
Hardware Accelerated
Encryption Cracking

Team Members:

 Bryant Smith
Mathew Bitterman

Daniel Zundel

Introduction

Data security is a #1 priority for every field of
communications
Millions of Dollars is spent in breaking encryption standards
Brute force attacks are the most common and most time
consuming
Exploring speed up of hardware accelerated brute force
attacks vs conventional (software) attacks
Test will be performed on a single encrypted image file
using the blowfish encryption method
Upon successful attack the decrypted image will be returned

Data Flow Control

 Receives incoming image via Ethernet
 Parses through Ethernet packet information
 Sends Payload data to the System Controller

Data Flow Simulation
 Incoming Data

Data Flow Simulation
 Outgoing Data

Data Flow Simulation
System Controller Simulation

DDR2 Memory
The on board 256 MB DRAM is used to store the encrypted image during
key cracking.
 MIG (Memory Interface Generator) was used to produce a soft core
memory interface. A single controller was generated with a 128 bit data-
width and burst length of 4.
 Memory is run at 200 MHz using a differential clock provided by the on
board frequency generator.
A User Interface buffers data and issues the memory interface control
signals, piping and writing data from the Ethernet component in bursts.
Data received from the Ethernet component is buffered until the data
required for a burst is full or the end of the packet is reached at which point
a write occurs.
Any unused writes in a burst are masked.
The memory is addressed linearly; a register stores the last address and
increments the next address after every write - maintaining the address
space of the stored image.
 Data is read back in bursts, incrementally reading each memory address
until the last written address is reached.

Memory Interface Architecture

 User Component
Controls memory read, write, and
addressing signals for the user
operation of the memory interface.

 Infrastructure
Includes memory control clock and
reset signals, this component
includes idelay blocks to
compensate for environmental
effects on the memory clocks, such
as voltage a temperature
variations.

 Physical Component
Comprises all I/O signals to memory
including buffer and delay
primitives. This component also
performs memory initialization and
calibration.

User Component Architecture

Offers simple input
signals to write and
read data from
memory.
Insulates the overall
system controller from
memory control
signaling and bursting
requirements.
Utilizes data buffers to
isolate different clocks
used by the memory
and Ethernet
components.

Memory Simulation Results

Introduction to Blowfish

Used to replace DES which was proving to be easy to crack
as teams were doing so in under 24 hours (22.25 hours)
Developed by Bruce Schneier and published on public
domain

can never be licensed or patented, free for everyone
utilizes a 16 round feistel network

a common operation is repeated 16 times
lends itself well to same operations to encrypt and
decrypt

key can be 32-448 bits (in steps of 8-bits)
no known cryptanalysis attacks have been reported
considered a "fast cipher" (data in to data out)
basic operation of data substitution is key dependent which
increases security

Introduction to Blowfish cont.

F-box definition

Blowfish Algorithm Primer

microcontroller/PLD "friendly"
operations are substiutions, XORs, ADD (32-bit
overflow)

two main data structures, P-array and 4 S-boxes
algorithm is started by filling the P-array and S-boxes with
the Pi hex data

fractional part of Pi (Pi-3.0) in hex (tables exist for this)
operations are performed to mix the key into the P-array
and S-box initialization data
once complete, data can be cycled through the algorithm
algorithm is fast, except when keys need to be changed

Blowfish Architecture

had to restructure the core block 3 times to fit on the FPGA
utilized area optimized ROMs, and 8Kbyte BRAMs
each blowfish core block uses 4 8Kbyte BRAMs for S-boxes
8 core blocks used so 32 8Kbyte BRAMs utilized (of 296)
hierarchy shown on following slide

Key Search Algorithm

since 8 cores are used, key space is broken into 8 parts
block 0 keys: 0x00000000-0x1FFFFFFF
block 1 keys: 0x20000000-0x3FFFFFFF
block 2 keys: 0x40000000-0x5FFFFFFF
block 3 keys: 0x60000000-0x7FFFFFFF
block 4 keys: 0x80000000-0x9FFFFFFF
block 5 keys: 0xA0000000-0xBFFFFFFF
block 6 keys: 0xC0000000-0xDFFFFFFF
block 7 keys: 0xE0000000-0xFFFFFFFF

ensures that no keys are tested twice
upper n bits of 2^n cores used seperate keys (3 in this case)
top blowfish controller handles sending keys to the cores

Key Search Algorithm cont.

Controller enables cores with key to use
cores initialize data structures and attempt to decrypt data
if none of the decrypted data has 0xFFD8 as the first two
bytes, the keys are incremented and the cores are run again
if 0xFFD8 is found as the first two bytes in any of the
outputs, the cleartext is sent back in to be encrypted, the
encrypted output is matched against the original input
if it doesn't match exactly, the keys are incremented and the
cores are run again
if it matches exactly, core0 is configured to run with the
found key
once core0 is initialized, the blowfish controller signals the
top level controller that a key has been found and is ready
for data

Blowfish Issues

first write of core took <100us to test a key but one core
took >160% of resources on FX70T FPGA
second write of core took ~200us to test a key but one core
took ~130% of resources on FX70T FPGA
third write of core takes ~400us to test a key but eight cores
take ~60% of resources on FX70T FPGA
collectively 8 cores can test ~20,000 keys/second
this would require ~60 hours to test a 32-bit keyspace

Blowfish Issues Cont.

hardware testing has shown that false positives can occur
ex.

0xFFD8334455667788 encrypted with 0x67AEF891 is
0x55F498A5C51B16AB but this 64-bit block can be
decrypted with keys 0x00004BDF, 0x6000AEAE,
0x8000640E, 0x40005010, 0x60003231, 0xC000A891,
0xE000359F to name a few found in simulation

the false positive keys can't be used to decrypt other data
encrypted with the same key, it returns bogus cleartext
makes finding the correct key difficult
no solution has been found yet to correct this issue

Current Status

Integrating EMAC and DDR components together
held up at getting clocks straightened out

Next step is to integrate the blowfish into the project
Searching for a fix for false keys
Documenting RTL
Writing the final report

Conclusion

FPGA's can be used as a viable option for brute force
attacks as their inherent parallelism can be used to test
several keys at once

The 22.25 hour DES attack used 128 Xilinx Spartans
This generic structure could be applied to any number of
ciphers
With enough resources (FPGA size, number of FPGA's),
even the largest of keys could be cracked in a reasonable
timeframe

Lessons Learned

Set times when the entire group can meet to discuss topics
proved to be difficult with 2 time zones, work schedules,
family issues, etc.

Keep communication channels open
thank-you google chat

Utilize a way everyone can work on the same documents
thank-you google documents

Not having physical access to hardware can be troublesome
thank-you Dr. Jones and Dr. Zambreno

Check for system level I/O and clock conflicts early when
desigining discrete components for integration down the
line.
Don't be afraid to ask for help

Questions/Comments?
Thank-you!

