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• Any performance guesses? 

 

 

 

 

 

 

 

• Assumptions: 

–N = 20000 (so 400,000,000 integers) 

– gcc 4.9.2 running on an Intel Core i7-6600U CPU @ 2.6 GHz 

A Motivating Example 

for (i=0; i<N; i++) 

   for (j=0; j<N; j++) 

       A[i][j] = 0; 

p = &A[0][0]; 

for (i=0; i<N*N; i++) 

   *p++ = 0; 

for (i=0; i<N; i++) 

   for (j=0; j<N; j++) 

       A[j][i] = 0; 

memset((void*)&A[0][0], 0, N*N*sizeof(int)); 

a) 

b) 

c) 

d) 

~1.40s 

-O0 -O3 

~0.84s 

~21.8s ~21.8s 

~1.59s ~0.83s 

~0.83s ~0.80s 



Lect-06.3 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

• Compilers make abstraction affordable: 
– Cost of executing code should reflect the underlying work rather 

than the way the programmer chose to write it 

– Change in expression should bring small performance change 

 

Compilers and Abstraction 

struct point { 

  int x; int y;  

} 
 

void Padd(struct point p, struct point q, struct point *r) { 

  r->x = p.x + q.x; 

  r->y = p.y + q.y; 

} 
 

int main( int argc, char *argv[] ) { 

  struct point p1, p2, p3; 

 

  p1.x = 1; p1.y = 1; 

  p2.x = 2; p2.y = 2; 

 

  Padd(p1, p2, &p3); 

 

  printf(”Result is <%d,%d>.\n”, p3.x, p3.y); 

} 

Example © Keith Cooper, Rice University 



Lect-06.4 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

Compilers and Abstraction (cont.) 
_main: 

L5: 

        popl    %ebx 

        movl    $1, -16(%ebp) 

        movl    $1, -12(%ebp) 

        movl    $2, -24(%ebp) 

        movl    $2, -20(%ebp) 

        leal    -32(%ebp), %eax 

        movl    %eax, 16(%esp) 

        movl    -24(%ebp), %eax 

        movl    -20(%ebp), %edx 

        movl    %eax, 8(%esp) 

        movl    %edx, 12(%esp) 

        movl    -16(%ebp), %eax 

        movl    -12(%ebp), %edx 

        movl    %eax, (%esp) 

        movl    %edx, 4(%esp) 

        call    _PAdd 

        movl    -28(%ebp), %eax 

        movl    -32(%ebp), %edx 

        movl    %eax, 8(%esp) 

        movl    %edx, 4(%esp) 

        leal    LC0-"L00000000001$pb"(%ebx), %eax 

        movl    %eax, (%esp) 

        call    L_printf$stub 

        addl    $68, %esp 

        popl    %ebx 

        leave 

        ret 

Assignments to p1 and p2 

Setup for call to PAdd 

Setup for call to printf 

Address calculation for format 
string in printf call 
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_PAdd: 

        pushl   %ebp 

        movl    %esp, %ebp 

        subl    $8, %esp 

        movl    8(%ebp), %edx 

        movl    16(%ebp), %eax 

        addl    %eax, %edx 

        movl    24(%ebp), %eax 

        movl    %edx, (%eax) 

        movl    12(%ebp), %edx 

        movl    20(%ebp), %eax 

        addl    %eax, %edx 

        movl    24(%ebp), %eax 

        movl    %edx, 4(%eax) 

        leave 

        ret 

 

 • The code does a lot of work to execute two add 
instructions (factor of 10 in overhead) 

• Code optimization (careful compile-time reasoning & 
transformation) can make matters better 

 

Compilers and Abstraction (cont.) 

Actual work 
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• The compiler’s role in software optimization: 
– Early optimizations 

– Redundancy elimination 

– Loop restructuring 

– Instruction scheduling 

– Low-level optimizations 

• Data representation 

• Case study: MP-2 color space conversion 

 

• Reading: 
– Wolf chapter 5 

This Week’s Topic 
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Implications 

• Must recognize legal (and illegal) programs 

• Must generate correct code 

• Must manage storage of all variables (and code) 

• Must agree with OS & linker on format for object 
code 

High-Level View of a Compiler 

Source 

code 

Machine 

code 
Compiler 

Errors  
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Implications 

• Use an intermediate representation (IR) 

• Front end maps legal source code into IR 

• Back end maps IR into target machine code 

• Potentially multiple front ends & multiple passes      

Traditional Two-Pass Compiler 

Source 

code 

Front 

End 

Errors  

Machine 

code 

Back 

End 
IR 

Depends primarily 
on source language 

Depends primarily 
on target machine 
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Can we build n x m compilers with n + m components? 
• Must encode all language specific knowledge in each front end 
• Must encode all features in a single IR (e.g. gcc rtl or llvm ir) 
• Must encode all target specific knowledge in each back end 

 
• Successful in systems with assembly level (or lower) IRs 

 

A Common Fallacy 

 

Fortran 

Scheme 

C++ 

Python 

Front 

end 

Front 

end 

Front 

end 

Front 

end 

Back 

end 

Back 

end 

Target 2 

Target 1 

Target 3 Back 

end 
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Responsibilities 

• Recognize legal (and illegal) programs 

• Report errors in a useful way 

• Produce IR and preliminary storage map 

• Shape the code for the rest of the compiler 

• Much of front end construction can be automated 

 

The Front End 

Source 

code 
Scanner 

IR 
Parser 

Errors  

tokens 
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• The parser output can be represented by a 
parse tree or an abstract syntax tree 

– Both trees represent expression: x  +  2  -  y 

The Front End (cont.) 

Term 

Op Term Expr 

Term Expr 

Goal 

Expr 

Op 

<id,x> 

<number,2> 

<id,y> 

+ 

- 

+ 

- 

<id,x> <number,2> 

<id,y> 

Parse Tree 

Abstract Syntax Tree 
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Responsibilities 

• Translate IR into target machine code 

• Choose instructions to implement each IR 
operation 

• Decide which values to keep in registers 

• Ensure conformance with system interfaces 

The Back End 

Errors  

IR Register 

Allocation 

Instruction 

Selection 

Machine 

code 

Instruction 

Scheduling 

IR IR 
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Code Improvement (or Optimization) 
 

• Analyzes IR and rewrites (or transforms) IR 
• Primary goal is to reduce running time of the compiled 

code 
– May also improve space, power consumption, … 

• Must preserve “meaning” of the code 
– Measured by values of named variables 

 
• Note that “optimization” is a misnomer – optimizations 

generally improve performance, although this is not 
typically guaranteed 
 

Traditional Three-Part Compiler 

Errors  

Source 

Code 

Optimizer 

(Middle End) 

Front 

End 

Machine 

code 

Back 

End 

IR IR 
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Typical Transformations 

• Discover & propagate some constant value 

• Move a computation to a less frequently executed place 

• Specialize some computation based on context 

• Discover a redundant computation & remove it 

• Remove useless or unreachable code 

• Encode an idiom in some particularly efficient form 

The Optimizer 

Errors  

Opt 
1 

Opt 
3 

Opt 
2 

Opt 
n 

... IR IR IR IR IR 

Modern optimizers are structured as a series of passes 
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Types of (Classical) Optimizations 

• Operation-level – 1 operation in isolation 
– Constant folding, strength reduction 

– Dead code elimination (global, but 1 op at a time) 

• Local – pairs of operations in same basic 
block 

• Global – again pairs of operations 
– But, operations in different basic blocks 

– More advanced dataflow analysis necessary here 

• Loop – body of a loop 

• Interprocedural – look across multiple 
function calls 
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Constant Folding 

• Also known as constant-expression evaluation 

 

• Simplify operation based on values of source operands 
– Constant propagation creates opportunities for this 

• All constant operands 
– Evaluate the op, replace with a move 

• r1 = 3 * 4  r1 = 12 

• r1 = 3 / 0  ???  Don’t evaluate excepting ops !, what about FP? 

– Evaluate conditional branch, replace with branch or nop 
• if (1 < 2) goto BB2  branch BB2 

• if (1 > 2) goto BB2  convert to a nop 

• Algebraic identities 
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = r2 

– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0 

– r1 = r2 * 1, r2 / 1  r1 = r2 
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Strength Reduction 

• Replace expensive ops with cheaper ones 
– Constant propagation creates opportunities for this 

• Power of 2 constants 
– Mult by power of 2:  r1 = r2 * 8    r1 = r2 << 3 

– Div by power of 2:  r1 = r2 / 4   r1 = r2 >> 2 

– Rem by power of 2:  r1 = r2 REM 16    r1 = r2 & 15 

• More exotic 
– Replace multiply by constant by sequence of shift and 

adds/subs 
• r1 = r2 * 6 

– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101 

• r1 = r2 * 7 
– r100 = r2 << 3; r1 = r100 – r2 

• Can be ISA dependent (remember ARM examples) 
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• Remove any operation whose 
result is never consumed 

• Rules 
– X can be deleted 

• no stores or branches 

– DU chain empty or dest not live 

• This misses some dead code!! 
– Especially in loops 

– Critical operation 
• store or branch operation 

– Any operation that does not directly 
or indirectly feed a critical operation 
is dead 

– Trace UD chains backwards from 
critical operations 

– Any op not visited is dead 

Dead Code Elimination 

r1 = 3 
r2 = 10 

r4 = r4 + 1 
r7 = r1 * r4 

r2 = 0 r3 = r3 + 1 

r3 = r2 + r1 

store (r1, r3) 
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• Optimize this block of code, using: 

– Constant folding 

– Strength reduction 

– Dead code elimination 

EX-06.1: Early Optimizations 

r1 = 0 

r4 = r1 | -1 
r7 = r1 * 4 

r6 = r1 

r3 = 8 / r6 
r3 = 8 * r6 
r3 = r3 + r2 

r2 = r2 + r1 
r6 = r7 * r6 
r1 = r1 + 1 

store (r1, r3) 
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• Forward propagation of 
moves of the form 

– rx = L (where L is a literal) 

– Maximally propagate 

– Assume no instruction 
encoding restrictions 

• When is it legal? 

– SRC: Literal is a hard coded 
constant, so never a problem 

– DEST: Must be available 

• Guaranteed to reach 

• May reach not good enough 

 

 

Constant Propagation 

r1 = 5 
r2 = r1 + r3 

r1 = r1 + r2 r7 = r1 + r4 

r8 = r1 + 3 

r9 = r1 + r11 
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• Optimize this block of code, using: 

– Constant propagation 

– Constant folding 

– Strength reduction 

– Dead code elimination 

 

EX-06.2: Constant Propagation 

1: r1 = 0 
2: r2 = 10 

3: r4 = 1 
4: r7 = r1 * 4 

5: r6 = 8 

6: r2 = 0 
7: r3 = r2 / r6 

8: r3 = r4 * r6 
9: r3 = r3 + r2 

10: r2 = r2 + r1 
11: r6 = r7 * r6 
12: r1 = r1 + 1 

13: store (r1, r3) 
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• Eliminate recomputation of an expression 
– X:  r1 = r2 * r3 

–                     r100 = r1 

– … 

– Y:  r4 = r2 * r3   r4 = r100 

• Benefits 
– Reduce work 

– Moves can get copy propagated 

• Rules (ops X and Y) 
– X and Y have the same opcode 

– src(X) = src(Y), for all srcs 

– for all srcs(X) no defs of srci in [X ... Y) 

– if X is a load, then there is no store that may write to address(X) between X 
and Y 

 

Local Common Subexpression Elimination 

r1 = r2 + r3 
r4 = r4 +1 
r1 = 6 
r6 = r2 + r3 
r2 = r1 -1 
r6 = r4 + 1 
r7 = r2 + r3 
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• Optimize this block of code, using: 

– Constant propagation 

– Constant folding 

– Strength reduction 

– Dead code elimination 

– Common subexpression  

   elimination 

 

 

EX-06.3: Subexpression Elimination 

r1 = 9 
r4 = 4 
r5 = 0 
r6 = 16 

r2 = r3 * r4 
r8 = r2 + r5 

r9 = r3 
r7 = load(r2) 
r5 = r9 * r4 
r3 = load(r2) 
r10 = r3 / r6 
store (r8, r7) 

r11 = r2 
r12 = load(r11) 
store(r12, r3) 
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Loop Optimizations 

• Arguably the most important set of 
optimizations (why?) 

• Many optimizations are possible 
– Loop invariant code motion 

– Global variable migration 

– Induction variable optimizations 

– Loop restructuring (unrolling, tiling, etc.) 
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• Removes loop independent conditionals from a loop  
 
 
 
 
 
 
 
 
 

• Advantage: reduces the frequency of execution of the 
conditional statement 

• Disadvantages: Loop structure is more complex, code 
size expansion 

Loop Unswitching 

for i=1 to N do 

    for j=2 to N do 

        if T[i] > 0 then 

            A[i,j] = A[i, j-1]*T[i] + B[i] 

        else 

            A[i,j] = 0.0 

        endif 

    endfor 

endfor 

for i=1 to N do 

    if T[i] > 0 then 

        for j=2 to N do 

            A[i,j] = A[i, j-1]*T[i] + B[i] 

        endfor 

    else 

        for j=2 to N do 

            A[i,j] = 0.0 

        endfor 

    endif 

endfor 
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• Separates the first (or last) iteration of the loop 
 
 
 
 
 

 
• Advantage: Used to enable loop fusion or 

remove conditionals on the index variable from 
inside the loop. Allows execution of loop 
invariant code only in the first iteration 

• Disadvantages: Code size expansion 

Loop Peeling 

for i=1 to N do 

    A[i] = (X+Y)*B[i] 

endfor 

if N >= 1 then 

    A[1] = (X+Y)*B[1] 

    for j=2 to N do 

            A[j] = (X+Y)*B[j] 

    endfor 

endif 
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• Divides the index into two portions 
 
 
 
 
 
 
 

 
• Advantage: Used to enable loop fusion or remove 

conditionals on the index variable from inside the loop. 
Can remove conditionals that test index variables. 

• Disadvantages: Code size expansion 

Index Set Splitting 

for i=1 to 100 do 

    A[i] = B[i] + C[i] 

    if i > 10 then 

        D[i] = A[i] + A[i-10] 

    endif 

endfor 

for i=1 to 10 do 

    A[i] = B[i] + C[i] 

endfor 

for i=11 to 100 do 

    A[i] = B[i] + C[i] 

    D[i] = A[i] + A[i-10] 

endfor 
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• Breaks anti-dependence relations by expanding, or 
promoting a scalar into an array 
 
 
 
 
 
 
 

 
• Advantage: Eliminates anti-dependences and output 

dependences  
• Disadvantages: In nested loops the size of the array 

might be prohibitive 

Scalar Expansion 

for i=1 to N do 

    T = A[i] + B[i] 

    C[i] = T + 1/T 

endfor 

if N >= 1 then 

    allocate Tx(1:N) 

    for i=1 to N do 

        Tx[i] = A[i] + B[i] 

        C[i] = Tx[i] + 1/Tx[i] 

    endfor 

    T = Tx[N] 

endif 
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• Takes two adjacent loops and generates a single loop 

 

 

 

 

 

 

 

 

• Advantage: Eliminates loop iteration code 

• Disadvantages: Potential locality implications, anything 
else???? 

Loop Fusion 

(1) for i=1 to N do 

(2)    A[i] = B[i] + 1 

(3) endfor 

(4) for i=1 to N do 

(5)     C[i] = A[i] / 2 

(6) endfor 

(7) for i=1 to N do 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

(1) for i=1 to N do 

(2)     A[i] = B[i] + 1 

(5)     C[i] = A[i] / 2 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 
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• To be legal, a loop transformation must 
preserve all the data dependencies of the 
original loop(s) 

Loop Fusion (cont.) 

(1) for i=1 to N do 

(2)    A[i] = B[i] + 1 

(3) endfor 

(4) for i=1 to N do 

(5)     C[i] = A[i] / 2 

(6) endfor 

(7) for i=1 to N do 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

The original loop has the 
flow dependencies: 

S2 
f S5 

S5 
f S8 

(1) for i=1 to N do 

(2)     A[i] = B[i] + 1 

(5)     C[i] = A[i] / 2 

(8)     D[i] = 1 / C[i+1] 

(9) endfor 

What are the 
dependences in  
the fused loop? 
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• Breaks a loop into multiple smaller loops 
 
 
 
 
 
 

 
 

 
• Advantage: can improve cache use in machines with 

very small caches. Can be required for other 
transformations, such as loop interchanging. 

• Disadvantages: Code size increase 

Loop Fission (Loop Distribution) 

(1) for i=1 to N do 

(2)    A[i] = A[i] + B[i-1] 

(3)    B[i] = C[i-1]*X + Z 

(4)    C[i] = 1/B[i] 

(5)    D[i] = sqrt(C[i]) 

(6) endfor 

(1) for ib=0 to N-1 do 

(3)    B[ib+1] = C[ib]*X + Z 

(4)    C[ib+1] = 1/B[ib+1] 

(6) endfor 

(1) for ib=0 to N-1 do 

(2)    A[ib+1] = A[ib+1] + B[ib] 

(6) endfor 

(1) for ib=0 to N-1 do 

(5)    D[ib+1] = sqrt(C[ib+1]) 

(6) endfor 

(1) i = N+1 



Lect-06.32 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU 

• Reverses the order of nested loops 
 
 
 
 
 
 

 
 

 
• Advantage: can reduce the startup cost of the inner-

most loop. Can enable vectorization 
• Disadvantages: can change the locality of memory 

references 

Loop Interchange 

(1) for j=2 to M do 

(2)     for i=1 to N do 

(3)         A[i,j] = A[i,j-1] + B[i,j] 

(4)     endfor 

(5) endfor 

(1) for i=1 to N do 

(2)     for j=2 to M do 

(3)         A[i,j] = A[i,j-1] + B[i,j] 

(4)     endfor 

(5) endfor 
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• Replicates the loop body 
• Benefits: 

– Reduces loop overhead 
– Increased ILP (esp. VLIW) 
– Improved locality (consecutive elements) 

 

Loop Unrolling 

do i = 2, n-1 

a[i] = a[i] + a[i-1] * a[i+1] 

end do 

do i = 1, n-2, 2 

a[i] = a[i] + a[i-1] * a[i+1] 

a[i+1] = a[i+1] + a[i] * a[i+2] 

end do 

if (mod(n-2,2) = 1) then 

a[n-1] = a[n-1] + a[n-2] * a[n] 

end if 
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• Frees the register used by the variable, 
reduces the number of operations in the loop 
framework 

 

 

 

 

 

 

 

 

Induction Variable Elimination 

for(i = 0; i < n; i++) { 
a[i] = a[i] + c; 

} 

A = &a; 
T = &a + n; 
while(A < T){ 

*A = *A + c; 
A++; 

} 
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• A specific case of code hoisting 

• Needs a register to hold the invariant value 

– Ex: multi-dim. indices, pointers, structures 

 

Loop Invariant Code Motion 

do i = 1, n 
    a[i] = a[i] + sqrt(x) 
end do 

if (n > 0) C = sqrt(x) 
do i = 1, n 
    a[i] = a[i] + C 
end do 
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• Adjusts the granularity of an operation 

– usually for vectorization 

– also controlling array size, grouping operations 

• Often requires other transforms first 

 

Strip Mining 

do i = 1, n 

a[i] = a[i] + c 

end do 

TN = (n/64)*64 

do TI = 1, TN, 64 

a[TI:TI+63] = a[TI:TI+63] + c 

end do 

do i= TN+1, n 

a[i] = a[i] + c 

end do 
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• Multidimensional specialization of strip mining 

• Goal: to improve cache reuse 

• Adjacent loops can be tiled if they can be interchanged 

Loop Tiling 

do i = 1, n 

do j = 1, n 

a[i,j] = b[j,i] 

end do 

end do 

do TI = 1, n, 64 

do TJ = 1, n, 64 

do i = TI, min(TI+63, n) 

do j = TJ, min(TJ+63, n) 

a[i,j] = b[j,i] 

end do 

end do 

end do 

end do 
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Fixed Point Representation 

– Insert implicit “binary point” between two bits 

– Bits to left of point have value ≥ 1 

– Bits to right of point have value < 1 
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Converting to Fixed point 

1. Take fractional part and multiply by 2 
2. If the result is > 1, then answer is 1, if 0 then 

answer is 0 
3. Start again with the remaining decimal part, 

until you get an answer of 0 
 

• E.g. 
Convert 0.75 to fixed point 
 
0.75 * 2  = 1.5   Use  1 
0.5 * 2  = 1.0   Use  1 
 
Ans: 0.75 in Decimal = 0.11 in binary 
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 Pros – simplicity: 

 The same hardware that does integer arithmetic can do fixed point 
arithmetic 

 In fact, the programmer can use ints with an implicit fixed point (ints 
are just fixed point numbers with the binary point to the right of b

0
)
 

 

 Cons – there is no good way to pick where the fixed point 
should be 

 Sometimes you need range, sometimes you need precision.  The 
more you have of one, the less of the other 

 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 

                   Value Representation 

  1/3 0.0101010101[01]…2 

  1/5 0.001100110011[0011]…2 

  1/10 0.0001100110011[0011]…2 

 

 

 

Fixed Point Pros and Cons 
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• Color filter array: 

 

 

 

 

• Color space conversion: 

 
 

• Chroma resampling: 

– Output pattern – Cb-Y, Cr-Y, Cb-Y, Cr-Y, … 

Putting it All Together: MP-2 Optimization 

𝑌 𝐶𝑏 𝐶𝑟 =
0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

∙
𝑅
𝐺
𝐵

+
16
128
128
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