
CprE 488 – Embedded Systems Design

Lecture 6 – Software Optimization

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

If you lie to the compiler, it will get its revenge. – Henry Spencer

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/
http://rcl.ece.iastate.edu/

Lect-06.2 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Any performance guesses?

• Assumptions:

–N = 20000 (so 400,000,000 integers)

– gcc 4.9.2 running on an Intel Core i7-6600U CPU @ 2.6 GHz

A Motivating Example

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 A[i][j] = 0;

p = &A[0][0];

for (i=0; i<N*N; i++)

 *p++ = 0;

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 A[j][i] = 0;

memset((void*)&A[0][0], 0, N*N*sizeof(int));

a)

b)

c)

d)

~1.40s

-O0 -O3

~0.84s

~21.8s ~21.8s

~1.59s ~0.83s

~0.83s ~0.80s

Lect-06.3 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Compilers make abstraction affordable:
– Cost of executing code should reflect the underlying work rather

than the way the programmer chose to write it

– Change in expression should bring small performance change

Compilers and Abstraction

struct point {

 int x; int y;

}

void Padd(struct point p, struct point q, struct point *r) {

 r->x = p.x + q.x;

 r->y = p.y + q.y;

}

int main(int argc, char *argv[]) {

 struct point p1, p2, p3;

 p1.x = 1; p1.y = 1;

 p2.x = 2; p2.y = 2;

 Padd(p1, p2, &p3);

 printf(”Result is <%d,%d>.\n”, p3.x, p3.y);

}

Example © Keith Cooper, Rice University

Lect-06.4 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Compilers and Abstraction (cont.)
_main:

L5:

 popl %ebx

 movl $1, -16(%ebp)

 movl $1, -12(%ebp)

 movl $2, -24(%ebp)

 movl $2, -20(%ebp)

 leal -32(%ebp), %eax

 movl %eax, 16(%esp)

 movl -24(%ebp), %eax

 movl -20(%ebp), %edx

 movl %eax, 8(%esp)

 movl %edx, 12(%esp)

 movl -16(%ebp), %eax

 movl -12(%ebp), %edx

 movl %eax, (%esp)

 movl %edx, 4(%esp)

 call _PAdd

 movl -28(%ebp), %eax

 movl -32(%ebp), %edx

 movl %eax, 8(%esp)

 movl %edx, 4(%esp)

 leal LC0-"L00000000001$pb"(%ebx), %eax

 movl %eax, (%esp)

 call L_printf$stub

 addl $68, %esp

 popl %ebx

 leave

 ret

Assignments to p1 and p2

Setup for call to PAdd

Setup for call to printf

Address calculation for format
string in printf call

Lect-06.5 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

_PAdd:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 movl 8(%ebp), %edx

 movl 16(%ebp), %eax

 addl %eax, %edx

 movl 24(%ebp), %eax

 movl %edx, (%eax)

 movl 12(%ebp), %edx

 movl 20(%ebp), %eax

 addl %eax, %edx

 movl 24(%ebp), %eax

 movl %edx, 4(%eax)

 leave

 ret

 • The code does a lot of work to execute two add
instructions (factor of 10 in overhead)

• Code optimization (careful compile-time reasoning &
transformation) can make matters better

Compilers and Abstraction (cont.)

Actual work

Lect-06.6 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• The compiler’s role in software optimization:
– Early optimizations

– Redundancy elimination

– Loop restructuring

– Instruction scheduling

– Low-level optimizations

• Data representation

• Case study: MP-2 color space conversion

• Reading:
– Wolf chapter 5

This Week’s Topic

Lect-06.7 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Implications

• Must recognize legal (and illegal) programs

• Must generate correct code

• Must manage storage of all variables (and code)

• Must agree with OS & linker on format for object
code

High-Level View of a Compiler

Source

code

Machine

code
Compiler

Errors

Lect-06.8 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Implications

• Use an intermediate representation (IR)

• Front end maps legal source code into IR

• Back end maps IR into target machine code

• Potentially multiple front ends & multiple passes

Traditional Two-Pass Compiler

Source

code

Front

End

Errors

Machine

code

Back

End
IR

Depends primarily
on source language

Depends primarily
on target machine

Lect-06.9 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Can we build n x m compilers with n + m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR (e.g. gcc rtl or llvm ir)
• Must encode all target specific knowledge in each back end

• Successful in systems with assembly level (or lower) IRs

A Common Fallacy

Fortran

Scheme

C++

Python

Front

end

Front

end

Front

end

Front

end

Back

end

Back

end

Target 2

Target 1

Target 3 Back

end

Lect-06.10 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Responsibilities

• Recognize legal (and illegal) programs

• Report errors in a useful way

• Produce IR and preliminary storage map

• Shape the code for the rest of the compiler

• Much of front end construction can be automated

The Front End

Source

code
Scanner

IR
Parser

Errors

tokens

Lect-06.11 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• The parser output can be represented by a
parse tree or an abstract syntax tree

– Both trees represent expression: x + 2 - y

The Front End (cont.)

Term

Op Term Expr

Term Expr

Goal

Expr

Op

<id,x>

<number,2>

<id,y>

+

-

+

-

<id,x> <number,2>

<id,y>

Parse Tree

Abstract Syntax Tree

Lect-06.12 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Responsibilities

• Translate IR into target machine code

• Choose instructions to implement each IR
operation

• Decide which values to keep in registers

• Ensure conformance with system interfaces

The Back End

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

Lect-06.13 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Code Improvement (or Optimization)

• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled

code
– May also improve space, power consumption, …

• Must preserve “meaning” of the code
– Measured by values of named variables

• Note that “optimization” is a misnomer – optimizations

generally improve performance, although this is not
typically guaranteed

Traditional Three-Part Compiler

Errors

Source

Code

Optimizer

(Middle End)

Front

End

Machine

code

Back

End

IR IR

Lect-06.14 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

• Encode an idiom in some particularly efficient form

The Optimizer

Errors

Opt
1

Opt
3

Opt
2

Opt
n

... IR IR IR IR IR

Modern optimizers are structured as a series of passes

Lect-06.15 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Types of (Classical) Optimizations

• Operation-level – 1 operation in isolation
– Constant folding, strength reduction

– Dead code elimination (global, but 1 op at a time)

• Local – pairs of operations in same basic
block

• Global – again pairs of operations
– But, operations in different basic blocks

– More advanced dataflow analysis necessary here

• Loop – body of a loop

• Interprocedural – look across multiple
function calls

Lect-06.16 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Constant Folding

• Also known as constant-expression evaluation

• Simplify operation based on values of source operands
– Constant propagation creates opportunities for this

• All constant operands
– Evaluate the op, replace with a move

• r1 = 3 * 4  r1 = 12

• r1 = 3 / 0  ??? Don’t evaluate excepting ops !, what about FP?

– Evaluate conditional branch, replace with branch or nop
• if (1 < 2) goto BB2  branch BB2

• if (1 > 2) goto BB2  convert to a nop

• Algebraic identities
– r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0  r1 = r2

– r1 = 0 * r2, 0 / r2, 0 & r2  r1 = 0

– r1 = r2 * 1, r2 / 1  r1 = r2

Lect-06.17 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Strength Reduction

• Replace expensive ops with cheaper ones
– Constant propagation creates opportunities for this

• Power of 2 constants
– Mult by power of 2: r1 = r2 * 8  r1 = r2 << 3

– Div by power of 2: r1 = r2 / 4  r1 = r2 >> 2

– Rem by power of 2: r1 = r2 REM 16  r1 = r2 & 15

• More exotic
– Replace multiply by constant by sequence of shift and

adds/subs
• r1 = r2 * 6

– r100 = r2 << 2; r101 = r2 << 1; r1 = r100 + r101

• r1 = r2 * 7
– r100 = r2 << 3; r1 = r100 – r2

• Can be ISA dependent (remember ARM examples)

Lect-06.18 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Remove any operation whose
result is never consumed

• Rules
– X can be deleted

• no stores or branches

– DU chain empty or dest not live

• This misses some dead code!!
– Especially in loops

– Critical operation
• store or branch operation

– Any operation that does not directly
or indirectly feed a critical operation
is dead

– Trace UD chains backwards from
critical operations

– Any op not visited is dead

Dead Code Elimination

r1 = 3
r2 = 10

r4 = r4 + 1
r7 = r1 * r4

r2 = 0 r3 = r3 + 1

r3 = r2 + r1

store (r1, r3)

Lect-06.19 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant folding

– Strength reduction

– Dead code elimination

EX-06.1: Early Optimizations

r1 = 0

r4 = r1 | -1
r7 = r1 * 4

r6 = r1

r3 = 8 / r6
r3 = 8 * r6
r3 = r3 + r2

r2 = r2 + r1
r6 = r7 * r6
r1 = r1 + 1

store (r1, r3)

Lect-06.20 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Forward propagation of
moves of the form

– rx = L (where L is a literal)

– Maximally propagate

– Assume no instruction
encoding restrictions

• When is it legal?

– SRC: Literal is a hard coded
constant, so never a problem

– DEST: Must be available

• Guaranteed to reach

• May reach not good enough

Constant Propagation

r1 = 5
r2 = r1 + r3

r1 = r1 + r2 r7 = r1 + r4

r8 = r1 + 3

r9 = r1 + r11

Lect-06.21 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant propagation

– Constant folding

– Strength reduction

– Dead code elimination

EX-06.2: Constant Propagation

1: r1 = 0
2: r2 = 10

3: r4 = 1
4: r7 = r1 * 4

5: r6 = 8

6: r2 = 0
7: r3 = r2 / r6

8: r3 = r4 * r6
9: r3 = r3 + r2

10: r2 = r2 + r1
11: r6 = r7 * r6
12: r1 = r1 + 1

13: store (r1, r3)

Lect-06.22 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Eliminate recomputation of an expression
– X: r1 = r2 * r3

–  r100 = r1

– …

– Y: r4 = r2 * r3  r4 = r100

• Benefits
– Reduce work

– Moves can get copy propagated

• Rules (ops X and Y)
– X and Y have the same opcode

– src(X) = src(Y), for all srcs

– for all srcs(X) no defs of srci in [X ... Y)

– if X is a load, then there is no store that may write to address(X) between X
and Y

Local Common Subexpression Elimination

r1 = r2 + r3
r4 = r4 +1
r1 = 6
r6 = r2 + r3
r2 = r1 -1
r6 = r4 + 1
r7 = r2 + r3

Lect-06.23 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Optimize this block of code, using:

– Constant propagation

– Constant folding

– Strength reduction

– Dead code elimination

– Common subexpression

 elimination

EX-06.3: Subexpression Elimination

r1 = 9
r4 = 4
r5 = 0
r6 = 16

r2 = r3 * r4
r8 = r2 + r5

r9 = r3
r7 = load(r2)
r5 = r9 * r4
r3 = load(r2)
r10 = r3 / r6
store (r8, r7)

r11 = r2
r12 = load(r11)
store(r12, r3)

Lect-06.24 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Loop Optimizations

• Arguably the most important set of
optimizations (why?)

• Many optimizations are possible
– Loop invariant code motion

– Global variable migration

– Induction variable optimizations

– Loop restructuring (unrolling, tiling, etc.)

Lect-06.25 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Removes loop independent conditionals from a loop

• Advantage: reduces the frequency of execution of the
conditional statement

• Disadvantages: Loop structure is more complex, code
size expansion

Loop Unswitching

for i=1 to N do

 for j=2 to N do

 if T[i] > 0 then

 A[i,j] = A[i, j-1]*T[i] + B[i]

 else

 A[i,j] = 0.0

 endif

 endfor

endfor

for i=1 to N do

 if T[i] > 0 then

 for j=2 to N do

 A[i,j] = A[i, j-1]*T[i] + B[i]

 endfor

 else

 for j=2 to N do

 A[i,j] = 0.0

 endfor

 endif

endfor

Lect-06.26 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Separates the first (or last) iteration of the loop

• Advantage: Used to enable loop fusion or

remove conditionals on the index variable from
inside the loop. Allows execution of loop
invariant code only in the first iteration

• Disadvantages: Code size expansion

Loop Peeling

for i=1 to N do

 A[i] = (X+Y)*B[i]

endfor

if N >= 1 then

 A[1] = (X+Y)*B[1]

 for j=2 to N do

 A[j] = (X+Y)*B[j]

 endfor

endif

Lect-06.27 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Divides the index into two portions

• Advantage: Used to enable loop fusion or remove

conditionals on the index variable from inside the loop.
Can remove conditionals that test index variables.

• Disadvantages: Code size expansion

Index Set Splitting

for i=1 to 100 do

 A[i] = B[i] + C[i]

 if i > 10 then

 D[i] = A[i] + A[i-10]

 endif

endfor

for i=1 to 10 do

 A[i] = B[i] + C[i]

endfor

for i=11 to 100 do

 A[i] = B[i] + C[i]

 D[i] = A[i] + A[i-10]

endfor

Lect-06.28 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Breaks anti-dependence relations by expanding, or
promoting a scalar into an array

• Advantage: Eliminates anti-dependences and output

dependences
• Disadvantages: In nested loops the size of the array

might be prohibitive

Scalar Expansion

for i=1 to N do

 T = A[i] + B[i]

 C[i] = T + 1/T

endfor

if N >= 1 then

 allocate Tx(1:N)

 for i=1 to N do

 Tx[i] = A[i] + B[i]

 C[i] = Tx[i] + 1/Tx[i]

 endfor

 T = Tx[N]

endif

Lect-06.29 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Takes two adjacent loops and generates a single loop

• Advantage: Eliminates loop iteration code

• Disadvantages: Potential locality implications, anything
else????

Loop Fusion

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(3) endfor

(4) for i=1 to N do

(5) C[i] = A[i] / 2

(6) endfor

(7) for i=1 to N do

(8) D[i] = 1 / C[i+1]

(9) endfor

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(5) C[i] = A[i] / 2

(8) D[i] = 1 / C[i+1]

(9) endfor

Lect-06.30 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• To be legal, a loop transformation must
preserve all the data dependencies of the
original loop(s)

Loop Fusion (cont.)

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(3) endfor

(4) for i=1 to N do

(5) C[i] = A[i] / 2

(6) endfor

(7) for i=1 to N do

(8) D[i] = 1 / C[i+1]

(9) endfor

The original loop has the
flow dependencies:

S2 
f S5

S5 
f S8

(1) for i=1 to N do

(2) A[i] = B[i] + 1

(5) C[i] = A[i] / 2

(8) D[i] = 1 / C[i+1]

(9) endfor

What are the
dependences in
the fused loop?

Lect-06.31 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Breaks a loop into multiple smaller loops

• Advantage: can improve cache use in machines with

very small caches. Can be required for other
transformations, such as loop interchanging.

• Disadvantages: Code size increase

Loop Fission (Loop Distribution)

(1) for i=1 to N do

(2) A[i] = A[i] + B[i-1]

(3) B[i] = C[i-1]*X + Z

(4) C[i] = 1/B[i]

(5) D[i] = sqrt(C[i])

(6) endfor

(1) for ib=0 to N-1 do

(3) B[ib+1] = C[ib]*X + Z

(4) C[ib+1] = 1/B[ib+1]

(6) endfor

(1) for ib=0 to N-1 do

(2) A[ib+1] = A[ib+1] + B[ib]

(6) endfor

(1) for ib=0 to N-1 do

(5) D[ib+1] = sqrt(C[ib+1])

(6) endfor

(1) i = N+1

Lect-06.32 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Reverses the order of nested loops

• Advantage: can reduce the startup cost of the inner-

most loop. Can enable vectorization
• Disadvantages: can change the locality of memory

references

Loop Interchange

(1) for j=2 to M do

(2) for i=1 to N do

(3) A[i,j] = A[i,j-1] + B[i,j]

(4) endfor

(5) endfor

(1) for i=1 to N do

(2) for j=2 to M do

(3) A[i,j] = A[i,j-1] + B[i,j]

(4) endfor

(5) endfor

Lect-06.33 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Replicates the loop body
• Benefits:

– Reduces loop overhead
– Increased ILP (esp. VLIW)‏
– Improved locality (consecutive elements)‏

Loop Unrolling

do i = 2, n-1

a[i] = a[i] + a[i-1] * a[i+1]

end do

do i = 1, n-2, 2

a[i] = a[i] + a[i-1] * a[i+1]

a[i+1] = a[i+1] + a[i] * a[i+2]

end do

if (mod(n-2,2) = 1) then

a[n-1] = a[n-1] + a[n-2] * a[n]

end if

Lect-06.34 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Frees the register used by the variable,
reduces the number of operations in the loop
framework

Induction Variable Elimination

for(i = 0; i < n; i++) {
a[i] = a[i] + c;

}

A = &a;
T = &a + n;
while(A < T){

*A = *A + c;
A++;

}

Lect-06.35 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• A specific case of code hoisting

• Needs a register to hold the invariant value

– Ex: multi-dim. indices, pointers, structures

Loop Invariant Code Motion

do i = 1, n
 a[i] = a[i] + sqrt(x)‏
end do

if (n > 0) C = sqrt(x)‏
do i = 1, n
 a[i] = a[i] + C
end do

Lect-06.36 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Adjusts the granularity of an operation

– usually for vectorization

– also controlling array size, grouping operations

• Often requires other transforms first

Strip Mining

do i = 1, n

a[i] = a[i] + c

end do

TN = (n/64)*64

do TI = 1, TN, 64

a[TI:TI+63] = a[TI:TI+63] + c

end do

do i= TN+1, n

a[i] = a[i] + c

end do

Lect-06.37 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Multidimensional specialization of strip mining

• Goal: to improve cache reuse

• Adjacent loops can be tiled if they can be interchanged

Loop Tiling

do i = 1, n

do j = 1, n

a[i,j] = b[j,i]

end do

end do

do TI = 1, n, 64

do TJ = 1, n, 64

do i = TI, min(TI+63, n)‏

do j = TJ, min(TJ+63, n)‏

a[i,j] = b[j,i]

end do

end do

end do

end do

Lect-06.38 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Fixed Point Representation

– Insert implicit “binary point” between two bits

– Bits to left of point have value ≥ 1

– Bits to right of point have value < 1

Lect-06.39 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

Converting to Fixed point

1. Take fractional part and multiply by 2
2. If the result is > 1, then answer is 1, if 0 then

answer is 0
3. Start again with the remaining decimal part,

until you get an answer of 0

• E.g.
Convert 0.75 to fixed point

0.75 * 2 = 1.5 Use 1
0.5 * 2 = 1.0 Use 1

Ans: 0.75 in Decimal = 0.11 in binary

Lect-06.40 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

 Pros – simplicity:

 The same hardware that does integer arithmetic can do fixed point
arithmetic

 In fact, the programmer can use ints with an implicit fixed point (ints
are just fixed point numbers with the binary point to the right of b

0
)

 Cons – there is no good way to pick where the fixed point
should be

 Sometimes you need range, sometimes you need precision. The
more you have of one, the less of the other

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation

 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

Fixed Point Pros and Cons

Lect-06.41 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• Color filter array:

• Color space conversion:

• Chroma resampling:

– Output pattern – Cb-Y, Cr-Y, Cb-Y, Cr-Y, …

Putting it All Together: MP-2 Optimization

𝑌 𝐶𝑏 𝐶𝑟 =
0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040

∙
𝑅
𝐺
𝐵

+
16
128
128

Lect-06.42 CprE 488 (Software Optimization) Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Keith Cooper (Rice University)

– Scott Mahlke (University of Michigan)

– José Amaral (University of Alberta)

Acknowledgments

