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First, solve the problem. Then, write the code. —John Johnson
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Motivation: Moore’s Law

« Every two years:
— Double the number of transistors
— Build higher performance general-purpose processors
» Make the transistors available to the masses
» Increase performance (1.8%x1)
» Lower the cost of computing (1.8%])

» Sounds great, what's the catch?

‘Gordon Moore‘
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Motivation: Moore’s Law (cont.)

« The “catch” — powering the transistors without melting the chip!
— See 2003 — 2004 news:
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Motivation: Dennard Scaling

 As transistors get smaller their power density stays constant

-}

Transistor: 2D Voltage-Controlled Switch

Dimensions
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Motivation Dennard Scaling (cont.)

« In mid 2000s, Dennard scaling “broke”

Transistor: 2D Voltage-Controlled Switch

Dimensions
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Motivation: Dark Silicon

 Dark silicon — the fraction of transistors that need to be
powered off at all times (due to power + thermal constraints)

Are ———0.5% | ——
Power ————————— OX¢ —_—)
- Processor evolution strongly motivated by Dennard scaling ending
— Expected continued evolution towards HW specialization/accel

MIe-core Era 3.4 GHz

740 KHz

1971 2003 2004
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This Week's Topic

« Hardware Acceleration:
— Performance analysis and overhead
— Coprocessors vs accelerators
— Common acceleration techniques
— Acceleration examples

« Reading: Wolf section 10.4-10.5
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And Today?

« Reconfigurable logic supporting the data center,
specializing clusters, and tightly integrated on-chip

Computing /' Mobile ' Internet ' Gaming AElectroniesyy Extreme

ELECTRONICS ) MICROSOFT TO ACCELERATE BING SEARCH WITH NEURAL NETWORK

Microsoft to accelerate Bing search with
neural network

By John Hewitt on Fel 25,2

| 19 Comments

When we search Google’s web
Share This Article index, we are only searching around
10 percent of the half-a-trillion or so
n = u o m = pages that are potentially available.
Much of the content in the larger
deep web — not to be confused with the dark web — is buried further down in the sites that
make up the visible surface web. The indexes of competitors like Yahoo and Bing (around
15 billion pages each) are still only half as large as Google’s. To close this gap, Microsoft
has recently pioneered sophisticated new Field-Programmable Gate Array (FPGA)
technology to make massive web crawls more efficient, and faster.

Google’s engineers have previously estimated that a typical 0.2-second web query reflects
a quantity of work spent in indexing and retrieval equal to about 0.0003 kWh of energy per
search. With over 100 billion looks per month at their petabyte index, well-executed page
ranking has become a formidable proposition. Microsoft’'s approach with Bing has been to
break the ranking portion of search into three parts — feature extraction, free-form
expressions, and machine learning scoring
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Home Systems Software atacenter  Cloud Storage Networks

IBM Accelerates Power8 Clusters With GPUs,
FPGAs, And Flash

October 2, 2014 by Timothy Prickett Morgan

Itis perhaps a lucky stroke of timing or
perhaps by design that only days after Big
Blue sold off its System x X86 server
business to Lenovo Group for $2.1 billion
that the company is coming out swinging
with Power8 servers that are augmenting
their performance using  variety of adjunct
co-processors and flash storage. But ahead
of next week’s Enterprise2014 event in Las
Vegas, where it will be talking about its
increasing focus on Power Systems and
System z mainframes, the company is
launching a number of systems that are

designed to take workloads away from X86 clusters

As EnterpriseTech has previously reported, IBM has been telling customers to expect larger Power8-based
machines with more than two sockets as well as systems that would use field programmable gate arrays
(FPGAS). IBM has also been hinting that OpenPower partner and GPU coprocessor maker Nvidia would be

working together to get a PowerB-Tesla hybrid system into the field before the end of the year

It tums out that IBM is launching three different systems tuned up for three different kinds of workloads that
are based on its “scale-out” Power systems. By scale-out, IBM means a system is designed with one or two
sockets and is intended to be used in clusters that have distributed applications that scale their capacity by
adding multiple nodes in a loosely coupled fashion. This is distinct from “scale-up” machines, which more
tightly couple server nodes and their main memory together, usually using non-uniform memory access
(NUMA) technology, to create what is in essence a single large processor to run fat applications or their

databases

Big Blue is also rolling out scale-up versions of its Power8 systems, which it has also promised would come
this year, ahead of the Enterprise2014 event. So don't think the Power8 rollout is only about creating a Power8
altemative to the workhorse, two-socket server based on Intel's Xeon E5-2600 processors. (We will report on

these NUMA machines, which are called the Power Enterprise Systems, in a separate story.)

The new Power S824L is a Linux-only version of the existing Power $824 machine that IBM announced back
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PGA, TOUTS 20X PERFORMANCE

COMPUTING ) INTEL UNVEILS NEW XEON CHIP WITH INTEGRA'

Intel unveils new Xeon chip with integrated
FPGA, touts 20x performance boost

By Sebastian Anthony on June 19, 20 59 Comments

Late yesterday, Intel quietly
announced one of the biggest ever

Share This Article
changes to its chip lineup: It will
H o u gas m i soon offer a new type of Xeon CPU
with an integrated FPGA. This new
Xeon+FPGA chip will fit in the standard E5 LGA2011 socket, but the integrated FPGA will
allow each chip to be customized to specific workloads. This move is almost certainly
intended to make Intel-x86 a better all-round platform for a wider variety of workloads in
enterprise and data center settings, and to dissuade customers from switching to GPGPU
accelerators from the likes of Nvidia

The Xeon+FPGA also raises the question of whether Intel would ever consider integrating
an FPGA into its consumer Core line of chips — it's exceedingly unlikely, but it it's hard to
deny how awesome it would be if next-gen games and apps had access to an FPGA to

speed up core processes. But more on that at the end of the story.

What is an FPGA?
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Accelerated Systems

» Additional computational units dedicated to some functionality
« Hardware/software co-design: joint design of HW & SW architect

request

I/0
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Accelerator vs. Coprocessor

« A coprocessor executes instructions
— Instructions are dispatched by the CPU
« An accelerator appears as a device on the bus
— Typically controlled by registers (memory-mapped I/0)

>

Coprocesso
copl Cop2

Processor H—»

core
(RTOS option)

Main 3
Memaory

Fonce 3 T 1 3

e
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Accelerated System Design

« First, determine that the system really needs to be accelerated
— How much faster will the accelerator on the core function?

— How much data transfer overhead? Compute bound vs
memory bound vs I/O bound?

 Design accelerator and system interface
o If tighter CPU integration required:

— Create a functional unit for augmented instructions
— Compiler techniques to identify/use new functional unit
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Accelerator Proximity

Workstation
Coprocessor Attached Processing Unit Standalone Processing Unit
8| cru |
% Memory I/0
h Caches Interface
] [

« Although self-reconfiguration is possible, some SW integration
with a reconfigurable accelerator is almost always present

« CPU — FPGA proximity has implications for programming model,
device capacity, I/O bandwidth
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Will Hardware Acceleration Help?
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Amdahl’s Law

 The total application speedup, when an optimization (accelerator) improves a
selected fraction (f ) of an application’s execution time by a factor ais:

T 1

org

[(A—f)+f/a]*T,,, (L—f)+f/a

Application_Speedup =

Gene Amdahl

Zambreno, Spring 2017 © ISU CprE 488 (Hardware Acceleration) Lect-08.19



Will Hardware Acceleration Help?

T T
Application_Speedup = —< = ~J
T e Torg o (Tf o Tfa)
where: T
—T, .. : Application original exec. time — -
org * ' . _
—Toew + Application exec. time after accel TOTg (Tf Tf /a)
— f : fraction of the Application time that T
a selected portion of the App. runs. |— org
— T, : amount of time the selected Torg — (If * Tm,g] — |f * Tm,g]/a)
portion of the App. runs, before accel.
— T¢, - @amount of time the selected _ Torg
portion of the App. runs after —
accelerated by a (A= f1=1f1/a)) * TO?‘g
— a : factor by which accelerator speeds T
up selected portion of Application — org
(1 + (_[f] + [f]/a)) * Torg
Application_Speedup = Lorg = .
B [(1_f)+f/a]*T0rg (1_f)+f/a
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Amdahl’s Law

 The total application speedup, when an optimization (accelerator) improves a
selected fraction (f ) of an application’s execution time by a factor ais:

T 1

org _
(A=) +f/a]*Ty,, (@A —f)+f/a
 This formula is known as Amdahl’s Law, where:

- T,,, is the execution time of the whole Application before any
optimization/accelerator (i.e., original execution time)

— f is the fraction of the Application time that a selected portion of the
Application takes to run.

— a is the factor by which an optimization/accelerator speeds up the selected
portion of the Application

 Lessons from this law:
— If /—~ 1 (i.e., 100%), then Application_Speedup = a
— If a —o00, then Application Speedup = 1/ (1 -f)

* Summary
— Make the common case fast Gene Amdahl
— Watchout for serial parts of an Application (ie, parts that cannot be accelerated)

Application_Speedup =
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Heterogeneous Execution Model

« Example: Assume an Application where only 1% of the code runs for 99%
of the Application execution time (i.e., f =.99). How much will the overall
Application speedup, if we create an accelerator to speedup this selected

portion (i.e., “hotspot”) by a

b5

= 49.5% of

0 o code

X

v E —

P <

S ¢

o O

o

c 49.5% of
code

initialization

0.5% of run time

~hotspot” loop

999% of run time

clean up

0.5% of run time

///57_
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Heterogeneous Computing: Performance

« Move "bottleneck/hotspot” computation from software to hardware
« Example:

— Application requires a week of CPU time (i.e., 168 hours)

— One “hotspot” computation consumes 99% of execution time

Hotspot |Application|Execution
Speedup(a)| speedup time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours
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Heterogeneous Computing: Performance

Move “bottleneck/hotspot” computation from software to hardware

Example:
— Application requires a week of CPU time (i.e., 168 hours)
— One “hotspot” computation consumes 99% of execution time

Design Hardware Hotspot |Application|Execution
Time Resources |speedup(a)| speedup time
1-week 1-FPGA 50 34 5.0 hours
2-months 2-FPGA 100 50 3.3 hours
6-months 4-FPGA 200 67 2.5 hours
2-years 9-FPGA 500 83 2.0 hours
4-years 20-FPGA 1000 91 1.8 hours

\ J

Y
Is the effort and resources needed to
create the Hotspot accelerator worth the
Application speedup?

correspondinc
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Heterogeneous Computing: Performance

Move “bottleneck/hotspot” computation from software to hardware

Example:
— Application requires a week of CPU time (i.e., 168 hours)
— One “hotspot” computation consumes 99% of execution time

Design Hardware Hotspot |Application|Execution
Time Resources |speedup(a)| speedup time
1-week 1-FPGA 50 34 5.0 hours
2-months 2-FPGA 100 50 3.3 hours
6-months 4-FPGA 200 67 2.5 hours
2-years 9-FPGA 500 83 2.0 hours
4-years 20-FPGA 1000 91 1.8 hours
\ \ J

Is the effort and\r(esources needed to
create the Hotspot accelerator worth the

corresponding Application speedup?

Y
What is the best-case Application
speed-up (i.e., App speedup if
Hotspot is sped up

Zambreno, Spring 2017 © ISU

CprE 488 (Hardware Acceleration)

Lect-08.25




Hardware/Software Partitioning

C Code for FIR Filter Hardware ‘for’ loop
......... X ok Kk X K ok K K Kk Kk K K weea s Designer creates
;" for (i=0; i <_12; ) — \+/ \+/ \+/ +/ \+/ \+/ custom accelerator
"'-_-.--’.'.[.'.]..TL..._...C..[.'.] ..... X \/ N/ \/ using hardware
+\ /+\ /+ """" design methodology
+ I
4 AN 7
‘ ® Hw/Sw
- B Sw
[Compller} l 100
90
80 [
70 |
OoOoonnon OO000000 g -

O ] - 50 1

O jProcessor H O FPGA B 40 |

O . mih = . O 530 |

o e, ] C &g Ty ] 20

EE RN I]'EI.J,].. Ao 10 M

S T :.' ...... 0

« ~1000 cycles = ~ 10 cycles Time Energy

= Speedup = 1000 cycles/ 10 cycles
= 100x
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A Cause for Pessimism?

« HW amenability a design criterion for the Advanced Encryption Standard (AES)
—Flurry of activity looking at AES on FPGA (1000s of implementations, opts, attacks)

—J. Zambreno, D. Nguyen and A. Choudhary, "Exploring Area/Delay Tradeoffs in an AES
FPGA Implementation". Proc. of the Intl Conference on Field-Programmable Logic
and its Applications (FPL), Aug. 2004

» Main contribution: an early exploration of the design decisions that lead to
area/delay tradeoffs in an AES accelerator

> Significant (at the time) throughput of 23.57 Gbps for AES-128E in ECB mode

aesni_encrypt:

/

4 N

”R3HR4H

( ) mm ( ) pm ( ) mm ( ) . — )

.L000encl_Tloop:
aesenc %xmm4 , %xmmO
s decl J6eCx
\ movups (%edx) , %xmm4
l Teal 16 (%edx) ,%edx
jnz .L000encl_Tloop

aesenclast %xmm4,%xmmO
—_ SubBytes ShiftRows MixColumns o o
— movups %xmm0 , (%eax)
ret
) Partial libgcrypt implementation using Intel’s
KeyExpansion AES-NI instruction set. Performance is ~0.75
\ / cycles per byte (40+ Gbps per-thread with
relatively easy software patches
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Accelerator Design Challenges

- Debugging — how to properly test the accelerator separately, and
then in conjunction with the rest of the system (hw/sw co-simulation)

- Coherency — how to safely share results between CPU & accelerator
— Impact on cache design, shared memory

— Solutions look similar to those for resource sharing in conventional
operating systems, but are typically ad-hoc

« Analysis — determining the effects of any hardware parallelism on
performance

— Must take into account accelerator execution time, data transfer time,
synchronization overhead

— Heterogeneous multi-threading helps, but complicates design significantly
— Overlapping I/O and computation (streaming)
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High-Level Synthesis

Libraries/
Object
Code

Higevel J » Problem: Describing circuits using
................................ gy DL IS time consuming/difficult
_Hw/sw Partitioning | |« Solution: High-level synthesis
* ¥ . — Create circuits from high-level code
[ Compiler ] High-level |: :
[ Synthesis } — Allows developers to use higher-
b —a " levelspecification
Software | |Hardware| — Potentially, enables synthesis for
= § software developers
| Linker | « More on this in a bit
$

Bitstream J

minininisisisisinisininininininis|

I N N I
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Automation to the Rescue?

ol

 Developer efficiency continues to be a limiting factor
* Numerous approaches to the “behavioral synthesis” problem of generating useful
hardware from high-level descriptions E
— C-to-HDL variants:
» Handel-C (Oxford)
» ROCCC (UC-Riverside)
» Catapult C (Mentor Graphics)
» SystemC (Accelera)
» Cynthesizer C (Cadence)
> ImpulseC (Impulse)
— Many other comparable approaches:
» HDL Coder (Mathworks)
» Vivado High-Level Synthesis (Xilinx) New RCL grad stunt seen
> Bluespec, SystemVerilog trying to escape the lab

 Opinion: these tools can automate certain classes of logic, BUT:
— Cannot generate efficient output for “hard problems”
— Unfamiliar / uncomfortable syntax for both SW and HW engineers
— Similar algorithmic challenges to auto-parallelizing compilers

— Sorry students, you’'re still learning VHDL ®
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The Right Stuff

« Applications that map well to FPGA-based acceleration tend to have
common characteristics:
— Significant kernels of computation, significant data
» Amdahl’s law is typically more relevant than Gustafson’s law
> Profile. Don’t Speculate. — Daniel Bernstein
— Fixed-point or integer data representation
> If application is Gflop-constrained, use a GPU
» Changing (slowly), see Altera Stratix 10-based systems
— Fine-grained parallelism
> But if working set fits in cache, will still be hard to beat x86(MHz for MHz)

» Systolic model of computation, where FPGA pipeline depth > equivalent
CPU depth and number of FPGA PEs >> number of x86 FUs
— Real-time constraints, system integration
» HPC workloads should go on HPCs (i.e. accelerators are an orthogonal
concern)
» Current GPUs cannot make useful latency guarantees
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Typical Application Acceleration Methodology

Algorithmic « What is the purpose of the application?
Understanding  Can its complexity be lowered?
Application « Where are the application’s
Profiling “hotspots™

System-Level « What hardware and software
infrastructure is needed?

Design

Architectural « How can I accelerate
Design the bottlenecks?

HW / SW « How does
CO_Design it all fit?

Integration and
Test
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Acknowledgments

— M. C. Herbordt et al., "Achieving High Performance with FPGA-Based
Computing," in Computer, vol. 40, no. 3, pp. 50-57, March 2007

« http://www.bu.edu/caadlab/TEEE Computer 07.pdf

Table 1. HPC/FPGA application design techniques.

Type of support required Methods supported

Electronic design automation: languages and synthesis Use rate-matching to remove bottlenecks
Take advantage of FPGA-specific hardware
Use appropriate arithmetic precision
Create families of applications, not point solutions
Scale application for maximal use of FPGA hardware

Function/arithmetic libraries Use appropriate FPGA structures
Use appropriate arithmetic mode
Programmer/designer FPGA awareness Use an algorithm optimal for FPGAS

Use a computing mode appropriate for FPGAs
Hide latency of independent functions
Minimize use of high-cost arithmetic operations

None Living with Amdahl’s law
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http://www.bu.edu/caadlab/IEEE_Computer_07.pdf
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Example High Performance Reconfigurable Platform

« Convey HC-2ex “hybrid core” computer:
— Tightly coupled host-coprocessor via HCMI
— Globally shared, high performance memory (80 GB/s)

Four Application Engines (AES)

 Can be used as a large vector processor, or with custom “personalities”
that accelerate arbitrary applications

— Support for all interfacing logic, hardware/software co-simulation, early prototyping,

performance profiling

— Conventional C/C++ (host) and VHDL/Verilog (coprocessor) for development

Cluster

Interconnect

Fabric

[
Processor
[

Intel I/0
Subsystem

HCMI

Intel®
Processor
Intel 1/0

Subsystem

$
5

—  —

Application Engines (AES)
11;\\\\'\1? 11;}\\0*? 1.5;\\\“1‘? %\;\tﬂ&n
\%?‘-‘3*“‘ \vr?“:""“ \??G"‘“ \??G"‘
Application-specific Personalities

Hybrid-core Globally
Shared Memory (HCGSM)

=2 Memory
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Other Views

“Iowa State University Students Win
P MemoCODE Design Contest Using Convey
' Computer HC-1", MarketWire, July 2012

=2

S S ——

ol ﬂ_ﬁvmﬁ‘— “Team from Iowa State Wins 2014 MemoCODE

e e Design Contest”, PRWeb, Oct. 2014

« 14 FPGAs in total:

— 4 FPGAs used as the AEs (Xilinx Virtex 5-
LX330s operating at 150 MHz)

— 8 FPGAs are used as Memory Controllers

— 2 FPGAs are used as the Application Engine
Hub to interface with the CPU subsystem
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Table 1. HPC/FPGA application design techniques.

Type of support required Methods supported

Electronic design automation: languages and synthesis Use rate-matching to remove bottlenecks
Take advantage of FPGA-specific hardware
Use appropriate arithmetic precision
Create families of applications, not point solutions
Scale application for maximal use of FPGA hardware

Function/arithmetic libraries Use appropriate FPGA structures
Use appropriate arithmetic mode
Programmer/designer FPGA awareness Use an algorithm optimal for FPGAS

Use a computing mode appropriate for FPGAs

Hide latency of independent functions

Minimize use of high-cost arithmetic operations
None Living with Amdahl’s law
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