CPRE 583
S— Reconfigurable Computing E—
Lecture 7: 9/14/2011
(Common VHDL Mistakes: “It works perfect

in simulation, but not in the hardware!”) |

Instructor: Dr. Phillip Jones
(phjones@iastate.edu)

Reconfigurable Computing Laboratory
lowa State University
Ames, lowa, USA

http://class.ece.iastate.edu/cpre583/

1 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State University (Ames)

http://class.ece.iastate.edu/cpre583/

Overview

« Common VHDL mistakes

* What you should learn
—What are the ~6 common mistakes
— How to identify these mistakes
— How to fix these mistakes

2 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State University (Ames)

My design works In simulation, but not in hardware!!

* Clocked and non-clock processes common
ISSues.

* Clean Statemachine design, using best
known practices

 Common Mistakes pdf document

3 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State University (Ames)

Clocked vs. non-clock processes

Non-clocked process Clocked process
(clock is NOT in the sensitivity list) (clock is ONLY in the sensitivity list)

process (clk)
process (sel, a, my_data) begin
begin -- check for rising edge of the clk
if(clk’event and clk = “1') then

-- default all driven signals
a out <=x"007%
data_out <= x"007;

-- Initialize all driven signals during reset
if(reset = 17) then
a out <=x"007"

if (sel = ‘1’) then data_out <= x"007;

a_out <=a; else o

data_out <= my_data; if (sel = ‘1’) then
end if- - a_out<= a;

| data_out <= my_data;
end process; end If;
end if;
end if;

end process:

4 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State University (Ames)

State Machine Structure

-- Assign STATE to next state -- Compute next state
process (clk) process (STATE, x)
begin begin
-- check for rising edge of the clk -- defaults
if(clk’event and clk = “1") then next_state <= STATE;
-- initialize all driven signals during reset case STATE is
if(reset = “1’) then when S1 =>
STATE <= S1; if(x = ‘0’) then
else Next STATE <= S1,;
STATE <= Next STATE; else
end Iif; Next STATE <= S2;
end if; end If
end process; when S2 =>
No memory!!!!

Next State <= S1,

end if;

Has memory
end process;

(e.g. flip-flops)

5 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes lowa State University (Ames)

Manage Registers/Counters

-- Manage Registers/Counters
process (clk)
begin
if(clk’event and clk = “1') then
-- Initialize all driven signals during reset
if(reset = 1) then

store_ x_reg <= x"007 } -
counter 1 <=x“00"; — These are memory elements
else (e.g. flip-flops)
-- update registers and counters
if(update_req) then
store X reg <= new_val;
end if;

if(update_count) then
counter_1 <= new_count;
end If;
end If;
end Iif;
end process;

6 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State University (Ames)

Good papers on state machine design

— FSM “good practices” paper (Note: inVerilog)

— http://www.sunburst-design.com/papers/

« The Fundamentals of Efficient Synthesizable Finite State Machine
(2002)

« Synthesizable Finite State Machine Design Techniques (2003)

7 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State [‘Tniversit_v (Ames)

http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf

Common Mistakes in more detall

— See Common VHDL mistakes pdf on course web

8 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State Universit_v (Ames)

Common VHDL mistakes
(Trying to avoid the statement “It's working fine in simulation, but not in the hardware”)
It is important to understand the difference between a clocked and non-clocked process.
The main difference is a clocked process can only update signals on a clock edge (flip-
flop, register behavior), while a non-clocked process updates its signals anytime any

signal in its sensitivity list changes.

Example of a non-clocked process (Note: clk is not in the sensitivity list):

process (sel, a, my_data)
begin
a_out <= 0x00; -- default assignment
data_out <= 0x00; -- default assignment
if (sel ='1") then
a_out <= a;
data_out <= my_data;
end if;

end process;

9 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State [‘Tniversity (Ames)

Common Mistakes in more detall

Example of a clocked process (Note: clk is the only signal in the sensitivity list):

process (clk)
begin
if(clk'event and clk = "1") then -- check for the rising edge of the clock
if(reset = "1") then -- initialize all driven signals during reset
a_out <= 0x00;
data_out <= 0x00;
else
if (sel =‘1") then
a_out <= a;
data_out <= my_data;
end if;
end if;
end if;

end process;

10 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State Ulliversit_v (Ames)

The following are the most common mistakes | have noticed students make while first

learning VHDL.
1. Incomplete sensitivity list for non-clocked processes —

All signals that control the output of a non-clock process must appear in the process’s sensitivity list
(Note: your clock should not be included). Example:
process (sel, a, my_data)
begin
a_out <= 0x00;
data_out <= 0x00;
if (sel =°17) then
a_out <= ga;
data_out <= my_data;
end if;

end process;

If you do not have a complete sensitivity list, then the simulation will not correctly emulate the behavior of
the hardware. Which can result in you spending many hours trying to figure out why:
a. Simulation is not behaving like you expect (e.g. signals are not updating when you think they
should

b. Everything appears to work in simulation, but not in hardware

11 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State [‘Tniversity (Ames)

2. Signal driven by multiple processes, or components
Each signal can only be driving by a single source. If you drive a signal with more than one source, then
you may see:
a. X's being assigned to the signal that has multiple drivers
b. A compile-time or simulation-time error/warning message
Example of a signal with multiple drivers (“out”):
process(i1, i2)
begin
out <=i1 and iz2;

end process;

process (i1, i3)
begin
out <=i1 ori3;

end process;

12 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes lowa State [‘Tniversit_v (Ames)

3. Forgot to assign a default value to every signal being driven by a non-clock process (inferring a
latch)

Forgetting to assign a default value to every signal driven by a non-clocked process can result in
interfering a latch. This basically means that you are trying to hold/store a value on a signal within a non-
clocked process. Do not try to store values in a non-clocked process, it can (and often does) lead to
unexpected behavior in your hardware. Which can cost you many hours trying to figure out why things

work in simulation and not in hardware.

Example of inferring a latch by not defaulting a signal:

process(sel)
begin
if(sel = °0’) then
out <=1’
end if;

end process;

This non-clocked processes will try to hold (latch) the last value assigned to “out” when sel is not “0". If

you want this behavior then you must place “out” in a clocked process, so that “out” becomes a register.

Common Mistakes in more detall

This inferred latch can be avoided by assigning “out” a default value.

Correct Example:
process(sel)
begin
out <='0’; -- default assignment
if(sel = “0’) then
out <=1’
end if;

end process;

14 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State University (Ames)

Another common error is to try to default a signal with another signal from the same or different non-
clocked process. Inthe following example the designer is trying to hold/store the value of “out” into
“out_reg”. Again itis very important to remember you can NOT create registers (flip-flops) in a non-

clocked process:

Example:
process(sel, out)
begin
out <=0"
out_reg <= out;
if(sel = '0’) then
out_reg <="0’;
out <='1";
end if;

end process;

Strictly speaking you do not have to default all signals, but you do need to make sure EVERY logical
branch of a non-clocked process gives every signal that is being driven an explicit value. This however
can be very error prone. The safest way to ensure you do not infer a latch in a non-clocked process is to

default all signals that are driven at the top of the non-clock process.

Common Mistakes in more detall

4. Trying to create a counter (or register) in a non-clocked process. (inferring a latch)

Counters (registers) should only be placed in a clocked process. A counter adds/subtracts from its

previous value, therefore the signal being used to store the count value must be a register.

3 common incorrect ways of trying to create a counter in a non-clocked process (counters must be put in

a clocked process!):

16 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State Universit_v (Ames)

Common Mistakes in more detall

a. Leaving the counter signal out of the non-clocked process’s sensitivity list

process(increment)
begin
if(increment = '1°) then
counter <= counter + 1;
end if;

end process;

This will appear to work in simulation, but has no chance of working in hardware. The counter will count
at an uncontrollable rate in hardware when “increment” is set equal to one. Also this will infer a latch!
Note: A latch is inferred because “counter” is in a non-clocked process and does not have a default

assignment.

17 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State [‘Tniversit_v (Ames)

Common Mistakes in more detall

b. Same as a) but signal is placed in the non-clocked process’s sensitivity list. This typically causes
the simulator to error out. This is due to the counter trying to count at an infinite rate in
simulation, since every time the counter increments the process gets rerun because the
sensitivity list (“counter”) changes. Which is what will happen in hardware as well. And again a

latch is inferred.

process(increment, counter)
begin
if(increment = '17) then
counter <= counter + 1;
end if;

end process;

18 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State Uni\f’ersity (Ames)

Common Mistakes in more detall

c. Similar to b) but the designer tries to default “counter” with “counter”. Again a latch will get
inferred (Do not do this)

process(increment, counter)
begin
counter <= counter;
if(increment = “17) then
counter <= counter + 1;
end if;

end process;

19 - CPRE 583 (Reconfigurable Computing): VHDL overview 4: Common VHDL Mistakes Towa State [‘Tniversity (Ames)

Common Mistakes in more detall

Important!! Counters and registers should only be placed in clocked processes.

Correct Example:

process(clk)
begin
if(clk'event and clk = *1) then
if(reset = "17) then
counter <= (others =>‘0’); -- initial counter during reset
else
if(increment = 1)
counter <= counter + 1;
end if;
end if;
end if;

g end process;

trsity (Ames)

Common Mistakes in more detall

5. Forgetting to initialize all signals that are being driven by a clocked process.

By not initializing all signals in a clocked process to some value, you basically put your hardware in a
random state after reset. This can lead to differences between simulation and hardware. Which in turn
can lead to you spending many hours trying to figure out why things work in simulation, but not in
hardware. This difference is due to the fact that your VHDL code typically has statements like:

if (sel = “0") then

out <=0/
else

out <="17
end if;

Therefore in simulation if sel is equal to “U” after reset, then out <= *1’". But in hardware there is no such
thing as “U". Therefore it is possible that after reset sel may be equal to ‘0, which would give out equal to

‘0’, which is a different behavior. So in a clocked make sure to default the signals you are driving.

21 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State [‘Tniversity (Ames)

process(clk) Correct Example of a counter
begin
if(clk'event and clk = "17) then
if(reset = 1) then
out <= 0x00; -- initial signal during reset
else
if(sel ='0)
out <=0’
else
out <="17;
end if;
end if;
end if;

end process;

Note: Do not initialize signals in the declarations section (i.e. signal my_signal : std_logic := ‘0’). The “="
for initialization of a signal has no meaning in hardware. You must explicitly initialize your signals in their

associated clocked process. You can use the “:=" if the signal you are declaring is a CONSTANT.

22 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes lowa State [‘Tniversit_v (Ames)

Common Mistakes in more detall

6. Do not place clk in the sensitivity list of a non-clocked process, unless clk is being used to drive a
signal (this should be very rare, and you better know what you are doing if you use clk to drive
another signal in a process).

23 - CPRE 583 (Reconfigurable Computing): VHDL overview 4. Common VHDL Mistakes Towa State [‘Tniversit_v (Ames)

