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• Any performance guesses? 

 

 

 

 

 

 

 

• Assumptions: 

–N = 20000 (so 400,000,000 integers) 

– gcc 4.9.2 running on an Intel Core i7-6600U CPU @ 2.6 GHz 

A Motivating Example 

for (i=0; i<N; i++) 

   for (j=0; j<N; j++) 

       A[i][j] = 0; 

p = &A[0][0]; 

for (i=0; i<N*N; i++) 

   *p++ = 0; 

for (i=0; i<N; i++) 

   for (j=0; j<N; j++) 

       A[j][i] = 0; 

memset((void*)&A[0][0], 0, N*N*sizeof(int)); 

a) 

b) 

c) 

d) 

~1.40s 

-O0 -O3 

~0.84s 

~21.8s ~21.8s 

~1.59s ~0.83s 

~0.83s ~0.80s 
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• Compilers make abstraction affordable: 
– Cost of executing code should reflect the underlying work rather 

than the way the programmer chose to write it 

– Change in expression should bring small performance change 

 

Compilers and Abstraction 

struct point { 

  int x; int y;  

} 
 

void Padd(struct point p, struct point q, struct point *r) { 

  r->x = p.x + q.x; 

  r->y = p.y + q.y; 

} 
 

int main( int argc, char *argv[] ) { 

  struct point p1, p2, p3; 

 

  p1.x = 1; p1.y = 1; 

  p2.x = 2; p2.y = 2; 

 

  Padd(p1, p2, &p3); 

 

  printf(”Result is <%d,%d>.\n”, p3.x, p3.y); 

} 

Example © Keith Cooper, Rice University 
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Compilers and Abstraction (cont.) 
_main: 

L5: 

        popl    %ebx 

        movl    $1, -16(%ebp) 

        movl    $1, -12(%ebp) 

        movl    $2, -24(%ebp) 

        movl    $2, -20(%ebp) 

        leal    -32(%ebp), %eax 

        movl    %eax, 16(%esp) 

        movl    -24(%ebp), %eax 

        movl    -20(%ebp), %edx 

        movl    %eax, 8(%esp) 

        movl    %edx, 12(%esp) 

        movl    -16(%ebp), %eax 

        movl    -12(%ebp), %edx 

        movl    %eax, (%esp) 

        movl    %edx, 4(%esp) 

        call    _PAdd 

        movl    -28(%ebp), %eax 

        movl    -32(%ebp), %edx 

        movl    %eax, 8(%esp) 

        movl    %edx, 4(%esp) 

        leal    LC0-"L00000000001$pb"(%ebx), %eax 

        movl    %eax, (%esp) 

        call    L_printf$stub 

        addl    $68, %esp 

        popl    %ebx 

        leave 

        ret 

Assignments to p1 and p2 

Setup for call to PAdd 

Setup for call to printf 

Address calculation for format 
string in printf call 
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_PAdd: 

        pushl   %ebp 

        movl    %esp, %ebp 

        subl    $8, %esp 

        movl    8(%ebp), %edx 

        movl    16(%ebp), %eax 

        addl    %eax, %edx 

        movl    24(%ebp), %eax 

        movl    %edx, (%eax) 

        movl    12(%ebp), %edx 

        movl    20(%ebp), %eax 

        addl    %eax, %edx 

        movl    24(%ebp), %eax 

        movl    %edx, 4(%eax) 

        leave 

        ret 

 

 • The code does a lot of work to execute two add 
instructions (factor of 10 in overhead) 

• Code optimization (careful compile-time reasoning & 
transformation) can make matters better 

 

Compilers and Abstraction (cont.) 

Actual work 
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• The compiler’s role in software optimization: 
– Early optimizations 

– Redundancy elimination 

– Loop restructuring 

– Instruction scheduling 

– Low-level optimizations 

• Data representation 

• Case study: MP-2 color space conversion 

 

• Reading: 
– Wolf chapter 5 

This Week’s Topic 
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Implications 

• Must recognize legal (and illegal) programs 

• Must generate correct code 

• Must manage storage of all variables (and code) 

• Must agree with OS & linker on format for object 
code 

High-Level View of a Compiler 

Source 

code 

Machine 

code 
Compiler 

Errors  
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Implications 

• Use an intermediate representation (IR) 

• Front end maps legal source code into IR 

• Back end maps IR into target machine code 

• Potentially multiple front ends & multiple passes      

Traditional Two-Pass Compiler 

Source 

code 

Front 

End 

Errors  

Machine 

code 

Back 

End 
IR 

Depends primarily 
on source language 

Depends primarily 
on target machine 



Lect-06.9 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

Can we build n x m compilers with n + m components? 
• Must encode all language specific knowledge in each front end 
• Must encode all features in a single IR (e.g. gcc rtl or llvm ir) 
• Must encode all target specific knowledge in each back end 

 
• Successful in systems with assembly level (or lower) IRs 

 

A Common Fallacy 

 

Fortran 

Scheme 

C++ 

Python 

Front 

end 

Front 

end 

Front 

end 

Front 

end 

Back 

end 

Back 

end 

Target 2 

Target 1 

Target 3 Back 

end 



Lect-06.10 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

Responsibilities 

• Recognize legal (and illegal) programs 

• Report errors in a useful way 

• Produce IR and preliminary storage map 

• Shape the code for the rest of the compiler 

• Much of front end construction can be automated 

 

The Front End 

Source 

code 
Scanner 

IR 
Parser 

Errors  

tokens 
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• The parser output can be represented by a 
parse tree or an abstract syntax tree 

– Both trees represent expression: x  +  2  -  y 

The Front End (cont.) 

Term 

Op Term Expr 

Term Expr 

Goal 

Expr 

Op 

<id,x> 

<number,2> 

<id,y> 

+ 

- 

+ 

- 

<id,x> <number,2> 

<id,y> 

Parse Tree 

Abstract Syntax Tree 
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Responsibilities 

• Translate IR into target machine code 

• Choose instructions to implement each IR 
operation 

• Decide which values to keep in registers 

• Ensure conformance with system interfaces 

The Back End 

Errors  

IR Register 

Allocation 

Instruction 

Selection 

Machine 

code 

Instruction 

Scheduling 

IR IR 



Lect-06.13 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

Code Improvement (or Optimization) 
 

• Analyzes IR and rewrites (or transforms) IR 
• Primary goal is to reduce running time of the compiled 

code 
– May also improve space, power consumption, … 

• Must preserve “meaning” of the code 
– Measured by values of named variables 

 
• Note that “optimization” is a misnomer – optimizations 

generally improve performance, although this is not 
typically guaranteed 
 

Traditional Three-Part Compiler 

Errors  

Source 

Code 

Optimizer 

(Middle End) 

Front 

End 

Machine 

code 

Back 

End 

IR IR 
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Typical Transformations 

• Discover & propagate some constant value 

• Move a computation to a less frequently executed place 

• Specialize some computation based on context 

• Discover a redundant computation & remove it 

• Remove useless or unreachable code 

• Encode an idiom in some particularly efficient form 

The Optimizer 

Errors  

Opt 
1 

Opt 
3 

Opt 
2 

Opt 
n 

... IR IR IR IR IR 

Modern optimizers are structured as a series of passes 
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Types of (Classical) Optimizations 

• Operation-level – 1 operation in isolation 
– Constant folding, strength reduction 

– Dead code elimination (global, but 1 op at a time) 

• Local – pairs of operations in same basic 
block 

• Global – again pairs of operations 
– But, operations in different basic blocks 

– More advanced dataflow analysis necessary here 

• Loop – body of a loop 

• Interprocedural – look across multiple 
function calls 
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Constant Folding 

• Also known as constant-expression evaluation 

 

• Simplify operation based on values of source operands 
– Constant propagation creates opportunities for this 

• All constant operands 
– Evaluate the op, replace with a move 

• r1 = 3 * 4  r1 = 12 

• r1 = 3 / 0  ???  Don’t evaluate excepting ops !, what about FP? 

– Evaluate conditional branch, replace with branch or nop 
• if (1 < 2) goto BB2  branch BB2 

• if (1 > 2) goto BB2  convert to a nop 

• Algebraic identities 
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = r2 

– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0 

– r1 = r2 * 1, r2 / 1  r1 = r2 
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Strength Reduction 

• Replace expensive ops with cheaper ones 
– Constant propagation creates opportunities for this 

• Power of 2 constants 
– Mult by power of 2:  r1 = r2 * 8    r1 = r2 << 3 

– Div by power of 2:  r1 = r2 / 4   r1 = r2 >> 2 

– Rem by power of 2:  r1 = r2 REM 16    r1 = r2 & 15 

• More exotic 
– Replace multiply by constant by sequence of shift and 

adds/subs 
• r1 = r2 * 6 

– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101 

• r1 = r2 * 7 
– r100 = r2 << 3; r1 = r100 – r2 

• Can be ISA dependent (remember ARM examples) 
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• Remove any operation whose 
result is never consumed 

• Rules 
– X can be deleted 

• no stores or branches 

– DU chain empty or dest not live 

• This misses some dead code!! 
– Especially in loops 

– Critical operation 
• store or branch operation 

– Any operation that does not directly 
or indirectly feed a critical operation 
is dead 

– Trace UD chains backwards from 
critical operations 

– Any op not visited is dead 

Dead Code Elimination 

r1 = 3 
r2 = 10 

r4 = r4 + 1 
r7 = r1 * r4 

r2 = 0 r3 = r3 + 1 

r3 = r2 + r1 

store (r1, r3) 



Lect-06.19 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

• Optimize this block of code, using: 

– Constant folding 

– Strength reduction 

– Dead code elimination 

EX-06.1: Early Optimizations 

r1 = 0 

r4 = r1 | -1 
r7 = r1 * 4 

r6 = r1 

r3 = 8 / r6 
r3 = 8 * r6 
r3 = r3 + r2 

r2 = r2 + r1 
r6 = r7 * r6 
r1 = r1 + 1 

store (r1, r3) 
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• Forward propagation of 
moves of the form 

– rx = L (where L is a literal) 

– Maximally propagate 

– Assume no instruction 
encoding restrictions 

• When is it legal? 

– SRC: Literal is a hard coded 
constant, so never a problem 

– DEST: Must be available 

• Guaranteed to reach 

• May reach not good enough 

 

 

Constant Propagation 

r1 = 5 
r2 = r1 + r3 

r1 = r1 + r2 r7 = r1 + r4 

r8 = r1 + 3 

r9 = r1 + r11 
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• Optimize this block of code, using: 

– Constant propagation 

– Constant folding 

– Strength reduction 

– Dead code elimination 

 

EX-06.2: Constant Propagation 

1: r1 = 0 
2: r2 = 10 

3: r4 = 1 
4: r7 = r1 * 4 

5: r6 = 8 

6: r2 = 0 
7: r3 = r2 / r6 

8: r3 = r4 * r6 
9: r3 = r3 + r2 

10: r2 = r2 + r1 
11: r6 = r7 * r6 
12: r1 = r1 + 1 

13: store (r1, r3) 
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• Eliminate recomputation of an expression 
– X:  r1 = r2 * r3 

–                     r100 = r1 

– … 

– Y:  r4 = r2 * r3   r4 = r100 

• Benefits 
– Reduce work 

– Moves can get copy propagated 

• Rules (ops X and Y) 
– X and Y have the same opcode 

– src(X) = src(Y), for all srcs 

– for all srcs(X) no defs of srci in [X ... Y) 

– if X is a load, then there is no store that may write to address(X) between X 
and Y 

 

Local Common Subexpression Elimination 

r1 = r2 + r3 
r4 = r4 +1 
r1 = 6 
r6 = r2 + r3 
r2 = r1 -1 
r6 = r4 + 1 
r7 = r2 + r3 
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• Optimize this block of code, using: 

– Constant propagation 

– Constant folding 

– Strength reduction 

– Dead code elimination 

– Common subexpression  

   elimination 

 

 

EX-06.3: Subexpression Elimination 

r1 = 9 
r4 = 4 
r5 = 0 
r6 = 16 

r2 = r3 * r4 
r8 = r2 + r5 

r9 = r3 
r7 = load(r2) 
r5 = r9 * r4 
r3 = load(r2) 
r10 = r3 / r6 
store (r8, r7) 

r11 = r2 
r12 = load(r11) 
store(r12, r3) 
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Loop Optimizations 

• Arguably the most important set of 
optimizations (why?) 

• Many optimizations are possible 
– Loop invariant code motion 

– Global variable migration 

– Induction variable optimizations 

– Loop restructuring (unrolling, tiling, etc.) 
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• Removes loop independent conditionals from a loop  
 
 
 
 
 
 
 
 
 

• Advantage: reduces the frequency of execution of the 
conditional statement 

• Disadvantages: Loop structure is more complex, code 
size expansion 

Loop Unswitching 

for i=1 to N do 

    for j=2 to N do 

        if T[i] > 0 then 

            A[i,j] = A[i, j-1]*T[i] + B[i] 

        else 

            A[i,j] = 0.0 

        endif 

    endfor 

endfor 

for i=1 to N do 

    if T[i] > 0 then 

        for j=2 to N do 

            A[i,j] = A[i, j-1]*T[i] + B[i] 

        endfor 

    else 

        for j=2 to N do 

            A[i,j] = 0.0 

        endfor 

    endif 

endfor 
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• Separates the first (or last) iteration of the loop 
 
 
 
 
 

 
• Advantage: Used to enable loop fusion or 

remove conditionals on the index variable from 
inside the loop. Allows execution of loop 
invariant code only in the first iteration 

• Disadvantages: Code size expansion 

Loop Peeling 

for i=1 to N do 

    A[i] = (X+Y)*B[i] 

endfor 

if N >= 1 then 

    A[1] = (X+Y)*B[1] 

    for j=2 to N do 

            A[j] = (X+Y)*B[j] 

    endfor 

endif 
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• Divides the index into two portions 
 
 
 
 
 
 
 

 
• Advantage: Used to enable loop fusion or remove 

conditionals on the index variable from inside the loop. 
Can remove conditionals that test index variables. 

• Disadvantages: Code size expansion 

Index Set Splitting 

for i=1 to 100 do 

    A[i] = B[i] + C[i] 

    if i > 10 then 

        D[i] = A[i] + A[i-10] 

    endif 

endfor 

for i=1 to 10 do 

    A[i] = B[i] + C[i] 

endfor 

for i=11 to 100 do 

    A[i] = B[i] + C[i] 

    D[i] = A[i] + A[i-10] 

endfor 
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• Breaks anti-dependence relations by expanding, or 
promoting a scalar into an array 
 
 
 
 
 
 
 

 
• Advantage: Eliminates anti-dependences and output 

dependences  
• Disadvantages: In nested loops the size of the array 

might be prohibitive 

Scalar Expansion 

for i=1 to N do 

    T = A[i] + B[i] 

    C[i] = T + 1/T 

endfor 

if N >= 1 then 

    allocate Tx(1:N) 

    for i=1 to N do 

        Tx[i] = A[i] + B[i] 

        C[i] = Tx[i] + 1/Tx[i] 

    endfor 

    T = Tx[N] 

endif 
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• Takes two adjacent loops and generates a single loop 

 

 

 

 

 

 

 

 

• Advantage: Eliminates loop iteration code 

• Disadvantages: Potential locality implications, anything 
else???? 

Loop Fusion 

(1) for i=1 to N do 

(2)    A[i] = B[i] + 1 

(3) endfor 

(4) for i=1 to N do 

(5)     C[i] = A[i] / 2 

(6) endfor 

(7) for i=1 to N do 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

(1) for i=1 to N do 

(2)     A[i] = B[i] + 1 

(5)     C[i] = A[i] / 2 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 
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• To be legal, a loop transformation must 
preserve all the data dependencies of the 
original loop(s) 

Loop Fusion (cont.) 

(1) for i=1 to N do 

(2)    A[i] = B[i] + 1 

(3) endfor 

(4) for i=1 to N do 

(5)     C[i] = A[i] / 2 

(6) endfor 

(7) for i=1 to N do 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

The original loop has the 
flow dependencies: 

S2 
f S5 

S5 
f S8 

(1) for i=1 to N do 

(2)     A[i] = B[i] + 1 

(5)     C[i] = A[i] / 2 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

What are the 
dependences in  
the fused loop? 
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• Breaks a loop into multiple smaller loops 
 
 
 
 
 
 

 
 

 
• Advantage: can improve cache use in machines with 

very small caches. Can be required for other 
transformations, such as loop interchanging. 

• Disadvantages: Code size increase 

Loop Fission (Loop Distribution) 

(1) for i=1 to N do 

(2)    A[i] = A[i] + B[i-1] 

(3)    B[i] = C[i-1]*X + Z 

(4)    C[i] = 1/B[i] 

(5)    D[i] = sqrt(C[i]) 

(6) endfor 

(1) for ib=0 to N-1 do 

(3)    B[ib+1] = C[ib]*X + Z 

(4)    C[ib+1] = 1/B[ib+1] 

(6) endfor 

(1) for ib=0 to N-1 do 

(2)    A[ib+1] = A[ib+1] + B[ib] 

(6) endfor 

(1) for ib=0 to N-1 do 

(5)    D[ib+1] = sqrt(C[ib+1]) 

(6) endfor 

(1) i = N+1 
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• Reverses the order of nested loops 
 
 
 
 
 
 

 
 

 
• Advantage: can reduce the startup cost of the inner-

most loop. Can enable vectorization 
• Disadvantages: can change the locality of memory 

references 

Loop Interchange 

(1) for j=2 to M do 

(2)     for i=1 to N do 

(3)         A[i,j] = A[i,j-1] + B[i,j] 

(4)     endfor 

(5) endfor 

(1) for i=1 to N do 

(2)     for j=2 to M do 

(3)         A[i,j] = A[i,j-1] + B[i,j] 

(4)     endfor 

(5) endfor 
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• Replicates the loop body 
• Benefits: 

– Reduces loop overhead 
– Increased ILP (esp. VLIW)‏ 
– Improved locality (consecutive elements)‏ 

 

Loop Unrolling 

do i = 2, n-1 

a[i] = a[i] + a[i-1] * a[i+1] 

end do 

do i = 1, n-2, 2 

a[i] = a[i] + a[i-1] * a[i+1] 

a[i+1] = a[i+1] + a[i] * a[i+2] 

end do 

if (mod(n-2,2) = 1) then 

a[n-1] = a[n-1] + a[n-2] * a[n] 

end if 
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• Frees the register used by the variable, 
reduces the number of operations in the loop 
framework 

 

 

 

 

 

 

 

 

Induction Variable Elimination 

for(i = 0; i < n; i++) { 
a[i] = a[i] + c; 

} 

A = &a; 
T = &a + n; 
while(A < T){ 

*A = *A + c; 
A++; 

} 
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• A specific case of code hoisting 

• Needs a register to hold the invariant value 

– Ex: multi-dim. indices, pointers, structures 

 

Loop Invariant Code Motion 

do i = 1, n 
    a[i] = a[i] + sqrt(x)‏ 
end do 

if (n > 0) C = sqrt(x)‏ 
do i = 1, n 
    a[i] = a[i] + C 
end do 
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• Adjusts the granularity of an operation 

– usually for vectorization 

– also controlling array size, grouping operations 

• Often requires other transforms first 

 

Strip Mining 

do i = 1, n 

a[i] = a[i] + c 

end do 

TN = (n/64)*64 

do TI = 1, TN, 64 

a[TI:TI+63] = a[TI:TI+63] + c 

end do 

do i= TN+1, n 

a[i] = a[i] + c 

end do 
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• Multidimensional specialization of strip mining 

• Goal: to improve cache reuse 

• Adjacent loops can be tiled if they can be interchanged 

Loop Tiling 

do i = 1, n 

do j = 1, n 

a[i,j] = b[j,i] 

end do 

end do 

do TI = 1, n, 64 

do TJ = 1, n, 64 

do i = TI, min(TI+63, n)‏ 

do j = TJ, min(TJ+63, n)‏ 

a[i,j] = b[j,i] 

end do 

end do 

end do 

end do 
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Fixed Point Representation 

– Insert implicit “binary point” between two bits 

– Bits to left of point have value ≥ 1 

– Bits to right of point have value < 1 
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Converting to Fixed point 

1. Take fractional part and multiply by 2 
2. If the result is > 1, then answer is 1, if 0 then 

answer is 0 
3. Start again with the remaining decimal part, 

until you get an answer of 0 
 

• E.g. 
Convert 0.75 to fixed point 
 
0.75 * 2  = 1.5   Use  1 
0.5 * 2  = 1.0   Use  1 
 
Ans: 0.75 in Decimal = 0.11 in binary 
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 Pros – simplicity: 

 The same hardware that does integer arithmetic can do fixed point 
arithmetic 

 In fact, the programmer can use ints with an implicit fixed point (ints 
are just fixed point numbers with the binary point to the right of b

0
)
 

 

 Cons – there is no good way to pick where the fixed point 
should be 

 Sometimes you need range, sometimes you need precision.  The 
more you have of one, the less of the other 

 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 

                   Value Representation 

  1/3 0.0101010101[01]…2 

  1/5 0.001100110011[0011]…2 

  1/10 0.0001100110011[0011]…2 

 

 

 

Fixed Point Pros and Cons 
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• Color filter array: 

 

 

 

 

• Color space conversion: 

 
 

• Chroma resampling: 

– Output pattern – Cb-Y, Cr-Y, Cb-Y, Cr-Y, … 

Putting it All Together: MP-2 Optimization 

𝑌 𝐶𝑏 𝐶𝑟 =
0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

∙
𝑅
𝐺
𝐵

+
16
128
128
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– Scott Mahlke (University of Michigan) 

– José Amaral (University of Alberta) 

Acknowledgments 


