
CprE 488 – Embedded Systems Design

Lecture 6 – Software Optimization

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

If you lie to the compiler, it will get its revenge. – Henry Spencer

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-06.2 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Any performance guesses?

• Assumptions:

–N = 20000 (so 400,000,000 integers)

– gcc 4.9.2 running on an Intel Core i7-6600U CPU @ 2.6 GHz

A Motivating Example

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 A[i][j] = 0;

p = &A[0][0];

for (i=0; i<N*N; i++)

 *p++ = 0;

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 A[j][i] = 0;

memset((void*)&A[0][0], 0, N*N*sizeof(int));

a)

b)

c)

d)

~1.40s

-O0 -O3

~0.84s

~21.8s ~21.8s

~1.59s ~0.83s

~0.83s ~0.80s

Lect-06.3 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Compilers make abstraction affordable:
– Cost of executing code should reflect the underlying work rather

than the way the programmer chose to write it

– Change in expression should bring small performance change

Compilers and Abstraction

struct point {

 int x; int y;

}

void Padd(struct point p, struct point q, struct point *r) {

 r->x = p.x + q.x;

 r->y = p.y + q.y;

}

int main(int argc, char *argv[]) {

 struct point p1, p2, p3;

 p1.x = 1; p1.y = 1;

 p2.x = 2; p2.y = 2;

 Padd(p1, p2, &p3);

 printf(”Result is <%d,%d>.\n”, p3.x, p3.y);

}

Example © Keith Cooper, Rice University

Lect-06.4 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Compilers and Abstraction (cont.)
_main:

L5:

 popl %ebx

 movl $1, -16(%ebp)

 movl $1, -12(%ebp)

 movl $2, -24(%ebp)

 movl $2, -20(%ebp)

 leal -32(%ebp), %eax

 movl %eax, 16(%esp)

 movl -24(%ebp), %eax

 movl -20(%ebp), %edx

 movl %eax, 8(%esp)

 movl %edx, 12(%esp)

 movl -16(%ebp), %eax

 movl -12(%ebp), %edx

 movl %eax, (%esp)

 movl %edx, 4(%esp)

 call _PAdd

 movl -28(%ebp), %eax

 movl -32(%ebp), %edx

 movl %eax, 8(%esp)

 movl %edx, 4(%esp)

 leal LC0-"L00000000001$pb"(%ebx), %eax

 movl %eax, (%esp)

 call L_printf$stub

 addl $68, %esp

 popl %ebx

 leave

 ret

Assignments to p1 and p2

Setup for call to PAdd

Setup for call to printf

Address calculation for format
string in printf call

Lect-06.5 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

_PAdd:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl 8(%ebp), %edx

 movl 16(%ebp), %eax

 addl %eax, %edx

 movl 24(%ebp), %eax

 movl %edx, (%eax)

 movl 12(%ebp), %edx

 movl 20(%ebp), %eax

 addl %eax, %edx

 movl 24(%ebp), %eax

 movl %edx, 4(%eax)

 leave

 ret

 • The code does a lot of work to execute two add
instructions (factor of 10 in overhead)

• Code optimization (careful compile-time reasoning &
transformation) can make matters better

Compilers and Abstraction (cont.)

Actual work

Lect-06.6 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• The compiler’s role in software optimization:
– Early optimizations

– Redundancy elimination

– Loop restructuring

– Instruction scheduling

– Low-level optimizations

• Data representation

• Case study: MP-2 color space conversion

• Reading:
– Wolf chapter 5

This Week’s Topic

Lect-06.7 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Implications

• Must recognize legal (and illegal) programs

• Must generate correct code

• Must manage storage of all variables (and code)

• Must agree with OS & linker on format for object
code

High-Level View of a Compiler

Source

code

Machine

code
Compiler

Errors

Lect-06.8 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Implications

• Use an intermediate representation (IR)

• Front end maps legal source code into IR

• Back end maps IR into target machine code

• Potentially multiple front ends & multiple passes

Traditional Two-Pass Compiler

Source

code

Front

End

Errors

Machine

code

Back

End
IR

Depends primarily
on source language

Depends primarily
on target machine

Lect-06.9 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Can we build n x m compilers with n + m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR (e.g. gcc rtl or llvm ir)
• Must encode all target specific knowledge in each back end

• Successful in systems with assembly level (or lower) IRs

A Common Fallacy

Fortran

Scheme

C++

Python

Front

end

Front

end

Front

end

Front

end

Back

end

Back

end

Target 2

Target 1

Target 3 Back

end

Lect-06.10 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Responsibilities

• Recognize legal (and illegal) programs

• Report errors in a useful way

• Produce IR and preliminary storage map

• Shape the code for the rest of the compiler

• Much of front end construction can be automated

The Front End

Source

code
Scanner

IR
Parser

Errors

tokens

Lect-06.11 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• The parser output can be represented by a
parse tree or an abstract syntax tree

– Both trees represent expression: x + 2 - y

The Front End (cont.)

Term

Op Term Expr

Term Expr

Goal

Expr

Op

<id,x>

<number,2>

<id,y>

+

-

+

-

<id,x> <number,2>

<id,y>

Parse Tree

Abstract Syntax Tree

Lect-06.12 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Responsibilities

• Translate IR into target machine code

• Choose instructions to implement each IR
operation

• Decide which values to keep in registers

• Ensure conformance with system interfaces

The Back End

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

Lect-06.13 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Code Improvement (or Optimization)

• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled

code
– May also improve space, power consumption, …

• Must preserve “meaning” of the code
– Measured by values of named variables

• Note that “optimization” is a misnomer – optimizations

generally improve performance, although this is not
typically guaranteed

Traditional Three-Part Compiler

Errors

Source

Code

Optimizer

(Middle End)

Front

End

Machine

code

Back

End

IR IR

Lect-06.14 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

• Encode an idiom in some particularly efficient form

The Optimizer

Errors

Opt
1

Opt
3

Opt
2

Opt
n

... IR IR IR IR IR

Modern optimizers are structured as a series of passes

Lect-06.15 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Types of (Classical) Optimizations

• Operation-level – 1 operation in isolation
– Constant folding, strength reduction

– Dead code elimination (global, but 1 op at a time)

• Local – pairs of operations in same basic
block

• Global – again pairs of operations
– But, operations in different basic blocks

– More advanced dataflow analysis necessary here

• Loop – body of a loop

• Interprocedural – look across multiple
function calls

Lect-06.16 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Constant Folding

• Also known as constant-expression evaluation

• Simplify operation based on values of source operands
– Constant propagation creates opportunities for this

• All constant operands
– Evaluate the op, replace with a move

• r1 = 3 * 4 r1 = 12

• r1 = 3 / 0 ??? Don’t evaluate excepting ops !, what about FP?

– Evaluate conditional branch, replace with branch or nop
• if (1 < 2) goto BB2 branch BB2

• if (1 > 2) goto BB2 convert to a nop

• Algebraic identities
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0 r1 = r2

– r1 = 0 * r2, 0 / r2, 0 & r2 r1 = 0

– r1 = r2 * 1, r2 / 1 r1 = r2

Lect-06.17 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Strength Reduction

• Replace expensive ops with cheaper ones
– Constant propagation creates opportunities for this

• Power of 2 constants
– Mult by power of 2: r1 = r2 * 8 r1 = r2 << 3

– Div by power of 2: r1 = r2 / 4 r1 = r2 >> 2

– Rem by power of 2: r1 = r2 REM 16 r1 = r2 & 15

• More exotic
– Replace multiply by constant by sequence of shift and

adds/subs
• r1 = r2 * 6

– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101

• r1 = r2 * 7
– r100 = r2 << 3; r1 = r100 – r2

• Can be ISA dependent (remember ARM examples)

Lect-06.18 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Remove any operation whose
result is never consumed

• Rules
– X can be deleted

• no stores or branches

– DU chain empty or dest not live

• This misses some dead code!!
– Especially in loops

– Critical operation
• store or branch operation

– Any operation that does not directly
or indirectly feed a critical operation
is dead

– Trace UD chains backwards from
critical operations

– Any op not visited is dead

Dead Code Elimination

r1 = 3
r2 = 10

r4 = r4 + 1
r7 = r1 * r4

r2 = 0 r3 = r3 + 1

r3 = r2 + r1

store (r1, r3)

Lect-06.19 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant folding

– Strength reduction

– Dead code elimination

EX-06.1: Early Optimizations

r1 = 0

r4 = r1 | -1
r7 = r1 * 4

r6 = r1

r3 = 8 / r6
r3 = 8 * r6
r3 = r3 + r2

r2 = r2 + r1
r6 = r7 * r6
r1 = r1 + 1

store (r1, r3)

Lect-06.20 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Forward propagation of
moves of the form

– rx = L (where L is a literal)

– Maximally propagate

– Assume no instruction
encoding restrictions

• When is it legal?

– SRC: Literal is a hard coded
constant, so never a problem

– DEST: Must be available

• Guaranteed to reach

• May reach not good enough

Constant Propagation

r1 = 5
r2 = r1 + r3

r1 = r1 + r2 r7 = r1 + r4

r8 = r1 + 3

r9 = r1 + r11

Lect-06.21 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant propagation

– Constant folding

– Strength reduction

– Dead code elimination

EX-06.2: Constant Propagation

1: r1 = 0
2: r2 = 10

3: r4 = 1
4: r7 = r1 * 4

5: r6 = 8

6: r2 = 0
7: r3 = r2 / r6

8: r3 = r4 * r6
9: r3 = r3 + r2

10: r2 = r2 + r1
11: r6 = r7 * r6
12: r1 = r1 + 1

13: store (r1, r3)

Lect-06.22 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Eliminate recomputation of an expression
– X: r1 = r2 * r3

– r100 = r1

– …

– Y: r4 = r2 * r3 r4 = r100

• Benefits
– Reduce work

– Moves can get copy propagated

• Rules (ops X and Y)
– X and Y have the same opcode

– src(X) = src(Y), for all srcs

– for all srcs(X) no defs of srci in [X ... Y)

– if X is a load, then there is no store that may write to address(X) between X
and Y

Local Common Subexpression Elimination

r1 = r2 + r3
r4 = r4 +1
r1 = 6
r6 = r2 + r3
r2 = r1 -1
r6 = r4 + 1
r7 = r2 + r3

Lect-06.23 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant propagation

– Constant folding

– Strength reduction

– Dead code elimination

– Common subexpression

 elimination

EX-06.3: Subexpression Elimination

r1 = 9
r4 = 4
r5 = 0
r6 = 16

r2 = r3 * r4
r8 = r2 + r5

r9 = r3
r7 = load(r2)
r5 = r9 * r4
r3 = load(r2)
r10 = r3 / r6
store (r8, r7)

r11 = r2
r12 = load(r11)
store(r12, r3)

Lect-06.24 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Loop Optimizations

• Arguably the most important set of
optimizations (why?)

• Many optimizations are possible
– Loop invariant code motion

– Global variable migration

– Induction variable optimizations

– Loop restructuring (unrolling, tiling, etc.)

Lect-06.25 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Removes loop independent conditionals from a loop

• Advantage: reduces the frequency of execution of the
conditional statement

• Disadvantages: Loop structure is more complex, code
size expansion

Loop Unswitching

for i=1 to N do

 for j=2 to N do

 if T[i] > 0 then

 A[i,j] = A[i, j-1]*T[i] + B[i]

 else

 A[i,j] = 0.0

 endif

 endfor

endfor

for i=1 to N do

 if T[i] > 0 then

 for j=2 to N do

 A[i,j] = A[i, j-1]*T[i] + B[i]

 endfor

 else

 for j=2 to N do

 A[i,j] = 0.0

 endfor

 endif

endfor

Lect-06.26 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Separates the first (or last) iteration of the loop

• Advantage: Used to enable loop fusion or

remove conditionals on the index variable from
inside the loop. Allows execution of loop
invariant code only in the first iteration

• Disadvantages: Code size expansion

Loop Peeling

for i=1 to N do

 A[i] = (X+Y)*B[i]

endfor

if N >= 1 then

 A[1] = (X+Y)*B[1]

 for j=2 to N do

 A[j] = (X+Y)*B[j]

 endfor

endif

Lect-06.27 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Divides the index into two portions

• Advantage: Used to enable loop fusion or remove

conditionals on the index variable from inside the loop.
Can remove conditionals that test index variables.

• Disadvantages: Code size expansion

Index Set Splitting

for i=1 to 100 do

 A[i] = B[i] + C[i]

 if i > 10 then

 D[i] = A[i] + A[i-10]

 endif

endfor

for i=1 to 10 do

 A[i] = B[i] + C[i]

endfor

for i=11 to 100 do

 A[i] = B[i] + C[i]

 D[i] = A[i] + A[i-10]

endfor

Lect-06.28 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Breaks anti-dependence relations by expanding, or
promoting a scalar into an array

• Advantage: Eliminates anti-dependences and output

dependences
• Disadvantages: In nested loops the size of the array

might be prohibitive

Scalar Expansion

for i=1 to N do

 T = A[i] + B[i]

 C[i] = T + 1/T

endfor

if N >= 1 then

 allocate Tx(1:N)

 for i=1 to N do

 Tx[i] = A[i] + B[i]

 C[i] = Tx[i] + 1/Tx[i]

 endfor

 T = Tx[N]

endif

Lect-06.29 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Takes two adjacent loops and generates a single loop

• Advantage: Eliminates loop iteration code

• Disadvantages: Potential locality implications, anything
else????

Loop Fusion

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(3) endfor

(4) for i=1 to N do

(5) C[i] = A[i] / 2

(6) endfor

(7) for i=1 to N do

(8) D[i] = 1 / C[i+1]

(9) endfor

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(5) C[i] = A[i] / 2

(8) D[i] = 1 / C[i+1]

(9) endfor

Lect-06.30 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• To be legal, a loop transformation must
preserve all the data dependencies of the
original loop(s)

Loop Fusion (cont.)

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(3) endfor

(4) for i=1 to N do

(5) C[i] = A[i] / 2

(6) endfor

(7) for i=1 to N do

(8) D[i] = 1 / C[i+1]

(9) endfor

The original loop has the
flow dependencies:

S2
f S5

S5
f S8

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(5) C[i] = A[i] / 2

(8) D[i] = 1 / C[i+1]

(9) endfor

What are the
dependences in
the fused loop?

Lect-06.31 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Breaks a loop into multiple smaller loops

• Advantage: can improve cache use in machines with

very small caches. Can be required for other
transformations, such as loop interchanging.

• Disadvantages: Code size increase

Loop Fission (Loop Distribution)

(1) for i=1 to N do

(2) A[i] = A[i] + B[i-1]

(3) B[i] = C[i-1]*X + Z

(4) C[i] = 1/B[i]

(5) D[i] = sqrt(C[i])

(6) endfor

(1) for ib=0 to N-1 do

(3) B[ib+1] = C[ib]*X + Z

(4) C[ib+1] = 1/B[ib+1]

(6) endfor

(1) for ib=0 to N-1 do

(2) A[ib+1] = A[ib+1] + B[ib]

(6) endfor

(1) for ib=0 to N-1 do

(5) D[ib+1] = sqrt(C[ib+1])

(6) endfor

(1) i = N+1

Lect-06.32 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Reverses the order of nested loops

• Advantage: can reduce the startup cost of the inner-

most loop. Can enable vectorization
• Disadvantages: can change the locality of memory

references

Loop Interchange

(1) for j=2 to M do

(2) for i=1 to N do

(3) A[i,j] = A[i,j-1] + B[i,j]

(4) endfor

(5) endfor

(1) for i=1 to N do

(2) for j=2 to M do

(3) A[i,j] = A[i,j-1] + B[i,j]

(4) endfor

(5) endfor

Lect-06.33 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Replicates the loop body
• Benefits:

– Reduces loop overhead
– Increased ILP (esp. VLIW)
– Improved locality (consecutive elements)

Loop Unrolling

do i = 2, n-1

a[i] = a[i] + a[i-1] * a[i+1]

end do

do i = 1, n-2, 2

a[i] = a[i] + a[i-1] * a[i+1]

a[i+1] = a[i+1] + a[i] * a[i+2]

end do

if (mod(n-2,2) = 1) then

a[n-1] = a[n-1] + a[n-2] * a[n]

end if

Lect-06.34 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Frees the register used by the variable,
reduces the number of operations in the loop
framework

Induction Variable Elimination

for(i = 0; i < n; i++) {
a[i] = a[i] + c;

}

A = &a;
T = &a + n;
while(A < T){

*A = *A + c;
A++;

}

Lect-06.35 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• A specific case of code hoisting

• Needs a register to hold the invariant value

– Ex: multi-dim. indices, pointers, structures

Loop Invariant Code Motion

do i = 1, n
 a[i] = a[i] + sqrt(x)
end do

if (n > 0) C = sqrt(x)
do i = 1, n
 a[i] = a[i] + C
end do

Lect-06.36 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Adjusts the granularity of an operation

– usually for vectorization

– also controlling array size, grouping operations

• Often requires other transforms first

Strip Mining

do i = 1, n

a[i] = a[i] + c

end do

TN = (n/64)*64

do TI = 1, TN, 64

a[TI:TI+63] = a[TI:TI+63] + c

end do

do i= TN+1, n

a[i] = a[i] + c

end do

Lect-06.37 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Multidimensional specialization of strip mining

• Goal: to improve cache reuse

• Adjacent loops can be tiled if they can be interchanged

Loop Tiling

do i = 1, n

do j = 1, n

a[i,j] = b[j,i]

end do

end do

do TI = 1, n, 64

do TJ = 1, n, 64

do i = TI, min(TI+63, n)

do j = TJ, min(TJ+63, n)

a[i,j] = b[j,i]

end do

end do

end do

end do

Lect-06.38 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Fixed Point Representation

– Insert implicit “binary point” between two bits

– Bits to left of point have value ≥ 1

– Bits to right of point have value < 1

Lect-06.39 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Converting to Fixed point

1. Take fractional part and multiply by 2
2. If the result is > 1, then answer is 1, if 0 then

answer is 0
3. Start again with the remaining decimal part,

until you get an answer of 0

• E.g.
Convert 0.75 to fixed point

0.75 * 2 = 1.5 Use 1
0.5 * 2 = 1.0 Use 1

Ans: 0.75 in Decimal = 0.11 in binary

Lect-06.40 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

 Pros – simplicity:

 The same hardware that does integer arithmetic can do fixed point
arithmetic

 In fact, the programmer can use ints with an implicit fixed point (ints
are just fixed point numbers with the binary point to the right of b

0
)

 Cons – there is no good way to pick where the fixed point
should be

 Sometimes you need range, sometimes you need precision. The
more you have of one, the less of the other

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation

 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

Fixed Point Pros and Cons

Lect-06.41 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Color filter array:

• Color space conversion:

• Chroma resampling:

– Output pattern – Cb-Y, Cr-Y, Cb-Y, Cr-Y, …

Putting it All Together: MP-2 Optimization

𝑌 𝐶𝑏 𝐶𝑟 =
0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

∙
𝑅
𝐺
𝐵

+
16
128
128

Lect-06.42 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Keith Cooper (Rice University)

– Scott Mahlke (University of Michigan)

– José Amaral (University of Alberta)

Acknowledgments

