
CprE 488 – Embedded Systems Design

Lecture 8 – Hardware Acceleration

Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

www.ece.iastate.edu/~zambreno

rcl.ece.iastate.edu

First, solve the problem. Then, write the code. – John Johnson

http://www.ece.iastate.edu/~zambreno
http://rcl.ece.iastate.edu/

Lect-08.2CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• Every two years:

– Double the number of transistors

– Build higher performance general-purpose processors

➢ Make the transistors available to the masses

➢ Increase performance (1.8×↑)

➢ Lower the cost of computing (1.8×↓)

• Sounds great, what’s the catch?

Motivation: Moore’s Law

Gordon Moore

Lect-08.3CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• The “catch” – powering the transistors without melting the chip!

– See 2003 – 2004 news:

Motivation: Moore’s Law (cont.)

2300

2,200,000,000

0.5W

130W

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Chip Transistor Count

Chip Power

Lect-08.4CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• As transistors get smaller their power density stays constant

Motivation: Dennard Scaling

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2

Robert Dennard

Lect-08.5CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• In mid 2000s, Dennard scaling “broke”

Motivation Dennard Scaling (cont.)

Dimensions

Voltage

Doping
Concentrations

×0.7

Area 0.5×↓

Power 0.5×↓

Frequency 1.4×↑

Capacitance 0.7×↓

Transistor: 2D Voltage-Controlled Switch

Power = Capacitance × Frequency × Voltage2

Lect-08.6CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• Dark silicon – the fraction of transistors that need to be
powered off at all times (due to power + thermal constraints)

• Processor evolution strongly motivated by Dennard scaling ending

– Expected continued evolution towards HW specialization/accel

Motivation: Dark Silicon

Area 0.5×↓

Power 0.5×↓

2015

Lect-08.7CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• Hardware Acceleration:

– Performance analysis and overhead

– Coprocessors vs accelerators

– Common acceleration techniques

– Acceleration examples

• Reading: Wolf section 10.4-10.5

This Week’s Topic

Lect-08.8CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• Accelerating a diverse range of applications
using reconfigurable logic is a trending area:
– D. Hoang, D. Lopresti, “FPGA Implementation of

Systolic Sequence Alignment”
– D. Ross, O. Vellacott, M. Turner, “An FPGA-based

Hardware Accelerator for Image Processing”
– J. Lockwood, “Design and Implementation of a

Multicast, Input-Buffered ATM Switch for the iPOINT
Testbed”

• What these examples have in common:
– Illustrative of the potential for custom computing to

enable faster scientific and engineering discovery
– Relatively small impact (outside of academia)
– All work done in 1992

Straight from the Headlines...

Lect-08.9CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

And Today?

• Reconfigurable logic supporting the data center

specializing clusters, and tightly integrated on-chip

,

Lect-08.13CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Accelerated Systems

• Additional computational units dedicated to some functionality

• Hardware/software co-design: joint design of HW & SW architect

CPU

accelerator

memory

I/O

request

data
result

data

Lect-08.14CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Accelerator vs. Coprocessor

• A coprocessor executes instructions

– Instructions are dispatched by the CPU

• An accelerator appears as a device on the bus

– Typically controlled by registers (memory-mapped I/O)

Lect-08.16CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Accelerated System Design

• First, determine that the system really needs to be accelerated

– How much faster will the accelerator on the core function?

– How much data transfer overhead? Compute bound vs
memory bound vs I/O bound?

• Design accelerator and system interface

• If tighter CPU integration required:

– Create a functional unit for augmented instructions

– Compiler techniques to identify/use new functional unit

Lect-08.17CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Accelerator Proximity

• Although self-reconfiguration is possible, some SW integration
with a reconfigurable accelerator is almost always present

• CPU – FPGA proximity has implications for programming model,
device capacity, I/O bandwidth

Standalone Processing Unit

I/O
Interface

Attached Processing Unit

Workstation

Memory
Caches

Coprocessor

CPU

FU

Lect-08.18CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Will Hardware Acceleration Help?

Lect-08.19CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• The total application speedup, when an optimization (accelerator) improves a
selected fraction (f) of an application’s execution time by a factor a is:

Amdahl’s Law

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎

Gene Amdahl

Lect-08.20CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Will Hardware Acceleration Help?

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

𝑇𝑛𝑒𝑤

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − (𝑓 ∗ 𝑇𝑜𝑟𝑔 − 𝑓 ∗ 𝑇𝑜𝑟𝑔 /𝑎)

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − (𝑇𝑓 − 𝑇𝑓/𝑎)

=
𝑇𝑜𝑟𝑔

(1 − (𝑓 − 𝑓 /𝑎)) ∗ 𝑇𝑜𝑟𝑔

=
𝑇𝑜𝑟𝑔

(1 + (− 𝑓 + 𝑓 /𝑎)) ∗ 𝑇𝑜𝑟𝑔

where:

– 𝑇𝑜𝑟𝑔 : Application original exec. time

– 𝑇new : Application exec. time after accel

– 𝑓 : fraction of the Application time that

a selected portion of the App. runs.

– 𝑇f : amount of time the selected
portion of the App. runs, before accel.

– 𝑇fa : amount of time the selected

portion of the App. runs after
accelerated by 𝑎

– 𝑎 : factor by which accelerator speeds

up selected portion of Application

=
𝑇𝑜𝑟𝑔

𝑇𝑜𝑟𝑔 − (𝑇𝑓 − 𝑇𝑓𝑎)

Lect-08.21CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• The total application speedup, when an optimization (accelerator) improves a
selected fraction (f) of an application’s execution time by a factor a is:

• This formula is known as Amdahl’s Law, where:

– 𝑇𝑜𝑟𝑔 is the execution time of the whole Application before any

optimization/accelerator (i.e., original execution time)

– 𝑓 is the fraction of the Application time that a selected portion of the

Application takes to run.

– 𝑎 is the factor by which an optimization/accelerator speeds up the selected

portion of the Application

• Lessons from this law:

– If f → 1 (i.e., 100%), then Application_Speedup = a

– If a →∞, then Application Speedup = 1 / (1 – f)

• Summary

– Make the common case fast

– Watchout for serial parts of an Application (ie, parts that cannot be accelerated)

Amdahl’s Law

Gene Amdahl

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑜𝑟𝑔

[(1 − 𝑓) + 𝑓/𝑎] ∗ 𝑇𝑜𝑟𝑔

=
1

(1 − 𝑓) + 𝑓/𝑎

Lect-08.22CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Heterogeneous Execution Model

initialization

0.5% of run time

“hotspot” loop

99% of run time

clean up

0.5% of run time

in
s
tr

u
c
ti
o
n
s
 e

x
e
c
u
te

d

o
v
e
r

ti
m

e

49.5% of

code

49.5% of

code

1% of code

co-processor

• Example: Assume an Application where only 1% of the code runs for 99%
of the Application execution time (i.e., f =.99). How much will the overall
Application speedup, if we create an accelerator to speedup this selected
portion (i.e., “hotspot”) by a

Lect-08.23CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours

Lect-08.24CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Design
Time

Hardware
Resources

1-week 1-FPGA

2-months 2-FPGA

6-months 4-FPGA

2-years 9-FPGA

4-years 20-FPGA

Is the effort and resources needed to
create the Hotspot accelerator worth the
corresponding Application speedup?

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours

Lect-08.25CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Heterogeneous Computing: Performance
• Move “bottleneck/hotspot” computation from software to hardware

• Example:

– Application requires a week of CPU time (i.e., 168 hours)

– One “hotspot” computation consumes 99% of execution time

Design
Time

Hardware
Resources

1-week 1-FPGA

2-months 2-FPGA

6-months 4-FPGA

2-years 9-FPGA

4-years 20-FPGA

Is the effort and resources needed to
create the Hotspot accelerator worth the
corresponding Application speedup?

What is the best-case Application
speed-up (i.e., App speedup if
Hotspot is sped up ∞)?

Hotspot

Speedup(a)

Application

speedup

Execution

time

50 34 5.0 hours

100 50 3.3 hours

200 67 2.5 hours

500 83 2.0 hours

1000 91 1.8 hours

Lect-08.26CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

0
10
20
30
40
50
60
70
80
90

100

Time Energy

SW

Hardware/Software Partitioning

for (i=0; i < 128; i++)
y[i] += c[i] * x[i]

..

..

..

for (i=0; i < 16; i++)
y[i] += c[i] * x[i]

..

..

..

C Code for FIR Filter

ProcessorProcessor

• ~1000 cycles

Compiler

Hardware/software partitioning
selects performance critical regions
for hardware implement

ProcessorFPGA

* * * * * * * * * * * *

+ + + + + +

+ + +

+ +

+

.

.

.

.

.

Designer creates
custom accelerator
using hardware
design methodology

Hardware ‘for’ loop

0

10

20

30

40

50

60

70

80

90

100

Time Energy

Hw/Sw
Sw

◼ ~ 10 cycles

◼ Speedup = 1000 cycles/ 10 cycles
= 100x

Lect-08.27CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

A Cause for Pessimism?
• HW amenability a design criterion for the Advanced Encryption Standard (AES)

– Flurry of activity looking at AES on FPGA (1000s of implementations, opts, attacks)

– J. Zambreno, D. Nguyen and A. Choudhary, "Exploring Area/Delay Tradeoffs in an AES
FPGA Implementation". Proc. of the Int’l Conference on Field-Programmable Logic
and its Applications (FPL), Aug. 2004

➢Main contribution: an early exploration of the design decisions that lead to
area/delay tradeoffs in an AES accelerator

➢ Significant (at the time) throughput of 23.57 Gbps for AES-128E in ECB mode

In
p

u
t

p
la

in
te

x
t

R1

O
u

tp
u

t

C
ip

h
er

te
x
t

R2 R3 R4 R5

R6R7R8R9R10

aesni_encrypt:
...

.L000enc1_loop:
aesenc %xmm4,%xmm0
decl %ecx
movups (%edx),%xmm4
leal 16(%edx),%edx
jnz .L000enc1_loop
aesenclast %xmm4,%xmm0
movups %xmm0,(%eax)
ret

Partial libgcrypt implementation using Intel’s
AES-NI instruction set. Performance is ~0.75
cycles per byte (40+ Gbps per-thread with
relatively easy software patches)

Lect-08.28CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• Debugging – how to properly test the accelerator separately, and
then in conjunction with the rest of the system (hw/sw co-simulation)

• Coherency – how to safely share results between CPU & accelerator

– Impact on cache design, shared memory

– Solutions look similar to those for resource sharing in conventional
operating systems, but are typically ad-hoc

• Analysis – determining the effects of any hardware parallelism on
performance

– Must take into account accelerator execution time, data transfer time,
synchronization overhead

– Heterogeneous multi-threading helps, but complicates design significantly

– Overlapping I/O and computation (streaming)

Accelerator Design Challenges

Lect-08.29CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

High-Level Synthesis

Libraries/

Object

Code

Libraries/

Object

Code

Updated

Binary

High-level

Code

Decompilatio

n

High-level

Synthesis

BitstreamBitstream

uP FPGA

Linker

HardwareHardwareSoftwareSoftware

• Problem: Describing circuits using
HDL is time consuming/difficult

• Solution: High-level synthesis

– Create circuits from high-level code

– Allows developers to use higher-
level specification

– Potentially, enables synthesis for
software developers

• More on this in a bit

DecompilationHW/SW Partitioning

Compiler

Lect-08.30CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Automation to the Rescue?
• Developer efficiency continues to be a limiting factor

• Numerous approaches to the “behavioral synthesis” problem of generating useful
hardware from high-level descriptions

– C-to-HDL variants:

➢ Handel-C (Oxford)

➢ ROCCC (UC-Riverside)

➢ Catapult C (Mentor Graphics)

➢ SystemC (Accelera)

➢ Cynthesizer C (Cadence)

➢ ImpulseC (Impulse)

– Many other comparable approaches:

➢ HDL Coder (Mathworks)

➢ Vivado High-Level Synthesis (Xilinx)

➢ Bluespec, SystemVerilog

• Opinion: these tools can automate certain classes of logic, BUT:

– Cannot generate efficient output for “hard problems”

– Unfamiliar / uncomfortable syntax for both SW and HW engineers

– Similar algorithmic challenges to auto-parallelizing compilers

– Sorry students, you’re still learning VHDL 

New RCL grad student seen
trying to escape the lab

Lect-08.31CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

The Right Stuff
• Applications that map well to FPGA-based acceleration tend to have

common characteristics:

– Significant kernels of computation, significant data

➢ Amdahl’s law is typically more relevant than Gustafson’s law

➢ Profile. Don’t Speculate. – Daniel Bernstein

– Fixed-point or integer data representation

➢ If application is Gflop-constrained, use a GPU

➢ Changing (slowly), see Altera Stratix 10-based systems

– Fine-grained parallelism

➢ But if working set fits in cache, will still be hard to beat x86(MHz for MHz)

➢ Systolic model of computation, where FPGA pipeline depth > equivalent
CPU depth and number of FPGA PEs >> number of x86 FUs

– Real-time constraints, system integration

➢ HPC workloads should go on HPCs (i.e. accelerators are an orthogonal
concern)

➢ Current GPUs cannot make useful latency guarantees

Lect-08.32CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Typical Application Acceleration Methodology

Algorithmic

Understanding

Application

Profiling

System-Level

Design

Architectural

Design

HW / SW

Co-Design

Integration and

Test

• What is the purpose of the application?
• Can its complexity be lowered?

• Where are the application’s
“hotspots”?

• What hardware and software
infrastructure is needed?

• How can I accelerate
the bottlenecks?

• How does
it all fit?

Lect-08.33CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

– M. C. Herbordt et al., "Achieving High Performance with FPGA-Based
Computing," in Computer, vol. 40, no. 3, pp. 50-57, March 2007

• http://www.bu.edu/caadlab/IEEE_Computer_07.pdf

Acknowledgments

http://www.bu.edu/caadlab/IEEE_Computer_07.pdf

Lect-08.34CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Lect-08.35CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Lect-08.36CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Lect-08.51CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Example High Performance Reconfigurable Platform

• Convey HC-2ex “hybrid core” computer:
– Tightly coupled host-coprocessor via HCMI
– Globally shared, high performance memory (80 GB/s)
– Four Application Engines (AEs)

• Can be used as a large vector processor, or with custom “personalities”
that accelerate arbitrary applications
– Support for all interfacing logic, hardware/software co-simulation, early prototyping,

performance profiling
– Conventional C/C++ (host) and VHDL/Verilog (coprocessor) for development

Lect-08.52CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Other Views

“Team from Iowa State Wins 2014 MemoCODE
Design Contest”, PRWeb, Oct. 2014

• 14 FPGAs in total:

– 4 FPGAs used as the AEs (Xilinx Virtex 5-
LX330s operating at 150 MHz)

– 8 FPGAs are used as Memory Controllers

– 2 FPGAs are used as the Application Engine
Hub to interface with the CPU subsystem

“Iowa State University Students Win
MemoCODE Design Contest Using Convey
Computer HC-1”, MarketWire, July 2012

Lect-08.63CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

• These slides are inspired in part by material
developed and copyright by:

– Marilyn Wolf (Georgia Tech)

– Jason Bakos (University of South Carolina)

– Greg Stitt (University of Florida)

– Hadi Esmaeilzadeh (Georgia Tech)

Acknowledgments

Lect-08.64CprE 488 (Hardware Acceleration)Zambreno, Spring 2017 © ISU

Acknowledgments

	Slide 1: CprE 488 – Embedded Systems Design Lecture 8 – Hardware Acceleration
	Slide 2: Motivation: Moore’s Law
	Slide 3: Motivation: Moore’s Law (cont.)
	Slide 4: Motivation: Dennard Scaling
	Slide 5: Motivation Dennard Scaling (cont.)
	Slide 6: Motivation: Dark Silicon
	Slide 7: This Week’s Topic
	Slide 8: Straight from the Headlines...
	Slide 9: And Today?
	Slide 13: Accelerated Systems
	Slide 14: Accelerator vs. Coprocessor
	Slide 16: Accelerated System Design
	Slide 17: Accelerator Proximity
	Slide 18: Will Hardware Acceleration Help?
	Slide 19: Amdahl’s Law
	Slide 20: Will Hardware Acceleration Help?
	Slide 21: Amdahl’s Law
	Slide 22: Heterogeneous Execution Model
	Slide 23: Heterogeneous Computing: Performance
	Slide 24: Heterogeneous Computing: Performance
	Slide 25: Heterogeneous Computing: Performance
	Slide 26: Hardware/Software Partitioning
	Slide 27: A Cause for Pessimism?
	Slide 28: Accelerator Design Challenges
	Slide 29: High-Level Synthesis
	Slide 30: Automation to the Rescue?
	Slide 31: The Right Stuff
	Slide 32
	Slide 33: Acknowledgments
	Slide 34
	Slide 35
	Slide 36
	Slide 51: Example High Performance Reconfigurable Platform
	Slide 52: Other Views
	Slide 63: Acknowledgments
	Slide 64: Acknowledgments

