
1 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

Common VHDL mistakes

“It works perfect in simulation,

but not in the hardware!”

Instructor: Dr. Phillip Jones
(phjones@iastate.edu)

 Reconfigurable Computing Laboratory

Iowa State University

Ames, Iowa, USA

http://class.ee.iastate.edu/cpre583/

http://class.ece.iastate.edu/cpre583/

2 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Common VHDL mistakes

• What you should learn

– What are the ~6 common mistakes

– How to identify these mistakes

– How to fix these mistakes

Overview

3 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Clocked and non-clocked processes common issues

• Clean State machine design, using best practices

• Common VHDL Mistakes

My design works in simulation, but not in hardware!!

4 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

Clocked vs. non-clock processes
Non-clocked process

(clock is NOT in the sensitivity list)

Clocked process

(clock is ONLY in the sensitivity list)

process (sel, a, my_data)

begin

 --default all driven signals

 a_out <= x”00”;

 data_out <= x”00”;

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

end process;

process (clk)

begin

 -- check for rising edge of clk

 if(clk’event and clk = ‘1’) then

 -- initialize all driven

 signals during reset

 if(reset = ‘1’) then

 a_out <= x”00”;

 data_out <= x”00”;

 else

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

 end if;

 end if;

end process;

5 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• 3 processes

– 1) Clocked process: Assign next-state to state

– 2) Combinational process: Compute next-state, and outputs

– 3) Clocked process: Implement counters and registers that

are controlled by the FSM outputs

Clean Finite State Machine (FSM) Design

6 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

-- 1) Assign Next_STATE to STATE
process (clk)

begin

-- check for rising edge of the clk

 if(clk’event and clk = ‘1’) then

 -- Initialize all driven signals

 during reset

 if(reset = ‘1’) then

 STATE <= S1;

 else

 STATE <= Next_STATE;

 end if;

 end if;

end process;

-- 2) Compute next_state & outputs
process (STATE, x)

begin

 -- defaults

 z <= ‘1’;

 Next_STATE <= STATE;

 case STATE is

 when S1 =>

 if(x = ‘0’) then

 z <= ‘1’;

 Next_STATE <= S1;

 else

 z <=‘0’;

 Next_STATE <= S2;

 end if;

 when S2 =>

 z <= ‘1’;

 Next_State <= S1;

 end case

end process;

Has memory

(e.g. flip-flops)

No memory!!!!

Clean Finite State Machine (FSM) Design

7 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

-- 3) Manage Registers/Counters controlled by FSM outputs
process (clk)

begin

 if(clk’event and clk = ‘1’) then

 -- initialize all driven signals during reset

 if(reset = ‘1’) then

 store_x_reg <= x”00”;

 counter_1 <= x“00”;

 else

 -- update registers & counters based on FSM outputs

 if(z = ‘1’) then

 store_x_reg <= new_val;

 end if;

 if(z = ‘0’) then

 counter_1 <= new_count;

 end if;

 end if;

 end if;

end process;

These are memory elements

(e.g. flip-flops)

Clean Finite State Machine (FSM) Design

8 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

Good papers on state machine design

– FSM “good practices” paper (Note: inVerilog)
– http://www.sunburst-design.com/papers/

• The Fundamentals of Efficient Synthesizable Finite State Machine

(2002)

• Synthesizable Finite State Machine Design Techniques (2003)

http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf

9 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

Common Mistakes in more detail

10 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• All signals that impact the output of a non-clocked process must

appear in the process’s Sensitive list (Note: your clock should not be

included)

• Example mistake:

• Types of observed issues: Can cause MANY hours in debug time

➢ Simulation behave in unexpected manner (e.g. signals not updating as

you think they should)

➢Everything “work” in simulation, but not when deployed to hardware

1. Incomplete sensitivity list for non-clocked process

process (a, b)

begin

 output <= ‘0’;

 if(sel = ‘0’) then

 output <= a;

 else

 output <= b;

 end if;

end process;

11 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• All signals that impact the output of a non-clocked process must

appear in the process’s Sensitive list (Note: your clock should not be

included)

• Corrected Example:

• Types of observed issues: Can cause MANY hours in debug time

➢ Simulation behave in unexpected manner (e.g. signals not updating as

you think they should)

➢Everything “work” in simulation, but not when deployed to hardware

1. Incomplete sensitivity list for non-clocked process

process (sel, a, b)

begin

 output <= ‘0’;

 if(sel = ‘0’) then

 output <= a;

 else

 output <= b;

 end if;

end process;

12 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• A signal can only be driven (i.e., assigned) by a single source (i.e.,

driver). If a signal is driven by more than one source you my observe:

➢ X’s assigned to the signal being driven by multiple drivers

➢ A compile-time, simulation-time, synthesis-time error/warning message

• Example: Signal (e.g., z) having multiple drivers:

i1

2. Signal driven by multiple Processes / Components

C1: process (i1, i2)

begin

 z <= i1 and i2;

end process: C1;

C2: process (i1, i3)

begin

 z <= i1 or i3;

end process: C2;

and

z

or

i2

i3

13 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• A signal can only be driven (i.e., assigned) by a single source (i.e.,

driver). If a signal is driven by more than one source you my observe:

➢ X’s assigned to the signal being driven by multiple drivers

➢ A compile-time, simulation-time, synthesis-time error/warning message

• Example: Signal (e.g., z) having multiple drivers:

• Two solutions:

➢ If a typo caused two signals to have the same name, then just fix typo

➢ If meant to drive the same signal, rename signals and add a multiplexer

i1

2. Signal driven by multiple Processes / Components

C1: process (i1, i2)

begin

 z <= i1 and i2;

end process: C1;

C2: process (i1, i3)

begin

 z <= i1 or i3;

end process: C2;

and

z

or

i2

i3

14 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• A signal can only be driven (i.e., assigned) by a single source (i.e.,

driver). If a signal is driven by more than one source you my observe:

➢ X’s assigned to the signal being driven by multiple drivers

➢ A compile-time, simulation-time, synthesis-time error/warning message

• Example: Signal (e.g., z) having multiple drivers:

• Two solutions:

➢ If a typo caused two signals to have the same name, then just fix typo

➢ If meant to drive the same signal, rename signals and add a multiplexer

i1

C1: process (i1, i2)

begin

 z1 <= i1 and i2;

end process: C1;

C2: process (i1, i3)

begin

 z2 <= i1 or i3;

end process: C2;

and z1

or

i2

i3
z2

2. Signal driven by multiple Processes / Components

15 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• A signal can only be driven (i.e., assigned) by a single source (i.e.,

driver). If a signal is driven by more than one source you my observe:

➢ X’s assigned to the signal being driven by multiple drivers

➢ A compile-time, simulation-time, synthesis-time error/warning message

• Example: Signal (e.g., z) having multiple drivers:

• Two solutions:

➢ If a typo caused two signals to have the same name, then just fix typo

➢ If meant to drive the same signal, rename signals and add a multiplexer

i1

2. Signal driven by multiple Processes / Components

C1: process (i1, i2)

begin

 z <= i1 and i2;

end process: C1;

C2: process (i1, i3)

begin

 z <= i1 or i3;

end process: C2;

and

z

or

i2

i3

16 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• A signal can only be driven (i.e., assigned) by a single source (i.e.,

driver). If a signal is driven by more than one source you my observe:

➢ X’s assigned to the signal being driven by multiple drivers

➢ A compile-time, simulation-time, synthesis-time error/warning message

• Example: Signal (e.g., z) having multiple drivers:

• Two solutions:

➢ If a typo caused two signals to have the same name, then just fix typo

➢ If meant to drive the same signal, rename signals and add a multiplexer

i1

2. Signal driven by multiple Processes / Components

C1: process (i1, i2)

begin

 z1 <= i1 and i2;

end process: C1;

C2: process (i1, i3)

begin

 z2 <= i1 or i3;

end process: C2;

and

z

or

i2

i3

when sel = 0; z <= z1, else z <= z2; // Multiplexer

0

1

0

1

selz1

z2

17 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• In this case the non-clocked process will try to hold (latch) the last value

assigned to “out” when select is not ‘0’.

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel)

begin

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

end process;

18 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• Two solutions:

➢ Provide ‘out’ with a default value at the very top of the process

➢ If you actually want ‘out’ to store a value, then used a clocked process

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel)

begin

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

end process;

19 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• Two solutions:

➢ Provide ‘out’ with a default value at the very top of the process

➢ If you actually want ‘out’ to store a value, then used a clocked process

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel)

begin

 out <= ‘0’; -- default assignment

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

end process;

20 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• Two solutions:

➢ Provide ‘out’ with a default value at the very top of the process

➢ If you actually want ‘out’ to store a value, then used a clocked process

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (clk)

begin

 if(clk’event and clk = ‘1’) then --Check for pos edge

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

 end if;

end process;

21 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• Two solutions:

➢ Provide ‘out’ with a default value at the very top of the process

➢ If you actually want ‘out’ to store a value, then used a clocked process

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (clk)

begin

 if(clk’event and clk = ‘1’) then --Check for pos edge

 --> place reset logic here <--

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

 end if;

end process;

22 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• In this case the non-clocked process will still try to hold (latch) the last

value assigned to “out” when select is not ‘0’. But the designer is trying

to use another signal from a combination process to “default” out.

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel, out_not_a_reg, out)

begin

 out <= out_not_a_reg

 if(sel = ‘0’) then

 out <= ‘1’;

 out_not_a_reg <= out;

 end if;

end process;

23 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• The output of a combinational process needs to be defaulted to a

constant, or a register from a clocked process.

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel, out_not_a_reg, out)

begin

 out <= out_not_a_reg

 if(sel = ‘0’) then

 out <= ‘1’;

 out_not_a_reg <= out;

 end if;

end process;

24 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Forgetting to assign a default value to one or more signals driven by a non-

clocked process can result in inferring a latch!!

o You’re trying to hold/store a value on a signal within a non-clocked process

o Do not try to store values in a non-clocked process, it can (and often does)

lead to unexpected behavior in hardware. Resulting in MANY hours

debugging why things “work” in simulation, but not in hardware.

• Example of inferring a latch by not defaulting a driven signal:

• The output of a combinational process needs to be defaulted to a

constant, or a register from a clocked process.

3. Did not assign a default value to each signal driven

by a non-clocked process (i.e. inferring a latch!!)

process (sel, out_reg)

begin

 out <= out_reg

 if(sel = ‘0’) then

 out <= ‘1’;

 end if;

end process;

process (clk)

begin

 if(clk’event and clk = ‘1’) then

 out_reg <= out;

 end if;

end process;

25 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Counters (registers) should only be created within a clocked process. A

counter adds/subtracts from its previous value, thus the signal being used to

store the count value must be a register.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

26 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Counters (registers) should only be created within a clocked process. A

counter adds/subtracts from its previous value, thus the signal being used to

store the count value must be a register.

• Incorrect: The following illustrates 3 common incorrect ways of trying to

create a counter within a non-clocked process.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

27 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Counters (registers) should only be created within a clocked process. A

counter adds/subtracts from its previous value, thus the signal being used to

store the count value must be a register.

• Incorrect: The following illustrates 3 common incorrect ways of trying to

create a counter within a non-clocked process.

• Correct: Then a correct implementation of a counter is provided within a

clocked process.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

28 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Error Example 1:

Leaving the counter signal out of a non-clocked process’s sensitivity list

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (increment)

begin

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

end process;

29 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Error Example 1:

Leaving the counter signal out of a non-clocked process’s sensitivity list

This will appear to work in simulation, but has NO chance of working in

hardware. The “counter” will count at an unknown and uncontrollable rate in
the hardware when increment is set to 1. Also this will infer a latch!!

Note: A latch is inferred because “counter is in a non-clocked process and is

not given a default assignment.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (increment)

begin

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

end process;

30 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Error Example 2:

This is the same as Error Example 1, except the “counter” signal is placed in

the non-clocked process’s sensitivity list.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (increment, counter)

begin

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

end process;

31 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Error Example 2:

This is the same as Error Example 1, except the “counter” signal is placed in

the non-clocked process’s sensitivity list.

This typically causes the simulator to error out (i.e. die). This is due to the

counter trying to count at an infinite rate in simulation, since every time the

counter increments the process gets rerun because the value of a signal in the

sensitivity list (“counter”) changes. Which is what will happen in the hardware

as well. And again a latch is inferred!!

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (increment, counter)

begin

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

end process;

32 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Error Example 3:

Similar to Error Example 2, except the designer tries to “default” the “counter”

with “counter”. Produces the same error, and a latch will get inferred (Do not

do this!!)

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (increment, counter)

begin

 counter <= counter;

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

end process;

33 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Correct Example:

Important!!!: counters and registers should only be placed within clocked

processes.

4. Trying to create a counter (or register) inside of a

non-clocked process (i.e. inferring a latch!!)

process (clk)

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 counter <= (others => ‘0’); -- initialize counter

 else

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

 end if;

 end if;

end process;

34 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

If a clocked process does not have a “reset” condition to initialize all signals

driven by that process (i.e., its registers), then the circuit is being placed in a

random state after power up. This can lead to a difference between hardware

simulation and hardware deployment.

5. Not initializing all signals driven by clocked process

process (clk)

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 out_reg <= (others => ‘0’); -- initialize

 else

 if(sel = ‘0’) then

 out_reg <= ‘0’;

 else

 out_reg <= ‘1’;

 end if;

 end if;

 end if;

end process;

35 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• if(clk’event and clk = ‘1’) is used to indicate the implementation

of flip-flops. Flip-flop transitions are meant to be driven by a clock.

• Issues: Using ‘event for non-clock signals can result in a flip-flop that is

“clocked” by a noisy signal (e.g., causing flip-flops to update randomly), can

cause synthesis tools to have issues meeting timing constraints, cause

synthesis tools to allocate on-chip clocking resources (e.g., clock trees)

6. Using ‘event with a non-clock signal

process (rand_sig) // Not using a clock

begin

 if(rand_sig’event and rand_sig = ‘1’) then

 if(reset = ‘1’) then

 counter <= (others => ‘0’); -- initialize counter

 else

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

 end if;

 end if;

end process;

36 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• if(clk’event and clk = ‘1’) is used to indicate the implementation

of flip-flops. Flip-flop transitions are meant to be driven by a clock.

• Issues: Using ‘event for non-clock signals can result in a flip-flop that is

“clocked” by a noisy signal (e.g., causing flip-flops to update randomly), can

cause synthesis tools to have issues meeting timing constraints, cause

synthesis tools to allocate on-chip clocking resources (e.g., clock trees)

6. Using ‘event with a non-clock signal

process (clk) // Using a clock

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 counter <= (others => ‘0’); -- initialize counter

 else

 if(increment = ‘1’) then

 counter <= counter + 1;

 end if;

 end if;

 end if;

end process;

37 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• For signals coming from off-chip, a best practice is to send them through a

couple of flip-flops before using. This helps avoid the signals being used

becoming metastable.

BONUS 1: Taking care with off-chip signals (Metastability)

// Mitigating metastability

process (clk)

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 signal_d0 <= ‘0’;

 signal_d1 <= ‘0’;

 else

 signal_d0 <= off_chip_signal;

 signal_d1 <= d0;

 end if;

 end if;

end process;

38 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Do not initialize signals in the declaration section of an Entity. The “:=“ is not

guaranteed to be synthesized by the tools.

• e.g. signal my_signal : std_logic := 0.

• Initialize your signal within their associated clocked process.

• Note: It is perfectly fine to use “:=“ if the signal you are declaring is of type

CONSTANT.

BONUS 2: Trying to initialize a signal with “:=“

39 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Combinational process

process (sel, a, my_data, a_out, data_out)

begin

 --default all driven signals

 a_out <= x”00”;

 data_out <= x”00”;

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

end process;

40 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Combinational process

process (sel, a, my_data, a_out, data_out)

begin

 --default all driven signals

 a_out <= x”00”;

 data_out <= x”00”;

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

end process;

41 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Combinational process

process (sel, a, my_data) -- Correct

begin

 --default all driven signals

 a_out <= x”00”;

 data_out <= x”00”;

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

end process;

42 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Clocked process

process (clk, a, my_data)

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 a_out <= x”00”;

 data_out <= x”00”;

 else

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

 end if;

 end if;

end process;

43 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Clocked process

process (clk, a, my_data)

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 a_out <= x”00”;

 data_out <= x”00”;

 else

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

 end if;

 end if;

end process;

44 - VHDL Overview: Common VHDL Mistakes Iowa State University (Ames)

• Not really a functional issue, but should raise yellow to red flags that the

hardware designer my be new, and may be making many other mistakes

in their HDL descriptions (of course everyone makes a typo

occasionally).

BONUS 3: Having extra signals in sensitivity list

-- Clocked process

process (clk) -- Correct

begin

 if(clk’event and clk = ‘1’) then

 if(reset = ‘1’) then

 a_out <= x”00”;

 data_out <= x”00”;

 else

 if (sel = ‘1’) then

 a_out <= a;

 data_out <= my_data;

 end if;

 end if;

 end if;

end process;

	Slide 1
	Slide 2: Overview
	Slide 3: My design works in simulation, but not in hardware!!
	Slide 4: Clocked vs. non-clock processes
	Slide 5: Clean Finite State Machine (FSM) Design
	Slide 6
	Slide 7
	Slide 8: Good papers on state machine design
	Slide 9: Common Mistakes in more detail
	Slide 10: 1. Incomplete sensitivity list for non-clocked process
	Slide 11: 1. Incomplete sensitivity list for non-clocked process
	Slide 12: 2. Signal driven by multiple Processes / Components
	Slide 13: 2. Signal driven by multiple Processes / Components
	Slide 14: 2. Signal driven by multiple Processes / Components
	Slide 15: 2. Signal driven by multiple Processes / Components
	Slide 16: 2. Signal driven by multiple Processes / Components
	Slide 17: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 18: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 19: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 20: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 21: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 22: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 23: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 24: 3. Did not assign a default value to each signal driven by a non-clocked process (i.e. inferring a latch!!)
	Slide 25: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 26: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 27: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 28: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 29: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 30: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 31: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 32: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 33: 4. Trying to create a counter (or register) inside of a non-clocked process (i.e. inferring a latch!!)
	Slide 34: 5. Not initializing all signals driven by clocked process
	Slide 35: 6. Using ‘event with a non-clock signal
	Slide 36: 6. Using ‘event with a non-clock signal
	Slide 37: BONUS 1: Taking care with off-chip signals (Metastability)
	Slide 38: BONUS 2: Trying to initialize a signal with “:=“
	Slide 39: BONUS 3: Having extra signals in sensitivity list
	Slide 40: BONUS 3: Having extra signals in sensitivity list
	Slide 41: BONUS 3: Having extra signals in sensitivity list
	Slide 42: BONUS 3: Having extra signals in sensitivity list
	Slide 43: BONUS 3: Having extra signals in sensitivity list
	Slide 44: BONUS 3: Having extra signals in sensitivity list

