Hardware Accelerated
Encryption Cracking

Team Members:

Bryant Smith
Mathew Bitterman
Daniel Zundel

Introduction

e Data security is a #1 priority for every field of
communications

e Millions of Dollars is spent in breaking encryption standards

e Brute force attacks are the most common and most time
consuming

e Exploring speed up of hardware accelerated brute force
attacks vs conventional (software) attacks

e Test will be performed on a single encrypted image file
using the blowfish encryption method

e Upon successful attack the decrypted image will be returned

Data Flow Control

e Receives incoming image via Ethernet

e Parses through Ethernet packet information
e Sends Payload data to the System Controller

C program to send
image to the
boards EMAC
module

EMAC Controller

Clock

Data Flow Controller

Reset

sof_in_n_scn

src_rdy_in_n_scn

eof_in_n_scn

data_in_scn

dst_rdy_in_n_scn

data_out

sof_out_n

src_rdy_out_n

eof_out_n

Scans incoming Ethernet
packets and stores
header information to

create outgoing packets.

Directs the UDP payload
to the Controller and
inserts incoming Data
from the controller into
outgoing packets.

Clock

System Controller

Reset

Control_Start

Control_Data_out

Control_Busy

To/From System Controller

Control_Complete

Control_Data_in

Data Flow Simulation

e Incoming Data

, 5 oosof ||
ol L — N — —

g TR alt e N A — N R A— N A A S A A N Y3573
[- --

| {0010 102 103 Jod 105 106 A 102 103)
| OIDA 02103 104)05 06 J5A 102

1+ 8+

+
L
" :
- @ eth_da_reg DA} {02
v
v
v
v
v
v
3 _—_________-________

faftedbrolel ¢+ ¢+

[oo > e R R IR ERER L o O e i o o 8

|+

Now | 34864000 ps

Data Flow Simulation

e Outgoing Data

ot [[[[[[1 1 1 1 1 T T 1 T 1]
T .2 A A A S
----——--——-——-—-—--

&5

1+ N+

Ii-

00 [[]
-——————————————————
mIﬂllll

1+ B+ -+ B+

|+

FTEILIIHIIITIEIITEIITIIITITIIITITIIIITIIIITEIIIITILHITETEEE S

|+

Ty tx_state

04 o5 m @@L@ 06, foTngoo :)oo @oT\Em \F '?'&'DL' -DDZI FF |L|1g wno _-
F IEIFM DA 102103 04 105 06 J00 JPE 54 00T J1A 00 o2 J0 JFF JLT JFF |56 Jab Jg7 185 AR JBB JEC oD JIT P2 EEI@EOU

I+ B+ B+ B+ B+ B+ B+

Data Flow Simulation

e System Controller Simulation

|+

|+

i is, 1m 00\ On‘”' ‘}

|1\ ‘4

2 E3 B3

|+

T ETIIIEIETETIIETETEEES

DDR2 Memory

The on board 256 MB DRAM is used to store the encrypted image during
key cracking.

MIG (Memory Interface Generator) was used to produce a soft core
memory interface. A single controller was generated with a 128 bit data-
width and burst length of 4.

Memory is run at 200 MHz using a differential clock provided by the on
board frequency generator.

A User Interface buffers data and issues the memory interface control
signals, piping and writing data from the Ethernet component in bursts.
Data received from the Ethernet component is buffered until the data
required for a burst is full or the end of the packet is reached at which point
a write occurs.

Any unused writes in a burst are masked.

The memory is addressed linearly; a register stores the last address and
increments the next address after every write - maintaining the address
space of the stored image.

Data is read back in bursts, incrementally reading each memory address
until the last written address is reached.

Memory Interface Architecture

User Component

] Memory Interface
e Controls memory read, write, and

Control Signals &

addressing signals for the user s — e
operation of the memory interface —w”twm User Component —Rmt Infrastructure
Infrastructure PRSI
e Includes memory control clock anc lf”"ﬁii'i‘i?f“‘ feadnm l'w"tem lf"??efﬁ““

reset signals, this component

includes idelay blocks to

compensate for environmental Physical Component
effects on the memory clocks, suc

as voltage a temperature

variations. l | "
Physical Component g

e Comprises all I/0 signals to memo =20 s MEmchy
including buffer and delay
primitives. This component also
performs memory initialization and
calibration.

User Component Architecture

e Offers simple input
signals to write and
read data from
memory.

e Insulates the overall
system controller from
memory control
signaling and bursting
requirements.

e Utilizes data buffers to
Isolate different clocks
used by the memory
and Ethernet

Memory
Controller
FSM

Address
Component

Address
FIFO
Read FIFO

Memory Simulation Resu

pp_w df_._\fl, |

app_wdf wren
app_af_cm
app_wdf_data[127.0)
app af wren

B app_at_addr(30.0)

B app wdf mask data[15.(

g Clk0_td

¥ app_af aful

» app af wren
B app_at_addr(30.0)
L app_af cmd[2.0)
¥
‘Z

Jer/app wdf_wren

er/app_af_ceda>
Ner/app_af_wren

/read_data_valid

= ...Ster/app_af_addr

> . .Jer/app_wdf_data

= [read_data

00000010

00000010
110

0

D23ASET30FFFFFFFFDCS

0000

0000... 1

000

1111111111111

\WAANANNANNANNN
XXXXXXXXXXXX

VIV VIV

MAAAN

73,650 ns

00(
001

110

AN A\

OO0ttt XOOOOO0 (80000080 OO0 Heeeert

VNN SV

30 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 ¢

| | | { |

L L e e e ey Tt S | e W ey e e |

- o - - - ' .
| | | | | |
| | | | | |
" r | ||~ || |
<
I L 1 bl Z 1 .1
X I I | and | [
| | | :'] Read | |
| 'ﬂ:‘ﬂ": T B,_ﬁ Lstency | :(_
“ A ')
| e e
|
- U
04 X D 18
O) { A
A UAAAA LA SN AL AU, FOUAAATAA
OM000T06000 6. OMONOX OO

Data Write Read Issued Read Data

o Js 2240 S(x-0): -44

Introduction to Blowfish

e Used to replace DES which was proving to be easy to crack
as teams were doing so in under 24 hours (22.25 hours)
e Developed by Bruce Schneier and published on public
domain
o can never be licensed or patented, free for everyone
e utilizes a 16 round feistel network
o a common operation is repeated 16 times
o lends itself well to same operations to encrypt and
decrypt
e key can be 32-448 bits (in steps of 8-bits)
e Nno known cryptanalysis attacks have been reported
e considered a "fast cipher" (data in to data out)
e basic operation of data substitution is key dependent which
Increases security

Introduction to Blowfish cont.
& - ([pamen)

X - F-box definition
8 bits 32 bits

32 bits
8 bits 32 bits

Blowfish Algorithm Primer

e microcontroller/PLD "friendly”
o operations are substiutions, XORs, ADD (32-bit
overflow)
e two main data structures, P-array and 4 S-boxes
e algorithm is started by filling the P-array and S-boxes with
the Pi hex data
o fractional part of Pi (Pi-3.0) in hex (tables exist for this)
e operations are performed to mix the key into the P-array
and S-box initialization data
e once complete, data can be cycled through the algorithm
e algorithm is fast, except when keys need to be changed

Blowfish Architecture

e had to restructure the core block 3 times to fit on the FPGA
e utilized area optimized ROMs, and 8Kbyte BRAMs

e each blowfish core block uses 4 8Kbyte BRAMs for S-boxes
e 8 core blocks used so 32 8Kbyte BRAMs utilized (of 296)

e hierarchy shown on following slide

area optimized ROMs e

Ui

blowfish core
4
- E
""'\
\\
256x32-bit
BRAM
"

Key Search Algorithm

e since 8 cores are used, key space |s broken iInto 8 parts
o block 0 keys: 0x00000000-0x1F
o block 1 keys: 0x20000000-0x3
o block 2 keys: 0x40000000-0x5
o block 3 keys: 0x60000000-Ox7FFFFFFF
o block 4 keys: 0x80000000-Ox9FFFFFFF
o block 5 keys: 0xA0000000-OxBFFFFFFF
o block 6 keys: 0xC0O000000-OxDFFFFFFF
o block 7 keys: OxEO000000-OxFFFFFFFF
e ensures that no keys are tested twice
e upper n bits of 2*n cores used seperate keys (3 in this case)
e top blowfish controller handles sending keys to the cores

Key Search Algorithm cont.

e Controller enables cores with key to use

e cores initialize data structures and attempt to decrypt data

e if none of the decrypted data has OxFFD8 as the first two
bytes, the keys are incremented and the cores are run again

e if OXFFD8 is found as the first two bytes in any of the
outputs, the cleartext is sent back in to be encrypted, the
encrypted output is matched against the original input

e if it doesn't match exactly, the keys are incremented and the
cores are run again

e if it matches exactly, core0 is configured to run with the
found key

e once core0 is initialized, the blowfish controller signals the
top level controller that a key has been found and is ready
for data

Blowfish Issues

o first write of core took <100us to test a key but one core
took >160% of resources on FX70T FPGA

e second write of core took ~200us to test a key but one core
took ~130% of resources on FX70T FPGA

e third write of core takes ~400us to test a key but eight cores
take ~60% of resources on FX70T FPGA

e collectively 8 cores can test ~20,000 keys/second

e this would require ~60 hours to test a 32-bit keyspace

Blowfish Issues Cont.

e hardware testing has shown that false positives can occur
® EX.

o OxFFD8334455667788 encrypted with Ox67AEF891 is
0x55F498A5C51B16AB but this 64-bit block can be
decrypted with keys 0x00004BDF, Ox6000AEAE,
0x8000640E, 0x40005010, 0x60003231, OxCOO0A891,
OxEO000359F to name a few found in simulation

e the false positive keys can't be used to decrypt other data
encrypted with the same key, it returns bogus cleartext

e makes finding the correct key difficult

e no solution has been found yet to correct this issue

Current Status

e Integrating EMAC and DDR components together
o held up at getting clocks straightened out
e Next step is to integrate the blowfish into the project
e Searching for a fix for false keys
e Documenting RTL
e Writing the final report

Conclusion

e FPGA's can be used as a viable option for brute force
attacks as their inherent parallelism can be used to test
several keys at once

o The 22.25 hour DES attack used 128 Xilinx Spartans

e This generic structure could be applied to any number of
ciphers

e With enough resources (FPGA size, number of FPGA's),
even the largest of keys could be cracked in a reasonable
timeframe

L essons Learned

e Set times when the entire group can meet to discuss topics
o proved to be difficult with 2 time zones, work schedules,
family issues, etc.
e Keep communication channels open
o thank-you google chat
e Utilize a way everyone can work on the same documents
o thank-you google documents
e Not having physical access to hardware can be troublesome
o thank-you Dr. Jones and Dr. Zambreno
e Check for system level /O and clock conflicts early when
desigining discrete components for integration down the
line.
e Don't be afraid to ask for help

Questions/Comments?

