
Zynq-7000 All Programmable
SoC Software Developers
Guide

UG821 (v5.0) June 19, 2013

Zynq-7000 AP Soc Software Developers Guide www.xilinx.com
UG821 (v5.0) June 19, 2013

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly
display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued
to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you
assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.
© Copyright 2012-2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/20/13 v4.0 Added Hardware Design Tools. Added notes about early access on IP integrator.
Added RSA_SUPPORT. Added FSBL Multiboot. Expanded the definition.
Added FSBL Hooks. Added DDR ECC Enable
Added Secure Boot Support. Added Authentication Certif icate.
Added Table 3-1 and Table 3-2. Changed: Figure 3-14, Boot Image Format.
Changed Figure 3-15.
Changes and additions throughout Boot Image Creation.
Added reference to Zynq and removed PPC processor in U-Boot
Moved all Bootgen and BIF f ile description to Appendix A, Using Bootgen.

06/19/13 v5.0 Added Figure 3-2, page 28.
Added additional Fallback information in FSBL Fallback Feature, page 32.
Added eMMC Flash Devices, page 30.
Added an additional compilation flag to Setting FSBL Compilation Flags, page 31.
Added NAND Boot Mode, page 41,
Added QSPI Boot Mode, page 41.
Modified the information in Table 3-1, page 46, and Table 3-2, page 46..
Added Appendix B, eFUSE for Zynq-7000 AP SoC Devices.
Removed Appendix B; eFUSE information - this content moved to OS and Libraries
document collection.
Added references to the eFUSE library.
Added references to the Zynq-7000 quick take videos.
Added additional BIF options to the table of BIF File Attributes, page 52.
Removed Bootgen Command options -intstyle, -split. Added <filename> to UDP option.
Changed verbiage and figures in FSBL Fallback Feature, page 32.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

 Revision History . 2

Chapter 1: Introduction
1.1 Overview . 3
1.2 Introduction . 3
1.3 Architectural Decisions. 4
1.4 Operating System (OS) Considerations . 6

Chapter 2: Software Application Development Flows
2.1 Introduction . 7
2.2 Software Tools Overview . 8
2.3 Bare-Metal Device Driver Architecture . 14
2.4 Bare-Metal Application Development . 16
2.5 Linux Application Development . 20
2.6 Additional Information. 24

Chapter 3: Boot and Configuration
3.1 Overview . 25
3.2 Boot Modes. 26
3.3 Boot Stages . 26
3.4 Boot Image Creation. 44
3.5 BootRom Header Format . 47

Chapter 4: Linux
4.1 Introduction . 48
4.2 Git Server and Gitk Command . 48
4.3 Linux BSP Contents . 49
4.4 U-Boot . 50

Appendix A: Using Bootgen
A.1 Introduction . 51
A.2 BIF File Syntax. 51
A.3 Initialization Pairs and the INT File Attribute . 53
A.4 Encryption Overview . 55
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

A.5 Authentication Overview. 55
A.6 Bootgen Command Options . 56
A.7 Image Header Table . 57
A.8 Image Header . 59

Appendix B: Additional Resources
6.1 Solution Centers . 61
6.2 Xilinx Documentation. 61
6.3 References. 61
B.4 Third Party Documentation . 63
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Chapter 1

Introduction

1.1 Overview
This document summarizes the software-centric information required for designing with
Xilinx® Zynq®-7000 All Programmable SoC devices. It assumes that you are:

• Experienced with embedded software design

• Familiar with ARM® development tools

• Familiar with Xilinx FPGA devices, intellectual property (IP), development tools, and tool
environments

1.2 Introduction
This document contains the following content:

Architectural Decisions, page 4, describes the necessary architectural decisions that you
must make prior to starting an All Programmable SoC design.

Operating System (OS) Considerations, page 6 provides a brief description of a
“bare-metal” software system (no operating system), the Linux operating system, and
real-time operating systems.

The addition of hardware programmability to the hardware and software interface imposes
new requirements on design flows.

Certain hardware features are unique to Xilinx, such as hardware co-simulation and
co-debug functionality that make it possible to verify custom logic implemented on
Zynq-7000 AP SoC devices or in a logic simulation environment while applications execute
on a Zynq-7000 AP SoC processor on a physical board or an emulator. See Software Tools
Overview, page 8.

Chapter 2, Software Application Development Flows, describes software application
development, beginning with an overview of the Xilinx-provided tools for developing and
debugging applications for Zynq-7000 AP SoC devices. The chapter also provides the
typical steps to develop bare-metal applications (using the Xilinx SDK tool), and lists the
typical steps to develop an embedded Linux application.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 3
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Architectural Decisions
Chapter 3, Boot and Configuration, describes the boot process for Zynq-7000 AP SoC
devices. It details the possible boot modes, then documents the boot stages. This chapter
also covers how to create a boot image and how to program a flash device.

Chapter 4, Linux provides an overview of using Git and the Xilinx public Git server, a
diagram of the Linux Kernel, and a description of U-Boot, and provides links for more
information on these topics.

Appendix A, Using Bootgen, describes the Bootgen utility.

Appendix B, Additional Resources, lists all relevant documentation, and provides links to
that documentation (where available).

For a step-by-step explanation on designing a Zynq-based Embedded System using EDK,
see the Zynq-7000 All Programmable SoC Concepts, Tools, and Techniques Guide (UG873)
[Ref 7].

For a step-by-step explanation on designing a Zynq-based Embedded System using the
Vivado® Design Suite see the Vivado Design Suite Tutorial: Embedded Processor Hardware
Design (UG940) [Ref 12]. The Vivado Design Suite User Guide: Embedded Hardware Design
(UG898) [Ref 11] describes the process of embedded hardware design.

IMPORTANT: The Vivado IP integrator is the replacement for Xilinx Platform Studio (XPS) for
embedded processor designs, including designs targeting Zynq-7000 devices and MicroBlaze
processors. XPS only supports designs targeting MicroBlaze™ processors, not Zynq-7000 devices. Both
IP integrator and XPS are available from the Vivado IDE.

See http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/smarter-system.html
for quick-take videos on the Zynq-7000 AP SoC devices.

1.3 Architectural Decisions
You must make several architectural decisions before beginning embedded development
on applications to run on the Zynq-7000 AP SoC.

Because the Zynq-7000 AP SoC devices have dual-core ARM Cortex™-A9 processors, you
must determine whether to use Asymmetric Multiprocessing (AMP) or Symmetric
Multiprocessing (SMP).

The same decision must be made for all embedded software projects: which operating
system(s) to use (if any). This introduction defines both AMP and SMP, and provides an
assessment of the trade-offs and concerns with each method.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 4
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/smarter-system.html

Architectural Decisions
1.3.1 Multiprocessing Considerations
The following subsections describe the two multiprocessing considerations.

Asymmetric Multiprocessing

Asymmetric multiprocessing (AMP) is a processing model in which each processor in a
multiple-processor system executes a different operating system image while sharing the
same physical memory. Each image can be of the same operating system, but more
typically, each image is a different operating system, complementing the other OS with
different characteristics:

• A full-featured operating system, such as Linux, lets you connect to the outside world
through networking and user interfaces.

• A smaller, light-weight operating system can be more eff icient with respect to memory
and real-time operations.

A typical example is running Linux as the primary operating system along with a smaller,
light-weight operating system, such as FreeRTOS or a bare-metal system, which is described
in Bare-Metal System, page 6, as the secondary operating system.

The division of system devices (such as the UART, timer-counter, and Ethernet) between the
processors is a critical element in system design. In general:

• Most devices must be dedicated to their assigned processor.

• The interrupt controller is designed to be shared with multiple processors.

• One processor is designated as the interrupt controller master because it initializes the
interrupt controller.

Communication between processors is a key element that allows both operating systems to
be effective. It can be achieved in many different ways, including inter-processor interrupts,
shared memory, and message passing.

Symmetric Multiprocessing

Symmetric multiprocessing (SMP) is a processing model in which each processor in a
multiple-processor system executes a single operating system image. The scheduler of the
operating system is responsible for scheduling processes on each processor.

This is an efficient processing model when the selected single operating system meets the
system requirements. The operating system uses the processing power of multiple
processors automatically and is consequently transparent to the end user. Programmers
can:

• Specify a specific processor to execute a process

• Handle interrupts with any available processor

• Designate one processor as the master for system initialization and booting other
processors
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 5
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Operating System (OS) Considerations
1.4 Operating System (OS) Considerations

1.4.1 Bare-Metal System

Bare-metal refers to a software system without an operating system. This software system
typically does not need many features (such as networking) that are provided by an
operating system. An operating system consumes some small amount of processor
throughput and tends to be less deterministic than simple software systems. Some system
designs might not allow the overhead and lack of determinism of an operating system. As
processing speed has continued to increase for embedded processing, the overhead of an
operating system has become mostly negligible in many system designs. Some designers
choose not to use an operating system due to system complexity.

1.4.2 Operating System: Linux

Linux is an open-source operating system used in many embedded designs. It is available
from many vendors as a distribution, or it can be built from the open-source repositories.
Linux is not inherently a real-time operating system, but it has taken on more real-time
characteristics.

It is a full-featured operating system that takes advantage of the Memory Management Unit
(MMU) in the processor, and is consequently regarded as a protected operating system.
Linux also provides SMP capabilities to take advantage of multiple processors.

1.4.3 Real-Time Operating System

Some system designers use a Real-Time Operating System (RTOS) from Xilinx third party
partners.

An RTOS offers the deterministic and predictable responsiveness required by timing
sensitive applications and systems.

For information on the latest third party tools, contact your nearest Xilinx off ice.

1.4.4 Zynq-7000 Operating Systems From Partners

You can choose you own favorite embedded solutions based on past experience, new
standards, unique requirements, and legacy designs, as well as corporate agreements.

For a detailed list of operating systems supported on Zynq-7000 devices from Xilinx
partners, see:

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 6
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm

Chapter 2

Software Application Development Flows

2.1 Introduction
The Zynq®-7000 All Programmable (AP) SoC software application development flows let
you create software applications using a unif ied set of Xilinx® tools, and leverage a broad
range of tools offered by third-party vendors for the ARM® Cortex™-A9 processors.

This chapter focuses on Xilinx tools and flows; however, the concepts are generally
applicable to third party tools, and the Zynq-7000 AP SoC device solutions incorporate
familiar components such as an Eclipse-based integrated development environment (IDE)
and the GNU compiler toolchain.

This chapter also provides an overview of bare-metal and Linux software application
development flows using Xilinx tools, which mirror support available for other Xilinx
embedded processors, with differences as noted. This chapter also references boot, device
configuration, and OS usage within the context of application development flows. Those
topics are covered in-depth in other chapters and references to other material.

Figure 2-1, page 8 shows a block diagram of the Zynq-7000 AP SoC processor.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 7
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
2.2 Software Tools Overview
The coupling of ARM-based Processing System (PS) and Programmable Logic (PL) creates
unique opportunities to add custom peripherals and co-processors. Custom logic
implemented in the PL can be used to accelerate time-critical software functions, reduce
application latency, reduce system power, or provide solution-specif ic hardware features.

The addition of hardware programmability to the hardware and software interface imposes
new requirements on design flows. Certain hardware features are unique to Xilinx, such as
hardware co-simulation and co-debug functionality that make it possible to verify custom
logic implemented on Zynq-7000 AP SoC devices or in a logic simulation environment while
applications execute on a Zynq-7000 AP SoC processor on a physical board or an emulator.

X-Ref Target - Figure 2-1

Figure 2-1: Zynq-7000 AP SoC Processor System High-Level Diagram

2x USB

2x GigE

2x SD

Zynq-7000 EPP

I/O
Peripherals

IRQ

IRQ

EMIO

SelectIO
Resources

DMA 8
Channel

CoreSight
Components

Programmable Logic

DAP

DevC

SWDT

DMA
Sync

Notes:
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom

ACP

256K
SRAM

Application Processor Unit

TTC

System-
Level

Control
Regs

GigE

CAN

SD
SDIO

UART

GPIO

UART
CAN

I2C

SRAM/
NOR

ONFI 1.0
NAND

Processing System

Memory
Interfaces

Q-SPI
CTRL

USB

GigE

I2C

USB

SD
SDIO

SPI
SPI

Programmable Logic to
Memory Interconnect

MMU

FPU and NEON Engine

Snoop Controller, AWDT, TimerGIC

32 KB
I-Cache

ARM Cortex-A9
CPU

ARM Cortex-A9
CPU MMU

FPU and NEON Engine

Config
AES/
SHA

XADC
12-Bit ADC

Memory
Interfaces

512 KB L2 Cache & Controller

OCM
Interconnect

DDR2/3,
LPDDR2

Controller

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

M
IO

Clock
Generation

Reset

Central
Interconnect

General-Purpose
Ports

High-Performance Ports
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 8
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
Xilinx provides design tools for developing and debugging software applications for
Zynq-7000 AP SoC devices, that include:

• Software IDE

• GNU-based compiler toolchain

• JTAG debugger

• Associated utilities

These tools let you develop both:

• Bare-metal applications that do not require an OS

• Applications for the open source Linux OS

Custom logic and user software can run various combinations of physical hardware or
simulation, with the ability to monitor hardware events. For example:

• Custom logic running in hardware or in a simulation tool

• User software running on the target or in a software emulator

• PL and processor cross-triggering on events

Software solutions are also available from third-party sources that support Cortex-A9
processors, including, but not limited, to:

• Software IDEs

• Compiler toolchains

• Debug and trace tools

• Embedded OS and software libraries

• Simulators

• Models and virtual prototyping tools

Third party tool solutions vary in the level of integration and direct support for Zynq-7000
AP SoC devices. Xilinx does not provide tools that target Kernel development and debug,
but those tools can be obtained from third party vendors.

The following subsections provide a summary of the available Xilinx development tools.
Tools are available on 32- and 64-bit Windows and x86 Linux host computing platforms.

2.2.1 Hardware Configuration Tools

Xilinx provides hardware configuration tools, as follows:

• ISE® Design Suite Embedded Development Kit (EDK) Xilinx Platform Studio (XPS) which
capture information about the PS and peripherals, including configuration settings, the
register memory map, and the bitstream for PL initialization.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 9
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
• Vivado IP integrator lets you use a block diagram to configure IP that is related to the
PL and the Zynq-7000 processor.

IMPORTANT: The Vivado IP integrator is the replacement for Xilinx Platform Studio (XPS) for
embedded processor designs, including designs targeting Zynq-7000 devices and MicroBlaze
processors. XPS only supports designs targeting MicroBlaze processors, not Zynq-7000 devices. Both IP
integrator and XPS are available from the Vivado IDE.

IMPORTANT: When either XPS or the IP integrator tool is applicable, this document refers to both as
the Xilinx hardware configuration tools.

Xilinx Platform Studio

XPS captures hardware platform information in XML format along with other data f iles
which are then used by software design tools to create and configure Board Support
Package (BSP) libraries, infer compiler options, program the PL, define JTAG settings, and
automate other operations that require information about the hardware.

Vivado IP Integrator

The Vivado Design Suite IP integrator provides a block diagram for the Zynq-7000 AP SoC
wherein you can set Programmable Logic (PL) information in an XML file, INIT files
(.h,.c, and .tcl), which are then used by software design tools to create and configure
Board Support Package (BSP) libraries, infer compiler options, define JTAG settings, and
automate other operations that require information about the hardware.

For more information, see the following documents:

• Vivado Design User Guide: Embedded Processor Hardware Design (UG898) [Ref 11]
• Vivado Design Suite Tutorial: Embedded Hardware Design (UG940) [Ref 12]
• Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

[Ref 14]
• Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 13]

X-Ref Target - Figure 2-2

Figure 2-2: XPS Hardware Handoff to Software Tools
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 10
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
2.2.2 Software Development Kit

The Xilinx Software Development Kit (SDK) provides a complete environment for creating
software applications targeted for Xilinx embedded processors. It includes a GNU-based
compiler toolchain (GCC compiler, GDB debugger, utilities, and libraries), JTAG debugger,
flash programmer, drivers for Xilinx IPs and bare-metal board support packages,
middleware libraries for application-specif ic functions, and an IDE for C/C++ bare-metal
and Linux application development and debugging. Based upon the open source Eclipse
platform, SDK incorporates the C/C++ Development Toolkit (CDT). Features include:

• C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic makefile generation

• Error navigation

• Integrated environment for debugging and profiling embedded targets

• Additional functionality available using third-party plug-ins, including source code
version control

SDK Availability

SDK is available from any Xilinx design tool that can pass hardware information (the ISE®
Design Suite installation package, the Xilinx Embedded Development Kit (EDK), and the
Vivado IDE) or as a standalone application. SDK also includes an application template for
creating a First Stage Bootloader (FSBL), as well as a graphical interface for building a boot
image. SDK contains a complete help system that describes concepts, tasks, and reference
information.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 11
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
You can launch SDK from Vivado when you export a hardware definition, as shown in
Figure 2-3.

2.2.3 Microprocessor Debugger

The Xilinx Microprocessor Debugger (XMD) is a JTAG debugger that can be invoked on the
command line to download, debug, and verify programs. It includes a Tool Command
Language (Tcl) interface that supports scripting for repetitive or complex tasks. XMD is not
a source-level debugger, but serves as the GDB server for GDB and SDK when debugging
bare-metal applications.

When debugging Linux applications, SDK interacts with a GDB server running on the target.
Debuggers can connect to XMD running on the same host computer or on a remote
computer on the network. For more information, see the Embedded System Tools Reference
Manual (UG111) [Ref 16].

2.2.4 Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain

SDK includes the Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 compiler toolchain
for bare-metal Embedded Application Binary Interface (EABI) and Linux application
development.

The Xilinx Sourcery CodeBench Lite toolchain in SDK contains the same GNU tools, libraries
and documentation as the standard Sourcery CodeBench Lite Edition EABI and Linux compiler
toolchains, but adds the following enhancements:

• Default toolchain settings for the Xilinx Cortex-A9 processors

• Bare-metal (EABI) start up support and default linker scripts for the Xilinx Cortex-A9
processors

X-Ref Target - Figure 2-3

Figure 2-3: Export Hardware for SDK Dialog Box
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 12
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Software Tools Overview
• Vector Floating Point (VFP) and NEON™ optimized libraries

2.2.5 Analysis Tools

ChipScope Pro Analyzer

The ChipScope™ Pro analyzer inserts logic analyzer, system analyzer, and virtual I/O cores
into custom logic in your PL design, so you can view any internal signal or node.

Signals are captured at the speed of operation and you can display and analyze those
signals using the ChipScope debugging tool. Events (changes) in the custom logic can
trigger breakpoints in the software debugger, halting a program running the processor, and
vice versa. Many co-debugging flows are supported using SDK, ChipScope Pro Analyzer,
and other Xilinx tools. See the ChipScope Pro Software and Cores User Guide (UG029) for
more information about debugging an ISE Design Suite project.

Vivado Lab Tool

The Vivado IDE has integrated debugging capability. See Vivado Design Suite User Guide:
Programming and Debugging (UG908) [Ref 17] for more information.

2.2.6 System Generator for DSP

The System Generator™ for DSP tool can be used to develop DSP and data flow-centric,
hardware-based coprocessors, working within the MATLAB®/Simulink® environment.

System Generator supports rapid simulation of the DSP hardware, reducing overall
development time, and automates the generation of co-processors that can be connected
to the PS. The SDK co-debug feature lets you run and debug programs running on the
processor in SDK, while retaining visibility and control over the hardware under
development in System Generator.

2.2.7 ISim Simulator

ISE® Design Suite and PlanAhead™ tools contain the ISim HDL simulator that lets you verify
and debug custom hardware logic implemented in the PL without requiring a physical
board. Using the ISim Hardware Co-Simulation (HWCoSim) technology, you can debug
programs running on the target processor in an emulator or on the target device in SDK
concurrently with the custom logic in the ISE simulator.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 13
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.6;d=chipscope_pro_sw_cores_ug029.pdf

Bare-Metal Device Driver Architecture
2.3 Bare-Metal Device Driver Architecture
The bare-metal device drivers are designed with a layered architecture as shown in
Figure 2-4, page 14. The layered architecture accommodates the many use cases of device
drivers while at the same time providing portability across operating systems, toolsets, and
processors.

The layered architecture provides seamless integration with:

• A Layer 2 (RTOS Adapter), an abstract device driver interface that is full-featured and
portable across operating systems

• Processors Layer 1 (Device Driver)

• A direct hardware interface for simple use cases or those wishing to develop a custom
device driver

The following subsections describe the layers.

IMPORTANT: The direct hardware interface does not add additional overhead to the device driver
function call overhead, as it is typically implemented as a set of manifest constants and macros.

I
X-Ref Target - Figure 2-4

Figure 2-4: Bare-Metal Drivers Architecture
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 14
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bare-Metal Device Driver Architecture
2.3.1 Layer 2 (RTOS Adapter)

Layer 2 is an adapter between an RTOS and a device driver. It converts a Layer 1 device
driver to an interface that matches the requirements of the driver model for an RTOS.
Unique adapters might be necessary for each RTOS.

Adapters typically:

• Communicate directly to the RTOS as well as the Layer 1 interface of the device driver

• Reference functions and identif iers specific to the RTOS. This layer is therefore not
portable across operating systems

• Can use memory management

• Can use RTOS services such as threading and inter-task communication

• Can be simple or complex depending upon the RTOS interface and requirements for
the device driver

2.3.2 Layer 1 (Device Driver)
Layer 1 is an abstract device driver interface that shields you from potential changes to the
underlying hardware. It is implemented with macros and functions and designed to allow
you to use all features of a device. The device driver is independent of operating systems
and processors, making it highly portable. This interface typically has:

• Consistent API that gives you an “out-of-the-box” solution. The abstract API helps
isolate the your project from hardware changes.

• Lack of RTOS or processor dependencies makes the device driver highly portable

• Run-time error checking such as assertion of input arguments that provides the ability
to compile away asserts

• Device feature support

• Support for device configuration parameters to handle FPGA-based parameterization
of hardware devices

• Support for multiple instances of a device while managing unique characteristics on a
per instance basis

• Polled and interrupt-driven I/O

• Non-blocking function calls to aid complex applications

• A potentially large memory footprint

• Buffer interfaces for data transfers as opposed to byte interfaces. This makes the API
easier to use for complex applications.

• No direct communication to Layer 2 adapters or application software, by using
asynchronous callbacks for upward communication
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 15
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bare-Metal Application Development
2.3.3 Direct Hardware Interface
The interface that is contained within the Layer 1 device driver is a direct hardware
interface. It is typically implemented as macros and manifest constants, and is designed so
you can create a small applications or create a custom device driver. This interface typically
has:

• Constants that define the device register offsets and bit f ields

• Simple macros that provide access to the hardware registers

• A small memory footprint

• Little to no error checking

• Minimal abstraction so the API typically matches the device registers. The API is
therefore less isolated from hardware device changes.

• No support of device configuration parameters

• Support of multiple instances of a device with base address input to the API

• No, or minimal state

• Polled I/O only

• Blocking functions for simple use cases

• Byte interfaces typically provided

2.4 Bare-Metal Application Development
Xilinx software design tools facilitate the development of embedded software applications
for many runtime environments.

Xilinx embedded design tools create a set of hardware platform data f iles that include:

• An XML-based hardware description file describing processors, peripherals, memory
maps, and additional system data

• A bitstream file containing optional Programmable Logic (PL) programming data

• A block RAM Memory Map (BMM) f ile

• PS configuration data used by the Zynq-7000 AP SoC First Stage Bootloader (FSBL).

The bare-metal Board Support Package (BSP) is a collection of libraries and drivers that
form the lowest layer of your application.

The runtime environment is a simple, semi-hosted and single-threaded environment that
provides basic features, including boot code, cache functions, exception handling, basic f ile
I/O, C library support for memory allocation and other calls, processor hardware access
macros, timer functions, and other functions required to support bare-metal applications.

Using the hardware platform data and bare-metal BSP, you can develop, debug, and deploy
bare-metal applications using SDK.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 16
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bare-Metal Application Development
Figure 2-5 is an overview flowchart for bare-metal application development.

To develop bare-metal applications using SDK, typical steps include:

1. Importing Hardware Platform Information

2. Creating Bare-Metal BSP

3. Creating Bare-Metal Application

4. Building the Application Project

5. Programming the Device and Running the Application

6. Debugging the Application

7. Adding Custom IP Driver Support

8. Deploying the Application

The following subsections summarize these SDK development flow steps. See the SDK
online help, and the Zynq EDK Concept, Tools, and Techniques Guide (UG873) [Ref 7] for
more details and examples of SDK tool usage.

2.4.1 Importing Hardware Platform Information

Xilinx hardware configuration tools create hardware platform data you can export to SDK to
create a hardware platform project. In SDK, the project stores information about the
hardware system that includes, but is not limited to, the following:

• Processor and peripheral information for BSP generation

• Memory map information used to generate linker scripts

• Bitstream data used to program the PL with custom logic

• PS configuration data used in the FSBL and the debugger

X-Ref Target - Figure 2-5

Figure 2-5: Bare-Metal Application Development Overview
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 17
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bare-Metal Application Development
2.4.2 Creating Bare-Metal BSP

After you create the hardware platform project, you can use SDK to create a bare-metal BSP
project. Source f iles for drivers and libraries are staged, parameterized based on the
hardware platform (processor, IP feature set, hardware configuration settings) to create
header f ile parameter definitions, and compiled. The BSP reflects IP enabled in the PS,
including Multiplexed I/O (MIO) configuration, and custom logic in the PL. You can modify
and re-generate BSP settings. See the Standalone BSP (UG652) [Ref 7], which is included in
the OS and Libraries Document Collection (UG643) [Ref 8].

2.4.3 Creating Bare-Metal BSP Using Third-Party Tools

SDK supports BSP generation for other embedded OS environments and tools by specifying
the path to a software repository containing source and meta data f iles that enable it to
configure and build the associated drivers and libraries.

2.4.4 Creating Bare-Metal Application

SDK provides a template-based application generator for included sample programs, from
a basic “Hello World” or Dhrystone benchmark application to a FSBL or TCP/IP echo server.
A default linker script is created for these applications.

The application generator is invoked by the Xilinx C or C++ Application wizard. You can
either create an empty application or import existing applications to port to the bare-metal
BSP. Each application project is associated with a BSP project.

Code development tools include editors, search, refactoring, and features available in the
base Eclipse platform and CDT plug-in.

2.4.5 Building the Application Project

SDK application projects can be user-managed (user-created makefiles) or automatically
managed (SDK-created makefiles). For user-managed projects, you must maintain the
makefile and initiate the application builds.

For automatically managed projects, SDK updates the makefile as needed when source
f iles are added or removed, source files are compiled when changes are saved and the ELF
is built automatically; in Eclipse CDT terminology, the application project is a managed
make project.

Where possible, SDK infers or sets default build options based on the hardware platform
and BSP used, including compiler, linker, and library path options.

2.4.6 Programming the Device and Running the Application

After building the bare-metal application, SDK can be used to configure the PS, program
the PL and run the application. SDK configures the PS using the System-Level Configuration
Registers (SLCR) with configuration data also used in the FSBL.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 18
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bare-Metal Application Development
Bitstream (BIT) and block memory map (BMM) data are downloaded to the Zynq-7000 AP
SoC to load any custom design logic into the PL, but this step can be omitted when running
applications that require only the PS.

Create an SDK configuration run to download and run the application ELF f ile. A terminal
view is available to interact with the application using STDIN and STDOUT.

2.4.7 Debugging the Application

When you use SDK to debug applications, the steps are similar to those for running an
application, except you create a debug configuration instead of a run configuration. A
collection of windows (views) provides a complete debugging environment. This debug
perspective should be familiar to those who have used Eclipse-based IDEs with the CDT
plug-in, and includes a debug window showing the state of the session with a call stack,
source viewers, disassembly, memory, register, other views, and console. You can set
breakpoints and control execution with familiar debugger commands.

2.4.8 Adding Custom IP Driver Support

The hardware platform data created by Xilinx hardware configuration tools captures the
Xilinx IP blocks used in the PL area, and the bare-metal BSP automatically includes driver
support for these blocks. Custom IP blocks that include hardware description metadata f iles
can also be captured as part of the hardware platform passed to SDK.

By specifying the path to a software repository containing custom drivers and metadata,
SDK can also include them in the bare-metal BSP.

You can also create library projects to manage and build custom driver source files, and
build their applications using library projects together with the bare-metal BSP.

As the Hardware Platform changes you might want to configure the Custom IP driver. To
customize the software drivers, a Microprocessor Driver Definition (MDD) f ile along with a
Tcl f ile is used.

The driver parameters to be configured are specified in the MDD file. The procedure to
generate the .h or .c f iles is present in the Tcl f ile. For more information, see the Platform
Specification Format Reference Manual, (UG642) [Ref 9].

2.4.9 Deploying the Application

After developing and debugging the bare-metal application within SDK, you can create a
boot image for the application to be deployed on the board. SDK includes an application
template for the FSBL that can be modif ied to create and build the f inal FSBL. The FSBL,
bare-metal application, and bitstream for programming the PL (optional) are combined to
generate a boot image that can be programmed to supported devices using the SDK Flash
Writer.

For more information about boot image format, see Chapter 3, Boot and Configuration.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 19
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Linux Application Development
2.5 Linux Application Development
In addition to bare-metal applications, Xilinx software design tools facilitate the
development of Linux user applications. This section provides an overview of the
development flow for Linux application development.

Xilinx embedded design tools create a set of hardware platform data f iles that include:

• An XML-based hardware description file describing processors, peripherals, memory
maps and additional system data

• A bitstream file containing PL programming data (optional)

• A block RAM Memory f ile (BMM)

• PS configuration data used by the Zynq-7000 AP SoC first stage bootloader (FSBL).

Linux is an open-source operating system. The Xilinx open source solution includes support
for a single processor and Symmetric Multiprocessing (SMP). XIlinx provides drivers for the
peripherals in the Processor System (PS). (You can add drivers for custom logic in the PL.)

See the Standalone BSP (UG652) that is included in the OS and Libraries Document
Collection (UG643) [Ref 8] for information about the Bare-Metal BSP.

See Chapter 4, Linux for a description of the Linux the U-Boot bootloader, and for links to
the Xilinx Open Source Wiki that provide more information.

Using the hardware platform data and Linux Kernel, programmers can develop, debug and
deploy Linux user applications with the Xilinx Software Development Kit (SDK). SDK does
not support Linux Kernel debug. Linux Kernel configuration and build processes are not
discussed in this section.

To develop Linux user applications using SDK, typical steps include:

1. Booting Linux

2. Creating an Application Project

3. Building the Application

4. Running the Application

5. Debugging the Application

6. Adding Driver Support for Custom IP in the PL

7. Profiling the Application

8. Adding Application to Linux File System

9. Modifying the Linux BSP (Kernel or File System)
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 20
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Linux Application Development
The flowchart in Figure 2-6 provides an overview of the flow for Linux application
development.

The following subsections describe the steps in this flow. See the Zynq EDK Concept, Tools,
and Techniques Guide (UG873) [Ref 7], for more details and examples of SDK tool usage.

2.5.1 Booting Linux

You can boot Linux in multiple ways, depending on your preferred work flow:

• Program the boot image into flash and power up or reset the board

• Download and run the FSBL, followed by the U-Boot and then the Linux Kernel

• Use U-Boot to load and run images

With Linux running on the Zynq-7000 AP SoC, SDK can treat the AP platform as a remote
Linux host, with functionality that varies depending on the components included in the file
system.

Flash memory offsets differ for NAND, NOR and Quad-SPI. Partitions can include FSBL,
U-boot, linux kernel, device tree, RAMdisk, and user application.

During the boot process, FSBL is run to set up the PS, followed by U-Boot, which can be
used to load the Linux Kernel image and boot Linux. The actual boot sequence and flash
image creation process vary depending on the type of flash and other requirements. For
example, the FSBL can be used to configure the PL containing custom logic and it is
possible for a U-Boot image to include the FSBL.

2.5.2 Creating an Application Project

SDK provides a template-based application generator for included sample programs, from
a basic “Hello World” or Dhrystone bootloader, or an FSBL application to a benchmarking
application. The application generator is invoked by the Xilinx C or C++ Application wizard.

X-Ref Target - Figure 2-6

Figure 2-6: Linux Application Development
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 21
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Linux Application Development
Users can also create an empty application or import existing Linux applications for porting.
Code development tools include editors, search, refactoring and features available in the
base Eclipse platform and CDT plug-in.

SDK provides a utility (bootgen) to generate bootable images (.bin/.mcs). You need to
provide all the images and the load addresses to the bootgen tool to create the boot image.

SDK also provides a utility to flash images onto the flash device.

2.5.3 Building the Application

SDK application projects can be user-managed (user-created makefiles) or automatically
managed (SDK created makefiles). For user-managed projects, the user maintains the
makefile and initiates application builds. For automatically managed projects, SDK
updates the makefile as needed when source files are added or removed, source files are
compiled when changes are saved and the ELF is built automatically; in Eclipse CDT
terminology, the application project is a managed make project. Where possible, SDK infers
or sets default build options based on the hardware platform and BSP used, including
compiler, linker, and library path options.

2.5.4 Running the Application

You can create an SDK run configuration to copy the compiled application to the f ile system
and run the application. With Linux running on the Zynq-7000 AP SoC, the run
configuration copies the executable to the f ile system using sftp if the Linux environment
includes SSH. A terminal view is available to interact with the application using STDIN and
STDOUT.

You can also run the application using a command line shell. Use:

• sftp to copy the executable

• ssh in Linux to run the executable

2.5.5 Debugging the Application

You can use SDK to debug applications; SDK creates a debug configuration that defines
options for the debugger session. A gdbserver runs the application on Linux, and the SDK
debugger communicates with it using a TCP connection. A collection of windows (views)
provides a complete debugging environment.

This debug perspective should be familiar if you have used Eclipse-based IDEs with the CDT
plug-in, and it includes a debug window showing the state of the session with a call stack,
source viewers, disassembly, memory, register and other views, and the console. You can set
breakpoints and control execution with standard debugger commands.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 22
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Linux Application Development
2.5.6 Adding Driver Support for Custom IP in the PL

SDK supports Linux BSP generation for peripherals in the PS as well as custom IP in the PL.
When generating a Linux BSP, SDK produces a device tree, which is a data structure
describing the hardware system that is passed to the Kernel at boot time. Device drivers are
available as part of the Kernel or as separate modules, and the device tree defines the set
of hardware functions available and features enabled.

Additionally, you can add dynamic, loadable drivers. The Linux driver supports these drivers.
See the Zynq-7000 All Programmable Soc Concepts, Tool, and Tools Techniques User Guide
(UG821) [Ref 7].

Custom IP in the PL are highly configurable, and the device tree parameters define both the
set of IP available in the system and the hardware features enabled in each IP.

See Chapter 4, Linux for additional details on the Linux Kernel and boot sequence.

2.5.7 Profiling the Application

To profile Linux user applications, use the -pg profiling option when building the
application. User application profiling is based on the gprof utility and an accompanying
viewer to display the call graph and other data.

For profiling all running code in the user application, the Kernel, interrupt handlers, and
other modules, SDK includes an OProfile plug-in that supports visualization of its call
profiling capabilities. OProfile is an open source system-wide profiler for Linux; it
requires a Kernel driver and daemon to collect sample data.

2.5.8 Adding Application to Linux File System

The compiled user application and required shared libraries can be added to the Linux f ile
system, as follows:

• While Linux is running on the Zynq-7000 AP SoC, you can copy the files using sftp if
the Linux environment includes SSH.

• In SDK, a Remote System Explorer (RSE) plug-in lets you copy files using
drag-and-drop.

• In workflows outside of SDK, add the application and libraries to the f ile system folder
before creating the f ile system image and programming it to flash.

2.5.9 Modifying the Linux BSP (Kernel or File System)

See Chapter 4, Linux, for a description of the Linux U-Boot bootloader, references to the
Xilinx Open Source Wiki [Ref 1] that provide more information.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 23
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Additional Information
2.6 Additional Information
For additional information related to topics mentioned in this chapter, consult the
references listed in the introduction. For further reading, review the following the
Zynq-7000 All Programmable SoC Concept, Tools, and Techniques Guide, (UG873) [Ref 7].

• “Embedded System Design Using the Zynq Processing System”

• “Adding IPs in Fabric to Zynq PS"
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 24
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Chapter 3

Boot and Configuration

3.1 Overview
You can boot or configure Zynq®-7000 All Programmable SoC devices in secure mode
using static memories only (JTAG disabled) or in non-secure mode using either JTAG or
static memories.

• JTAG mode is primarily used for development and debug.

• NAND, parallel NOR, Serial NOR (Quad-SPI), and Secure Digital (SD) flash memories are
used for booting the device. The Zynq-7000 AP SoC Technical Reference Manual
(UG585) [Ref 6] provides the details of these boot modes.

The processor system boot is a two-stage process:

• An internal BootROM stores the stage-0 boot code, which configures one of the ARM®
processors and the necessary peripherals to start fetching the First Stage Bootloader
(FSBL) boot code from one of the boot devices. The programmable logic (PL) is not
configured by the BootROM. The BootROM is not writable.

• The FSBL boot code is typically stored in one of the flash memories, or can be
downloaded through JTAG. BootROM code copies the FSBL boot code from the chosen
flash memory to On-Chip Memory (OCM). The size of the FSBL loaded into OCM is
limited to 192 kilobyte. The full 256 kilobyte is available after the FSBL begins
executing.

• Another boot mode supported through FSBL is eMMC boot mode. This boot mode is
possible only when the primary boot mode (set through the boot mode pins) is QSPI.
This is used when you have a small QSPI flash and would like to store all the other
partitions on a larger flash memory like eMMC. In this case, place the FSBL on the QSPI
flash, and all the other partitions on eMMC flash.

The FSBL boot code is completely under user control and is referred to as user boot code.
This provides you with the flexibility to implement whatever boot code is required for your
system.

Xilinx® provides sample FSBL boot code that you can tailor to your own needs. The FSBL
boot code includes initialization code for the peripherals in the processing system (PS), see
the FSBL code provided with SDK for details on the FSBL initialization sequence of the FSBL.
The boot image can contain a bitstream for the programmable logic (PL).
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 25
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Modes
The PL is not required to be configured at this stage, because the PS is fully operational
when the PL is not configured. You can customize the FSBL boot code to use other PS
peripherals such as Ethernet, USB, or STDIO to boot and/or configure the PL.

Note: DDR and SCU are not enabled by the BootROM. See the Zynq-7000 AP SoC Technical
Reference Manual (UG585) [Ref 6] for details.

3.2 Boot Modes
The following boot modes are available:

• PS Master Non-secure Boot

• PS Master Secure Boot

• JTAG/PJTAG Boot

For details on these boot modes, see “Boot and Configuration” in the Zynq-7000 AP SoC
Technical Reference Manual (UG585) [Ref 6].

3.3 Boot Stages
Zynq-7000 AP SoC devices support secure and non-secure boot processes, as follows:

• Stage-0 Boot (BootROM)

• First Stage Bootloader

• Second Stage Bootloader (Optional)

3.3.1 Stage-0 Boot (BootROM)

See the section on “BootROM" in the Zynq-7000 AP SoC Technical Reference Manual
(UG585) [Ref 6].

Figure 3-1, page 27 shows the flow of FSBL loading in OCM by the BootROM code.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 26
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
FSBL Fallback Feature, page 32 contains more information on the BootROM flow when a
valid image is not found.

3.3.2 First Stage Bootloader

The First Stage Bootloader (FSBL) starts after the boot. The BootROM loads FSBL into the
OCM.

The FSBL is responsible for:

• Initializing with the PS configuration data that Xilinx hardware configuration tools
provide (see Zynq PS Configuration, page 43)

• Programming the PL using a bitstream (if provided)

• Loading second stage bootloader or bare-metal application code into DDR memory

• Handoff to the second stage bootloader or bare-metal application

Note: Before handoff to the second stage bootloader or bare-metal application, the FSBL
invalidates the instruction cache and disables the cache and MMU, because U-Boot
assumes it is disabled upon start.

See the FSBL code provided with SDK for details on the initialization sequence of the FSBL.

Figure 3-2, page 28 shows an example FSBL flow.

X-Ref Target - Figure 3-1

Figure 3-1: Boot Flow
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 27
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
X-Ref Target - Figure 3-2

Figure 3-2: Example FSBL Flow
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 28
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
The bitstream for the PL and the second stage bootloader or bare-metal application data, as
well as other code and data used by the second stage bootloader, Linux (or other operating
system), or bare-metal application are grouped into partitions in the flash image. See
section 3.4.2 Boot Image Format, for a description of how they are organized.

The FSBL traverses the partition header table to f ind the bitstream and second stage
bootloader or bare-metal application partition. See Appendix A, Using Bootgen, for details.

See 3.4 Boot Image Creation, for details on how the boot image containing these partitions
is constructed.

You stitch the FSBL with the bitstream and an application using the Bootgen program. SDK
has a Create Boot Image wizard option, shown in Figure 3-3, to add the partition images
and create a bootable image that you can then flash.

The rules are:

• The first partition must be the FSBL ELF followed by the bitstream partition and then
the application ELF.

• Bitstream is optional. FSBL does a handoff to the first application in the BIF order.

IMPORTANT: The order within the BIF file is important. Bitstream must be the partition after
FSBL. Bitstream is not mandatory. The bitstream is required only if the PL must be
programmed.

X-Ref Target - Figure 3-3

Figure 3-3: Create Zynq Boot Image Wizard
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 29
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
FSBL does not remap the DDR; consequently, DDR that is lower than 1Mb cannot be used.

IMPORTANT: The application ELF must have an execution address of greater than 1Mb.

Figure 3-4 shows a simple FSBL flow diagram:

eMMC Flash Devices

Zynq-7000 devices support eMMC flash devices in MLC and SLC configuration as a
secondary boot source. FSBL supports loading the partitions from eMMC. This is possible
only when the primary boot mode (set through the boot mode pins) is QSPI. Use this option
when there is a small QSPI flash and you would like to store all the other partitions on a
larger flash memory like eMMC. In this case, place the FSBL on the QSPI flash and all the
other partitions are on eMMC flash.

X-Ref Target - Figure 3-4

Figure 3-4: FSBL Flow Diagram
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 30
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
To enable and use this boot mode:

1. Enable the MMC_SUPPORT flag through SDK and build FSBL.

The FSBL image build (fsbl.elf) now has eMMC support.

2. Stitch the boot image with FSBL as the only partition (using Bootgen).

3. Place the boot image in the QSPI flash.

4. Stitch an image (using bootgen) with all the other required partitions (like the bitstream
or the U-Boot) and place it in the eMMC flash.

5. Set the boot mode to QSPI.

6. Power cycle the board.

BootROM comes up, loads the FSBL from QSPI flash to OCM and does a hand-off to FSBL.
FSBL then picks all the other partitions from the eMMC device, loads them to DDR, then
hands over control to the application.

In this case, FSBL ignores the configured primary boot mode (configured through the boot
mode pins on the board) which is QSPI and loads the other partitions from eMMC.

To have FSBL and U-Boot on the QSPI flash, the MMC_SUPPORT flag need not be enabled in
FSBL; however, the U-Boot auto-configuration file must be updated to indicate to U-Boot to
load the rest of the partitions from eMMC flash.

In this case FSBL loads U-Boot to DDR and hands over the control to U-Boot.

U-Boot handles loading the rest of the partitions from the eMMC flash. The limitation here
is that the partitions present on the eMMC flash cannot be RSA authenticated because
U-Boot does not support RSA authentication.

Setting FSBL Compilation Flags

Compilation flags can be set using the C/C++ settings in SDK FSBL project, as shown in
Figure 3-5.

Note: There is no need to change any of the FSBL source files or header files to include these
flags.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 31
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
The FSBL compilation flags are:

FSBL Fallback Feature

To recover from an error condition, FSBL does a Fallback and enables BootROM to load
another bootable image (the golden image that was originally present and in a known good
state) if that image is present in the flash memory. FSBL updates a multiboot register and
does a soft reset so that Boot ROM executes and loads the next present, valid image.

In the secure boot scenario, with the AES key stored in eFUSE, the Fallback scenario is
handled by FSBL without going through a soft reset. The following subsections describe the
details.

For more information about eFUSE, see the LibXil SKey for Zynq-7000 AP SoC Devices
(UG996), which is located in the OS and Libraries Document Collection (UG643) [Ref 8].

X-Ref Target - Figure 3-5

Figure 3-5: SDK FSBL Properties Settings

FSBL_DEBUG Set this flag to enable the logs and message prints.

FSBL_DEBUG_INFO Set this flag to obtain more detailed logs like
register and partition header dumps.

NON_PS_INSTANTIATED_BITSTREAM Set this flag when the bitstream does not have a PS
component. Then the FSBL does not enable level
shifters.

RSA_SUPPORT Set this flag to enable authentication feature in
FSBL.

MMC_SUPPORT Set this flag to enable MMC support in FSBL. When
this flag is set, FSBL reads all the partitions from the
eMMC device, instead of the primary boot device
(which is set by the boot mode pins).
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 32
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Fallback in Non-Secure Cases

In a FSBL non-secure flow, the following actions occur:

• After Power on Reset (POR), BootROM executes and validates the Image 1 Boot header.

° If there is no corruption, BootROM hands over control to the FSBL, which then loads
the other partitions in the image.

° If there is corruption in the boot header, BootROM does a fallback search to find
the next valid image. In the example shown in Figure 3-6, BootROM validates the
Image 2 boot header, and, if no corruption, hands over the Image 2 to FSBL, which
processes the rest of the partitions in Image 2.

° In non-secure images, corruption in FSBL and other images is not recognized.
X-Ref Target - Figure 3-6

Figure 3-6: Power on Reset Fallback
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 33
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Figure 3-7 represents the Flash image format for non-secure cases.

X-Ref Target - Figure 3-7

Figure 3-7: Non-Secure Fallback Image Format
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 34
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Fallback Flow for RSA Only

In the case of non-secure Fallback with RSA authentication enabled, the following actions
occur:

• After Power On Reset, BootROM executes and validates the Boot Header in Image 1.

• If there is no corruption in the Boot Header, BootROM hand over control to the FSBL,
which then authenticates the rest of the partitions and loads those partitions.

• If there is corruption in the Boot Header or the FSBL image, BootROM does a fallback
search to f ind the next valid image. In this example, in Image 2, the BootROM validates
the Image 2 boot header. If the boot header validation is successful, then BootROM
authenticates the FSBL in Image 2 and hands control over to FSBL.

• In this case, when there is corruption in the bitstream, U-Boot, or the OS, FSBL
authentication fails and does fallback by a soft reset of the system and BootROM
locates the golden image.

Figure 3-8 shows the Fallback flow for RSA only.

X-Ref Target - Figure 3-8

Figure 3-8: RSA-Only Fallback Flow
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 35
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Figure 3-9 represents the Flash image format for non-secure cases.

Secure Fallback Flow with BBRAM

In the secure Fallback flow using BBRAM, the following actions occur:

• BootROM executes and decrypts the FSBL1 and authenticates if RSA is enabled.

° If the validation is successful, the BootROM hands over the control to FSBL, which
then loads, decrypts, and authenticates (if enabled) the other partitions, then hands
the control to the OS, U-Boot, and/or application.

° If the boot header of Image1 is corrupted, BootROM searches for the Image2,
decrypts the FSBL, and hands off the decryption to FSBL in Image2. Then the FSBL
does any required decryption and authentication (if enabled) of the rest of the
partitions and hands over to the U-Boot, OS, or Standalone application. In this
process, if FSBL f inds any image to be corrupted, then it initiates a Fallback.

X-Ref Target - Figure 3-9

Figure 3-9: Fallback Partitions for RSA Only
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 36
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Figure 3-10 shows the secure Fallback flow with BBRAM.

X-Ref Target - Figure 3-10

Figure 3-10: BBRAM Secure Fallback
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 37
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Figure 3-11 shows the Flash partitions for secure boot in BBRAM.

Secure Fallback Flow with eFUSE

The secure Fallback flow with eFUSE during Power on Reset (POR) is as follows: In this case
FSBL handles the Fallback without going through a soft reset.

• BootROM executes, decrypts the FSBL*, authenticates (if enabled), and passes control
back to the FSBL*.

• The FSBL* then:

° Handles the Encrypted Fallback scenario

° Finds no other partitions; consequently, does a Fallback, searching for the next valid
image.

- Finds Image 2, and validates the boot header of the Image 2.

- If valid, skips over the FSBL in Image2 and processes all the other partitions in
Image 2, then hands over control to the application in Image 2.

If there is header corruption in Image 2:

• FSBL* to error out with a message to indicate that the Image 2 is corrupt. (FSBL in
Image 1 still controls the f iles and performs Fallback to search for the next Image.)

• FSBL* searches for loads Image 3, then:

° Validates the boot header

X-Ref Target - Figure 3-11

Figure 3-11: Flash BBRAM Partitions
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 38
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
° Authenticates any f iles if RSA is enabled

° Skips over the FSBL in Image 3 and processes the rest of the partitions in Image 3.

RECOMMENDED: Use Authentication for secure images.

Figure 3-12 shows the secure Fallback flow with eFuse.

* This is the FSBL that must be used for Fallback with Encryption
X-Ref Target - Figure 3-12

Figure 3-12: Secure Fallback Flow with eFUSE
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 39
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
Note: The Secure flow for Fallback when the AES keys are stored in the PL eFUSE is different
than the other flows. RSA authentication in optional.

• If the FSBL* (FSBL in Image 1) fails authentication, the BootROM goes into a secure
lockdown; consequently, you must ensure that Image 1 is not corrupted.

• If the boot header of Image 1 is not valid, the BootROM jumps to Image 2 and the FSBL
in Image 2 executes.

RECOMMENDED: It is recommended in secure mode that you configure Watchdog timers for Interrupt
and not SRST. You can route the Watchdog Interrupt to do POR through a GPIO.

Figure 3-13 shows the FSBL* partitions for Secure Boot with eFUSE.

X-Ref Target - Figure 3-13

Figure 3-13: Flash Partitions for Secure Boot with eFUSE
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 40
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
FSBL Multiboot

Multiboot is the scenario where you want to load some other version of FSBL, other than the
one currently executing. For example, you might want to execute a version of FSBL; any
image that performs self test and diagnostics, and then jump to the actual application.

In this scenario, after executing the image which performs the diagnostics you can update
the multiboot register with the sequence number of the load file which contains the actual
application and issue a soft reset.

In the Multiboot scenerio:

• Several images can be used to setup the functionality of a part

• The images are user-selectable, based on what the function the part is supposed to
perform at certain times

While the system boots up through the soft reset, the BootROM reads the multiboot
register and jumps to that loadable image instead of the f irst loadable image.

In the secure boot scenario, with the AES key stored in eFUSE, the Multiboot scenario must
be handled by the user (without going through a soft reset).

NAND Boot Mode

In NAND boot mode, to use Multiboot, call the calculate_multiboot() API that is
provided in FSBL. This API calculates the MultiBoot address.

The sequence is:

1. Set the Boot mode to NAND using bootstrap pins.

2. Add the API provided in FSBL to the application that is invoking MultiBoot.

3. From the application that is invoking MultiBoot, call the calculate_multiboot() API to
calculate the MultiBoot address.

4. Update the MultiBoot address to the MultiBoot address register, (which is described in
Section 6.4.6 of the Zynq-7000 AP SoC Technical Reference Manual, (UG585) [Ref 6]) and
trigger a soft reset.

QSPI Boot Mode

In QSPI boot mode (where the QSPI device is >128Mb), to use MultiBoot, place the multiple
images in such a way that they f it in memory locations less than 128Mb.

To effect this mode, the images should have only (FSBL+U-Boot) to fit in the <128Mb
memory. Then, the rest of the partitions, possibly residing in a portion of memory that is
>128Mb, must be handled by U-Boot. In this case, update the zynq_common.h f ile to add
the commands to load the required partitions. You can find further details on the usage,
along with an example, on the Xilinx WIKI pages [Ref 1].
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 41
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
FSBL Hooks

FSBL hooks provide an easy way to plug-in used defined functions, (for example, initializing
PL IPs after loading a bitstream). The FSBL hook functions are located in the fsbl_hook.c
f ile.

The fsbl_hook.c f ile contains the following functions:

• FsblHookBeforeBitstreamDload: This function is called before the PL bitstream
download. Any customized code. You can add customized code before the bitstream
download in this function.

• FsblHookAfterBitstreamDload: This function is called before the handoff to the
application. You can add any customized operations you want to perform before
handoff to the application to this function.

• FsblHookBeforeHandoff : This function is the hook to call before the FSBL does a
handoff to the application. You can add customized code to be executed before the
handoff to this routine.

• FsblHookFallback : This function is called when the FSBL does a Fallback. You can
add customized code, either to print a message, log an error, or do any other intended
operation, when Fallback occurs.

By using these hook functions you can plug-in any application-specif ic customized code
into the flow sequence of the FSBL.

DDR ECC Enable

This feature enables ECC support for the DDR.

• In XPS, enable the feature.

• In the Vivado IP integrator Zynq-7000 Block Diagram, use the DDR configuration page.

After the feature is enabled, FSBL does the DDR initialization required to enable the ECC.

FSBL does not provide support for error handling for the ECC errors; you must account for
error handling within your program.

DDR starts from 1Mb because FSBL does not remap DDR; consequently, the application
program must consider using the DDR from 1Mb. If you need to use a DDR smaller than
1Mb, you must handle the DDR initialization required for supporting ECC.

Secure Boot Support

FSBL provides support for the following secure boot features:

• Advanced Encryption Standard

° AES-CBC with 256-bit key

° Encryption key stored on-chip in either eFuse or Battery-backed RAM (BBRAM)
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 42
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Stages
• Keyed-hashed message authentication code (HMAC)

° SHA-256 authentication engine (FIPS180-2)

• RSA public key authentication

° 2048-bit public key

FSBL operates in the secure mode, based upon what secure features you enable.

If RSA authentication is enabled, the FSBL uses the public key to authenticate the FSBL
before it is decrypted or executed. You can enable the RSA authentication by providing this
as an option to Bootgen while generating the bootable image. Based upon the
configuration provided in the partition header (Authentication/Encryption/Both), the FSBL
performs the required authentication of the image and then the decryption.

For more details about RSA authentication, see the Zynq-7000 AP SoC Technical Reference
Manual (UG585) [Ref 6].

Zynq PS Configuration

Using the Zynq-7000 configuration interface, the Xilinx hardware configuration tool
generates code for initialization of the MIO and SLCR registers. In the project directory, the
f iles of interest are:

• ps7_init.c and ps7_init.h, which can be used to initialize CLK, DDR, and MIO. The
initialization performed by the ps7_init.tcl is the same as by the code in
ps7_init.c.

• ps7_init.tcl f ile, which can be used to initialize CLK, DDR, and MIO. The
initialization performed in the ps7_init.tcl is the same as the initialization
performed by the code in ps7_init.c.

Note: The Tcl f ile is helpful while debugging an application using XMD. For example, you can run
the ps7_init.tcl f ile and then can load your application to DDR and debug. There is no need
to run the FSBL in this case.

• ps7_init.html, which describes the initialization data.

Note: The Xilinx hardware configuration tools maintain synchronization between the PL
bitstream and this initialization data. It is not advisable to change these settings
manually.

3.3.3 Second Stage Bootloader (Optional)

The second stage bootloader is optional and user-designed. See 4.4 U-Boot, for an
example of the second stage bootloader.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 43
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Image Creation
3.4 Boot Image Creation
A utility program called Bootgen is provided to create a single boot image file suitable for
ROM or flash memory programming. It creates the image by building the required boot
header, appending tables that describe the following partitions, and processing the input
data f iles (ELF f iles, FPGA bitstreams, and other binary files) to partitions. It has features for
assigning specif ic destination memory addresses or imposing alignment requirements for
each partition. It also supports the encryption, authentication or performing checksums on
each partition.

The utility is driven by a configuration file known as the Boot Image Format (BIF) f ile with a
f ile extension of *.bif. The BIF f ile lists the input files to the boot image, along with optional
attributes for addressing and optional encryption, authentication or checksums. The format
of the BIF f ile is provided in

For advanced authentication flows, Bootgen can be used to output intermediate hash f iles
that can be signed offline. Otherwise, Bootgen uses the provided private keys to sign the
authentication certif icates included in the boot image.

The format of the boot image conforms to a hybrid of hardware and software requirements.
The boot image header is required by the Zynq-7000 BootROM loader which loads a single
partition, typically the FSBL. The remainder of the boot image is loaded and processed by
the FSBL.

See Appendix A, Using Bootgen, for more information about the utility.

3.4.1 Bootgen Command Example

The following is a simple command line example:

bootgen –image myDesign.bif –o i myDesignImage.bin

In this example, Bootgen produces the f ile myDesignImage.bin that contains the boot
header followed by the data partitions created from the data f iles described in
myDesign.bif.

3.4.2 Boot Image Format

The boot image format consists of the following:

• BootROM header

• FSBL image

• One or more partition images

• Unused space, if available
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 44
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Image Creation
Figure 3-14 shows the layout of the boot image format.

Note: Encryption is optional in the FSBL.
X-Ref Target - Figure 3-14

Figure 3-14: Zynq Secure Boot Image Format
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 45
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Boot Image Creation
3.4.3 Authentication Certificate

The Authentication Certif icate is appended to the end of each authenticated partition. All
integers are stored in little-endian order, including the 2048 bit modulus.

Table 3-1 lists the Offset, Size, Field, and Notes for Authentication Certif icate.

To reduce overhead on the FSBL, BootGen precalculates the modulus extenstion which is
used in the Montgomery reduction for modular exponentiation. These values are stored in
the certif icate after the modulus fields. Table 3-2 shows the Authentication Certif icate Bits,
Field, and Values.

Table 3-1: Authentication Certificate

Offset Length Field Notes

0x0 0x4 Authentication Certif icate Header See Table 3-2.

0x04 0x4 Authentication Certif icate Length

0x008 0x3C User Defined Field 56 bytes

0x44 0x100
0x100

PPK Modulus 640 bytes little endian

0x144 PPK Modulus Extension

0x244 0x04 PPK Exponent

0x248 0x3C Padding 480 0s

0x284 0x100 SPK Exponent 640 bytes little endian

0x384 0x100 SPK Modulus Exponent

0x484 0x04 SPF Modulus Extension

0x488 0x Padding 480 0s

0x4C4 0x SPK Signature

0x5C4 Partition Signature

Table 3-2: Bit Authenticating Certificate Header

Bits Field Value

31:16 Reserved 0s
15:14 Authentication Certificate Format 00: PKCS #1 v1.5
13:12 Authentication Certificate Version 00: Current AC
11 PPK Key Type 0: Hash Key
10:9 PPK Key Source 0: eFUSE
8 SPK Enable 1: SPK Enable
7:4 Public Strength 0: 2048
3:2 Hash Algorithm 0: SHA256
1:0 Public Algorithm 1: RSA
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 46
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

BootRom Header Format
Figure 3-15 shows an example of the Zynq-7000 AP SoC Linux boot image partitions.

3.5 BootRom Header Format
See table 6-3 in the Zynq-7000 AP SoC Technical Reference Manual, (UG585) [Ref 6] for the
BootROM header format.

X-Ref Target - Figure 3-15

Figure 3-15: Zynq-7000 AP SoC Example Linux Boot Image Partitions
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 47
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Chapter 4

Linux

4.1 Introduction
Xilinx® Zynq®-7000 AP SoC Linux is based upon open source software (the Kernel from
kernel.org). Xilinx provides support for Xilinx-specific parts of the Linux Kernel (drivers
and Board Support Packages (BSPs)).

Xilinx also supports Linux through the Embedded Linux forum [Ref 1]. As with many open
source projects, Xilinx also expects customers to use the open source mailing lists for Linux
in areas that are not specif ic to Xilinx Zynq-7000.

More information about Xilinx Zynq Linux and other Xilinx open source projects is available
on the Xilinx Open Source Wiki site [Ref 1] or the most current Linux information.

Xilinx provides a public git server that contains a Linux Kernel, a BSP for Xilinx boards, and
drivers for selected IP, which allows third parties to build embedded Linux distributions for
Xilinx hardware. In essence, the git server also allows companies who have Linux expertise
to develop their own Linux rather than buying a distribution.

Note: Not all Xilinx IP are supported.

4.2 Git Server and Gitk Command
Xilinx uses Git to allow easier interaction with the Linux open source community. For
example, patches can be pushed out to the Kernel mainline or patches can be received back
from users against the Git tree. Moreover, Git provides some configuration management
where the you can see each change to the Kernel.

• The public Git tree is located at http://git.xilinx.com, along with the directions for how
to snapshot the repository. You can browse the code from the website.

The main branch of the public repository is the master branch. This is considered the most
stable and tested code from Xilinx.

• General information on Git is available at http://git-scm.com

• Git basics are documented at: http://git-scm.com/documentation

• Git can be downloaded from: http://git-scm.com/download
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 48
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://git.xilinx.com
http://git-scm.com
http://git-scm.com/documentation
http://git-scm.com/download

Linux BSP Contents
The gitk tool provides a graphical display of a git tree. It can be helpful for exploring the
branches in a tree. It is installed with git, and can be run using gitk from the command line.

Figure 4-1 shows a screen capture of the tool.

4.3 Linux BSP Contents

4.3.1 Kernel

The Linux Kernel is the Kernel itself together with the Board Support Package (BSP) for
boards and the drivers for the system. The Kernel requires a f ile system, and you must
provide a file system to boot the Kernel.

Note: The directory containing the Kernel is referred to as a “Kernel tree.” It is assumed that the
reader is familiar with the Linux Kernel directory structure.

Figure 4-2, page 50 shows a high order Linux Kernel diagram to help visualize how the
different functions relate to the different layers.

X-Ref Target - Figure 4-1

Figure 4-1: Gitk
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 49
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

U-Boot
4.3.2 Drivers

See Xilinx SDK online driver documentation.

4.4 U-Boot
Microprocessors can execute code that reside in memory, while operating systems normally
reside in large-capacity devices such as hard disks, CD-ROMs, USB disks, network servers,
and other permanent storage media. When the processor is powered on, the memory does
not contain an operating system, so special software is needed to bring the OS into
memory from the media on which it resides. This software is normally a small piece of code
called the bootloader.

U-Boot is an open source bootloader that is frequently used in the Linux community, and
used by Xilinx for the MicroBlaze™ processor and the Zynq-7000 AP processor for Linux. A
bootloader initializes hardware that the Linux Kernel does not necessarily initialize (such as
the serial port and DDR). System providers often put U-Boot into flash memory. U-Boot is
an example of a Second Stage Bootloader, as described in 3.3.3 Second Stage Bootloader
(Optional).

This gives it many useful features, including the ability to load and execute images from
Ethernet, flash memory, and USB, the ability to start a Kernel image from memory, and the
availability of a command interpreter with many commands such as: reading and writing
to/from memory, and network operations, such as the ping command.

See http://wiki.xilinx.com/zynq-uboot for the most current information.

X-Ref Target - Figure 4-2

Figure 4-2: Linux Kernel
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 50
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://wiki.xilinx.com/zynq-uboot
http://wiki.xilinx.com/zynq-uboot

Appendix A

Using Bootgen

A.1 Introduction
Bootgen is a standalone tool for creating a bootable image suitable for the Zynq®-7000 AP SoC
processor. The program assembles the boot image by prefixing a header block to a list of partitions.
Optionally, each partition can be encrypted and authenticated. The output is a single f ile that can be
directly programmed into the boot flash memory of the system. Other peripheral f iles can be
generated by the tool to support authentication and encryption as well.

The tool can be integrated into SDK for automatic image generation, or can be used in a
command-line oriented script.

A.2 BIF File Syntax
The BIF f ile specifies each component of the boot image, in order of boot, and allows optional
attributes to be applied to each image component. Each image component is usually mapped to a
partition, but in some cases an image component can be mapped to more than one partition if the
image component is not contiguous in memory.

BIF f ile syntax takes the following form:

name “:” “{“ "[“attributes”]” datafile... “}”

• The name and the {...} grouping brackets the f iles that are to be made into partitions in the ROM
image. One or more data f iles are listed in the {...} brackets.

• The type of image data (ELF, BIT, RBT, or INT - data f iles with the [init] attribute) is inferred
from the f ile extension, and any special preparations needed are applied based on the f ile type.

• Data f iles can have an optional set of attributes preceding the data f ile name with the syntax
["attributes"].

• Attributes apply some quality to the data f ile.

• Multiple attributes can be listed separated with a “,” as a separator. The order of multiple
attributes is not important. Some attributes are one keyword, some are keyword equates.

• You can also add a f ilepath to the f ile name if the f ile is not in the current directory. How you list
the f iles is free form; either all on one line (separated by any white space, and at least one
space), or on separate lines.

• White space is ignored, and can be added for readability.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 51
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

BIF File Syntax
• You can use C-style block comments of /*...*/, or C++ line comments of //...

BIF File Examples

The following code snippet is an example of a simple BIF f ile:

// A simple BIF file example.

the_ROM_image:
 {
 [init]init_data.int
 [bootloader]myDesign.elf
 Partition1.bit
 Partition1.rbt
 Partition2.elf
 }

The following example is of a BIF f ile where partitions are encrypted and authenticated:

image {
[aeskeyfile]secretkey.nky /* this is the key file used for AES */
[pskfile]primarykey.pem /* primary secret key file for authen.*/
[sskfile]secondarykey.pem /* secondary secret key file for authen.*/
[bootloader,authentication=rsa] fsbl.elf /*first stage bootloader */
[authentication=rsa]uboot.elf /* second stage bootloader */
linux.gz /* OS image (compressed)*/
}

BIF File Attributes

The BIF has two attribute types:

• bootloader : Identif ies an ELF data f ile as the FSBL.

° Only ELF f iles can have these attributes

° Only one f ile can be designated as the FSBL

• init: Identif ies an INT - a data f ile with the [init] attribute, as a register initialization f ile.

The following table lists BIF f ile attributes and attribute types.

:

Table A-1: BIF File Attributes

Identifier Description

init Register Initialization Block

booloader Partition that contains FSBL

alignment = <value> Sets byte alignment

offset = <value Sets absolute offset

checksum =<value> Specify checksum as md5, sha1, sha2

encryption = <value> Specify encryption as none or aes.

authentication = <value> Reserves a total amount of memory for this partition. The
partition is padded to this amount.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 52
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Initialization Pairs and the INT File Attribute
The following table lists the Bootgen supported f iles.

A.3 Initialization Pairs and the INT File Attribute
There are 256 initialization pairs at the end of the f ixed portion of the boot image header.
Initialization pairs are designated as such because a pair consists of a 32-bit address value and a
32-bit data value. When no initialization is to take place, all of the address values contain
0xFFFFFFFF, and the data values contain 0x00000000.

Set initialization pairs with a text f ile that has a.int f ile extension by default, but can have any f ile
extension.

The [init] f ile attribute precedes the f ile name to identify it as the INIT f ile in the BIF f ile.

The data format consists of an operation directive followed by:

• an address value

• an = character

pskfile Primary secret key (PSK) used to sign the partition

psksignature SPK signature created using the PSK

sskfile Secondary Secret Key (SSK) f ile using to sign partitions

ppkfile Primary Public Key (PPK) f ile used to authenticate a partition

spkfile Secondary Public Key (SPK) used to authenticate a partition

aeskeyfile AES Key File

presign =<filename> Imports signed partition

udf_data =<filename> Imports a f ile containing up to 56 bytes o fdata to be copied
to the User Defined Field record of the authentication
certif icate.

Table A-2: Bootgen Supported Files

Extension Description Notes

bin binary Raw binary f ile

.bit/.rbt bitstream Strips the BIT f ile header

.dtb binary Raw binary f ile

image.gz binary Raw binary f ile

.elf ELF Symbols and headers removed

.int Register init

.nky AES key

.pk1 RSA key

Table A-1: BIF File Attributes (Cont’d)

Identifier Description
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 53
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Initialization Pairs and the INT File Attribute
• a data value

The line is terminated with a semicolon (;). This is one .set. operation directive; for example:

.set. 0xE0000018 = 0x00000411; // This is the 9600 uart setting.

Bootgen f ills the boot header initialization from the INT f ile up to the 256 pair limit. When the
BootROM runs, it looks at the address value. If it is not 0xFFFFFFFF, the BootROM uses the next
32-bit value following the address value to write the value of address. The BootROM loops through
the initialization pairs, setting values, until it encounters a 0xFFFFFFFF address, or it reaches the
256th initialization pair.

Bootgen supports a fully C/C++ compatible preprocessor and all of the directives. It also supports
expansion macros with parameters. Parameters can be passed on the Bootgen command line with
the -D option that is compatible with GCC, and acts like #define.

Bootgen provides a full expression evaluator (including nested parenthesis to enforce precedence)
with the following operators:

* = multiply
/ = divide
% = modulo divide
+ = addition
- = subtraction
~ = negation
>> = shift right
<< = shift left
& = binary and
| = binary or
^ = binary nor

The numbers can be hex (0x), octal (0o), or decimal digits. Number expressions are maintained as
128-bit f ixed-point integers. You can add white space around any of the expression operators for
readability.

The preprocessor allows parameterization of BIF and INT f iles, or BIF and INT f iles that contain
multiple configurations to be selectable from the command line. It would be convenient to use an
include f ile with INT f iles that would allow for symbolic usage instead of naked values.

For example:

#include "register_defs.h"

.set. kBAUD_RATE_REG = (k9600BAUD | kDOUBLE_RATE) << BAUD_BITS;

Values can also be set on the Bootgen command line with the -D option. The -D option acts just like
a #define command in an include f ile. For example:

-D kCURRENT_RATE = 10

This allows for INT values to set directly from the command line when Bootgen is run from a shell
script, or when experimentation of values is needed without requiring the repeated editing of the INT
f ile.

Values can also be passed in to be used in BIT or INT f iles with #if-like directives to select different
configurations.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 54
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Encryption Overview
A.4 Encryption Overview
The encryption private key is stored in the eFUSE or block BRAM memory. The BootROM uses the
encryption private key to decode the f irst FSBL partition boot image. The actual decryption is done
by the AES/HMAC engine of the Zynq-7000 hardware.

To encrypt a partition:

1. Give the –encrypt option on the command line with either efuse or bbram arguments.

2. List the key f ile with the [aeskeyfile] attribute in the BIF f ile.

3. Ensure that the [encryption=aes] attribute is present for each image f ile listed in the BIF
f ile that should be encrypted.

The following is an example command line:

Bootgen …. –encrypt efuse

Example BIF file:

image: {
 [aeskeyfile]secretkey.nky
 [bootloader,encryption=aes] fsbl.elf
 [encryption=aes]uboot.elf
 linux.gz
}

A.5 Authentication Overview
Zynq-7000 RSA authentication uses primary and secondary keys. the primary keys authenticate the
secondary keys. The secondary keys authenticate partitions.

The f irst letter of the acronyms used to describe the keys is either P for primary or S for secondary.
The second letter of the acronym used to describe the keys is either P for public or S for secret. There
are four possible keys:

• PPK = Primary Public Key

• PSK = Primary Secret Key

• SPK = Secondary Public Key

• SSK = Secondary Secret Key

Bootgen can create a authentication certif icate in two ways.

• Supply the PSK and SSK. The SPK signature is calculated on-the-fly using these two inputs.

• Supply the PPK and SSK and the SPK signature as inputs. This is used in cases where the PSK is
not known.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 55
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Bootgen Command Options
The primary key is hashed and stored in the eFUSE. This hash is compared to the hash of the primary
key stored in the boot image by the FSBL.

The following is an example BIF f ile:

image {
 [aeskeyfile]secretkey.nky
 [pskfile]primarykey.pem
 [sskfile]secondarykey.pem
 [bootloader,authentication=rsa] fsbl.elf
 [authentication=rsa]uboot.elf
 linux.gz
}

Using Bootgen on the Command Line Example

bootgen -image bootimage.bif -o i my.mcs -efuseppkbits efuseppkbits.txt -encrypt
bbram developer.nky -p xc7z020clg484 -w on

A.6 Bootgen Command Options
The following table describes the Bootgen command line options.

Table A-3: Bootgen Command Line Options

Argument Description

-efuseppkbits <filename> Specifies the name of the efuse file to be written to contain the PPK
hash.

-encrypt [bbram | efuse]
[StartCBC=<hex_string>]
[Key0=<hex_string>]
[HMAC=<hex_string>]
[<filename>[.nky]]

Specifies how to do encryption.

Note: Arguments in italics are not recommended for new
designs, as the key information is now specif ied in the BIF f ile.

-f <filename>[.opt] Name of an option file.
If the file extension is missing, an .opt f ile extension is assumed.
These options are identical to the command line options.
Newlines are treated as spaces.

-fill [<hex_byte>] Specifies the byte to use for f ill.

-generate_hashes Specifies to outputting SHA256 hash files.

-h Prints out a help summary.

-image <filename>[.bif] Names the input Boot Image File (*bif).

-log <filename>[.log Outputs human readable text to a f ile instead of stdout and stderr. If no
extension is given, a .log extension is added.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 56
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Image Header Table
A.7 Image Header Table
Typically the Image Header Table appears immediately after the f ixed size Boot Header and Register
Initialization Table, so it appears at address 0x000008A0. The Image Header Table consists of a
header, followed by a linked list of Image Headers.

The image header table does not need to be contiguous, but it is generated contiguously by
bootgen. Each Image header is linked to the next Image header through NextEntryOffset.

Note: Offsets are specif ied in word - not byte offsets. To convert, multiply the word offset by 4 to
get the byte offset.

-o i <filename> Specifies the output f ile.
The support output extensions are:
• bin
• mcs
If no extension is given, then bin is appended.

-p <partname> Specifies the Xilinx part name. This is needed when generating a
encryption key, and the name is copied verbatim to the NKY file in the
“Device” line. It is otherwise not used by Bootgen.

-q [s|e|w|i Disable the output of messages. The string following the option
indicates which messages types to disable. No spaces can separate the
message type characters, but can appear in any order.
As many, or as few message type characters can be used at once. The
message type string is optional.
Leaving the message type blank is equivalent to using -q s.
An uppercase letter enables the message type.
The message-type characters are:
s = Disable STATUS messages.
i = Disable INFO messages.
w = Disable WARNING messages.
e = Disable ERROR messages.

-spksignature <filename> Specifies the name of the spk signature file to write. Must be specified
with the pskfile and spkfile options in the BIF f ile.

-w [on|off] Specifies what to do if output f iles exist. –w on means to overwrite.

Table A-3: Bootgen Command Line Options (Cont’d)

Argument Description

Table A-4: Image Header Table Header

Offset Name Notes

0x0 Version 0x01010000

0x4 Count of Image Headers

0x8 Word Offset to the Partition Header
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 57
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Image Header Table
The Image Header Table Header is followed by a sequential list of Image Headers when generated by
bootgen, although the specif ication of the boot image can allow the Image Headers to be scattered
throughout the boot image.

A.7.1 Partition Header Table
The partition header table is an array of structures containing the data described in the following
table. There is one structure for each partition, including the FSBL partition. The last structure in the
table is marked by all NULL values (except the checksum).

0xC Word Offset to first Image Header

0x10 Padding Filled with 0xFFFFFFFF to 64 byte boundary

Table A-4: Image Header Table Header (Cont’d)

Offset Name Notes

Table A-4: Partition Header Table

Offset Name Description

0x0 Partition Data Word Length Unencrypted partition data length.

0x4 Extracted Data Word Length The encrypted data length.

0x8 Total Partition Word Length
(Includes Authentication
Certif icate)

The total encrypted + padding + expansion +authentication length.

0x0C Destination Load Address The RAM address into which this partition is to be loaded.

0x10 Destination Execution
Address

The executable address of this partition after loading.

0x14 Data Word Offset in Image The position of the partition data relative to the start of the boot image.

0x18 Attribute Bits See Table A-5: , page 59.

0x1C Section Count The number of sections in a single partition.

0x20 Checksum Word Offset The location of the checksum word in the boot image.

0x24 Image Header Word Offset The location of the Image Header in the boot image

0x28 Authentication Certif ication
Word Offset

The location of the Authentication Certif ication in the boot image.

0x2C unused Must be 0x00000000

0x30 unused Must be 0x00000000

0x34 unused Must be 0x00000000
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 58
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Image Header
A.7.2 Partition Attribute Bits

A.8 Image Header

0x38 unused Must be 0x00000000

0x3C Header Checksum A sum of the previous words in the Partition Header.

Table A-4: (Cont’d)Partition Header Table (Cont’d)

Offset Name Description

Table A-5: Partition Attribute Bits

Bit Field Description Notes

31:16 Data Attributes Not implemented

15 RSA Signature Present 0 – No RSA Authentication Certif icate
1 – RSA Authentication Certif icate

14:12 Checksum Type b000 = 0 = No checksum
b001 = 1 = RFU (Reserved for Future Use)
b010 = 2 = RFU
b011 = 3 = RFU
b100 = 4 = RFU
b101 = 5 = RFU
b110 = 6 = RFU
b111 = 7 = RFU

11:8 Destination Instance Not implemented

7:4 Destination Device 0 - None
1 - PS
2 - PL
3 - INT
4-15 - Reserved

3:2 Head Alignment

1:0 Tail Alignment

Table A-6: Image Header

Offset Name Notes

0x0 Word Offset to Next Image Header Link to next Image Header. 0 if last Image Header.

0x4 Word Offse to First Partition Header Link to first associated PartitionHeader.

0x8 Partition Count Always 0

0xC Image Name Length Value of the actual partition count.
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 59
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Image Header
0x10 to N Image name Packed in big-endian order. To reconstruct the string,
unpack 4 bytes at a time, reverse the order, and
concatenated.
For example, the string “FSBL10.ELF” is packed as
0x10: ‘L’,’B’,’S’,’F’,
0x14: ’E’,’.’,’0’,’1’,
0x18: ’\0’,’\0’,’F’,’L’
The packed image name is a multiple of 4 bytes.

varies 0x00000000 String terminator.

varies 0xFFFFFFFFF Repeated padding to 64 byte boundary.

Table A-6: Image Header (Cont’d)

Offset Name Notes
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 60
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

Appendix B

Additional Resources

6.1 Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all
stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

6.2 Xilinx Documentation
• Product Support and Documentation: http://www.xilinx.com/support

• Xilinx Glossary: http://www.xilinx.com/company/terms.htm

• Device User Guides: http://www.xilinx.com/support/documentation/user_guides.htm

1. Xilinx Forums and Wiki Links:

° http://forums.xilinx.com

° http://wiki.xilinx.com

° http://wiki.xilinx.com/zynq-linux

° http://wiki.xilinx.com/zynq-uboot

• Xilinx git websites: http://git.xilinx.com

2. Xilinx Ecosystem Partners websites:
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

4. Xilinx Design Tools: Installation and Licensing Guide, (UG798)

5. Xilinx Design Tools: Release Notes Guide, (UG631)

6.3 References
• Zynq Landing page: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

6. Zynq-7000 AP SoC Technical Reference Manual, (UG585)
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 61
UG821 (v5.0) June 19, 2013

http://www.xilinx.com
http://forums.xilinx.com
http://wiki.xilinx.com
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;t=vivado+release+notes
http://git.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/support/documentation/user_guides/ug585-zynq-7000-ap-trm.pdf
URL http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;d=irn.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.5;d=iil.pdf
: http://wiki.xilinx.com/zynq-linux
http://wiki.xilinx.com/zynq-uboot

References
6.3.1 PL Documents - Device and Boards
• Xilinx 7 Series Support Page: http://www.xilinx.com/support/documentation/7_series.htm

To learn more about the PL resources, see the 7 Series FPGA User Guides.

6.3.2 Software Documentation
7. Zynq-7000 All Programmable SoC Concepts, Tools, and Techniques Guide, (UG873):

The source drivers for standalone and FSBL are provided as part of the Xilinx IDE Design Suite
Embedded Edition. The Linux drivers are provided in the Xilinx Open Source Wiki at
http://wiki.xilinx.com.

Xilinx Alliance Program partners provide system software solutions for IP, middleware, operating
systems, and so forth. See the Zynq-7000 landing page:
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

6.3.3 git Information
• http://git-scm.com

• http://git-scm.com/documentation

• http://git-scm.com/download

6.3.4 Design Tools Documents
• ChipScope Pro Software and Cores User Guide (UG029):

• EDK Documentation:
http://www.xilinx.com/support/documentation/dt_edk_edk14-6.htm

8. OS and Libraries Document Collection (UG643)

9. Platform Specification Format Reference Manual, (UG642)

10. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

11. Vivado Design Suite User Guide: Embedded Hardware Design (UG898)

12. Vivado Design Suite Tutorial: Embedded Hardware Design (UG940)

13. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

14. Vivado Design Suite Tutorial: Designing IP Subsystems Using IP Integrator (UG995)

15. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

16. Embedded System Tools Reference Manual (UG111)

17. Vivado Design Suite User Guide: Programming and Debugging (UG908)
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 62
UG821 (v5.0) June 19, 2013

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;d=ug995-vivado-ip-subsystems-tutorial.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://wiki.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.6;d=oslib_rm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.6;d=chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.6;d=psf_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug873-zynq-ctt.pdf
http://www.xilinx.com/support/documentation/7_series.htm
http://git-scm.com
http://git-scm.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;d=ug893-vivado-ide.pdf
http://git-scm.com/documentation
http://git-scm.com/download
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=edk
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/est_rm.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.2;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2013.1;d=ug908-vivado-programming-debugging.pdf

Third Party Documentation
B.4 Third Party Documentation
To learn about functional details related to vendor IP cores contained in Zynq-7000 devices or
related international interface standards, refer the following documents:

Note: ARM documents can be found at http://infocenter.arm.com/help/index.jsp

• ARM AMBA Level 2 Cache Controller (L2C-310) Technical Reference Manual (also called PL310)

• ARM AMBA Specification Revision 2.0, 1999 (IHI 0011A)

• ARM Architecture Reference Manual (Requires registration with ARM)

• ARM Cortex-A Series Programmer's Guide

• ARM Cortex-A9 Technical Reference Manual

• ARM Cortex-A9 MPCore Technical Reference Manual (DDI0407F): Includes descriptions for
Accelerator Coherency Port (ACP), CPU private timers and watchdogs (AWDT), Event Bus,
General Interrupt Controller (GIC), Global Timer (GTC), Private Timer and Watchdog Timer
(AWDT), and Snoop Control Unit (SCU)

• ARM Cortex-A9 NEON Media Processing Engine Technical Reference Manual

• ARM Cortex-A9 Floating-Point Unit Technical Reference Manual

• ARM CoreSight v1.0 Architecture Specification: Includes descriptions for ATB Bus, and
Authentication

• ARM CoreSight Program Flow Trace Architecture Specification

• ARM Debug Interface v5.1Architecture Specification

• ARM Debug Interface v5.1 Architecture Specification Supplement

• ARM CoreSight Components Technical Reference Manual: Includes descriptions for Embedded
Cross Trigger (ECT), Embedded Trace Buffer (ETB), Instrumentation Trace Macrocell (ITM), Debug
Access Port (DAP), and Trace Port Interface Unit (TPIU)

• ARM CoreSight PTM-A9 Technical Reference Manual

• ARM CoreSight Trace Memory Controller Technical Reference Manual

• ARM Generic Interrupt Controller v1.0 Architecture Specification (IHI 0048B)

• ARM Generic Interrupt Controller PL390 Technical Reference Manual (DDI0416B)

• ARM PrimeCell DMA Controller (PL330) Technical Reference Manual

• ARM Application Note 239: Example programs for CoreLink DMA Controller DMA-330

• ARM PrimeCell Static Memory Controller (PL350 series) Technical Reference Manual, Revision
r2p1, 12 October 2007 (ARM DDI 0380G)

• BOSCH, CAN Specification Version 2.0 PART A and PART B, 1991

• Cadence, Watchdog Timer (SWDT) Specification

• IEEE 802.3-2008 - IEEE Standard for Information technology-Specific requirements - Part 3:

• Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, 2008

• Intel Corp., Enhanced Host Controller Interface Specification for Universal Serial Bus, v1.0, 2002
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 63
UG821 (v5.0) June 19, 2013

http://infocenter.arm.com/help/index.jsp
http://www.xilinx.com

Third Party Documentation
• ISO 11898 Standard USB Association, USB 2.0 Specif ication

• Multimedia Card Association, MMC-System-Specif ication-v3.31

• SD Association, Part A2 SD Host Controller Standard Specif ication Ver2.00 Final 070130

• SD Association, Part E1 SDIO Specif ication Ver2.00 Final 070130

• SD Group, Part 1 Physical Layer Specif ication Ver2.00 Final 060509
Zynq-7000 AP Soc Software Developers Guide www.xilinx.com 64
UG821 (v5.0) June 19, 2013

http://www.xilinx.com

	Zynq-7000 All Progammable SoC Software Developers Guide
	Revision History
	Introduction
	1.1 Overview
	1.2 Introduction
	1.3 Architectural Decisions
	1.3.1 Multiprocessing Considerations

	1.4 Operating System (OS) Considerations
	1.4.1 Bare-Metal System
	1.4.2 Operating System: Linux
	1.4.3 Real-Time Operating System
	1.4.4 Zynq-7000 Operating Systems From Partners

	Software Application Development Flows
	2.1 Introduction
	2.2 Software Tools Overview
	2.2.1 Hardware Configuration Tools
	2.2.2 Software Development Kit
	2.2.3 Microprocessor Debugger
	2.2.4 Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain
	2.2.5 Analysis Tools
	2.2.6 System Generator for DSP
	2.2.7 ISim Simulator

	2.3 Bare-Metal Device Driver Architecture
	2.3.1 Layer 2 (RTOS Adapter)
	2.3.2 Layer 1 (Device Driver)
	2.3.3 Direct Hardware Interface

	2.4 Bare-Metal Application Development
	2.4.1 Importing Hardware Platform Information
	2.4.2 Creating Bare-Metal BSP
	2.4.3 Creating Bare-Metal BSP Using Third-Party Tools
	2.4.4 Creating Bare-Metal Application
	2.4.5 Building the Application Project
	2.4.6 Programming the Device and Running the Application
	2.4.7 Debugging the Application
	2.4.8 Adding Custom IP Driver Support
	2.4.9 Deploying the Application

	2.5 Linux Application Development
	2.5.1 Booting Linux
	2.5.2 Creating an Application Project
	2.5.3 Building the Application
	2.5.4 Running the Application
	2.5.5 Debugging the Application
	2.5.6 Adding Driver Support for Custom IP in the PL
	2.5.7 Profiling the Application
	2.5.8 Adding Application to Linux File System
	2.5.9 Modifying the Linux BSP (Kernel or File System)

	2.6 Additional Information

	Boot and Configuration
	3.1 Overview
	3.2 Boot Modes
	3.3 Boot Stages
	3.3.1 Stage-0 Boot (BootROM)
	3.3.2 First Stage Bootloader
	3.3.3 Second Stage Bootloader (Optional)

	3.4 Boot Image Creation
	3.4.1 Bootgen Command Example
	3.4.2 Boot Image Format
	3.4.3 Authentication Certificate

	3.5 BootRom Header Format

	Linux
	4.1 Introduction
	4.2 Git Server and Gitk Command
	4.3 Linux BSP Contents
	4.3.1 Kernel
	4.3.2 Drivers

	4.4 U-Boot

	Using Bootgen
	A.1 Introduction
	A.2 BIF File Syntax
	A.3 Initialization Pairs and the INT File Attribute
	A.4 Encryption Overview
	A.5 Authentication Overview
	A.6 Bootgen Command Options
	A.7 Image Header Table
	A.7.1 Partition Header Table
	A.7.2 Partition Attribute Bits

	A.8 Image Header

	Additional Resources
	6.1 Solution Centers
	6.2 Xilinx Documentation
	6.3 References
	6.3.1 PL Documents - Device and Boards
	6.3.2 Software Documentation
	6.3.3 git Information
	6.3.4 Design Tools Documents

	B.4 Third Party Documentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

