s Topic
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Reactive Systems

• Respond to external events:
– Engine controller

– Seat belt monitor

• Requires real-time response:
– System architecture

– Program implementation

• May require a chain reaction among multiple 
processors
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Tasks and Processes

• A task is a functional 
description of a 
connected set of 
operations

• Task can also mean a 
collection of processes

• A process is a unique 
execution of a program

– Several copies of a 
program may run 
simultaneously or at 
different times

• A process has its own 
state:

– registers

– memory

• The operating system 
manages processes
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• A process can be in one of three states:

– executing on the CPU

– ready to run

– waiting for data

Process State

executing

ready waiting

gets data
and CPU

needs
data

gets data

needs data

preempted
gets
CPU
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Embedded vs. General-Purpose Scheduling

• Workstations try to avoid starving processes 
of CPU access

– Fairness == access to CPU

• Embedded systems must meet deadlines

– Low-priority processes may not run for a long 
time
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• Timer interrupt gives 
CPU to kernel

– Time quantum is 
smallest increment of 
CPU scheduling time

• Kernel decides what 
task runs next

• Kernel performs 
context switch to new 
context

Preemptive Scheduling
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Context Switching

• Set of registers that define a process’s state is 
its context

– Stored in a record

• Context switch moves the CPU from one 
process’s context to another

• Context switching code is usually assembly 
code

– Restoring context is particularly tricky
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freeRTOS.org Context Switch
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freeRTOS.org Timer Handler

void vPreemptiveTick( void ) { 

/* Save the context of the current task. */ 

portSAVE_CONTEXT(); 

/* Increment the tick count - this may wake a task. */ 

vTaskIncrementTick(); 

/* Find the highest priority task that is ready to run. */ 

vTaskSwitchContext(); 

/* End the interrupt in the AIC. */ 

AT91C_BASE_AIC->AIC_EOICR = AT91C_BASE_PITC->PITC_PIVR; 

portRESTORE_CONTEXT(); 

}



Lect-05.12CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

ARM Context Switch

; Dump user registers above R13.

; Pick up the user status

; and dump with return address below.

; Load next process info pointer.

; If it is zero, it is invalid

; Pick up status and return address.

; Restore the status.

; Get the rest of the registers

; and return and restore CPSR.

; Insert "no next process code" here.

STM     sp, {R0-lr}^

MRS     R0, SPSR

STMDB   sp, {R0, lr}

LDR     sp, [R12], #4

CMP     sp, #0

LDMDBNE sp, {R0, lr}

MSRNE   SPSR_cxsf, R0

LDMNE   sp, {R0-lr}^

NOP

SUBSNE pc, lr, #4

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits 
long

A subset of these registers is accessible in 
each mode
Note: System mode uses the User mode 
register set.
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Real-Time Systems

• What is a real-time system?

• Which of the following is real-time?
– A program that processes 100 video frames per 

second?

– A program that that process 1 video frame per 10 
seconds?

• A better name
– “Get things done on time” Systems

• They are about getting things done on time, not 
getting things done fast
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Real-Time Systems: Key Terms/Concepts
• Task 

– Cost: time for processor to complete task without 
interruptions

– Release time: when task is ready to be run

– Deadline: time by which task needs to completed

– Period: time between release times

• Task-set schedule: order in which tasks are allocated the CPU

• Scheduling policy (algorithm): means by which (i.e. rules 
followed) to create a task-set schedule
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Scheduling: Period vs Aperiodic

• Periodic process: executes on every period

• Aperiodic process: executes on demand

• Analyzing aperiodic process sets is harder---
must consider worst-case combinations of 
process activations
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Timing Requirements on Processes

• Period: interval between process activations

• Initiation interval: reciprocal of period

• Initiation time: time at which process 
becomes ready

• Deadline: time at which process must finish

• What happens if a process doesn’t finish by 
its deadline?

– Hard deadline: system fails if missed

– Soft deadline: user may notice, but system 
doesn’t necessarily fail
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Priority-driven Scheduling

• Each process has a priority

• CPU goes to highest-priority process that is 
ready

• Priorities determine scheduling policy:

– Fixed (Static) priority

– Time-varying (Dynamic) priorities
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Priority-driven Scheduling Example

• Rules:

– Each process has a fixed priority (1 highest)

– Highest-priority ready process gets CPU

– Process will not self stop (i.e. block) until done or 
is preempted by a high priority process

• Processes

– P1: priority 1, execution time 10, release time 15

– P2: priority 2, execution time 30, release time 0

– P3: priority 3, execution time 20, release time 18
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Priority-driven Scheduling Example (cont.)

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

P1: priority 1, execution time 10, release time 15

P2: priority 2, execution time 30, release time 0

P3: priority 3, execution time 20, release time 18
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The Scheduling Problem

• Can we meet all deadlines?

– Must be able to meet deadlines in all cases

• How much CPU horsepower do we need to 
meet our deadlines?
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CPU Utilization

• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• What is the CPU utilization of T1?

𝑻𝒂𝒔𝒌_𝑪𝑷𝑼_𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 =
𝑻𝒂𝒔𝒌_𝑪𝒐𝒔𝒕

𝑻𝒂𝒔𝒌_𝑷𝒆𝒓𝒊𝒐𝒅
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Scheduling Example (no preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a Task needs to run, the higher the 
priority (allow NO preemption)

– Is there a release pattern that can cause a task to miss a deadline?
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Scheduling Example (no preemption)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3
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Scheduling Example (no preemption)
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Scheduling Example (with preemption)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms

• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a task needs to run, the higher the 
priority (allow preemption)

– Draw out schedule and see if we miss a deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1

T2

T3
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Scheduling Example (with preemption)
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• T3: Check Sensors

– Cost = 6 ms

– Deadline = 12 ms

– Period = 12 ms

• What rules to follow for scheduling

– Let’s say that the more often a task needs to run, the higher the 
priority (allow preemption)

– Draw out schedule and see if we miss a deadline

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T1
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Scheduling Metrics

• How do we evaluate a scheduling policy:

– Ability to satisfy all deadlines (Feasibility)

– Often a trade-off between:

• Task set CPU utilization (i.e., time doing “useful” work)

• Scheduling overhead (time to make scheduling decision)
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Scheduling Metrics: Feasibility

• For previous preemption example

– How long do we have to draw out the schedule before we 
know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and 7ms?

– For a general task set, how long do we have to draw out the 
schedule?
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Scheduling Metrics: Feasibility

• For previous preemption example

– How long do we have to draw out the schedule before we 
know we will never miss a deadline?

– What if we had 3 tasks with period 3ms, 4ms, and 7ms?  
Answer: 84 ms

– For a general task set, how long do we have to draw out the 
schedule?  
Answer: Lowest common multiple of Task periods (a 
task set’s Hyper Period).  This is the time it takes before all 
Tasks release times synchronize after time = 0

• Is there a better way to determine is feasible (i.e. schedule 
using a given policy)?  Yes! RMA / RMS
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Rate Monotonic Scheduling (RMS)

• RMS (Liu and Layland [1973]): widely-used, analyzable 
scheduling policy

• Analysis is known as Rate Monotonic Analysis (RMA)

– All processes run on single CPU

– Zero context switch time

– No data dependencies between processes

– Process execution time is constant

– Process deadline is at end of its period

– Highest-priority ready process runs

– Processes with lower periods have higher priority
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RMS Priorities

• RMS gives an optimal (fixed/static) priority assignment:

– Shortest-period process gets highest priority

– Priority inversely proportional to period

– Break ties arbitrarily

• No fixed-priority scheme does better:

– In other words, if RMS does not give you a feasible 
schedule, then no static priority assignment approach can
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RMS CPU Utilization

• CPU utilization for a Task set of n tasks:

• For RMS: Independent of number of tasks in the set, RMS is 
guaranteed to give a feasible scheduled if CPU Utilization is less 
than 69%:

– If the Task set Utilization <= 69%, then RMS is guaranteed 
to meet all deadlines

– If  Utilization > 69%, then must draw schedule for the 
Lowest Common Multiple (LCM) of the Task set periods.

– Positive: Quick way to determine Feasibility

– Negative: Gives up about 30% of CPU Utilization

𝑪𝑷𝑼 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑻𝒂𝒔𝒌 𝑺𝒆𝒕 =෍

𝒊=𝟏

𝒏
𝑪𝒐𝒔𝒕𝒊

𝑷𝒆𝒓𝒊𝒐𝒅𝒊
=෍

𝒊=𝟏

𝒏

𝑪𝑷𝑼_𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏_𝑻𝒂𝒔𝒌𝒊
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Earliest-Deadline-First Scheduling

• EDF: dynamic priority scheduling scheme

– Process closest to its deadline has highest priority

– Must recalculate process priorities at every timer interrupt

• EDF guaranteed to give a feasible schedule, if a Task-set’s CPU 
utilization is less than or equal to 100%
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Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
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Scheduling Example (First try RMS)
• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms
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• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12 
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Scheduling Example (First try RMS)
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Scheduling Example (First try RMS)
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• T1: PPM update

– Cost = 1 ms

– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
Task-set CPU Utilization: 4/12 + 6/12 + 2/12 = 12/12 = 100%
Hyper-Period = 12 

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3



Lect-05.43CprE 488 (Embedded OS)Zambreno, Spring 2017 © ISU

Scheduling Example (First try RMS)
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Scheduling Example (First try RMS)
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Scheduling Example (Now try EDF)
• T1: PPM update
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– Deadline = 3 ms

– Period = 3 ms

• T2: Video processing

– Cost = 2 ms

– Deadline = 4 ms

– Period = 4 ms

• T3: Check Sensors

– Cost = 1 ms

– Deadline = 6 ms

– Period = 6 ms
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Scheduling Metrics

• How do we evaluate a scheduling policy:

– Ability to satisfy all deadlines (Feasibility)

– Often a trade-off between:

• Task set CPU utilization (i.e., time doing “useful” work)

• Scheduling overhead (time to make scheduling decision)
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EDF Implementation

• On each timer interrupt:

– Compute time to deadline for each task

– Choose process closest to deadline

• Generally considered too expensive to use in practice

– EDF guarantees meeting all task deadlines if task set CPU utilization is 
less than or equal to 100%, but a major underlining assumption is that 
updating priorities at each timer interrupt take zero CPU time.

• For fine grain timer ticks (i.e., short time between timer interrupts), 
the overhead for re-computing priorities can easily cost more CPU 
time than the task set!!

• Note for RMS: If task periods of a task set are “Harmonic” 
(i.e., period of each task is a multiple of each task with a 
smaller period), then RMS is guaranteed to schedule a task 
set with up to 100% utilization
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Scheduling Concerns

• Task Context Switching Time: Both EDF and RMS assume zero 
time for task context switching.  In a real system one must be careful 
that indeed the time for context switching is MUCH smaller than the 
period of the tasks in the system. This can be a little tricky to account 
for in a real system.

– Non-zero context switch time can push limits of a tight schedule

– Hard to calculate effects---depends on order of context switches

– In practice, OS context switch overhead is often small (hundreds of clock 
cycles) relative to many common task periods (10’s ms – sec’s)

• Some microcontrollers (e.g. ARM), have special instructions, and 
hardware mechanisms to help keep context switch time small.

• What if your set of processes is not schedulable?

– Change deadlines in requirements

– Reduce execution times of processes

– Get a faster CPU
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Fixed Priority Concern: Priority Inversion

• Priority inversion: low-priority process keeps high-priority process from 
running. Thus the low-priority task indirectly acts as though it is a high-
priority process.

– This can happen if a low-priority process has a lock (control) of a 
resource that a higher priority process needs.

– Can cause deadlock

• Example from Textbook, chapter 6

– Assume three processes, with P1 highest priority, P2 next highest, and 
P3 lowest priority.

• 1) P3 takes control of resource A (e.g. a Network card)

• 2) P2 then preempts P3, while P3 still has control of resource A

• 3) P1 preempts P2, and runs until it needs resource A, then blocks

• 4) P2 run to completion, since P1 is no longer ready to run

• 5) P3 runs until it releases  control of resource A

• 6) Now P1 can stop blocking on resource A and run
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Solving Priority Inversion
• Priority Inheritance: Have process inherit the priority of the highest process 

that may ever need a given System resource, while using System resource.

– Assume three processes, with P1 highest priority, P2 next highest, and P3 
lowest priority. Now use Priority Inheritance.

• 1) P3 takes control of resource A (e.g. a Network card)

– Since P1 may need resource A, give P3 the priority level of P1

• 2) P2 becomes ready, but will not preempt P3

• 3) P3 finishes with resource A, and has it priority set back to its original 
level.

• 4) P2 can now preempt P3, and P2 runs until

• 3) P1 preempts P2, and P1 runs to completion

• 4) P2 run to completion, assuming P1 does not restart

• 5) P3 runs to completion, assuming P1 or P2 do not restart

– Note: can still have deadlock occur.

• Priority Ceilings (summary of idea): Process can only enter a critical section 
of code (e.g. lock a resource), if no other higher priority process has locked a 
resource that it may need.

– Solves deadlock issue: But a more complex protocol.
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• These slides are inspired in part by material 
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Fred Kuhns (Washington University in St. Louis)

– Steve Furber (University of Manchester)

– Ed Lee (UC-Berkeley)

Acknowledgments


	Slide 1: CprE 488 – Embedded Systems Design  Lecture 5 – Embedded Operating Systems
	Slide 2: Motivation
	Slide 3: This Week’s Topic
	Slide 4: Reactive Systems
	Slide 5: Tasks and Processes
	Slide 6: Process State
	Slide 7: Embedded vs. General-Purpose Scheduling
	Slide 8: Preemptive Scheduling
	Slide 9: Context Switching
	Slide 10: freeRTOS.org Context Switch
	Slide 11: freeRTOS.org Timer Handler
	Slide 12: ARM Context Switch
	Slide 13: Real-Time Systems
	Slide 14: Real-Time Systems: Key Terms/Concepts
	Slide 15: Scheduling: Period vs Aperiodic
	Slide 16: Timing Requirements on Processes
	Slide 17: Priority-driven Scheduling
	Slide 18: Priority-driven Scheduling Example
	Slide 19: Priority-driven Scheduling Example (cont.)
	Slide 20: The Scheduling Problem
	Slide 21: CPU Utilization
	Slide 22: Scheduling Example (no preemption)
	Slide 23: Scheduling Example (no preemption)
	Slide 24: Scheduling Example (no preemption)
	Slide 25: Scheduling Example (with preemption)
	Slide 26: Scheduling Example (with preemption)
	Slide 27: Scheduling Metrics
	Slide 28: Scheduling Metrics: Feasibility
	Slide 29: Scheduling Metrics: Feasibility
	Slide 30: Rate Monotonic Scheduling (RMS)
	Slide 34: RMS Priorities
	Slide 35: RMS CPU Utilization
	Slide 36: Earliest-Deadline-First Scheduling
	Slide 37: Scheduling Example (First try RMS)
	Slide 38: Scheduling Example (First try RMS)
	Slide 39: Scheduling Example (First try RMS)
	Slide 40: Scheduling Example (First try RMS)
	Slide 41: Scheduling Example (First try RMS)
	Slide 42: Scheduling Example (First try RMS)
	Slide 43: Scheduling Example (First try RMS)
	Slide 44: Scheduling Example (First try RMS)
	Slide 45: Scheduling Example (Now try EDF)
	Slide 46: Scheduling Example (Now try EDF)
	Slide 47: Scheduling Example (Now try EDF)
	Slide 48: Scheduling Example (Now try EDF)
	Slide 49: Scheduling Example (Now try EDF)
	Slide 50: Scheduling Example (Now try EDF)
	Slide 51: Scheduling Example (Now try EDF)
	Slide 52: Scheduling Example (Now try EDF)
	Slide 53: Scheduling Example (Now try EDF)
	Slide 54: Scheduling Example (Now try EDF)
	Slide 55: Scheduling Example (Now try EDF)
	Slide 56: Scheduling Example (Now try EDF)
	Slide 57: Scheduling Metrics
	Slide 58: EDF Implementation
	Slide 59: Scheduling Concerns
	Slide 60: Fixed Priority Concern: Priority Inversion
	Slide 61: Solving Priority Inversion
	Slide 93: Acknowledgments

