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• Every two years:

– Double the number of transistors

– Build higher performance general-purpose processors

➢ Make the transistors available to the masses

➢ Increase performance (1.8×↑)

➢ Lower the cost of computing (1.8×↓)

• Sounds great, what’s the catch? 

Motivation: Moore’s Law

Gordon Moore
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• The “catch” – powering the transistors without melting the chip!

– See 2003 – 2004 news: 

Motivation: Moore’s Law (cont.)
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• As transistors get smaller their power density stays constant

Motivation: Dennard Scaling

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2

Robert Dennard
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• In mid 2000s, Dennard scaling “broke”

Motivation Dennard Scaling (cont.)

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2
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• Dark silicon – the fraction of transistors that need to be 
powered off at all times (due to power + thermal constraints)

• Processor evolution strongly motivated by Dennard scaling ending

– Expected continued evolution towards HW specialization/accel

Motivation: Dark Silicon

Area 0.5×↓

Power 0.5×↓

2015
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• Hardware Acceleration:

– Performance analysis and overhead

– Coprocessors vs accelerators

– Common acceleration techniques

– Acceleration examples

• Reading: Wolf section 10.4-10.5

This Week’s Topic
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• Accelerating a diverse range of applications 
using reconfigurable logic is a trending area:
– D. Hoang, D. Lopresti, “FPGA Implementation of 

Systolic Sequence Alignment”
– D. Ross, O. Vellacott, M. Turner, “An FPGA-based 

Hardware Accelerator for Image Processing”
– J. Lockwood, “Design and Implementation of a 

Multicast, Input-Buffered ATM Switch for the iPOINT
Testbed”

• What these examples have in common:
– Illustrative of the potential for custom computing to 

enable faster scientific and engineering discovery 
– Relatively small impact (outside of academia)
– All work done in 1992

Straight from the Headlines...
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And Today? 

• Reconfigurable logic supporting the data center

specializing clusters, and tightly integrated on-chip

,
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Accelerated Systems

• Additional computational units dedicated to some functionality

• Hardware/software co-design: joint design of HW & SW architect

CPU

accelerator

memory

I/O

request

data
result

data
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Accelerator vs. Coprocessor

• A coprocessor executes instructions

– Instructions are dispatched by the CPU

• An accelerator appears as a device on the bus

– Typically controlled by registers (memory-mapped I/O)
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Accelerated System Design

• First, determine that the system really needs to be accelerated

– How much faster will the accelerator on the core function?

– How much data transfer overhead? Compute bound vs 
memory bound vs I/O bound?

• Design accelerator and system interface

• If tighter CPU integration required:

– Create a functional unit for augmented instructions

– Compiler techniques to identify/use new functional unit
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Accelerator Proximity

• Although self-reconfiguration is possible, some SW integration 
with a reconfigurable accelerator is almost always present

• CPU – FPGA proximity has implications for programming model, 
device capacity, I/O bandwidth

Standalone Processing Unit

I/O
Interface

Attached Processing Unit

Workstation

Memory
Caches

Coprocessor

CPU

FU
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Will Hardware Acceleration Help?
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• The total application speedup, when an optimization (accelerator) improves a 
selected fraction (f ) of an application’s execution time by a factor a is:

Amdahl’s Law

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎

Gene Amdahl
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Will Hardware Acceleration Help?

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

𝑇𝑛𝑒𝑤

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − ( 𝑓 ∗ 𝑇𝑜𝑟𝑔 − 𝑓 ∗ 𝑇𝑜𝑟𝑔 /𝑎)

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − (𝑇𝑓 − 𝑇𝑓/𝑎)

=
𝑇𝑜𝑟𝑔

(1 − ( 𝑓 − 𝑓 /𝑎)) ∗ 𝑇𝑜𝑟𝑔

=
𝑇𝑜𝑟𝑔

(1 + (− 𝑓 + 𝑓 /𝑎)) ∗ 𝑇𝑜𝑟𝑔

where:

– 𝑇𝑜𝑟𝑔 : Application original exec. time

– 𝑇new : Application exec. time after accel

– 𝑓 : fraction of the Application time that 

a selected portion of the App. runs.

– 𝑇f : amount of time the selected 
portion of the App. runs, before accel.

– 𝑇fa : amount of time the selected 

portion of the App. runs after 
accelerated by 𝑎

– 𝑎 : factor by which accelerator speeds 

up selected portion of Application

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − (𝑇𝑓 − 𝑇𝑓𝑎)
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• The total application speedup, when an optimization (accelerator) improves a 
selected fraction (f ) of an application’s execution time by a factor a is:

• This formula is known as Amdahl’s Law, where:

– 𝑇𝑜𝑟𝑔 is the execution time of the whole Application before any 

optimization/accelerator (i.e., original execution time) 

– 𝑓 is the fraction of the Application time that a selected portion of the 

Application takes to run.

– 𝑎 is the factor by which an optimization/accelerator speeds up the selected 

portion of the Application

• Lessons from this law:

– If f → 1 (i.e., 100%), then Application_Speedup = a

– If a →∞, then Application Speedup = 1 / (1 – f )

• Summary

– Make the common case fast 

– Watchout for serial parts of an Application (ie, parts that cannot be accelerated)

Amdahl’s Law

Gene Amdahl

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎
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Heterogeneous Execution Model

initialization

0.5% of run time

“hotspot” loop

99% of run time

clean up

0.5% of run time
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code

1% of code

co-processor

• Example: Assume an Application where only 1% of the code runs for 99% 
of the Application execution time (i.e., f =.99).  How much will the overall 
Application speedup, if we create an accelerator to speedup this selected 
portion (i.e., “hotspot”) by a
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Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours
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Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Design 
Time 

Hardware 
Resources 

1-week 1-FPGA

2-months 2-FPGA

6-months 4-FPGA

2-years 9-FPGA

4-years 20-FPGA

Is the effort and resources needed to 
create the Hotspot accelerator worth the 
corresponding Application speedup?

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours
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Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Design 
Time

Hardware 
Resources

1-week 1-FPGA

2-months 2-FPGA

6-months 4-FPGA

2-years 9-FPGA

4-years 20-FPGA

Is the effort and resources needed to 
create the Hotspot accelerator worth the 
corresponding Application speedup?

What is the best-case Application 
speed-up (i.e., App speedup if 
Hotspot is sped up ∞)? 

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours
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for (i=0; i < 128; i++) 
y[i] += c[i] * x[i]

..

..

..

for (i=0; i < 16; i++) 
y[i] += c[i] * x[i]

..

..

..

C Code for FIR Filter

ProcessorProcessor

• ~1000 cycles

Compiler

Hardware/software partitioning
selects performance critical regions 
for hardware implement

ProcessorFPGA

* * * * * * * * * * * *
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using hardware 
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◼ ~ 10 cycles

◼ Speedup =  1000 cycles/ 10 cycles              
=  100x
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A Cause for Pessimism?
• HW amenability a design criterion for the Advanced Encryption Standard (AES)

– Flurry of activity looking at AES on FPGA (1000s of implementations, opts, attacks)

– J. Zambreno, D. Nguyen and A. Choudhary, "Exploring Area/Delay Tradeoffs in an AES 
FPGA Implementation". Proc. of the Int’l Conference on Field-Programmable Logic 
and its Applications (FPL), Aug. 2004 

➢Main contribution: an early exploration of the design decisions that lead to 
area/delay tradeoffs in an AES accelerator

➢ Significant (at the time) throughput of 23.57 Gbps for AES-128E in ECB mode
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aesni_encrypt:
...

.L000enc1_loop:
aesenc %xmm4,%xmm0
decl %ecx
movups (%edx),%xmm4
leal 16(%edx),%edx
jnz .L000enc1_loop
aesenclast %xmm4,%xmm0
movups %xmm0,(%eax)
ret

Partial libgcrypt implementation using Intel’s 
AES-NI instruction set. Performance is ~0.75 
cycles per byte (40+ Gbps per-thread with 
relatively easy software patches)
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• Debugging – how to properly test the accelerator separately, and 
then in conjunction with the rest of the system (hw/sw co-simulation)

• Coherency – how to safely share results between CPU & accelerator 

– Impact on cache design, shared memory

– Solutions look similar to those for resource sharing in conventional 
operating systems, but are typically ad-hoc

• Analysis – determining the effects of any hardware parallelism on 
performance

– Must take into account accelerator execution time, data transfer time, 
synchronization overhead

– Heterogeneous multi-threading helps, but complicates design significantly

– Overlapping I/O and computation (streaming)

Accelerator Design Challenges
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High-Level Synthesis

Libraries/

Object 

Code
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Object 

Code

Updated 

Binary

High-level 

Code

Decompilatio

n

High-level 

Synthesis

BitstreamBitstream

uP FPGA

Linker

HardwareHardwareSoftwareSoftware

• Problem: Describing circuits using 
HDL is time consuming/difficult

• Solution: High-level synthesis

– Create circuits from high-level code

– Allows developers to use higher-
level specification

– Potentially, enables synthesis for 
software developers

• More on this in a bit

DecompilationHW/SW Partitioning

Compiler
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Automation to the Rescue?
• Developer efficiency continues to be a limiting factor

• Numerous approaches to the “behavioral synthesis” problem of generating useful 
hardware from high-level descriptions

– C-to-HDL variants:

➢ Handel-C (Oxford)

➢ ROCCC (UC-Riverside)

➢ Catapult C (Mentor Graphics)

➢ SystemC (Accelera)

➢ Cynthesizer C (Cadence)

➢ ImpulseC (Impulse)

– Many other comparable approaches:

➢ HDL Coder (Mathworks)

➢ Vivado High-Level Synthesis (Xilinx)

➢ Bluespec, SystemVerilog

• Opinion: these tools can automate certain classes of logic, BUT:

– Cannot generate efficient output for “hard problems”

– Unfamiliar / uncomfortable syntax for both SW and HW engineers

– Similar algorithmic challenges to auto-parallelizing compilers

– Sorry students, you’re still learning VHDL 

New RCL grad student seen 
trying to escape the lab



Lect-08.31CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

The Right Stuff
• Applications that map well to FPGA-based acceleration tend to have 

common characteristics:

– Significant kernels of computation, significant data

➢ Amdahl’s law is typically more relevant than Gustafson’s law

➢ Profile. Don’t Speculate. – Daniel Bernstein

– Fixed-point or integer data representation

➢ If application is Gflop-constrained, use a GPU

➢ Changing (slowly), see Altera Stratix 10-based systems

– Fine-grained parallelism

➢ But if working set fits in cache, will still be hard to beat x86(MHz for MHz)

➢ Systolic model of computation, where FPGA pipeline depth > equivalent 
CPU depth and number of FPGA PEs >> number of x86 FUs

– Real-time constraints, system integration

➢ HPC workloads should go on HPCs (i.e. accelerators are an orthogonal 
concern)

➢ Current GPUs cannot make useful latency guarantees
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Typical Application Acceleration Methodology

Algorithmic

Understanding

Application

Profiling

System-Level

Design

Architectural 

Design

HW / SW 

Co-Design

Integration and

Test

• What is the purpose of the application?
• Can its complexity be lowered?

• Where are the application’s 
“hotspots”?

• What hardware and software 
infrastructure is needed? 

• How can I accelerate 
the bottlenecks?

• How does 
it all fit?
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– M. C. Herbordt et al., "Achieving High Performance with FPGA-Based 
Computing," in Computer, vol. 40, no. 3, pp. 50-57, March 2007

• http://www.bu.edu/caadlab/IEEE_Computer_07.pdf

Acknowledgments

http://www.bu.edu/caadlab/IEEE_Computer_07.pdf
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Example High Performance Reconfigurable Platform

• Convey HC-2ex “hybrid core” computer:
– Tightly coupled host-coprocessor via HCMI
– Globally shared, high performance memory (80 GB/s)
– Four Application Engines (AEs)

• Can be used as a large vector processor, or with custom “personalities” 
that accelerate arbitrary applications
– Support for all interfacing logic, hardware/software co-simulation, early prototyping, 

performance profiling
– Conventional C/C++ (host) and VHDL/Verilog (coprocessor) for development
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Other Views

“Team from Iowa State Wins 2014 MemoCODE
Design Contest”, PRWeb, Oct. 2014

• 14 FPGAs in total:

– 4 FPGAs used as the AEs (Xilinx Virtex 5-
LX330s operating at 150 MHz)

– 8 FPGAs are used as Memory Controllers

– 2 FPGAs are used as the Application Engine 
Hub to interface with the CPU subsystem

“Iowa State University Students Win 
MemoCODE Design Contest Using Convey 
Computer HC-1”, MarketWire, July 2012
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• These slides are inspired in part by material 
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Jason Bakos (University of South Carolina)

– Greg Stitt (University of Florida)

– Hadi Esmaeilzadeh (Georgia Tech)
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