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Preface

About This Guide

This reference guide is a description of the embedded processor block in Virtex®-5 FXT 
FPGAs. Complete and up-to-date documentation of the Virtex-5 family of FPGAs is 
available on the Xilinx website at http://www.xilinx.com/virtex5.

Guide Contents
This reference guide contains the following chapters:

• “Introduction”

♦ Chapter 1, “PowerPC 440 Embedded Processor” 

• “Embedded Processor Block”

♦ Chapter 2, “Embedded Processor Block Overview”

♦ Chapter 3, “Crossbar”

♦ Chapter 4, “PLB Interface”

♦ Chapter 5, “Memory Controller Interface”

♦ Chapter 6, “Reset, Clock, and Power Management Interfaces”

♦ Chapter 7, “Device Control Register Bus”

♦ Chapter 8, “Interrupt Controller Interface”

♦ Chapter 9, “JTAG Interface”

♦ Chapter 10, “Debug Interface”

♦ Chapter 11, “Trace Interface”

• “Controllers”

♦ Chapter 12, “Auxiliary Processor Unit Controller”

♦ Chapter 13, “DMA Controller”

• “Programming Considerations”

♦ Chapter 14, “DCR Programming Considerations”

♦ Chapter 15, “APU Programming”

♦ Chapter 16, “Additional Programming Considerations”

http://www.xilinx.com
http://www.xilinx.com/virtex5
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Additional Documentation
The following documents are also available for download at 
http://www.xilinx.com/virtex5.

• Virtex-5 Family Overview

The features and product selection of the Virtex-5 family are outlined in this overview.

• Virtex-5 FPGA Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the 
Virtex-5 family.

• Virtex-5 FPGA User Guide

Chapters in this guide cover the following topics:

- Clocking Resources

- Clock Management Technology (CMT)

- Phase-Locked Loops (PLLs)

- Block RAM

- Configurable Logic Blocks (CLBs)

- SelectIO™ Resources

- SelectIO Logic Resources

- Advanced SelectIO Logic Resources

• Virtex-5 FPGA RocketIO GTP Transceiver User Guide

This guide describes the RocketIO™ GTP transceivers available in the Virtex-5 LXT 
and SXT platforms.

• Virtex-5 FPGA RocketIO GTX Transceiver User Guide

This guide describes the RocketIO GTX transceivers available in the Virtex-5 TXT and 
FXT platforms.

• Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide

This guide describes the dedicated Tri-Mode Ethernet Media Access Controller 
available in the Virtex-5 LXT, SXT, TXT, and FXT platforms.

• Virtex-5 FPGA Integrated Endpoint Block User Guide for PCI Express Designs

This guide describes the integrated Endpoint blocks in the Virtex-5 LXT, SXT, TXT, and 
FXT platforms used for PCI Express® designs.

• Virtex-5 FPGA XtremeDSP Design Considerations

This guide describes the XtremeDSP™ slice and includes reference designs for using 
the DSP48E slice.

• Virtex-5 FPGA Configuration Guide

This all-encompassing configuration guide includes chapters on configuration 
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG 
configuration, reconfiguration techniques, and readback through the SelectMAP and 
JTAG interfaces.

• Virtex-5 FPGA System Monitor User Guide

The System Monitor functionality available in all the Virtex-5 devices is outlined in 
this guide.

http://www.xilinx.com/virtex5
http://www.xilinx.com
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• Virtex-5 FPGA Packaging and Pinout Specification

This specification includes the tables for device/package combinations and maximum 
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and 
thermal specifications.

• Virtex-5 FPGA PCB Designer’s Guide

This guide provides information on PCB design for Virtex-5 devices, with a focus on 
strategies for making design decisions at the PCB and interface level.

The following documentation provides additional information useful to this Reference 
Guide:

1. IBM Corp., Book E: Enhanced PowerPC Architecture Specification, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$
file/booke_rm.pdf 

2. IBM Corp., CoreConnect Bus Architecture Product Brief, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9 

3. IBM Corp., Device Control Register Bus 3.5 Architecture Specifications, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739 

4. IBM Corp., PLB Architecture Specification, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4 

5. IBM Corp., PPC440x5 CPU Core User’s Manual, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$
file/ppc440x5_um.pdf 

6. Xilinx, LocalLink Interface Specification, SP006 (v2.0), July 25, 2005

7. Xilinx, DS621, PowerPC 440 Wrapper Data Sheet (installed as part of the EDK)
8. Xilinx, UG018, PowerPC 405 Processor Block Reference Guide

[Ref 8] does not apply to Virtex-5 FXT platforms but provides useful comparisons with 
previous versions of Virtex devices.

Additional Support Resources
To search the database of silicon and software questions and answers, or to create a 
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www.xilinx.com/bvdocs/userguides/ug018.pdf
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Typographical Conventions
This document uses the following typographical conventions. An example illustrates each 
convention.

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Italic font

References to other documents
See the Virtex-5 FPGA 
Configuration Guide for more 
information.

Emphasis in text The address (F) is asserted after 
clock event 2.

Underlined Text Indicates a link to a web page. http://www.xilinx.com/virtex5

Convention Meaning or Use Example

Blue text Cross-reference link to a location 
in the current document

See the section “Additional 
Support Resources” for details.

Refer to “DMA Operation” in 
Chapter 13 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com 
for the latest documentation.

http://www.xilinx.com
http://www.xilinx.com/virtex5
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Section I:  Introduction

Chapter 1, “PowerPC 440 Embedded Processor”
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Chapter 1

PowerPC 440 Embedded Processor

Virtex®-5 FXT FPGAs introduce an embedded processor block for PowerPC® 440 
processor designs. This block contains the PowerPC 440x5 32-bit embedded processor 
developed by IBM. The PowerPC 440x5 processor implements the IBM Book E: Enhanced 
PowerPC Architecture.

This chapter contains the following sections:

• “PowerPC 440 Embedded Processor Features”

• “PowerPC 440 Embedded Processor as an IBM PowerPC Implementation”

• “Processor Organization”

• “Processor Interfaces”

PowerPC 440 Embedded Processor Features
The PowerPC 440 embedded processor contains a dual-issue, superscalar, pipelined 
processing unit, along with other functional elements required to implement embedded 
system-on-a-chip solutions. These other functions include memory management, cache 
control, timers, and debug facilities. In addition to three separate 128-bit Processor Local 
Bus (PLB) interfaces, the embedded processor provides interfaces for custom coprocessors 
and floating-point functions, along with separate 32 KB instruction and 32 KB data caches. 

The PowerPC 440 embedded processor includes the following features:

• High-performance, dual-issue, superscalar 32-bit RISC CPU

♦ Superscalar implementation of the full 32-bit Book E: Enhanced PowerPC 
Architecture

♦ Seven-stage, highly pipelined microarchitecture

♦ Dual instruction fetch, decode, and out-of-order issue

♦ Out-of-order dispatch, execution, and completion

♦ High-accuracy dynamic branch prediction using a Branch History Table (BHT)

♦ Reduced branch latency using Branch Target Address Cache (BTAC)

♦ Three independent pipelines

- Combined complex integer, system, and branch pipeline

- Simple integer pipeline

- Load/store pipeline

♦ Single cycle multiply

♦ Single-cycle multiply-accumulate (DSP instruction set extensions)

♦ 9-port (6-read, 3-write) 32 x 32-bit General Purpose Register (GPR) file

http://www.xilinx.com
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♦ Hardware support for all CPU misaligned accesses

♦ Full support for both big- and little-endian byte ordering

♦ Power management features

• Primary caches

♦ 32 KB instruction cache

♦ 32 KB data cache

♦ Single-cycle access

♦ 32-byte (eight word) line size

♦ 64-way associativity

♦ Write-back and write-through operation

♦ Control over whether stores allocate or write-through on cache miss

♦ Extensive load/store queues and multiple line fill/flush buffers

♦ Non-blocking with up to four outstanding load misses

♦ Cache line locking supported

♦ Caches can be partitioned to provide separate regions for “transient” instructions 
and data

- High associativity permits efficient allocation of cache memory

♦ Critical word first data access and forwarding

♦ Cache tags and data are parity-protected against soft errors

• Memory Management Unit (MMU)

♦ Separate instruction and data shadow TLBs

♦ 64-entry, fully associative unified TLB array

♦ Variable page sizes (1 KB - 256 MB), simultaneously resident in TLB

♦ MMU supports 4-bit extended address bits (can formulate a 36-bit real address)

♦ Flexible TLB management with software page table search

♦ Storage attribute controls for write-through, caching inhibited, guarded, and byte 
order (endianness)

♦ Four user-definable storage attribute controls (for controlling CodePack™ code 
compression and transient data, for example)

♦ TLB tags and data are parity-protected against soft errors

• Debug facilities

♦ Extensive hardware debug facilities incorporated into the IEEE 1149.1 JTAG port

- Multiple instruction and data address breakpoints (including range)

- Data value compare

- Single-step, branch, trap, and other debug events

♦ Non-invasive, real-time software trace interface

• Timer facilities

♦ 64-bit time base

♦ Decrementer with auto-reload capability

♦ Fixed Interval Timer (FIT)

♦ Watchdog timer with critical interrupt and/or auto-reset

http://www.xilinx.com
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• Multiple embedded processor interfaces defined by the IBM CoreConnect on-chip 
system architecture

♦ PLB interfaces

- Three independent 128-bit interfaces (internal to the embedded processor 
block in Virtex-5 FPGAs) for instruction reads, data reads, and data writes

- Multiple CPU:PLB frequency ratios supported

♦ Auxiliary Processor Unit (APU) Port

- Functional extensions provided to the processor pipelines, including GPR file 
operations

- 128-bit load/store interface (direct access between the APU and the primary 
data cache)

- Interface can support APU execution of all PowerPC floating-point 
instructions

- Attachment capability for DSP coprocessing such as accumulators and SIMD 
computation

- Enables customer-specific instruction enhancements

♦ Device Control Register (DCR) interface for independent access to on-chip control 
registers

- Avoids contention for high-bandwidth PLB system bus

♦ Clock and power management interface

♦ JTAG debug interface

PowerPC 440 Embedded Processor as an IBM PowerPC 
Implementation

The PowerPC 440 embedded processor implements the full, 32-bit fixed-point subset of the 
IBM Book E: Enhanced PowerPC architecture. The PowerPC 440 embedded processor 
fully complies with this architectural specification. The 64-bit operations of the architecture 
are not supported, and the embedded processor does not implement the floating-point 
operations, although a floating-point unit (FPU) can be attached (using the APU interface). 
Within the embedded processor, the 64-bit operations and the floating-point operations are 
trapped, and the floating-point operations can be emulated using software.

See Appendix A, “Guidelines for 32-bit Book E” in Book E: Enhanced PowerPC Architecture 
Specification [Ref 1] for more information on 32-bit subset implementations of the 
architecture. 

Note: This document differs from the Book E architecture specification in the use of bit numbering 
for architected registers. Specifically, Book E defines the full, 64-bit instruction set architecture, where 
all registers have bit numbers from 0 to 63, with bit 63 being the least significant. This document 
describes the PowerPC 440 embedded processor, which is a 32-bit subset implementation of the 
architecture. Accordingly, all architected registers are 32 bits in length, with the bits numbered from 0 
to 31, where bit 31 is the least significant. Therefore, references to register bit numbers from 0 to 31 
in this document correspond to bits 32 to 63 of the same register in the Book E architecture 
specification.

Processor Organization
The PowerPC 440 embedded processor includes a seven-stage pipelined PowerPC 
processor, which consists of a three-stage, dual- issue instruction fetch and decode unit 

http://www.xilinx.com
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with attached branch unit, together with three independent, four-stage pipelines for 
complex integer, simple integer, and load/store operations, respectively. The PowerPC 440 
embedded processor also includes a memory management unit (MMU), separate 
instruction and data cache units, JTAG, debug, and trace logic, and timer facilities. 

Figure 1-1 illustrates the logical organization of the PowerPC 440 embedded processor.

Superscalar Instruction Unit
The instruction unit of the PowerPC 440 embedded processor fetches, decodes, and issues 
two instructions per cycle to any combination of the three execution pipelines and/or the 
APU interface. The instruction unit includes a branch unit, which provides dynamic 
branch prediction using a branch history table (BHT), as well as a branch target address 
cache (BTAC). These mechanisms greatly improve the branch prediction accuracy and 
reduce the latency of taken branches, such that the target of a branch can usually be 
executed immediately after the branch itself, with no penalty.

Execution Pipelines
The PowerPC 440 embedded processor contains three execution pipelines: complex 
integer, simple integer, and load/store. Each pipeline consists of four stages and can access 
the nine-ported (six read, three write) GPR file. There are two identical copies of the GPR 
file to improve performance and avoid contention for it. One copy is dedicated to the 

Figure 1-1: Block Diagram of PowerPC 440 Embedded Processor
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complex integer pipeline, while the other is shared by the simple integer and the 
load/store pipelines. 

The complex integer pipeline handles all arithmetic, logical, branch, and system 
management instructions (such as interrupt and TLB management, move to/from system 
registers, and so on). This pipeline also handles multiply and divide operations, and 24 
DSP instructions that perform a variety of multiply-accumulate operations. The complex 
integer pipeline multiply unit can perform 32-bit x 32-bit multiply operations with single-
cycle throughput and three-cycle latency; 16-bit x 32-bit multiply operations have only 
two-cycle latency. Divide operations take 33 cycles.

The simple integer pipeline can handle most arithmetic and logical operations, which do 
not update the Condition Register (CR).

The load/store pipeline handles all load, store, and cache management instructions. All 
misaligned operations are handled in hardware with no penalty on any operation 
contained within an aligned 16-byte region. The load/store pipeline supports all 
operations to both big-endian and little-endian data regions.

Instruction and Data Cache Controllers
The PowerPC 440 embedded processor provides separate instruction and data cache 
controllers and 32 KB arrays, which allow concurrent access and minimize pipeline stalls. 
Both cache controllers have 32-byte lines, and both are 64-way set-associative. Both caches 
support parity checking on the tags and data in the memory arrays to protect against soft 
errors. If a parity error is detected, the CPU causes a machine check exception. 

The PowerPC instruction set provides a rich set of cache management instructions for 
software-enforced coherency. The PowerPC 440 implementation also provides special 
debug instructions that can directly read the tag and data arrays.

The instruction cache controller connects to the instruction-side PLB interface of the 
processor. The data cache controller connects to the data read and data write PLB 
interfaces.

Instruction Cache Controller (ICC)

The ICC delivers two instructions per cycle to the instruction unit of the PowerPC 440 
embedded processor. The ICC also handles the execution of the PowerPC instruction cache 
management instructions for coherency. The ICC includes a speculative prefetch 
mechanism. These speculative pre-fetches can be abandoned if the instruction execution 
branches away from the original instruction stream.

Note: Speculative prefetching should not be used with this version of the PowerPC 440 processor 
because of known errors documented by IBM.

The ICC supports cache line locking at 16-line granularity. In addition, the notion of a 
“transient” portion of the cache is supported, in which the cache can be configured such 
that only a limited portion is used for instruction cache lines from memory pages 
designated by a storage attribute from the MMU as being transient in nature. Such 
memory pages would contain code that is unlikely to be reused once the processor moves 
on to the next series of instruction lines. Thus performance may be improved by 
preventing each series of instruction lines from overwriting all of the “regular” code in the 
instruction cache.
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Data Cache Controller (DCC)

The DCC handles all load and store data accesses, as well as the PowerPC data cache 
management instructions. All misaligned accesses are handled in hardware. Those 
accesses contained within a halfline (16 bytes) are handled as a single request. Load and 
store accesses that cross a 16-byte boundary are broken into two separate accesses by the 
hardware.

The DCC interfaces to the APU port to provide direct load/store access to the data cache 
for APU load and store operations. Such APU load and store instructions can access up to 
16 bytes (one quadword) in a single cycle. 

The data cache can be operated in a store-in (copy-back) or write-through manner, 
according to the write-through storage attribute specified for the memory page by the 
MMU. The DCC also supports both store-with-allocate and store-without-allocate operations, 
such that store operations that miss in the data cache can either “allocate” the line in the 
cache by reading it in and storing the new data into the cache, or alternatively bypass the 
cache on a miss and simply store the data to memory. This characteristic can also be 
specified on a page-by-page basis by a storage attribute in the MMU.

The DCC also supports cache line locking and “transient” data in the same manner as the 
ICC (as described in “Instruction Cache Controller (ICC)”).

The DCC provides extensive load, store, and flush queues, such that up to three 
outstanding line fills and up to four outstanding load misses can be pending, and the DCC 
can continue servicing subsequent load and store hits in an out-of-order fashion. Store-
gathering can also be performed on caching inhibited, write-through, and without-allocate 
store operations for up to 16 contiguous bytes. Finally, each cache line has four separate 
dirty bits (one per doubleword), so that the amount of data flushed on cache line 
replacement can be minimized.

Memory Management Unit (MMU) 
The PowerPC 440 MMU generates a 36-bit real address as part of the translation process 
from the 32-bit effective address, which is calculated by the processor as an instruction 
fetch or load/store address. However, only a 32-bit (4 GB) address space is accessible in 
Xilinx EDK systems. The high-order 4 bits of the 36-bit real address must be all zeros.

The MMU provides address translation, access protection, and storage attribute control for 
embedded applications. The MMU supports demand paged virtual memory and other 
management schemes that require precise control of logical to physical address mapping 
and flexible memory protection. Working with appropriate system-level software, the 
MMU provides the following functions:

• Translation of the 32-bit effective address space into the 36-bit real address space

• Page level read, write, and execute access control

• Storage attributes for cache policy, byte order (endianness), and speculative memory 
access

• Software control of page replacement strategy

The translation lookaside buffer (TLB) is the primary hardware resource involved in the 
control of translation, protection, and storage attributes. It consists of 64 entries, each 
specifying the various attributes of a given page of the address space. The TLB is fully 
associative; the entry for a given page can be placed anywhere in the TLB. The TLB tag and 
data memory arrays are parity protected against soft errors. If a parity error is detected, the 
CPU causes a machine check exception.
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Software manages the establishment and replacement of TLB entries, which gives system 
software significant flexibility in implementing a custom page replacement strategy. For 
example, to reduce TLB thrashing or translation delays, software can reserve several TLB 
entries for globally accessible static mappings. The instruction set provides several 
instructions for managing TLB entries. These instructions are privileged and the processor 
must be in supervisor state for them to be executed.

The first step in the address translation process is to expand the effective address into a 
virtual address. The 32-bit effective address is appended to an 8-bit Process ID (PID) as 
well as a 1-bit “address space” identifier (AS). The PID value is provided by the PID 
register. The AS identifier is provided by the Machine State Register (MSR), which contains 
separate bits for the instruction fetch address space (MSR[IS]) and the data access address 
space (MSR[DS]). Together, the 32-bit effective address, the 8-bit PID, and the 1-bit AS form 
a 41-bit virtual address. This 41-bit virtual address is then translated into the 36-bit real 
address using the TLB.

The MMU divides the address space (effective, virtual, or real) into pages. Eight page sizes 
(1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 16 MB, 256 MB) are simultaneously supported, 
such that at any given time the TLB can contain entries for any combination of page sizes. 
For an address translation to occur, a valid entry for the page containing the virtual 
address must be in the TLB. An attempt to access an address for which no TLB entry exists 
causes an Instruction (for fetches) or Data (for load/store accesses) TLB Error exception.

To improve performance, both the instruction cache and the data cache maintain separate 
shadow TLBs. The instruction shadow TLB (ITLB) contains four entries, while the data 
shadow TLB (DTLB) contains eight. These shadow arrays minimize TLB contention 
between instruction fetch and data load/store operations. The instruction fetch and data 
access mechanisms only access the main 64-entry unified TLB when a miss occurs in the 
respective shadow TLB. The penalty for a miss in either of the shadow TLBs is three cycles. 
Hardware manages the replacement and invalidation of both the ITLB and DTLB. No 
system software action is required.

Each TLB entry provides separate user state and supervisor state read, write, and execute 
permission controls for the memory page associated with the entry. If software attempts to 
access a page for which it does not have the necessary permission, an Instruction (for 
fetches) or Data (for load/store accesses) Storage exception occurs.

Each TLB entry also provides a collection of storage attributes for the associated page. 
These attributes control cache policy (such as cachability and write-through as opposed to 
copy-back behavior), byte order (big endian as opposed to little endian), and enabling of 
speculative access for the page. In addition, a set of four, user-definable storage attributes 
is provided. These attributes can be used to control various system-level behaviors, such as 
instruction compression using IBM CodePack technology. They can also be configured to 
control whether data cache lines are allocated upon a store miss, and whether accesses to a 
given page should use the normal or transient portions of the instruction or data cache.

More details on the MMU implementation and the MMU programming model are 
available in the PPC440x5 CPU Core User’s Manual [Ref 5].

Timers
The PowerPC 440 embedded processor contains a time base and three timers: a 
decrementer (DEC), a fixed interval timer (FIT), and a Watchdog Timer. The time base is a 
64-bit counter that gets incremented at a frequency either equal to the processor clock rate 
or as controlled by a separate asynchronous timer clock input to the embedded processor. 
No interrupt is generated as a result of the time base wrapping back to zero.
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The DEC is a 32-bit register that is decremented at the same rate at which the time base is 
incremented. The user loads the DEC register with a value to create the desired interval. 
When the register is decremented to zero, a number of actions occur: the DEC stops 
decrementing, a status bit is set in the Timer Status register (TSR), and a decrementer 
exception is reported to the interrupt mechanism of the PowerPC 440 embedded processor. 
Optionally, the DEC can be programmed to automatically reload the value contained in the 
Decrementer Auto-Reload register (DECAR), after which the DEC resumes decrementing. 
The Timer Control register (TCR) contains the interrupt enable for the decrementer 
interrupt.

The FIT generates periodic interrupts based on the transition of a selected bit from the time 
base. Users can select one of four intervals for the FIT period by setting a control field in the 
TCR to select the appropriate bit from the time base. When the selected time base bit 
transitions from 0 to 1, a status bit is set in the TSR, and a Fixed Interval Timer exception is 
reported to the interrupt mechanism of the PowerPC 440 embedded processor. The FIT 
interrupt enable is contained in the TCR.

Similar to the FIT, the watchdog timer also generates a periodic interrupt based on the 
transition of a selected bit from the time base. Users can select one of four intervals for the 
watchdog period, again by setting a control field in the TCR to select the appropriate bit 
from the time base. Upon the first transition from 0 to 1 of the selected time base bit, a 
status bit is set in the TSR, and a watchdog timer exception is reported to the interrupt 
mechanism of the PowerPC 440 embedded processor. The watchdog timer can also be 
configured to initiate a hardware reset if a second transition of the selected time base bit 
occurs prior to the first watchdog exception being serviced. This capability provides an 
extra measure of recoverability from potential system lock-ups.

Debug Facilities
The PowerPC 440 debug facilities include debug modes for the various types of debugging 
used during hardware and software development. Also included are debug events that 
allow developers to control the debug process. Debug modes and debug events are 
controlled using debug registers in the embedded processor. The debug registers are 
accessed either through software running on the processor or through the JTAG port.

The next subsection provides a brief overview of the debug modes and development tool 
support. More details on the debug control registers and their programming are available 
in the PPC440x5 CPU Core User’s Manual [Ref 5].

Debug Modes

The PowerPC 440 embedded processor supports four debug modes: internal, external, 
real-time trace, and debug wait. Each mode supports a different type of debug tool used in 
embedded systems development. Internal debug mode supports software-based ROM 
monitors, and external debug mode supports a hardware emulator type of debug. Real-
time trace mode uses the debug facilities to indicate events within a trace of processor 
execution in real time. Debug wait mode enables the processor to continue to service real-
time critical interrupts while instruction execution is otherwise stopped for hardware 
debug. The debug modes are controlled by Debug Control Register 0 (DBCR0) and the 
setting of bits in the Machine State Register (MSR).

Internal debug mode supports accessing architected processor resources, setting hardware 
and software breakpoints, and monitoring processor status. In internal debug mode, 
debug events can generate debug exceptions, which can interrupt normal program flow so 
that monitor software can collect processor status and alter processor resources.
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Internal debug mode relies on exception-handling software—running on the processor—
along with an external communications path to debug software problems. This mode is 
used while the processor continues executing instructions and enables debugging of 
problems in application or operating system code. Access to debugger software executing 
in the processor while in internal debug mode can be established through a 
communications port in the system, such as a serial port or Ethernet connection.

External debug mode supports stopping, starting, and single-stepping the processor, 
accessing architected processor resources, setting hardware and software breakpoints, and 
monitoring processor status. In external debug mode, debug events can architecturally 
“freeze” the processor. While the processor is frozen, normal instruction execution stops, 
and the architected processor resources can be accessed and altered using a debug tool 
attached through the JTAG port. This mode is useful for debugging hardware and low-
level control software problems.

Processor Interfaces
The interfaces to the PowerPC 440 embedded processor include:

• Processor Local Bus (PLB)

• Device configuration register (DCR) interface

• Auxiliary processor unit (APU) port

• JTAG, debug, and trace ports

• Interrupt interface

• Clock and power management interface

Some of these interfaces are described briefly in the following subsections.

Processor Local Bus (PLB)
There are three independent 128-bit PLB interfaces to the PowerPC 440 embedded 
processor. One PLB interface supports instruction cache reads, while the other two support 
data cache reads and writes. All three PLB interfaces are connected as masters to the 
crossbar in the embedded processor block in Virtex-5 FPGAs.

The data cache PLB interfaces make requests for 32-byte lines, as well as for 1 to 15 bytes 
within a 16-byte (quadword) aligned region. A 16-byte line request is used for quadword 
APU load operations to caching inhibited pages, and for quadword APU store operations 
to caching inhibited, write-through, or without allocate pages.

The instruction cache controller makes 32-byte line read requests. 

Each of the PLB interfaces fully supports the address pipelining capabilities of the PLB, 
and in fact can go beyond the pipeline depth and minimum latency that the PLB supports. 
Specifically, each interface supports up to three pipelined request/acknowledge sequences 
prior to performing the data transfers associated with the first request. For the data cache, 
if each request must be broken into three separate transactions (for example, for a 
misaligned doubleword request to a 32-bit PLB slave), then the interface actually supports 
up to nine outstanding request/acknowledge sequences prior to the first data transfer. 
Furthermore, each PLB interface tolerates a zero-cycle latency between the request and the 
address and data acknowledge (that is, the request, address acknowledge, and data 
acknowledge may all occur in the same cycle).

The PLB interfaces described above are not directly visible to the Virtex-5 FXT FPGA user. 
These interfaces are connected to the crossbar described in Chapter 3, “Crossbar.” The 
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Virtex-5 FXT FPGA user sees only the external interfaces on the embedded processor 
block, which includes the PowerPC 440 and the crossbar interfaces. These external 
interfaces are described in Chapter 2, “Embedded Processor Block Overview,” and the 
subsequent chapters.

Device Control Register (DCR) Interface
The DCR interface provides a mechanism for the PowerPC 440 embedded processor to set 
up and check status of other hardware facilities in the embedded processor block in the 
Virtex-5 FPGA and elsewhere in the system. DCRs are accessed through the PowerPC 
mfdcr and mtdcr instructions.

The interface is interlocked with control signals such that it can be connected to peripheral 
units that can be clocked at different frequencies from the embedded processor.

The DCR interface also allows the PowerPC 440 embedded processor to communicate with 
peripheral devices without using the PLB interface, avoiding the impact to the primary 
system bus bandwidth, and without additional segmentation of the usable address map.

Auxiliary Processor Unit (APU) Port
This interface provides the PowerPC 440 embedded processor with the flexibility for 
attaching a tightly coupled, coprocessor-type macro incorporating instructions that go 
beyond those provided within the embedded processor itself. The APU port provides 
sufficient functionality for attachment of various coprocessor functions, such as a fully 
compliant PowerPC floating-point unit, or other custom function implementing 
algorithms appropriate for specific system applications. The APU interface supports dual-
issue pipeline designs, and can be used with macros that contain their own register files, or 
with simpler macros that use the CPU GPR file for source and/or target operands. APU 
load and store instructions can directly access the PowerPC 440 data cache with operands 
of up to a quadword (16 bytes) in length.

The APU interface provides the capability for a coprocessor to execute concurrently with 
the PowerPC 440 embedded processor instructions that are not part of the PowerPC 
instruction set. Accordingly, areas have been reserved within the architected instruction 
space to allow for these customer-specific or application-specific APU instruction set 
extensions.

JTAG Port
The JTAG port is enhanced to support the attachment of a debug tool. Through the JTAG 
test access port, and using the debug facilities designed into the PowerPC 440 embedded 
processor, a debug tool can single-step the processor and interrogate internal processor 
state to facilitate hardware and software debugging. The enhancements, which comply 
with the IEEE 1149.1 specification for vendor-specific extensions, are therefore compatible 
with standard JTAG hardware for Boundary-Scan system testing.
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Chapter 2

Embedded Processor Block Overview

The embedded processor block in Virtex-5 FXT devices contains several additional 
modules along with the PowerPC 440 processor. These additional modules allow system 
designers to improve the performance and reduce the cost of their designs. This chapter 
provides an overview of the embedded processor block in Virtex-5 FPGAs and briefly 
describes each of the additional modules and interfaces. 

Embedded Processor Block Components
The main components of the embedded processor block in Virtex-5 FXT FPGAs are the 
processor, the crossbar and its interfaces, the Auxiliary Processing Unit (APU) controller, 
and the control (clock and reset) module. Figure 2-1 shows the embedded processor block 
and its components.

The processor is described in detail in Chapter 1, “PowerPC 440 Embedded Processor.” 
The processor has three PLB interfaces: one for instruction reads, one for data reads, and 
one for data writes. Typically, all three interfaces access a single large external memory. 
Peripheral access in PowerPC 440 systems is memory mapped, and the data PLB interfaces 
typically connect to various peripherals directly or via bridges. Some of these peripherals 

Figure 2-1: Embedded Processor Block in Virtex-5 FPGAs
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might have Direct Memory Access (DMA) capability to improve data bandwidth and 
performance. Other peripherals might rely on a separate DMA engine to provide this 
improved data bandwidth between the peripheral and memory. Peripherals can be 
implemented in soft logic, using the lookup tables (LUTs) and other primitive logic 
elements provided by the FPGA, or the peripherals can be implemented in silicon. 
Peripherals are hardened or implemented in silicon if they are likely to be used by a large 
number of customers, or if hardening is necessary for performance reasons. Some 
peripherals are implemented in Virtex-5 FXT silicon, such as integrated endpoints for PCI 
Express designs and tri-mode Ethernet MACs implemented in silicon. These peripherals 
have a LocalLink interface for high-bandwidth data transfers.

Crossbar and its Interfaces
The crossbar and its interfaces allow the processor with its three PLB interfaces, soft 
peripherals with PLB interfaces, and peripherals with LocalLink interfaces to share access 
to a high-performance memory controller. As shown in Figure 2-1, the crossbar has:

• Five PLB slave interfaces

♦ Three for the PLB interfaces from the processor

♦ Two for soft peripherals with PLB interfaces to allow these peripherals to access 
the high-speed memory controller interface 

• Four full-duplex LocalLink channels with built-in DMA control and access to the 
memory controller interface

• One high-speed memory controller interface that hardens several parts of a typical 
memory controller but leaves the physical interface to the memory to be implemented 
as soft logic for reasons of flexibility

• One PLB master interface to allow the processor to connect to other peripherals in the 
FPGA logic

Details of the crossbar capabilities are documented in Chapter 3, “Crossbar,” and details of 
the crossbar interfaces that interface to the Virtex-5 FPGA logic are documented in 
Chapter 4, “PLB Interface,” and Chapter 5, “Memory Controller Interface.”

Control and other Interfaces
The embedded processor block and the processor have several other standard interfaces. 
The clock, power management, and reset interfaces are described in more detail in 
Chapter 6, “Reset, Clock, and Power Management Interfaces.” 

The processor has a Device Control Register (DCR) interface that allows control registers of 
peripherals to be connected to a DCR bus and accessed through the register space of the 
processor. The processor block has an additional DCR slave interface that allows external 
peripherals to act as DCR masters and access the registers on the hardened DMA 
controllers within the processor block. The DCR interface is documented in Chapter 7, 
“Device Control Register Bus.” The Interrupt interface of the processor is documented in 
Chapter 8, “Interrupt Controller Interface,” while the JTAG interface is documented in 
Chapter 9, “JTAG Interface.” The debug and trace interfaces are documented in 
Chapter 10, “Debug Interface,” and Chapter 11, “Trace Interface,” respectively.
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Auxiliary Processor Unit Controller
The embedded processor block in Virtex-5 FPGAs includes a hardened Auxiliary Processor 
Unit (APU) controller driven by the APU interface on the processor. The APU interface on 
the processor allows users to build an auxiliary processor to execute instructions that are 
not part of the PowerPC 440 instruction set. However, this interface requires the auxiliary 
processor to be clocked at the CPU speed and also be in complete lock-step with the 
processor pipeline. The processor can run much faster than a soft core implemented on the 
FPGA logic, so an auxiliary processor implemented in soft logic would force the processor 
to run at a lower speed, reducing the performance gain. The APU controller directs and 
synchronizes the CPU pipeline, allowing the soft auxiliary processor and the CPU to run at 
different clock rates. Additionally, the APU controller can decode the instructions on 
behalf of the soft auxiliary processor unit, resulting in faster overall instruction execution 
for the instructions using the auxiliary processor. The APU controller and its interface to 
the FPGA logic are described in detail in Chapter 12, “Auxiliary Processor Unit 
Controller.”

Direct Memory Access Controller
The processor block includes a hardened Direct Memory Access (DMA) controller that 
allows peripherals to directly transfer data to and from a memory controller connected to 
the processor block via the memory controller interface or the PLB interface. The DMA 
controller can be monitored and controlled through its Device Control Registers (DCRs). 
The DMA controller has LocalLink data interfaces to peripherals. More information on the 
DMA controller and its interfaces is available in Chapter 13, “DMA Controller.”
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Chapter 3

Crossbar

Overview
The crossbar acts as a central arbitration and switching module that accepts master 
requests from up to five groups of master devices and redirects the transactions to one of 
two groups of slave devices. The crossbar also directs the responses from the slave devices 
back to the correct master devices. All data passing from any master device to any slave 
device within the embedded processor block in Virtex-5 FPGAs passes through the 
crossbar.

Along with the processor, the crossbar is a hard block instantiated in silicon within the 
Virtex-5 FPGA family. The crossbar forms the main interface into or out of the CPU. The 
crossbar is also the main connection and switch point for any devices instantiated within 
the FPGA logic that need to communicate with the processor or external memory visible to 
the processor.

The crossbar functions conceptually as a simple switch. If a master asks for access to a slave 
and wins arbitration, the crossbar acts as a switch to connect the requesting master with the 
requested slave. This topology allows for a high-speed interconnect with an efficient 
linkage of many high-performance masters. However, unlike a bus-only based topology, 
transactions from one master to a slave are not always visible to all masters. This might 
violate some bus-based ordering assumptions, which are discussed in“Usage Notes and 
Limitations,” page 55.

Note: To simplify discussions, the term Crossbar in this document is defined as a block that consists 
of internal modules that provide both switching and bridging functions.

Figure 2-1, page 29 shows the crossbar and its interfaces.

The crossbar has the following interfaces:

• ICURD: Instruction Cache Unit Read PLB interface of the processor

• DCUWR: Data Cache Unit Write PLB interface of the processor

• DCURD: Data Cache Unit Read PLB interface of the processor

• SPLB 0: Slave PLB 0 port used to attach soft PLB masters implemented in FPGA logic 
to the embedded processor block

• SPLB 1: Slave PLB 1 port used to attach soft PLB masters implemented in FPGA logic 
to the embedded processor block

• MPLB: Master PLB interface used to attach slaves implemented in FPGA logic to the 
embedded processor block

• MCI: Memory controller interface used to attach high data rate memory controllers to 
the embedded processor block. The MCI provides a simple protocol that allows the 
soft memory controller to run at higher speeds because it does not need to implement 
the more complex and more general PLB protocol. The MCI also decouples the high 
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data rate memory from the MPLB slave interface, which thus can be used for slow 
peripherals.

• LocalLink/DMA: Four LocalLink interfaces to the internal DMA engines and the 
MPLB and MCI interfaces. Two LocalLink interfaces and an SPLB interface are locally 
arbitrated before being arbitrated with the processor PLB interfaces for accessing the 
MPLB and MCI, as shown in Figure 2-1, page 29.

With the exception of the LocalLink and MCI interfaces, all of the interfaces are Processor 
Local Bus (PLB), adhering to the PLB Architecture Specification [Ref 4]. The MCI forms the 
main interface to and from memory for both the processor as well as any of the PLB 
devices.

Note: Ports or interfaces on the crossbar are named as per their roles on the PLB to which they 
attach. For example, the SPLB 1 port on the crossbar acts as a PLB slave on the PLB that can be 
attached to that port. If a master device on a PLB connected to the SPLB 1 crossbar port wishes to 
transact with a slave device connected through the crossbar’s MPLB port, the connection is the PLB 
master connects through the PLB to the crossbar SPLB port, which connects through the crossbar to 
the MPLB port, connecting through the PLB to the slave device.

The MPLB, SPLB 1, and SPLB 0 ports can be connected to PLB system buses with any 
desired mix of other PLB master and slave devices. 

The crossbar sits between the five slave interfaces in the embedded processor block (three 
slave interfaces to the processor and one each from the two SPLBs) and the two master 
interfaces (the MPLB and the MCI). The crossbar redirects requests coming from the slave 
interfaces to either master interface based on the address map and also redirects the data 
phase from the slave to the respective requesting master. If multiple master requests occur 
concurrently, the crossbar arbitrates between the multiple masters, lets the highest priority 
master through, and buffers the other master(s) request. 

The crossbar’s PLB interface adheres to the PLB Architecture Specification [Ref 4]. The 
address width is 36 bits with 128-bit data. The embedded processor block in Virtex-5 
FPGAs supports 36-bit physical addressing, but the top four bits are defined as zeros 
within the Embedded Development Kit (EDK) tools and IP. PLB rules for larger buses 
configuring to smaller bus widths are adhered to. Data transfer between slave ports 
(SPLB 0 and SPLB 1) is not supported.

Key Features
The key features of the crossbar are as follows:

• The crossbar provides command pipelining for up to five transactions to the MCI and 
MPLB, which can be running concurrently in the embedded processor block in 
Virtex-5 FXT FPGAs. This allows the latency of the address phase to be hidden by 
overlapping it with the data phase.

• Supported commands are single cycle, line transfers, fixed length burst, and 
indeterminate length burst. 

• Independent arbitration: one arbiter for the MPLB and another for the MCI. 
Transactions can be issued to both the MPLB and the MCI at the same time.

• Address switch function: receives the primary and secondary commands from the 
masters and issues the command to the correct slave.

• Data switch function: requires switching the correct master and slave buses together, 
which enables the transaction, detects the end of the transaction, and switches to the 
next data phase with minimal latency.

• The command and data phases are independent.
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• The arbiter is required to remember the order and context (master and slave) of each 
command so that the data phases are executed in the same order.

• Read and write data phases are independent and can run concurrently. There is a 
separate command FIFO for each direction. 

• Multiple crossbar to FPGA logic clock ratios are supported to optimize performance.

• All internal crossbar transactions are 128 bits wide. PLB rules that allow the use of 
64-and 32-bit wide devices are supported by the crossbar block.

• The overall address space for the system is 64 Gbytes (36 bits of address) that can be 
divided between the slaves. Various memory mappings can be configured through 
bitstream or DCR operations.

Note: The embedded processor block in Virtex-5 FXT FPGAs supports 36-bit physical addressing, 
but the top four bits are defined as zeros within the Embedded Development Kit (EDK) tools and IP. 
Thus the available address space is 4 GB.

Hardware Description

Overview
The crossbar interconnects the processor and two SPLB interfaces to the memory interface 
and the MPLB interface. This function allows for any PLB master in the device (including 
the processor) to read and write to any memory-mapped location in the device connected 
to the crossbar. It supports a 128-bit data bus, a 36-bit address bus, and memory mapping 
to determine whether the memory interface or the MPLB is selected for the transfer. Most 
optional features in the PLB specification are supported, including bus lock, rearbitration, 
slave wait, master abort, master or slave terminate, and TAttribute. 

The transfer types supported are single word, cache line, fixed length burst, and 
indeterminate burst. Transfers can be unaligned for single word transfers. Also, word 
steering, mirroring, conversion cycle, and burst length adjustment are handled 
automatically. Thus, mismatched bus sizes are allowed. Any combination of 32-, 64-, and 
128-bit masters can transact with any 32-, 64-, or 128-bit slave. All burst widths (from word 
to quadword) are supported.

The crossbar consists of two identical pieces: an arbiter and switch for the MPLB and 
another for the memory interface. If multiple masters request at the same cycle, the 
crossbar arbitrates between the multiple masters and asserts an acknowledge to the 
winning master. The arbiter then decides the order of execution and places each command 
into the command queue. Crossbar arbitration is a two-step process that consists of a 
request and master priority levels. Available arbitration algorithms are fixed priority, least 
recently used, and round robin.

The output command queue contains commands that are waiting for the data phase to 
begin. This queue saves the context for the command so that the correct master can be 
connected when the data phase begins. There are two output command queues: one for 
reads and one for writes, which allows for concurrent read and write transfers for full 
utilization of the PLB read and write channels. See “Ordering Requirement of Transactions 
in the Crossbar,” page 49 for further details on read and write ordering.

When a command reaches the front of the queue and the previous transfer is complete, the 
data phase controller selects the correct master (via the muxes and demuxes) to connect to 
and enables the transfer. If there are no commands in the output queue, the command 
issuer instead initiates the data phase. 

http://www.xilinx.com


36 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

At the end of the data transfer, the data phase controller removes the current command 
from the queue and starts the data phase for the next command without dead cycles 
between the data phases. 

The primary function of the PLB interfaces is to adapt the crossbar transaction rate to the 
transaction rates of the soft masters and slaves. There are three causes for the rate 
mismatch:

• Clock frequency

In typical applications, the crossbar runs at a higher clock frequency than that of the 
soft masters and slaves, resulting in a higher raw throughput for the crossbar. This is 
always the case when comparing the crossbar with the MPLB or the MCI because the 
crossbar contains two almost independent arbiters that separately drive the MPLB and 
the MCI. The situation is more complex when comparing the crossbar and the SPLB, as 
discussed below.

• Arbitration success

The arbitration process in the crossbar divides the available crossbar bandwidth 
among the various active PLB masters that are directly connected to the crossbar. So an 
SPLB that sends and receives data to and from the MPLB only gets a fraction of the 
crossbar bandwidth if the processor and/or the other SPLB are also accessing the 
MPLB. (It is a similar situation for an SPLB sending or receiving to or from the MCI.) 
Because there are three PLB write masters (the instruction cache does not have a write 
master) and four read masters connected to the crossbar with a fair arbitration scheme, 
the SPLB gets, on average, at least one-third of the crossbar write bandwidth or the full 
SPLB write bandwidth (whichever is less) and at least one-fourth of the average 
crossbar read bandwidth or the full SPLB read bandwidth (whichever is less). If a 
master does not request crossbar access, that time slot is available for another master to 
use.

• Bus width conversion

The PLB interfaces and the crossbar are 128-bit devices, and the interfaces support 
128-bit soft devices natively. In addition, the interfaces also support 32-bit and 64-bit 
PLB devices at the expense of a reduced throughput. 32-bit and 64-bit soft masters and 
slaves have throughputs of one quarter and one half, respectively, of that of a 
corresponding 128-bit device. 

The three rate mismatch factors combine dynamically together and can result in a 
mismatched transaction rate between devices at any given instant in time. Rate adaptation, 
which is needed to avoid possible data loss, is achieved through the built-in flow control 
mechanism of the PLB protocol together with the use of FIFOs for command and data 
buffering to absorb temporary differences in transaction rates.

Another major function of the PLB interfaces, as mentioned in the bus width conversion 
bullet, is to convert transactions from 32-bit and 64-bit soft masters and slaves into 128-bit 
format, and vice versa. The conversion process involves command modification, data 
mirroring, steering, and packing(1). Packing of burst transfers is not an inherent 
requirement for conversion but is done to improve the crossbar bandwidth efficiency, and 
because the MCI can only handle packed data.

In addition, each SPLB also contains arbitration logic to allow the sharing of the crossbar 
access with two 32-bit DMA controllers. Each SPLB and the two corresponding DMA 
controllers share the same crossbar interface logic located in the SPLB.

1.  Packing is done for burst transfers and line transfers. Single transfers are not packed.
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By default, a simple round-robin priority scheme is used to arbitrate among the SPLB and 
LocalLink/DMA channels with an initial ordering of SPLB0-DMA0-DMA1 and SPLB1-
DMA2-DMA3. The priority of each DMA channel can be increased by setting the DMA 
priority bits in the SPLB Configuration registers as described in “Device Control Registers 
(DCRs),” page 56. When more than one interface has the same priority for this local 
arbitration, a round-robin scheme is used for the interfaces that have the same priority 
with the same ordering as described earlier.

Note: If the LocalLink/DMA interfaces are used but the corresponding SPLB interface is not 
connected, the clock pin of that SPLB interface must still be connected to a valid clock signal.

Hardware Interface
All interfaces at the boundary of the crossbar have 128-bit data buses, which simplifies the 
logic required to be implemented within the embedded processor block. Accesses from 
FPGA logic masters and slaves that do not have 128-bit data buses are converted to 128-bit 
accesses internally. All accesses through the crossbar are fixed length bursts and cannot be 
terminated except for bursts performed by the processor’s ICURD interface.

Slave Ports

Instruction Side (ICURD)

The processor uses its instruction-side read (ICURD) PLB interface to perform instruction 
reads for the instruction cache unit (ICU). The instruction-side PLB interface should only 
perform reads with eight-word cache line sizes. 

During line reads, the address put out by the ICU is the required target word. Because the 
ICU interface can only provide word addresses, the lower two bits are tied Low at the chip 
level. For optimal performance, the target slave can provide either the target word first 
(aligned to a quadword containing the target word) or the data sequentially. In any case, 
the slave must use the Sl_rdWdAddr signal to indicate the word being transferred, which 
is used by the processor to correctly align data in its cache-fill buffer.

The ICU interface supports up to three outstanding transactions.

Data-Side Write (DCUWR)

The processor uses the Data-Side Write PLB (DCUWR) interface to perform write transfers 
with memory for the Data Cache Unit (DCU).

There are three types of transfers that occur via the DCUWR interface:

• Word transfers

• Four-word line transfers

• Eight-word line transfers

The address put on the PLB interface is the target byte address required by the DCU. For 
line transfers, the processor puts its data in sequential address order rather than target 
word first as done in data cache reads.

APU non-cacheable requests are performed with four-word line requests while all 
cacheable requests occur as eight-word line requests. The address output by the DCUWR 
interface is the target byte address of the data to be written. 
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Data-Side Read (DCURD)

The processor uses the Data-Side Read PLB (DCURD) interface to perform read transfers 
by the data cache unit. 

Three types of transfers occur via the DCURD:

• Word transfers

• Four-word line transfers

• Eight-word line transfers

The address put on the PLB interface is the target byte address required by the DCU.

APU non-cacheable requests are performed with four-word line requests while all 
cacheable requests occur as eight-word line requests. The address put by the DCURD 
interface is the target byte address of the data to be read. For optimal performance in line 
reads, the slave must put out the target word first; however, in any case, it should indicate 
which word it is providing on the Sl_rdWdAddr signal.

FPGA Logic to Crossbar SPLB Interfaces

The identical SPLB 0 and SPLB 1 interfaces allow masters on the FPGA logic to access the 
slave buses on the crossbar via an FPGA logic arbiter. Although the FPGA logic masters are 
allowed any size of transactions included in the PLB specification, the SPLB interfaces 
convert some of these transactions to a subset of the PLB specification to optimize the 
crossbar transfer rate. All transactions from the SPLB to the crossbar are 128 data bits wide.

The types of transfers to the crossbar that can originate from the SPLBs are:

• Single transfers

• Quadword line transfers

• Eight-word line transfers

• Quadword fixed length bursts from a minimum length of 2 to a maximum length of 
16.

• Variable length bursts or early terminated bursts from masters connected to their PLB. 

These variable length transactions are converted into a series of fixed length 
transactions. The size of the fixed length transaction is configurable through the PLB 
slave [0:1] configuration registers, CFG_PLBS0 and CFG_PLBS1.

Slave Port PLB Busy Signals

Generic PLB System 

PLB masters receive a busy signal from the arbiter, which signifies that at least one of their 
acknowledged transactions has not been completed by the slave. The slave asserts an 
individual busy signal for each master attached to the arbiter.

• For a read, the slave asserts the busy signal one clock cycle after a command has been 
acknowledged until the last rddack for that transfer.

• For a write, the slave asserts the busy signal one clock cycle after a command has been 
acknowledged and past the last WrDack for that transfer. Write transaction 
completion by the slave might not coincide with the completion of the data being 
transferred to the slave. The slave can take additional cycles to complete the 
transaction after all the data has been transferred from the master. This is common in 
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situations where the slave has an internal queue to perform transfers to the physical 
storage. The busy signal thus notifies the master whether the data has been 
transferred to its final destination by the slave, which can prevent data coherency 
problems in systems.

Embedded Processor Block

The embedded processor block in Virtex-5 FPGAs changes the definition of the Mbusy PLB 
signal because of system architecture constraints. The Mbusy signal to an FPGA logic or 
PLB master is asserted when its request is acknowledged. Deassertion of the busy signal 
depends on the destination of the transaction:

• Destination MPLB

The busy signal is deasserted when the transaction has left the MPLB for the FPGA 
logic. Thus the busy signal is deasserted when the data phase of the transaction has 
completed to the FPGA logic slave. There is a delay from the last WrDack on the MPLB 
to FPGA logic bus to the deassertion of the busy signal to the master of several 
interconnect clock cycles. If the FPGA logic slave continues to assert its busy signal 
past the end of the data phase of a write, that signal is not propagated back to the 
originating master. If the busy signal to the master is required to mirror the busy signal 
from the slave, then TAttribute [7] should be set along with the request. See “Sync 
TAttribute,” page 50 for more details.

• Destination MCI

The busy signal is deasserted when the transaction leaves the crossbar for the MCI. 
Both the crossbar and the MCI are internal to the processor block. Because the MCI 
does not contain a busy signal, the concept of a FPGA logic slave being busy, as in the 
MPLB case, does not exist for the MCI.

The FPGA logic PLB slaves are attached to the MPLB via a soft arbiter, and the MPLB is a 
single PLB master to that arbiter. PLB arbiters assert a single busy signal to each master to 
inform the master that at least one of its transactions is outstanding in a slave. The arbiter 
thus sends one PLB_MBusy signal to the MPLB to notify it if any slaves are asserting their 
busy signal for the MPLB. The MPLB transaction might have come from one of several 
masters connected to the SPLB, the DMA, or the processor PLB interfaces. The MPLB 
cannot demultiplex the busy signal from the arbiter to the individual masters because the 
identity of the master that originated the transaction was lost when the data phase 
completed. 

Figure 3-1 shows the busy signals in the FPGA logic and processor block. The busy signal 
from the FPGA logic is of little use to the embedded processor block and ignores it under 
normal transaction request. The PLB_MBusy signal sourced from the processor block to 
FPGA logic masters is based on the transaction leaving the processor block (Destination 
MPLB) or the transaction leaving the crossbar for the MCI (Destination MCI).
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Master Ports

MPLB

When the crossbar receives a request bound for the MPLB, it places the command in the 
command FIFO pending the start of the data phase. 

Figure 3-2 shows the flow control exerted by the MPLB over the crossbar. If the command 
queue signal from the MPLB is asserted, the MPLB does not accept PLB address phases 
until at least one outstanding data phase is completed. The crossbar blocks its addrAck to 
the request that occurs when the MPLB command FIFO is full.

Figure 3-1: Busy Signals in FPGA Logic and Embedded Processor Block
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MCI

The memory interface is a fast, compact, and convenient way of connecting memory to the 
processor block. The memory interface is designed to be similar to a simple FIFO interface 
rather than the more complicated PLB interface. The interface consists of an address bus, 
two data buses (one for each direction), and a few control signals. All transactions to the 
FPGA logic have a constant length, greatly simplifying the design of the soft memory 
controller. Every transaction requires at minimum an address and a signal to indicate if it 
is a read or a write (MIMCREADNOTWRITE). If the transaction is a write, write data is 
presented on the write bus (MIMCWRITEDATA). If the transaction is a read, the MCI 
block expects the data along with a valid signal (MCMIREADDATAVALID) at some future 
point in time on the read bus (MCMIREADDATA). When a transaction begins, the MCI 
does not terminate it. The MCI block can turn off the byte enables so the writes become 
useless.

Although the physical data buses are 128 bits wide, the user can optionally downsize the 
bus. This option allows the portion of the memory controller in FPGA logic to not have to 
implement large muxes when the real memory is smaller then 128 bits. When the user 
selects a 32-bit bus and the MCI has 256 bits of data to transmit, the MCI sends eight 32-bit 
back-to-back words to the FPGA logic on bits 0 to 31 of the MIMCWRITEDATA bus. Not 
only does this save area in the FPGA logic, it also allows for higher speeds. This muxing is 
also implemented on the read path, so that the FPGA logic does not have to form 128-bit 
words for the MCI.

In addition to FPGA logic-side variable widths, FPGA logic burst lengths are also variable. 
Every time the burst length is reached, a new address is generated to send out to the FPGA 
logic. For instance, assume the starting address is 0, a burst of four 128-bit words (64 bytes) 
is to be sent to the FPGA logic portion of the memory controller, the MCI is set to 128 bits 

Figure 3-2: MPLB Flow Control
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wide, and the burst length is 2. The transaction on the MCI is (address 0, write 0-15), (write 
16-31), (address 32, write 32-47), and (write 48-63).

Variable burst lengths allow different memory controllers with different requirements to 
be attached to the MCI, while keeping the logic in the memory controller to a minimum. 
For example, one memory device might support bursts of 8, while another simpler 
memory device might support single word transactions (burst length equal to 1). 

The MCI block takes the address directly from the crossbar and sends it to the FPGA logic, 
adjusting the address when required for bursts. The MCI block has no concept of what 
memory is actually connected up to it. Therefore, if a user writes to addresses 0x900 and 
the memory connected only has addresses from 0x000 to 0x7FF, the memory at address 
0x100 is overwritten. The MCI block assumes that the user of the system knows about this 
issue.

As noted in “FPGA Logic to Crossbar SPLB Interfaces,” page 38, the MCI block does not 
accept indeterminate bursts. Instead, the MCI block relies on the PLB interface to break up 
the transactions into known fixed sized bursts. Because the processor does not create this 
type of transaction, this functionality was moved to the perimeter of the system, which 
also allowed higher bus utilization rates inside of the crossbar.

See Chapter 5, “Memory Controller Interface,” for more details on this interface.

Disabling the MCI

The MCI can be disabled via a configuration bit. If the MCI block is disabled, any 
transaction directed to the MCI from the processor PLB interfaces causes the time-out 
signals from the crossbar to the PLB interface to be asserted. The SPLB blocks access to the 
MCI if it is disabled, and hence SPLB transactions need not be blocked. 

Interrupts
The crossbar is the central location where the distributed PLB interrupts are collected. The 
crossbar sees the input interrupts as either level signals (which it does not latch) or edges 
(which it has to latch internally). The level interrupt signals are latched in the originating 
block. The crossbar contains the DCR interface logic to read the interrupts and clear them. 
The crossbar also asserts a global interrupt signal, PPCEICINTERCONNECTIRQ, when 
any non-masked interrupt is asserted. 

The interrupts are cleared by writing a one to the interrupt bit of the register via DCR 
access. If the crossbar internally latches that interrupt, the write to the bit clears the 
interrupt bit. If the interrupt is latched in another block, the crossbar sends an interrupt 
clear signal to that block to instruct the block to reset it.
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Functional Description

Arbitration
The crossbar separately arbitrates for the two slave buses (via the MCI and MPLB ports) 
between the five master PLB buses (via the SPLB 0, SPLB 1, ICURD, DCUWR, and DCURD 
ports) and grants slave bus access to the winning master. Transactions can be initiated on 
the two slave buses simultaneously. Which bus wins arbitration depends on:

• Priority

♦ Request priority 

♦ Master priority

• Lock status of the slave bus

• Transaction ordering requirement

• Abort status of master requests

• State of the crossbar command queues

• Pipelining turned off or on

• MCI enabled or disabled

Priorities

If multiple master requests access the same slave bus simultaneously, the crossbar uses two 
levels of priority arbitration to determine the order of master accesses on the slave bus. 

• Request Priority (Level 1 arbitration)

The priority bits (Mn_priority [0:1]) sent out by the masters on the PLB along with the 
request are the first priorities taken into consideration. If access order can be resolved 
using those priority bits, then no further arbitration takes place. When the PLB 
transactions are destined for the MCI, this first level of arbitration can be enabled or 
disabled by a bit value in bit 24 of DCR MI_CONTROL. See Table 5-1, page 135 for 
more information.

• Master Priority (Level 2 arbitration)

If the request priorities of two or more masters are the same, the crossbar implements 
a second level of priority checking using master priorities, which is set up by the FPGA 
designer via the DCRs. The master priorities are distinct values. Thus the priorities are 
never the same between two masters. 

Refer to “0x23: Crossbar for PLB Master Arbitration Configuration Register 
(ARB_XBC), R/W,” page 61 for further details.

Request Priority Level

The five PLB master buses requesting accesses through the crossbar specify the priority of 
each request through the request priority bus, Mn_priority[0:1]. In this two-bit bus, 2’b11 
is the highest priority and 2’b00 is the lowest priority in a fixed priority system. For the 
SPLBs, the request priority bus value is set by the master that initiated the SPLB request to 
the crossbar. For the three processor PLB interfaces, the priority bits are determined by the 
value of the priority attributes on the embedded processor.

On simultaneous accesses to the same slave bus, the crossbar grants access to the master 
with the highest request priority.
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Master Priority Level

If two or more requesting masters have the same request priority, the crossbar uses a 
master priority level to break the tie. Users set an arbitration scheme and each master’s 
initial priority via a Device Control Register (DCR). The crossbar contains one DCR per 
slave bus, which stores the master priority information in the crossbar. Each master can be 
assigned a priority using a three-bit priority field. Valid values are from 3’b000 (lowest 
priority) to 3’b100 (highest priority) for the five masters. Each master should have a distinct 
priority from the permissible values. Unpredictable results occur when using priorities from 
3’b101 to 3’b111 or priorities not distinctly different.

Users choose one of three arbitration schemes: 

• Least Recently Used (LRU)

• Round Robin (RR)

• Fixed

The crossbar also maintains an internal copy of the priority values that can change from the 
initial set value after each access. For all arbitration schemes, the crossbar allows the 
highest priority master to access the slave bus. The priority value used for the arbitration is 
the internal value.

Each slave bus has an arbitration register, the MPLB (ARB_XBC) and the MCI (ARB_XBM), 
containing the priorities for each master. These registers get their default values from 
attributes on the processor block. These registers can be read and written to via DCR 
operations. 

Least Recently Used Arbitration

In the LRU arbitration scheme (see Figure 3-3), the master with the highest internal priority 
is granted access to the slave bus. Internal master priorities are reassessed after each slave 
bus access even if arbitration was based on request priority. The crossbar maintains a 
queue with initial entries set up by the DCR arbitration register. When a master is granted 
access to the slave bus, it is removed and placed at the back of the queue. All masters lower 
in internal priority to the one granted access are moved up by one position. This priority 
scheme gives fair access for masters to the slave bus.
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Round-Robin Arbitration

In the round-robin arbitration scheme (see Figure 3-4), the master with the highest internal 
priority is granted access to the slave bus. Internal master priorities are reassessed after 
each slave bus access. The crossbar maintains a circular structure with five nodes, one for 
each master attached to the crossbar. The masters are initially assigned priorities based on 
the DCR arbitration register set up by the user. When a master gets access to the slave bus, 
the master priorities are rotated such that the master granted access is now the lowest 
priority master (4’h0). This priority scheme gives fair access for masters to the slave bus. 
In the unlikely event that the MPLB interface’s read address pipelining feature (DCR 0x44 
bit 26) must be disabled, which can cause a severe degradation in performance, avoid 
using the round-robin arbitration scheme because a traffic starvation issue can result.

Figure 3-3: LRU Arbitration
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Fixed Priority

In the fixed priority scheme, the initial priorities set by the user remain unchanged during 
crossbar operation. The crossbar allows the highest priority master to access the slave bus. 
The arbitration scheme can cause starvation of lower priority masters, if higher priority 
masters continually request access to the same slave bus for prolonged periods of time.

Figure 3-4: Round-Robin Arbitration
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DCR Arbitration Registers

The DCR arbitration registers consist of five three-bit priority fields (one for each master 
attached to the crossbar) and a two-bit arbitration mode field. The priority fields set up the 
initial master priority of the masters. Although the internal priorities can change during 
slave accesses depending on the arbitration mode (selected by the mode field), the priority 
values set in the DCRs do not change during crossbar operation. When a DCR arbitration 
register is read, it returns the original written or tied values, not the internal priorities used 
for arbitration.

Locked Transfers

Masters typically use locked transfers to guarantee an atomic sequence of transactions on 
the bus. The crossbar guarantees that the atomic sequence of operations requested by a 
master connected to one of the SPLB ports is preserved on the destination bus (MPLB).

The master asserts Mn_busLock with the request signal, which is sampled by the crossbar 
in the same cycle that the Sl_addrAck signal is asserted on the slave bus connected to the 
MPLB port. If both read and write buses are idle, the crossbar locks the slave bus for the 
requesting master. If there are outstanding transactions on the slave bus, the crossbar holds 
off assertion of the PLB_PAValid signal for the locked transfer until the slave bus is free. 
The lock extends to both the read and write sections of the slave bus. The locking master 
maintains its lock by asserting Mn_busLock until required. The request signal does need 
not be continually asserted during the lock period. It is only asserted when a transfer is 
required.

The crossbar gets the Mn_busLock signal from the SPLB 0 or the SPLB 1. The processor 
PLB interfaces do not implement the Mn_busLock signal. If the locking master is the 
highest priority requesting master, the crossbar grants exclusive access to the locking 
master until the Mn_busLock signal is released. If requests are pending on the slave bus 
when a winning lock request is made, the crossbar ignores all other master requests until 
the lock request is granted by the crossbar and released by the master. This behavior 
prevents deadlock conditions where higher priority masters get access to the slave bus 
while the crossbar holds off the PLB_PAValid of the locking master request during 
completion of pending transactions.

If the locking master releases Mn_busLock for one clock cycle, the crossbar no longer locks 
the slave bus for that master but arbitrates in the normal manner on the next clock cycle. 
When the Mn_busLock signal is released, the crossbar continues to block all master 
requests until the pending transfers to that master are completed. 
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Figure 3-5 shows the waveforms for a locked transfer operation. The cycles are defined 
below:

• In cycle 0, both the master and slave buses are in idle state.

• Master 0 requests a non-locked single read transfer in clock cycle 2 and is granted 
access to the slave bus.

• In clock cycle 4, Master 0 requests a locked single read transfer, and Master 1 requests a 
non-locked single read transfer. Because the request priority of Master 0 is higher than 
Master 1, Master 0 wins the arbitration. However, the pending transfer from cycle 2 
blocks the assertion of PLB_PAValid for the locked Master 0 request until the transfer 
completes in cycle 6. 

• When Sl_rdComp is asserted in cycle 6, the crossbar asserts PLB_PAValid and 
PLB_BusLock. The slave bus is now locked for exclusive access by Master 0, and the 
Master 1 request is ignored. 

• In cycle 8, Master 0 requests with a priority of 0 (lower priority than Master 1) and 
gets access to the slave bus because it has exclusive access to the bus.

• When M0_busLock is released in cycle 9, the crossbar waits for all pending 
transactions on the slave bus to complete, which takes place in cycle 10. The crossbar 
then arbitrates in the normal manner and grants slave bus access to Master 1.

Figure 3-5: Locked Transfer Waveforms

1 2 3 4 5 6 7 8 9 10 11 12

UG200_c3_05_071307

Clock

Master 0

M0_request

M0_RNW

M0_busLock

M0_priority[0:1]

PLB masterID[0:2]

PLB_M0AddrAck

Master 1

M1_request

M1_RNW

M1_busLock

M1_priority[0:1]

PLB_M1AddrAck

PLB_BusLock

PLB_PAValid

Slave Bus

SI_addrAck

SI_rdDAck

SI_rdComp

00

000 000 000 001

11

10

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 49
UG200 (v1.6) January 20, 2009

Functional Description
R

Ordering Requirement of Transactions in the Crossbar

From the master’s perspective, the PLB protocol expects the data phase of transfers in the 
same direction (read or write) to occur in the order they were originally issued. This 
operation is essential because the individual data phases do not contain any transfer 
identification, and the requesting master assumes that the occurring data phase is for the 
oldest pending transfer. Because the data phase for transfers in different directions occurs 
on separate buses, ordering between reads and writes is not required. In a single slave bus 
PLB system, the arbiter need not be concerned with this ordering requirement, because the 
arbiter simply forwards the transfer request to the slave responsible for ordering the data 
phases.

The more complex crossbar has two slave buses, which make the system susceptible to 
order mismatch even if the PLB slaves conform to the ordering requirement. If a master 
issues two consecutive requests (one to the MPLB and one to the MCI) in the same 
direction (either both reads or both writes), the crossbar must hold off sending the second 
request to the slave until the first transaction completes. A situation might arise where the 
slave command queue in the crossbar is full for the first transfer and empty for the other 
transfer. In this situation, if ordering is not maintained by the crossbar, the slave of the 
second request might start its data phase earlier than the slave of the first request. This 
master wrongly assumes the incoming data is for the first request, creating a data 
mismatch for the requesting master.

The crossbar implements data phase ordering as follows:

• If a master request is granted to either slave bus, a request of the same direction to the 
other slave bus is blocked from arbitration consideration until the previous request is 
completed.

• Requests to the same slave bus are not blocked if there are pending requests in the 
same direction. In this case, ordering is maintained in the command FIFO and then by 
the slave.

• Transactions from the same master in the opposite direction of the pending transfer 
are not blocked from being issued to the other slave bus.

• While a master is blocked from arbitration consideration due to the ordering 
requirement, the crossbar arbitrates normally without the blocked master and grants 
access to the highest priority master.

The two arbiters within the crossbar use seven signals to communicate with each other:

• Busy signal for the ICURD interface of the embedded processor

• Busy signal for the DCUWR interface of the embedded processor

• Busy signal for the DCURD interface of the embedded processor

• Read busy signal for the SPLB 0 interface

• Write busy signal for the SPLB 0 interface

• Read busy signal for the SPLB 1 interface

• Write busy signal for the SPLB 1 interface

These busy signals notify the other arbiter about the master and direction of any pending 
transfers. One arbiter can then block arbitration of transfers from any master with pending 
transfers in the same direction on the other arbiter.
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Sync TAttribute

A master might require notification when a particular write transaction is complete not just 
on the bus but also on the output of the module that is connected to the bus (for example, 
on the physical memory connected to a memory controller module). In generic PLB, the 
slave notifies the master of this by asserting its busy signal for that master. The slave can 
continue to assert its busy signal for a transaction past when its data phase has completed 
on the PLB. Figure 3-6 shows this situation where the busy signal sourced from the MPLB 
to the crossbar is based on transaction completion at the FPGA logic interface. In the 
embedded processor block, this generic PLB requirement is not met because with the 
completion of the data phase, the crossbar might end the connection and connect up a new 
master and slave. The Sync TAttribute feature facilitates the generic notification 
requirement without using the busy signal mechanism.

The Sync TAttribute feature is important in at least one scenario, where there is a device on 
the MPLB whose interrupt register bit is to be cleared. The embedded processor writes to 
the device’s interrupt register to clear the interrupt. When the busy signal for that 
transaction goes Low, the embedded processor re-enables the interrupt. Without the 
TAttribute function, the clearing of the interrupt could be posted within the embedded 
processor block and might not have completed through to the target slave. In this scenario, 
if the processor re-enables the interrupt before the posted write has gone through, the 
embedded processor is wrongly interrupted for the second time.

If a master requires that the busy signal sourced to it mirrors (with a delay in deassertion) 
that busy signal coming from its target slave, the master should request the TAttribute [7] 
bit be set in the transaction, making this a Sync TAttribute transaction. 

On this sync transaction request from a master winning arbitration:

• The crossbar blocks subsequent requests from all five master buses until the sync 
transaction and all transactions preceding it in the MPLB FIFO complete. This 
condition ensures that the busy signal from the FPGA logic slave to the master is 
deasserted for the sync transaction completion only because no other transaction can 
be pipelined behind it.

Figure 3-6: Nonsync TAttribute Situation
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• The blocking takes place only after the master requesting the sync transaction has 
won arbitration to the MPLB slave bus.

• The busy signal to the master requesting a Sync TAttribute transaction is asserted 
until the slave destination deasserts its busy signal. Thus the FPGA logic busy signal 
is propagated through to the crossbar during a sync transaction.

Figure 3-7 shows the situation implementing a Sync TAttribute bit. When the Sync 
TAttribute (bit 7) of a request winning arbitration is set, the crossbar blocks all subsequent 
requests. The MCI and MPLB now propagate the FPGA logic busy signal all the way 
through the crossbar to the respective masters.

The master requesting the sync transaction can either be on the SPLB or can be one of the 
processor PLB interfaces. The processor can set the Sync TAttribute bit by setting it in the 
translation lookaside buffer (TLB) entry for the page of memory where the data is located. 
All transactions to that page (data loads/stores) are issued by the processor PLB master 
interface with the Sync TAttribute bit asserted. The Sync TAttribute bit for that page is set 
in software using user-defined storage attribute bit 3 (U3) via the tlbwe instruction. For 
FPGA logic PLB masters sitting on the SPLB interface, the master can set the attribute 
while making a request to the SPLB through the soft arbiter. The SPLB buffers the 
command in an internal FIFO and propagates the Sync TAttribute bits to the crossbar.

Address Mapping
The crossbar accepts requests from five PLB master buses and funnels them to either the 
MPLB slave bus or the MCI slave bus based on an address map programmed by the user. 
Masters on the PLB have access to a 36-bit address bus consisting of a 4-bit upper address 
bus, UABus, and a 32-bit lower address bus. (The 4-bit upper address bus is defined to be 
zero within the EDK tools and IP.) The 36 address bits cover a 64 GB address range. The 
32-bit lower address bus covers a 4 GB address range.

The address map is programmed by:

1. A 32-bit template selection register (TMPL_SEL_REG) 

2. Four 32-bit address template registers (TMPLx_XBAR_MAP) 

Figure 3-7: Sync TAttribute Situation
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These registers, which are DCR programmable, get their default values from attribute pins 
on the processor block.

The TMPL_SEL_REG register is a 32-bit register that concatenates 16 2-bit values. When it 
receives a request, the crossbar examines the four upper address bits, UABus [28:31], and 
indexes into the TMPL_SEL_REG register to obtain a two-bit value. The two bits determine 
which of the four address template registers to used for the request (2’b00 = 
TMPL0_XBAR_MAP, ..., 2’b11 = TMPL3_XBAR_MAP). 

EDK sets TMPL_SEL_REG so that only the TMPL0_* registers are used to define crossbar 
address mapping and SPLB address decoding for the supported 4 GB address space. This 
is the only supported register configuration.

The four address template registers (TMPLx_XBAR_MAP) are 32 bits wide, where each bit 
represents 1/32 of a 4 GB address space (128 MB). The crossbar uses the most-significant 
five bits of the lower address bus (Abus[0:4]) to index into the selected address template 
register to obtain a single bit value. If the bit in the address template register is set, a 
request to that 128 MB address space is directed to the MCI slave bus. If it is cleared, the 
request is directed to the MPLB slave bus. 

Example Configuration

Assume the four address template registers have the following values:

TMPL_SEL_REG = 32’h3FFF_FFFF

TMPL0_XBAR_MAP = 32’h0000_000F

TMPL1_XBAR_MAP = 32’h0000_0000

TMPL2_XBAR_MAP = 32’h0000_0000

TMPL3_XBAR_MAP = 32’h0000_0000

1. If the request address is 36’h0_E923_3245:

First an address template register needs to be selected. Because the four upper address 
bits are 4’h0, two bits are used starting at bit position 0. In the current configuration, 
the bits are 2’b00. Therefore TMPL0_XBAR_MAP is used to decode the remaining 
address bits.

The five most-significant address bits are used to index into the TMPL0_XBAR_MAP 
register. Here the five bits are 5'b11101 or 5'd29. TMPL0_XBAR_MAP[29] is 1’b1 
(set). Therefore this address is destined for the MCI.

2. If the request address = 36’h0_ABCD_9872:

Again, TMPL0_XBAR_MAP is used to decode the lower address bus bits.

The five most-significant address bits are used to index into the TMPL0_XBAR_MAP 
register. Here the next lower five bits are 5’b10101 or 5’d21. 
TMPL0_XBAR_MAP[21] is 1’b0 (cleared). Therefore this address is destined for the 
MPLB.

Figure 3-8 shows the Address Template register, which divides the 4 GB address space into 
128 MB regions. If the bit corresponding to a 128 MB region is set, that request is forwarded 
to the MCI; otherwise, it is sent to the MPLB.
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The crossbar implements the address mapping for the processor PLB interfaces. For 
requests originating from the SPLBs, the SPLBs predecode the requests. The SPLBs provide 
this information to the crossbar via the MPLBnMCI signal. Thus the crossbar does not have 
to decode the address again, which improves timing because the address-mapping logic 
falls on the critical path.

Pipelining

Command Queues

The PLB protocol defines two phases of a transaction, the address phase and data phase, 
which occur independently on separate buses. When a request is acknowledged by a slave, 
the slave commits to provide the data during the data phase of the transaction. A delay 
might occur before the data phase is started by the slave. Multiple data phases can also be 
pipelined by the slaves in the system. To keep track of the outstanding data phases, the 
crossbar maintains two command queues for each arbiter, one for reads and the other for 
writes. The crossbar uses the information stored in the command queues to direct the slave 
data phase responses to the appropriate master and to determine if a particular transaction 
has completed. 

The read and write command queues are each five deep and hence up to five read and five 
write data phases can be outstanding to any slave bus.

When a master requests a transaction, the crossbar arbitrates between it and other 
requesting masters. A winner is ascertained within the same clock cycle, the request is put 
on the slave address bus, and the byte enable (BE) and size transfer qualifiers are pushed 
into the crossbar command FIFO. 

When a data phase completes, the command FIFO is popped and used to redirect the slave 
signals to the correct masters. 

Miscellaneous Notes

Conversion of Quadword Line Transfers to Single Transfers

Any quadword transfer requested from the crossbar is converted to a single transfer at the 
slave port. Because the internal crossbar switch data buses are always 128 bits wide, single 
and quadword line transfers are equivalent.

Figure 3-8: Address Template Register
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Miscellaneous Signals

PPCCPMINTERCONNECTBUSY

The PPCCPMINTERCONNECTBUSY output from the processor block is asserted when 
there are any transactions in flight within the processor block interconnect. The MPLB, MCI, 
DMA, SPLB, and DCR interface blocks generate independent busy signals that are ORed 
together to create PPCCPMINTERCONNECTBUSY.

Transactions in flight are defined as:

• SPLB

♦ Acknowledged request from the FPGA logic master to the SPLB that has not 
completed its data phase

♦ Posted writes present within the SPLB

♦ A pending transaction between the SPLB and crossbar

• MPLB

♦ Acknowledged request from the MPLB to a FPGA logic slave whose data phase 
has not been completed

♦ Posted writes present within the MPLB

♦ A pending transaction between the crossbar and MPLB

• MCI

♦ Posted writes present within the MCI

♦ A pending transaction between the crossbar and MCI

• DMA

♦ A pending transaction on the RX local link

♦ A pending transaction on the TX local link

♦ A pending transaction between the DMA and the SPLB/crossbar

♦ The RX descriptor chain is not complete

♦ The TX descriptor chain is not complete

• DCR

♦ A pending transaction on the DCR bus

Two scenarios where the PPCCPMINTERCONNECTBUSY signal can be used are:

• Sleep Control Logic

In a typical system, the clock control module puts the system into sleep mode by 
gating the clock, when all the system’s masters have asserted their sleep request 
signals. However, there might still be posted writes present within the processor block 
that need to be flushed out to the slaves before the system is put to sleep. The clock 
control module thus looks at the PPCCPMINTERCONNECTBUSY signal in addition 
to the sleep request from the masters to gate the clock to the system. When the 
PPCCPMINTERCONNECTBUSY signal is deasserted, the clock control module 
knows it is safe to gate the clock without inducing any undefined behavior.

• Dynamic Reconfiguration of the Processor Block

The configuration registers of the interconnect blocks can be written to by DCR 
transactions without resetting the processor block. This can only be done when there 
are no transactions in flight within the processor block, else the behavior is undefined. 
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The DCR master who performs the reconfiguration can sample the 
PPCCPMINTERCONNECTBUSY signal to determine if it is safe to reconfigure the 
processor block. If the PPCCPMINTERCONNECTBUSY signal is deasserted, the 
master can write to the configuration registers via DCR transactions to change 
parameters like crossbar priorities. This signal can also be used to safely change clock 
ratios interfacing to or within the processor block. 

Usage Notes and Limitations

Crossbar Limitations for PCI and PCI Express Designs
A crossbar is defined to allow transactions between ports that cannot be monitored by 
devices on other ports. This can potentially lead to issues with ordering and forward 
progress that can in some cases cause livelock or deadlock. As described below, both PCI® 
and PCI Express designs require a specific system configuration to avoid these issues.

See the “PLB Interconnection Techniques,” page 124 for more details.
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Device Control Registers (DCRs)

Overview of the DCR Map
The crossbar includes a number of configuration bits that are accessible through the DCR 
interface. The embedded processor or the external DCR master can read or modify the 
crossbar configuration from the default value by issuing DCR read or DCR write 
commands.

After a DCR write transaction is requested, the crossbar performs the internal register 
write and asserts its acknowledge signal after a three-cycle delay. The crossbar similarly 
puts out the requested read data and asserts the acknowledge signal after a three-cycle 
delay. The acknowledge signal is deasserted three clock cycles after the read or write 
request signal is deasserted.

Detailed DCR Descriptions

DCRs for the PLB Interfaces and Crossbar (0x20 – 0x5F)

A block of 64 DCR locations (0x20 to 0x5F) is allocated for use by the crossbar, two PLB 
slaves (SPLB 0 and SPLB 1), the PLB master (MPLB), and the Address Map configuration 
registers. Four separate DCR lists are shown in Table 3-1 through Table 3-4.

All the interrupt status bits of the PLB interfaces and the crossbar are consolidated in the 
Interrupt Status register at 0x20. Registers with a tie-off value can be set to specified 
default values via the corresponding attribute on the embedded processor block in Virtex-5 
FPGAs.

Table 3-1: List of DCRs for the Crossbar

Address Mnemonic Description Type

Global Configuration and Status 

0x20 IST Interrupt Status Register Clear on Write to bit 
and Read Only

0x21 IMASK Interrupt Mask Register R/W

0x22 - Reserved -

Crossbar for PLB Master Configuration

0x23 ARB_XBC Arbitration Configuration Register R/W

Crossbar for PLB Master Status

0x24 FIFOST_XBC FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for PLB Master Hardware Debug

0x25 SM_ST_XBC State Machine States Register Read Only

0x26 MISC_XBC Miscellaneous Control and Status R/W, Write Only

0x27 - Reserved -

Crossbar for MCI Configuration

0x28 ARB_XBM Arbitration Configuration Register R/W
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Crossbar for MCI Status

0x29 FIFOST_XBM FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for MCI Hardware Debug

0x2A - Reserved -

0x2B MISC_XBM Miscellaneous Control and Status R/W, Write Only

0x2C - Reserved -

Address Map Configuration

0x2D TMPL0_XBAR_MAP Template Register 0 for Crossbar R/W

0x2E TMPL1_XBAR_MAP Template Register 1 for Crossbar R/W

0x2F TMPL2_XBAR_MAP Template Register 2 for Crossbar R/W

0x30 TMPL3_XBAR_MAP Template Register 3 for Crossbar R/W

0x31 TMPL_SEL_REG Template Selection Register R/W

0x32 - Reserved -

0x33 - Reserved -

Table 3-1: List of DCRs for the Crossbar (Continued)

Address Mnemonic Description Type

Table 3-2: List of DCRs for PLB Slave 0 (SPLB 0)

Address Mnemonic Description Type

Configuration

0x34 CFG_PLBS0 Configuration Register R/W

0x35 - Reserved -

 Status

0x36 SEAR_U_PLBS0 Slave Error Address Register, upper 4 bits Clear on Write to 0x38

0x37 SEAR_L_PLBS0 Slave Error Address Register, lower 32 bits Clear on Write to 0x38

0x38 SESR_PLBS0 Slave Error Status Register Clear on Write

0x39 MISC_ST_PLBS0 Miscellaneous Status Register Clear on Write to bit

0x3A PLBERR_ST_PLBS0 PLB Error Status Clear on Write to bit

 Hardware Debug

0x3B SM_ST_PLBS0 State Machine States Register Read Only

0x3C MISC_PLBS0 Miscellaneous Control and Status R/W, WO, RO

0x3D CMD_SNIFF_PLBS0 Command Sniffer R/W

0x3E CMD_SNIFFA_PLBS0 Command Sniffer Address R/W

0x3F - Reserved -
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 Address Map

0x40 TMPL0_PLBS0_MAP Template Register 0 R/W

0x41 TMPL1_PLBS0_MAP Template Register 1 R/W

0x42 TMPL2_PLBS0_MAP Template Register 2 R/W

0x43 TMPL3_PLBS0_MAP Template Register 3 R/W

Table 3-2: List of DCRs for PLB Slave 0 (SPLB 0) (Continued)

Address Mnemonic Description Type

Table 3-3: List of DCRs for the PLB Slave 1 (SPLB 1)

Address Mnemonic Description Type

Configuration

0x44 CFG_PLBS1 Configuration Register R/W

0x45 - Reserved -

 Status

0x46 SEAR_U_PLBS1 Slave Error Address Register, upper 4 bits Clear on Write to 0x48

0x47 SEAR_L_PLBS1 Slave Error Address Register, lower 32 bits Clear on Write to 0x48

0x48 SESR_PLBS1 Slave Error Status Register Clear on Write

0x49 MISC_ST_PLBS1 Miscellaneous Status Register Clear on Write to bit

0x4A PLBERR_ST_PLBS1 PLB Error Status Clear on Write to bit

 Hardware Debug

0x4B SM_ST_PLBS1 State Machine States Register Read Only

0x4C MISC_PLBS1 Miscellaneous Control and Status R/W, WO, RO

0x4D CMD_SNIFF_PLBS1 Command Sniffer R/W

0x4E CMD_SNIFFA_PLBS1 Command Sniffer Address R/W

0x4F - Reserved -

Address Map

0x50 TMPL0_PLBS1_MAP Template Register 0 R/W

0x51 TMPL1_PLBS1_MAP Template Register 1 R/W

0x52 TMPL2_PLBS1_MAP Template Register 2 R/W

0x53 TMPL3_PLBS1_MAP Template Register 3 R/W
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DCRs for the Crossbar (0x20 to 0x33)

0x20: Interrupt Status Register (IST), Clear on Writes, Read Only

This register contains all the interrupt status bits of the two PLB slave interfaces, PLB 
master interface, and the crossbar (see Table 3-5). All register bits are cleared on writes, 
except those that are marked as read only (RO). Writing a 1 to a clear-on-write bit clears it. 
The read-only bits are cleared by writing to their corresponding source DCRs. For 
example, bit 7 is cleared by writing 0s to the PLBS 0 FIFO Error Status register.

Note: Even if a particular interrupt is masked, these status bits are still set if the error condition is 
detected. 

Table 3-4: List of DCRs for the PLB Master (MPLB)

Address Mnemonic Description Type

Configuration

0x54 CFG_PLBM Configuration Register R/W

0x55 - Reserved -

Status

0x56 FSEAR_U_PLBM
FPGA Logic Slave Error Address Register, upper 4 
bits

Clear on Write to 0x58

0x57 FSEAR_L_PLBM
FPGA Logic Slave Error Address Register, lower 32 
bits

Clear on Write to 0x58

0x58 FSESR_PLBM FPGA Logic Slave Error Status Register Clear on Write

0x59 MISC_ST_PLBM Miscellaneous Status Clear on Write to bit

0x5A PLBERR_ST_PLBM PLB Error Status Clear on Write to bit

Hardware Debug

0x5B SM_ST_PLBM State Machine States Register Read Only

0x5C MISC_PLBM Miscellaneous Control and Status R/W, Write Only

0x5D CMD_SNIFF_PLBM Command Sniffer R/W

0x5E CMD_SNIFFA_PLBM Command Sniffer Address R/W

0x5F - Reserved -

Table 3-5: Bit Definitions for the IST Register

Bits Field Type Default Description

0:2 Reserved - 000 Reserved

3 INT_CFG_ERR_S0 RO 0
Configuration or command error, PLBS0. See register 0x39 for 
further information.

4 INT_MIRQ_S0 RO 0 PLB MIRQ error, PLBS0

5 INT_MRDERR_S0 Clr on Wr 0
Read transaction error, PLBS0. See registers 0x36 through 0x38 
for further information.

6 INT_MWRERR_S0 Clr on Wr 0
Write transaction error, PLBS0. See registers 0x36 through 0x38 
for further information.
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7 INT_FIFO_ERR_S0 RO 0
FIFO error interrupt, PLBS0. See register 0x39 for further 
information.

8:10 Reserved - 000 Reserved

11 INT_CFG_ERR_S1 RO 0
Configuration or command error, PLBS1. See register 0x49 for 
further information.

12 INT_MIRQ_S1 RO 0 PLB MIRQ error, PLBS1

13 INT_MRDERR_S1 Clr on Wr 0
Read transaction error, PLBS1. See registers 0x46 through 0x48 
for further information.

14 INT_MWRERR_S1 Clr on Wr 0
Write transaction error, PLBS1. See registers 0x46 through 0x48 
for further information.

15 INT_FIFO_ERR_S1 RO 0
FIFO error interrupt, PLBS1. See register 0x49 for further 
information.

16 Reserved - 0 Reserved

17 INT_CFG_ERR_M RO 0
Configuration error, PLBM. See register 0x59 for further 
information.

18 INT_MIRQ_M RO 0 PLB MIRQ error, PLBM

19 INT_MRDERR_M Clr on Wr 0
Read transaction error, PLBM. See registers 0x56 through 0x58 
for further information.

20 INT_MWRERR_M Clr on Wr 0
Write transaction error, PLBM. See registers 0x56 through 0x58 
for further information.

21 INT_ARB_TOUT_M Clr on Wr 0 PLB Time-out error, PLBM

22 Reserved - 0 Reserved

23 Reserved - 0 Reserved

24 INT_FIFO_ERR_M RO 0
FIFO error interrupt, PLBM. See register 0x59 for further 
information.

25 INT_FIFO_ERR_XM RO 0
FIFO error, Crossbar for PLBM. See register 0x58 for further 
information.

26 INT_FIFO_ERR_MCI RO 0
FIFO error, Crossbar for MCI. See register 0x5D for further 
information.

27:31 Reserved - 0 Reserved

Table 3-5: Bit Definitions for the IST Register (Continued)

Bits Field Type Default Description
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0x21: Interrupt Mask Register (IMASK), R/W

This register contains the interrupt mask information (see Table 3-6). Clearing a bit to 0 
masks the interrupt generation from the corresponding interrupting source in register 
0x20.

0x23: Crossbar for PLB Master Arbitration Configuration Register (ARB_XBC), 
R/W

This register configures crossbar arbitration priority and mode operations (see Table 3-7). 
This register is initialized by embedded processor block attribute PPCM_ARBCONFIG. 
Arbitration priority values apply to fixed and round-robin arbitration only, with 4 
corresponding to the highest priority and 0 to the lowest priority. Values between 5 and 7 
are reserved and should not be used due to unpredictable behavior. The five device 

Table 3-6: Bit Definitions for the IMASK Register

Bits Field Default Description

0:2 Reserved 111 Reserved

3 M_INT_CFG_ERR_S0 1 Interrupt mask for configuration or command error, PLBS0

4 M_INT_MIRQ_S0 1 Interrupt mask for general error, PLBS0

5 M_INT_MRDERR_S0 1 Interrupt mask for read transaction error, PLBS0

6 M_INT_MWRERR_S0 1 Interrupt mask for write transaction error, PLBS0

7 M_INT_FIFO_ERR_S0 1 Interrupt mask for FIFO error, PLBS0

8:10 Reserved 111 Reserved

11 M_INT_CFG_ERR_S1 1 Interrupt mask for configuration or command error, PLBS1

12 M_INT_MIRQ_S1 1 Interrupt mask for general error, PLBS1

13 M_INT_MRDERR_S1 1 Interrupt mask for read transaction error, PLBS1

14 M_INT_MWRERR_S1 1 Interrupt mask for write transaction error, PLBS1

15 M_INT_FIFO_ERR_S1 1 Interrupt mask for FIFO error interrupt, PLBS1

16 Reserved 1 Reserved

17 M_INT_MPLB_ERR_M 1 Interrupt mask for configuration error, PLBM

18 M_INT_MIRQ_M 1 Interrupt mask for general error, PLBM

19 M_INT_MRDERR_M 1 Interrupt mask for read transaction error, PLBM

20 M_INT_MWRERR_M 1 Interrupt mask for write transaction error, PLBM

21 M_INT_ARB_TOUT_M 1 Interrupt mask for PLB time-out error, PLBM

22 Reserved 1 Reserved

23 Reserved 1 Reserved

24 M_INT_FIFO_ERR_M 1 Interrupt mask for FIFO error interrupt, PLBM

25 M_INT_FIFO_ERR_XM 1 Interrupt mask for FIFO error, Crossbar for PLBM

26 M_INT_FIFO_ERR_MCI 1 Interrupt mask for FIFO error, Crossbar for MCI

27:31 Reserved 5`b1 Reserved
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priority values must be mutually exclusive so that no two or more devices can have the 
same priority, otherwise there are unpredictable results.

0x24: Crossbar for PLB Master FIFO Overflow and Underflow Status Register 
(FIFOST_XBC), Clear on Writes

This register indicates the FIFO overflow and underflow status for the PLB master (see 
Table 3-8). Individual register bits are cleared by writing 1s to them. Bit 31 of the interrupt 
register is set if any of the FIFO overflow or underflow bit is set. None of these bits should 
ever be set under normal operating conditions.

Table 3-7: Bit Definitions for the ARB_XBC Register 

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0 Sync TAttribute (bit 7) enable, if set

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU) 
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead 

to unpredictable behavior)

Table 3-8: Bit Definitions for the FIFOST_XBC Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Indicates a write command queue overflow, when set

29 FIFO_UF_RCMDQ 0
Indicates a write command queue underflow, when 
set

30 FIFO_OF_WCMDQ 0 Indicates a read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Indicates a read command queue underflow, when set
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0x26: Crossbar for PLB Master Miscellaneous Control and Status Register 
(MISC_PLBM), R/W or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see 
Table 3-9). Read values for write-only bits are always 0s.

0x28: Crossbar for MCI Arbitration Configuration Register (ARB_XBM), R/W

This register configures crossbar arbitration priority and mode operations (see Table 3-10). 
This register is initialized by embedded processor block attribute MI_ARBCONFIG. 
Arbitration priority values apply to fixed and round-robin arbitration only with 4 
corresponding to the highest priority and 0 to the lowest priority. Values between 5 and 7 
are reserved and should not be used due to unpredictable behavior. The five device 
priority values must be mutually exclusive so that no two or more devices can have the 
same priority, otherwise unpredictable results could occur.

Table 3-9: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Read Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Write Command Queue

Table 3-10: Bit Definitions for the ARB_XBM Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28:29 Reserved 0 Reserved

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU) 
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead 

to unpredictable behavior)
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0x29: Crossbar for MCI FIFO Overflow and Underflow Status Register 
(FIFOST_XBM), Clear on Writes

This register indicates the FIFO overflow and underflow status for the MCI (see 
Table 3-11). Individual register bits are cleared by writing 1s to them. Bit 31 of the interrupt 
register is set if the FIFO overflow or underflow bit is set. None of the bits should ever be 
set under normal operating conditions.

0x2B: Crossbar for MCI Miscellaneous Control and Status Register (MISC_XBM), 
R/W or Write Only

This register contains miscellaneous control and status bits for the MCI (see Table 3-12). 
Read values for write-only bits are always 0s.

0x2D to 0x30: Crossbar Template Registers, R/W

There are four 32-bit template registers for the crossbar (see Table 3-13). Selection of one of 
the four registers for address mapping is done through the Template Selection Register. 
Each bit of a 32-bit register corresponds to 128 MByte address space for a total of 4 GB 
addressing. Traffic is routed to the MCI if the address is within the 128 MB address range 
that has the template bit set; otherwise the traffic is routed to the PLB Master. These 
registers are initialized by embedded processor block attributes 
XBAR_ADDRMAP_TMPL0 through XBAR_ADDRMAP_TMPL3.

Table 3-11: Bit Definitions for the FIFOST_XBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Write command queue overflow, when set

29 FIFO_UF_RCMDQ 0 Write command queue underflow, when set

30 FIFO_OF_WCMDQ 0 Read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Read command queue underflow, when set

Table 3-12: Bit Definitions for the MISC_XBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Read 
Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Write 
Command Queue

Table 3-13: Crossbar Template Registers

Address Mnemonic Default Description

0x2D TMPL0_XBAR_MAP 32’hFFFF_0000 Template Register 0 for Crossbar

0x2E TMPL1_XBAR_MAP 32’h0000_0000 Template Register 1 for Crossbar

0x2F TMPL2_XBAR_MAP 32’h0000_0000 Template Register 2 for Crossbar

0x30 TMPL3_XBAR_MAP 32’h0000_0000 Template Register 3 for Crossbar
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0x31: Template Selection Register (TMPL_SEL_REG), R/W

This register is the template selection register for specifying the address mapping template 
(see Table 3-14). There are 16 x 2-bit entries in this register corresponding to a 16 x 4-GB 
address space. Each two-bit field identifies which of the four TMPL*_XBAR_MAP 
registers are used to map crossbar addresses, which of the four TMPL*_PLBS0_MAP 
registers are used to enable address decoding on SPLB 0, and which of the four 
TMPL*_PLBS1_MAP registers are used to enable address decoding on SPLB 1. By default, 
all of these address template registers are configured so that template 0 controls all 
crossbar mapping and SPLB interface decoding for the lower 4 GB address space. Because 
EDK supports only the lower 4 GB space, there is normally no reason for users to use 
templates 1 through 3.

DCRs for PLB Slave 0, SPLB 0 (0x34 to 0x43)

0x34: PLB Slave 0 Configuration Register (CFG_PLBS0), R/W

This register configures PLB Slave 0 operation (see Table 3-15). This register is initialized 
by embedded processor block attribute PPCS0_CONTROL.

Table 3-14: Bit Definitions for the TMPL_SEL_REG Register

Bits Field Default Description

0:31 SEL 32’h3FFF_FFFF 16 2-bit values for template register selection

Table 3-15: Bit Definitions for the CFG_PLBS0 Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x36, 0x37, and 0x38) 
are locked. 

1 Reserved 0 Reserved

2 DMA1_EN 0
• 0: Disable DMA1
• 1: Enable DMA1

3 DMA0_EN 0
• 0: Disable DMA0
• 1: Enable DMA0

4:5 DMA0_PRI 00

DMA0 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA1_PRI 00

DMA1 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved
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9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 3-15: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description
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0x36: PLB Slave 0 Error Address Register (SEAR_U_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 3-16). The content is valid if bit 
0 of register 0x38 is set. A failed transaction corresponds to a command address mismatch 
or an illegal command. This register is also used by the command sniffer (see registers 
0x3D and 0x3E).

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining

• 0: Disables write address pipelining
• 1: Enables write address pipelining 

Cleared automatically when bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting

• 0: No write posting (early data acknowledge)
• 1: Enables write posting 

Bit 27 is cleared when this bit is 0. Only single transactions are supported 
when write posting is disabled. The interrupt status flag (bit 3 of Crossbar 
register 0x20) is set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0 Log ABUS address mismatch error, when set (see bit 2 in register 0x39)

31 CMD_CHK_DBL 0 Disable command (size) check, when set (see bits 0 and 1 in register 0x39) 

Table 3-15: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description
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0x37: PLB Slave 0 Error Address Register (SEAR_L_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the lower 32-bit 
address of 36-bit address of a failed transaction (see Table 3-17). The content is valid if bit 0 
of register 0x38 is set. A failed transaction corresponds to a command address mismatch 
or an illegal command. This register is also used by the command sniffer (see registers 
0x3D and 0x3E).

0x38: PLB Slave 0 Error Status Register (SESR_PLBS0), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 3-18). A 
failed transaction corresponds to a command address mismatch or an illegal command. 
The slave interface only supports the following commands: 

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only 
single transfers are supported, any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x3D and 0x3E).

The content is valid when bit 0 is set. See also registers 0x36 and 0x37. This register is 
cleared by writing to it. When bit 0 of 0x34 is set, this register is only updated when bit 0 
becomes 0. When bit 0 of 0x34 is not set, this register is updated every time an error or sniff 
event is detected.

Table 3-16: Bit Definitions for the SEAR_U_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-17: Bit Definitions for the SEAR_L_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-18: Bit Definitions for the SESR_PLBS0 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is 
supported.
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0x39: PLB Slave 0 Miscellaneous Status Register (MISC_ST_PLBS0), Clear on 
Writes

This register contains miscellaneous status bits for PLB Slave 0 (see Table 3-19). Individual 
register bits are cleared by writing 1s to those bits that need to be cleared. Bit 3 of the 
Interrupt Status register is set if the configuration error bit, the illegal command bit, or the 
address mismatch error bit is set. Bit 7 of the Interrupt Status register is set if any FIFO 
overflow or underflow bit is set. None of these bits should ever be set under normal 
operating conditions.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-18: Bit Definitions for the SESR_PLBS0 Register (Continued)

Bits Field Default Description

Table 3-19: Bit Definitions for the MISC_ST_PLBS0 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write 
posting is configured (see register 0x34) but a line or a burst transfer is 
detected.

1 ILLEGAL_CMD 0
Illegal command detected. The supported commands include: size = 
4’h0, 4’h1, 4’h2, 4’h3, 4’hA, 4’hB, or 4’hC. Qualified by bit 31 of 
register 0x34.

2 ADDR_ERR 0 Address mismatch error. Qualified by bit 30 of register 0x34.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred
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0x3A: PLB Slave 0 PLB Error Status Register (PLBERR_ST_PLBS0), Clear on 
Writes

This register contains MIRQ status bits for PLB Slave 0 (see Table 3-20). Individual register 
bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB MIRQ 
status bits, which can be set due to either the propagation of the slave MIRQ status or 
conversion of slave MwrErr into MIRQ because of write posting. Refer to the PLB 
Architecture Specification [Ref 4] for more information on the MIRQ signal.

0x3B: PLB Slave 0 State Machine States Register (SM_ST_PLBS0), Read Only

This register indicates the states of the PLB Slave 0 state machine (see Table 3-21). This 
register is reserved for internal use.

0x3C: PLB Slave 0 Miscellaneous Control and Status Register (MISC_PLBS0), 
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 0 (see Table 3-22). 
Write-only bits always read as 0s.

Table 3-20: Bit Definitions for the PLBERR_ST_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

29 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

30 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

31 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

Table 3-21: Bit Definitions for the SM_ST_PLBS0 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-22: Bit Definitions for the MISC_PLBS0 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS0 is in 64-bit mode
• 1: PLBS0 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue
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0x3D: PLB Slave 0 Command Sniffer Register (CMD_SNIFF_PLBS0), R/W

This register contains the description of a command (the address is specified in 0x3E) that 
is to be monitored (see Table 3-23). The result is placed in registers 0x38 through 0x3A. 
This register is used for debugging purposes.

0x3E: PLB Slave 0 Command Sniffer Address Register (CMD_SNIFFA_PLBS0), 
R/W

This register, used in conjunction with register 0x3D, contains the address for command 
sniffing (see Table 3-24).

Table 3-23: Bit Definitions for the CMD_SNIFF_PLBS0 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’b0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-24: Bit Definitions for the CMD_SNIFFA_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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0x40 to 0x43: PLB Slave 0 Template Registers, R/W

Table 3-25 lists the set of four 32-bit template registers for PLB Slave 0. Selection of one of 
four registers for address mapping is done through the Template Selection Register. Each 
bit of a 32-bit register corresponds to a 128 MB address space for a 4 GB addressing. Set a 
bit to 1 to enable the corresponding 128 MB address space. These registers are initialized by 
embedded processor block attributes PPCS0_ADDRMAP_TMPL0 through 
PPCS0_ADDRMAP_TMPL3.

DCRs for PLB Slave 1, SPLB 1 (0x44 to 0x53)

0x44: PLB Slave 1 Configuration Register (CFG_PLBS1), R/W

This register configures PLB Slave 1 operation (see Table 3-26). This register is initialized 
by embedded processor block attribute PPCS1_CONTROL.

Table 3-25: PLB Slave 0 Template Registers

Address Mnemonic Default Description

0x40 TMPL0_PLBS0_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 0

0x41 TMPL1_PLBS0_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 0

0x42 TMPL2_PLBS0_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 0

0x43 TMPL3_PLBS0_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 0

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x46, 0x47, and 0x48) 
are locked.

1 Reserved 0 Reserved

2 DMA3_EN 0
• 0: Disable DMA3
• 1: Enable DMA3

3 DMA2_EN 0
• 0: Disable DMA2
• 1: Enable DMA2

4:5 DMA2_PRI 00

DMA2 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA3_PRI 00

DMA3 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved
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9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description
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0x46: PLB Slave 1 Error Address Register (SEAR_U_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 3-27). The content is valid if 
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address 
mismatch or an illegal command. This register is also used by the command sniffer (see 
registers 0x4D and 0x4E).

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfer.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically if bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 27 is cleared if this bit is 0. Only single transactions are supported if write 
posting is disabled. Interrupt status flag (bit 11 of Crossbar register 0x20) is 
set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0 Log ABUS address mismatch error, if set (see bit 2, register 0x49)

31 CMD_CHK_DBL 0 Disable command (size) check, if set (see bits 0 and 1, register 0x49)

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description
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0x47: PLB Slave 1 Error Address Register (SEAR_L_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the lower 32-bit 
address of the 36-bit address of a failed transaction (see Table 3-28). This content is valid if 
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address 
mismatch or an illegal command. This register is also used by the command sniffer (see 
registers 0x4D and 0x4E).

0x48: PLB Slave 1 Error Status Register (SESR_PLBS1), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 3-29). A 
failed transaction corresponds to a command address mismatch or an illegal command. 
The slave interface only supports the following commands: 

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only 
single transfers are supported, and any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x4D and 0x4E). 

The content is valid if bit 0 is set. See also registers 0x46 and 0x47. This register is cleared 
by writing to it. If bit 0 of register 0x44 is set, this register is only updated when bit 0 
becomes 0. If bit 0 of register 0x44 is not set, this register is updated every time an error or 
sniff event is detected.

Table 3-27: Bit Definitions for the SEAR_U_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-28: Bit Definitions for the SEAR_L_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-29: Bit Definitions for the SESR_PLBS1 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is 
supported.
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0x49: PLB Slave 1 Miscellaneous Status Register (MISC_ST_PLBS1), Clear on 
Writes

This register contains miscellaneous status bits for PLB Slave 1 (see Table 3-30). Individual 
register bits are cleared by writing 1s to those bits that need to be cleared. Bit 11 of the 
Interrupt Status register is set if the configuration error bit, the illegal command bit, or the 
address mismatch error bit is set. Bit 15 of the Interrupt Status register is set if any FIFO 
overflow or underflow bit is set. None of these bits should ever be set under normal 
operating conditions.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-30: Bit Definitions for the MISC_ST_PLBS1 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0

When this bit is set, a write posting configuration 
error occurred. No write posting is configured (see 
register 0x44) but a line or a burst transfer is 
detected.

1 ILLEGAL_CMD 0

Illegal command detected. The supported 
commands include: size = 4’h0, 4’h1, 4’h2, 4’h3, 
4’hA, 4’hB, or 4’hC. Qualified by bit 31 of register 
0x44.

2 ADDR_ERR 0
Address mismatch error. Qualified by bit 30 of 
register 0x44.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0
When this bit is set, a Read Data Queue overflow 
occurred

19 FIFO_UF_RDAT 0
When this bit is set, a Read Data Queue underflow 
occurred

20 FIFO_OF_WDAT 0
When this bit is set, a Write Data Queue overflow 
occurred

21 FIFO_UF_WDAT 0
When this bit is set, a Write Data Queue underflow 
occurred

22 FIFO_OF_SRDQ 0
When this bit is set, a Slave Read Queue overflow 
occurred

23 FIFO_UF_SRDQ 0
When this bit is set, a Slave Read Queue underflow 
occurred

24 FIFO_OF_SWRQ 0
When this bit is set, a Slave Write Queue overflow 
occurred

Table 3-29: Bit Definitions for the SESR_PLBS1 Register (Continued)

Bits Field Default Description
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0x4A: PLB Slave 1 PLB Error Status Register (PLBERR_ST_PLBS1), Clear on 
Writes

This register contains the MIRQ status bits for PLB Slave 1 (see Table 3-31). Individual 
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB 
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status 
or conversion of slave MwrErr into MIRQ because of write posting.

0x4B: PLB Slave 1 State Machine States Register (SM_ST_PLBS1), Read Only

This register indicates the states of the state machine for PLB Slave 1 (see Table 3-32). This 
register is reserved for internal use.

25 FIFO_UF_SWRQ 0
When this bit is set, a Slave Write Queue underflow 
occurred

26 FIFO_OF_MRDQ 0
When this bit is set, a Master Read Queue overflow 
occurred

27 FIFO_UF_MRDQ 0
When this bit is set, a Master Read Queue underflow 
occurred

28 FIFO_OF_MWRQ 0
When this bit is set, a Master Write Queue overflow 
occurred

29 FIFO_UF_MWRQ 0
When this bit is set, a Master Write Queue underflow 
occurred

30 FIFO_OF_INCMD 0
When this bit is set, an Input Command Queue 
overflow occurred

31 FIFO_UF_INCMD 0
When this bit is set, an Input Command Queue 
underflow occurred

Table 3-31: Bit Definitions for the PLBERR_ST_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 3-32: Bit Definitions for the SM_ST_PLBS1 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-30: Bit Definitions for the MISC_ST_PLBS1 Register (Continued)

Bits Field Default Description
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0x4C: PLB Slave 1 Miscellaneous Control and Status Register (MISC_PLBS1), 
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 1 (see Table 3-33). 
Write-only bits always read as 0s.

0x4D: PLB Slave 1 Command Sniffer Register (CMD_SNIFF_PLBS1), R/W

This register contains the description of a command (whose address is specified in register 
0x4E) that is to be monitored (see Table 3-34). The results are placed in registers 0x48 
through 0x4A. This register is used for debugging purposes.

Table 3-33: Bit Definitions for the MISC_PLBS1 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS1 is in 64-bit mode
• 1: PLBS1 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only
Write a 1 to this bit to reset the 
Read Data Queue

26 FIFO_WDAT_RST 0 Write Only
Write a 1 to this bit to reset the 
Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Master Write Queue

31 FIFO_INCMD_RST 0 Write Only
Write a 1 to this bit to reset the 
Input Command Queue

Table 3-34: Bit Definitions for the CMD_SNIFF_PLBS1 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture disabled
• 1: Command command enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched
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0x4E: PLB Slave 1 Command Sniffer Address (CMD_SNIFFA_PLBS1), R/W

This register, used in conjunction with register 0x4D, contains the address (lower 32 bits) 
for command sniffing (see Table 3-35).

0x50 to 0x53: PLB Slave 1 Template Registers, R/W

Table 3-36 lists the set of four 32-bit template registers for PLB Slave 1. Selection of one of 
four registers for address mapping is done through the Template Selection Register. Each 
bit of a 32-bit register corresponds to 128 MB address space for a total of 4 GB addressing. 
Set a bit to 1 to enable the corresponding 128 MB address space. These registers are 
initialized by embedded processor block attributes PPCS1_ADDRMAP_TMPL0 through 
PPCS1_ADDRMAP_TMPL3.

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0

Enable master ID match, if set

• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-35: Bit Definitions for the CMD_SNIFFA_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32-bit of a 36-bit address

Table 3-36: PLB Slave 1 Template Registers

Address Mnemonic Default Description

0x50 TMPL0_PLBS1_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 1

0x51 TMPL1_PLBS1_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 1

0x52 TMPL2_PLBS1_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 1

0x53 TMPL3_PLBS1_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 1

Table 3-34: Bit Definitions for the CMD_SNIFF_PLBS1 Register (Continued)

Bits Field Default Description
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DCRs for PLB Master, MPLB (0x54 to 0x5F)

0x54: PLB Master Configuration Register (CFG_PLBM), R/W

This register configures PLB Master operation (see Table 3-37). This register is initialized 
by embedded processor block attribute PPCM_CONTROL.

Table 3-37: Bit Definitions for the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x56, 0x57, and 
0x58) are locked.

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved (can lead to unexpected behavior, if set to 1).

26 SL_ETERM_MODE 0
When this bit is set, slave early burst termination is supported. Bits 28 
and 29 are cleared automatically when this bit is set. This mode 
prevents R/W command re-ordering.

27 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30 is 
0 to prevent posted write data.

30 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported 
if write posting is disabled. Interrupt status flag (bit 17 of Crossbar 
register 0x20) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.
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0x56: FPGA Logic Slave Error Address Register (FSEAR_U_PLBM), Clear on 
Writes

This register is cleared by writing to register 0x58. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 3-38). The content is valid if bit 
0 of register 0x58 is set. A failed transaction corresponds to one of the following 
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This 
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x57: FPGA Logic Slave Error Address Register (FSEAR_L_PLBM), Clear on 
Writes

This register is cleared by writing to register 0x58. This register captures the lower 32-bit 
address of a 36-bit address of a failed transaction (see Table 3-39). The content is valid if 
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following 
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This 
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x58: FPGA Logic Slave Error Status Register (FSESR_PLBM), Clear on Writes

This register is cleared by writing to it. This register captures the transaction qualifiers of a 
failed transaction (see Table 3-40). A failed transaction corresponds to one of the following 
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. 

This register is also used by the command sniffer (see registers 0x5D – 0x5E).

The content is valid if bit 0 is set. See also registers 0x56 and 0x57. If bit 0 of register 0x54 
is set, this register is only updated when bit 0 becomes 0. If bit 0 of register 0x54 is not set, 
the register is updated every time an error or sniff event is detected.

Table 3-38: Bit Definitions for the FSEAR_U_PLBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-39: Bit Definitions for the FSEAR_L_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-40: Bit Definitions for the FSESR_PLBM Register

Bits Field Default Description

0 VLD 0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 0 M_lockErr to the PLB slave

2 PLBS_DMA 0
• 1: Command from PLB slave 0 or 1
• 0: Command from a DMA engine. Value is only valid if 

MID is 3 or 4.
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0x59: PLB Master Miscellaneous Status Register (MISC_ST_PLBM), Clear on 
Writes

This register contains miscellaneous status bits for the PLB master (see Table 3-41). 
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 17 
of the Interrupt Status register is set if either or both of the configuration error bits are set. 
Bit 24 of the Interrupt Status register is set if any FIFO overflow or underflow bit is set. 
None of these bits should ever be set under normal operating conditions.

3:5 MID 3’b0

Master ID.

• 000: ICUR
• 001: DCUW
• 010: DCUR
• 011: PLBS0
• 100: PLBS1

6:7 SSIZE 2’b0 Slave size (00, 01, or 10). 11 indicates address time-out.

8:10 TYPE 3’b0 PLB Type. Only 000 for memory transfers is supported.

11 RNW 0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-40: Bit Definitions for the FSESR_PLBM Register (Continued)

Bits Field Default Description

Table 3-41: Bit Definitions for the MISC_ST_PLBM Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write 
posting is configured (see register 0x54) but a line or a burst transfer is 
detected.

1 ETERM_CFG_ERR 0
When this bit is set, a slave early burst termination configuration error 
occurred. Early termination is not configured (see register 0x54), but 
early termination is detected.

2:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred
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0x5A: PLB Master PLB Error Status Register (PLBERR_ST_PLBM), Read Only or 
Clear on Writes

This register contains MIRQ status bits for the PLB master (see Table 3-42). Bits 19:31 are 
PLB MIRQ status bits that can be set due to either the propagation of the slave MIRQ status 
or conversion of slave MwrErr into MIRQ because of write posting. 

• If the slave PLB MIRQ signal, which is latched at the slave, is set, all MIRQ bits in the 
register are set. They are read only, so they are cleared when the PLB MIRQ is cleared. 

• If the slave PLB MwrErr, which is a pulse, is set and write posting is enabled, one of 
the MIRQ bits is set. In this case, the register bit is cleared by writing a 1 to the bit. 

Bits 19 and 20 correspond to MIRQ errors for writes that originated from the DMA engines 
in SPLB0/1. 

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 3-41: Bit Definitions for the MISC_ST_PLBM Register (Continued)

Bits Field Default Description

Table 3-42: Bit Definitions for the PLBERR_ST_PLBM Register

Bits Field Default Description

0:18 Reserved 0 Reserved

19 PLBS0_DMA_MIRQ 0 PLB Slave 0, DMA MIRQ

20 PLBS1_DMA_MIRQ 0 PLB Slave 1, DMA MIRQ

21 C440_MIRQ_ICUR 0 Processor ICUR MIRQ

22 C440_MIRQ_DCUW 0 Processor DCUW MIRQ

23 C440_MIRQ_DCUR 0 Processor DCUR MIRQ

24 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

25 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

26 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

27 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ
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0x5B: PLB Master State Machine States Register (SM_ST_PLBM), Read Only

This register indicates the states of the state machine for the PLB Master (see Table 3-43). 
This register is reserved.

0x5C: PLB Master Miscellaneous Control and Status Register (MISC_PLBM), R/W 
or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see 
Table 3-44). Write-only bits always read as 0s. 

0x5D: PLB Master Command Sniffer Register (CMD_SNIFF_PLBM), R/W

This register contains the description of a command (whose address is specified in register 
0x5E) that is to be monitored (see Table 3-45). The results are placed in registers 0x58 
through 0x5A. This register is used for debugging purposes.

Table 3-43: Bit Definitions for the SM_ST_PLBM Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-44: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0 Reserved 0 Write Only Reserved

1:2 FLUSH_MODE 00 R/W

Flush mode select

• 00: Automatic addrAck time-out flush
• 01 - 10: Reserved
• 11: No flush

3 Reserved 0 R/W Reserved

4:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

Table 3-45: Bit Definitions for the CMD_SNIFF_PLBM Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched
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0x5E: PLB Master Command Sniffer Address (CMD_SNIFFA_PLBM), R/W

This register, used in conjunction with register 0x5D, contains the ABUS address (lower 32 
bits) for command sniffing (see Table 3-46).

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 SPLBNDMA_EN 0
• 0: Disable SPLBndma match
• 1: Enable SPLBndma match

29 SPLB_MID_EN 0
• 0: Disable SPLB_MID match
• 1: Enable SPLB_MID match

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-45: Bit Definitions for the CMD_SNIFF_PLBM Register (Continued)

Bits Field Default Description

Table 3-46: Bit Definitions for the CMD_SNIFFA_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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Chapter 4

PLB Interface

MPLB Interface
The primary purpose of the crossbar MPLB interface is to provide access from the 
processor to PLB-based memory (if any) and non-memory peripherals. The MPLB also 
allows DMA access from processor block LocalLink interfaces to PLB-based memory (if 
any). The MPLB also allows access from PLB-based masters outside the embedded 
processor block in Virtex-5 FXT FPGAs, connected via one of the SPLB interfaces, to PLB-
based memories and non-memory peripherals, which are also to be shared with the 
processor. See “PLB Interconnection Techniques,” page 124.

The crossbar MPLB interface is a 128-bit wide master on the PLB. The PLB to which it is 
connected can be populated by slaves with any mixture of data widths and functional 
capabilities. However, care should be taken that burst and cache-line transfer requests are 
not directed at slave peripherals that do not support burst or cache-line transfers. The 
MPLB interface does not automatically translate burst or cache-line transfers into single-
unit transfers to satisfy the limitations of such slaves. Therefore, all pages in the processor’s 
MMU that contain addresses of such slaves should be designated as cache-inhibited.

Transaction Types
The MPLB can request the following transaction types allowed under the PLB Architecture 
Specification [Ref 4]. 

• Single Unit

The MPLB can produce single-unit transfers of unaligned data from 1 to 16 bytes. 
These can be requested by the processor’s data load/store unit when accessing cache-
inhibited spaces, or can originate from PLB masters connected to the SPLB. They also 
can be automatically generated at the head and/or tail of burst transfers, originating at 
the crossbar SPLB or DMA (LocalLink) interfaces, that begin and/or end on unaligned 
addresses. All single-unit transfers of any size that can be issued by the MPLB interface 
are compatible with all slaves of any size and capability range. 

• Bursts

The MPLB can produce fixed length bursts of 2 to 16 quadwords. The actual number of 
data beats used to transfer the entire burst depends on the size of the targeted slave (up 
to 32 beats for 64-bit slaves, and up to 64 beats for 32-bit slaves). Burst transfers 
typically originate at the crossbar’s SPLB or DMA interfaces. (The processor’s 
instruction fetch and data load/store units never request burst-type transfers.) The 
crossbar can be configured to limit the maximum size, in quadwords, of all burst 
transfers through the crossbar to be 16, 8 (default), 4, or 2. Any burst request received 
by the crossbar that exceeds the configured limit is broken into multiple bursts of up to 
the maximum size. Bursts produced by the MPLB interface are compatible with all 
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slaves that support burst transfers, provided that any data FIFO in the slave required 
to buffer read or write data is large enough to handle the maximum burst length that 
the crossbar is configured to produce.

• Cache Lines

The MPLB can produce transfers of aligned 8-word (32-byte) cache lines. Typically, 
only the processor requests cache-line transfers. The processor instruction fetch unit 
requests only 8-word cache-line transfers. The processor data load/store unit can 
request either 8-word (typically) or 4-word cache-line transfers. Cache-line requests 
received by the crossbar SPLB interface are also propagated through the crossbar. The 
targeted slave must return cache-line reads in an aligned sequential order. Cache-line 
reads can be returned beginning with either the first word of the cache line or the 
quadword containing the target word, and must always proceed sequentially through 
the remainder of the cache line, incrementing according to the size of the data units 
being transferred, as shown in Table 4-1. Cache-line writes are always aligned to the 
beginning of the cache line. All cache-line transfers produced by the MPLB interface 
are compatible with all slaves that support cache-line transfers.

The MPLB converts 4-word cache lines into single transfers, so that the MPLB does not 
send out 4-word cache line commands to PLB slaves. Furthermore, the MPLB 
automatically adjusts the cache-line read address to a quadword boundary. 

In the example in Table 4-1, the processor requests an 8-word cache-line read from a 
64-bit slave on the MPLB interface. The least-significant five bits of the physical 
address requested by the processor (Abus[27:31]) are “11100”, meaning that the target 
word is the seventh word of the cache line. The embedded processor block crossbar 
always adjusts the target address so that it is quadword aligned. Therefore, in the 
transaction requested on the MPLB interface, Abus[27:31] = “10000”. The target word 
originally requested by the processor is shaded in the table.

Table 4-1: Allowable Cache-Line Read Data Ordering on the MPLB

Data Beat
Doubleword Returned by Slave (Least-Significant Five Address Bits)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5  Byte 6 Byte 7

Alternative 1: Cache-Line Aligned

1 00000 00001 00010 00011 00100 00101 00110 00111

2 01000 01001 01010 01011 01100 01101 01110 01111

3 10000 10001 10010 10011 10100 10101 10110 10111

4 11000 11001 11010 11011 11100 11101 11110 11111

Alternative 2: Target Word First

1 10000 10001 10010 10011 10100 10101 10110 10111

2 11000 11001 11010 11011 11100 11101 11110 11111

3 00000 00001 00010 00011 00100 00101 00110 00111

4 01000 01001 01010 01011 01100 01101 01110 01111
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MPLB Interface Features
The MPLB can operate at an integer 1:N clock ratio with respect to the crossbar 
interconnect clock (CPMINTERCONNECTCLK), where 1 ≤N ≤16.

The MPLB never prematurely terminates a burst. If the originating PLB master 
prematurely terminates a burst (the processor never generates burst type transfers), the 
command translation process in the SPLB converts that to a fixed-length burst or a single 
or a mix of fixed-length bursts and single transfers.

When a soft PLB slave does not respond to an MPLB transfer request, the soft arbiter sends 
the time-out signal to the MPLB, causing the command to be flushed. For a time-out write 
command, the MPLB flushes the command and the associated write data, and a write error 
signal or MIRQ propagates back to the originating master. For a time-out read command, 
the MPLB flushes the command and generates dummy read data back to the originating 
master with the read error signal asserted.

For all transactions targeting narrower slaves (32- or 64-bit native data width), the MPLB 
performs the required data steering to accept (read) or present (write) data in the byte lanes 
expected by the slave. For single-unit transfers targeting narrower slaves in which the 
number of enabled byte lanes exceeds the native width of the slave (as indicated by 
PLB_MSsize), the MPLB automatically generates the required conversion cycles (issues 
subsequent bus requests) to complete the originally requested transfer. 

The MPLB fully supports address pipelining. If acknowledged, the MPLB continues to 
issue up to four read requests and four write requests onto the PLB, as queued up by the 
crossbar. The MPLB interface can be configured to disable address pipelining.

The MPLB supports overlapped read and write transfers. In other words, a read request 
that is acknowledged while a prior write data transfer is in progress can result in read data 
being transferred over the bus concurrently with write data and vice-versa.

The MPLB supports a Sync control signal, which is specific to the crossbar. The Sync signal 
is mapped to the PLB signal TAttribute[7], which is set by the processor when Storage 
Attribute “U3” is set in the TLB for the page addressed by the transfer. When asserted by 
any master targeting the MPLB (and provided the MPLB is configured to enable the Sync 
feature), the Sync signal causes the crossbar to block subsequent MPLB transfers until the 
target slave deasserts its MBusy signal back to the MPLB master. Also, the crossbar 
propagates the slave's MBusy signal back to the originating master until deasserted by the 
slave. This allows masters to ensure that the transaction (such as a posted write) is actually 
completed by the slave before issuing subsequent transfers. Without the Sync signal, 
MBusy is normally deasserted to the originating master as soon as the transfer completes 
on the MPLB.
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MPLB Interface Signals
Table 4-2 summarizes the MPLB Interface signals in alphabetical order.

Table 4-2: MPLB Interface Signals

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description

CPMPPCMPLBCLK PLB_Clk I 1

This clock synchronizes the MPLB interface 
to the connected PLB arbiter. The MPLB 
can operate at an integer 1:N clock ratio 
with respect to the crossbar interconnect 
clock (CPMINTERCONNECTCLK), 
where 1 ≤N ≤16.

PLBPPCMADDRACK PLB_MAddrAck I 0

The slave asserts this signal to indicate that 
it has acknowledged the address and will 
latch the address and all transfer qualifiers 
at the end of the current clock cycle.

PLBPPCMMBUSY PLB_MBusy I 0

The slave asserts this signal to indicate that 
the slave is busy performing a read or a 
write transfer or has a read or write 
transfer pending that was initiated by the 
MPLB interface. This signal is propagated 
back to the originating master until the 
slave deasserts it (if the Sync signal was 
asserted at the time of the request) or until 
the current transfer completes (if Sync 
was not asserted; see M_TAttribute[7]).

PLBPPCMMIRQ PLB_MIRQ I 0

The slave asserts this signal to indicate that 
it encountered an event that it has deemed 
important to the master. MIRQ is generally 
used to indicate an error condition that is 
not associated with a read or write transfer 
currently in progress. Propagated back to 
the originating master, if known; otherwise 
broadcast to all PLB masters connected to 
the crossbar (including the processor).

PLBPPCMMRDERR PLB_MRdErr I 0

The slave asserts this signal to indicate that 
it encountered an error during a read 
transfer that was initiated by this master, 
typically a transfer still in progress. 
Propagated back to the originating master.

PLBPPCMMWRERR PLB_MWrErr I 0

The slave drives this input to indicate that it 
encountered an error during a write transfer 
that was initiated by this master, typically a 
transfer still in progress. Propagated back to 
the originating master if the transfer is still 
in progress (not posted); otherwise MIRQ is 
sent back to the master.
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PLBPPCMRDBTERM PLB_MRdBTerm I 0

The slave asserts this signal to indicate to a 
master that the current burst read transfer in 
progress is to be terminated following the 
next read data beat. 

PLBPPCMRDDACK PLB_MRdDAck I 0

The slave asserts this signal during a read 
transfer to indicate that the data on the 
Sl_rdDBus bus is valid and must be latched 
at the end of the current clock cycle.

PLBPPCMRDDBUS[0:127] PLB_MRdDBus [0:127] I x 128-bit data bus used to transfer data from a 
slave to a master during a PLB read transfer.

PLBPPCMRDPENDPRI[0:1] PLB_rdPendPri[0:1] I x

Not used by the embedded processor block 
in Virtex-5 FPGAs. The PLB arbiter drives 
these signals, which are valid when the 
PLB_rdPendReq signal is asserted. These 
signals indicate the highest priority of any 
active read request input from all masters 
attached to the PLB or a pipelined read 
transfer that has been acknowledged and is 
pending.

PLBPPCMRDPENDREQ PLB_rdPendReq I 0

Not used by the embedded processor block 
in Virtex-5 FPGAs. The PLB arbiter asserts 
this signal to indicate that a master has a 
read request pending on the PLB or a 
secondary read transfer has been 
acknowledged and is pending.

PLBPPCMRDWDADDR[0:3] PLB_MRdWdAddr[0:3] I 0

The slave drives this bus to indicate the 
relative word address within the cache line 
of the first word of the data unit currently 
being transferred as part of a requested 
cache-line read transfer. Slaves are required 
to respond to line reads by returning data in 
an aligned sequential order. Cache-line 
reads may be returned beginning either 
with the first word of the cache line or the 
data unit (word, doubleword or quadword 
aligned, depending on the slave’s native 
data width) containing the target word. 
These reads must always proceed 
sequentially through the remainder of the 
cache line, incrementing according to the 
size of the data units being transferred.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description
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PLBPPCMREARBITRATE PLB_MRearbitrate I 0

The slave asserts this signal to indicate that 
it cannot perform the currently requested 
transfer at this time, and it requires the 
master to temporarily deassert its request 
and the PLB arbiter to re-arbitrate the bus. 
The crossbar MPLB master always 
subsequently re-requests the same 
command. It does not issue queued 
commands out of sequence.

PLBPPCMREQPRI[0:1] PLB_reqPri[0:1] I x

Not used by the embedded processor block 
in Virtex-5 FPGAs. The PLB arbiter drives 
these signals, which are valid any time the 
PLB_rdPendReq or PLB_wrPendReq 
signals are asserted. These signals indicate 
the priority of the current request that the 
PLB arbiter has granted and is gating to the 
slaves.

PLBPPCMSSIZE[0:1] PLB_MSSize[0:1] I 1

The slave asserts this signal to indicate its 
native data width, which also indicates the 
maximum size of the data unit that can be 
transferred during each data beat on the 
bus. 

• 00: 32 bits
• 01: 64 bits
• 10: 128 bits
• 11: Illegal

PLBPPCMTIMEOUT PLB_MTimeout I 0

The PLB arbiter drives this signal to each 
master. This signal is asserted in the 17th 
clock cycle after the assertion of 
PLB_PAValid, if no response is received 
from any slave. The crossbar then sends 
MIRQ back to the originating master.

PLBPPCMWRBTERM PLB_MWrBTerm I 0

The slave asserts this signal to indicate that 
the current burst write transfer in progress 
is to be terminated following the next write 
data beat.

PLBPPCMWRDACK PLB_MWrDAck I 0

The slave asserts this signal during a write 
transfer to indicate that the data currently 
on the PLB_wrDBus bus is no longer 
required by the slave (that is, the slave has 
either already latched the data or will latch 
the data at the end of the current clock 
cycle).

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 93
UG200 (v1.6) January 20, 2009

MPLB Interface
R

PLBPPCMWRPENDPRI[0:1] PLB_wrPendPri[0:1] I x

Not used by the embedded processor block 
in Virtex-5 FPGAs. The PLB arbiter drives 
these signals, which are valid any time the 
PLB_wrPendReq signal is asserted. These 
signals indicate the highest priority of any 
active write request input from all masters 
attached to the PLB or a pipelined write 
transfer that has been acknowledged and is 
pending.

PLBPPCMWRPENDREQ PLB_wrPendReq I 0

Not used by the embedded processor block 
in Virtex-5 FPGAs. The PLB arbiter asserts 
this signal to indicate that a master has a 
write request pending on the PLB or a 
secondary write transfer has been 
acknowledged and is pending.

PPCMPLBABORT M_abort O  
The MPLB interface never asserts this 
signal.

PPCMPLBABUS[0:31] M_ABus[0:31] O  

32-bit starting address for the currently 
requested transfer. This bus is valid while 
M_request is active. For single-unit 
transfers, this bus indicates the address of 
the first enabled byte lane. For cache-line 
reads, this bus indicates the target word that 
should be returned first (optimally) when 
reading the line containing the address.

PPCMPLBBE[0:15] M_BE[0:15] O  

For single-unit transfers, these signals act as 
byte enables to identify which bytes of the 
target being addressed are to be read from 
or written to. Each bit corresponds to a byte 
lane on the read or write data bus. For burst 
transfers, BE[0:3] indicates the number of 
data units of the requested size to be read or 
written, ranging from 0001 (2 units) to 
1111 (16 units). It will never produce 0000 
on BE[0:3] or a non-zero value on BE[4:15] 
for a burst transfer. This bus is not used 
during cache-line transfers (all zeros). This 
bus is valid while M_request is active. Due 
to command translation in the crossbar, the 
M_BE outputs do not necessarily reflect the 
PLB_BE signals received from the 
originating master.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description
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PPCMPLBBUSLOCK M_busLock O  

The current master can use the busLock 
signal to lock bus arbitration and force the 
PLB arbiter to continue to grant the bus to 
that master and ignore all other requests 
that are pending. This signal is propagated 
from the originating master.

PPCMPLBLOCKERR M_lockErr O  

The master asserts this signal to indicate 
whether or not the slave must lock the Slave 
Error Address Register (SEAR) and the 
Slave Error Status Register (SESR). This 
signal is propagated from the originating 
master.

PPCMPLBMSIZE[0:1] M_MSize[0:1] O

These signals output a constant value (10) 
produced by the PPC440 wrapper to 
indicate that the MPLB interface is a 128-bit 
master.

PPCMPLBPRIORITY[0:1] M_priority[0:1] O  

The master drives these signals to indicate 
to the PLB arbiter the priority of the 
master’s request. These signals are valid 
while M_request is active.

PPCMPLBRDBURST M_rdBurst O  

The master asserts this signal to indicate to 
the PLB arbiter that a burst read transfer is 
in progress. This signal is deasserted during 
the last data beat of the burst, as determined 
by the value of BE[0:3] at the time of the 
request.

PPCMPLBREQUEST M_request O  
The master asserts this signal to request a 
data transfer across the PLB.

PPCMPLBRNW M_RNW O  

This signal, which is driven by the master, is 
used to indicate whether the request is for a 
read (High) or a write (Low) transfer. This 
signal is valid while M_request is active.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description
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PPCMPLBSIZE[0:3] M_size[0:3] O  

This encoded value indicates the size and 
type of the requested transfer. Values 
produced by the MPLB are: 

• 0000: Single-unit transfer of 1 to 16 
bytes, as determined by BE[0:15]

• 0001: 4-word cache line
• 0010: 8-word cache line
• 0011: 16-word cache line (only if 

requested on SPLB by non Xilinx master)
• 1100: burst of quadword data units 

(number of data units to transfer 
indicated by BE[0:3])

This signal is valid while M_request is 
active. Due to command translation in the 
crossbar, the M_size outputs do not 
necessarily reflect the PLB_size signals 
received from the originating master.

PPCMPLBTATTRIBUTE[0] M_TAttribute[0] O  

Write Through (W) Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is valid while M_request 
is active. This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[1] M_TAttribute[1] O  

Caching Inhibited (I) Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is valid while M_request 
is active. This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[2] M_TAttribute[2] O  

Memory Coherent (M) Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is valid while M_request 
is active. This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[3] M_TAttribute[3] O  

Guarded (G) Storage Attribute, as defined 
in the TLB when the processor is the master. 
This signal is valid while M_request is 
active. This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[4] M_TAttribute[4] O  

U0 User-defined Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is valid while M_request 
is active. This signal is propagated from the 
originating master.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 
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http://www.xilinx.com


96 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PPCMPLBTATTRIBUTE[5] M_TAttribute[5] O  

U1 User-defined Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is optionally used to 
indicate transient cache region usage. This 
signal is valid while M_request is active. 
This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[6] M_TAttribute[6] O  

U2 User-defined Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is optionally used to 
indicate whether write cache misses allocate 
a cache line. This signal is valid while 
M_request is active. This signal is 
propagated from the originating master.

PPCMPLBTATTRIBUTE[7] M_TAttribute[7] O  

U3 User-defined Storage Attribute, as 
defined in the TLB when the processor is the 
master. This signal is used by the crossbar as 
a Sync control signal, when asserted by any 
master targeting the MPLB, to block 
subsequent MPLB transfers until the target 
slave deasserts its MBusy signal for the 
MPLB master. The crossbar then propagates 
the slave's MBusy signal back to the 
originating master until it is deasserted by 
the slave. This allows masters to ensure that 
the transaction (such as a posted write) is 
actually completed by the slave before 
issuing subsequent transfers. This signal is 
valid while M_request is active. This signal 
is propagated from the originating master.

PPCMPLBTATTRIBUTE[8] M_TAttribute[8] O  

User-defined attribute. Not used by the 
processor, but used in some systems to 
indicate an Ordered Transfer requirement. 
This signal is valid while M_request is 
active. This signal is propagated from the 
originating master.

PPCMPLBTATTRIBUTE[9:15] M_TAttribute[9:15] O  

User-defined attributes (not used by the 
processor). These signals are valid while 
M_request is active. These signals are 
propagated from the originating master.

PPCMPLBTYPE[0:2] M_type[0:2] O  
Not used by the processor. This bus is 
always driven to 000, indicating a memory 
type transfer.

PPCMPLBUABUS[28:31] M_UABus[28:31] O  

Upper 4 bits of the processor’s 36-bit 
physical address, as specified by the 
Extended Real Page Number in the TLB. 
These 4 bits must always be set to 0000.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 
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MPLB Configuration
This section describes the two control registers in the embedded processor block in 
Virtex-5 FPGAs that control MPLB interface operation. Refer to the PowerPC 440 Wrapper 
Data Sheet [Ref 7] for a list of the parameters that control the default values of these 
registers.

The PLB Master configuration register (CFG_PLBM) is located at DCR address 0x54 
(within the 256-word DCR address block allocated to the embedded processor block). 
Table 4-3 summarizes the bits in the CFG_PLBM register.

PPCMPLBWRBURST M_wrBurst O  

The master asserts this signal to indicate to 
the PLB arbiter that a burst write transfer is 
in progress. This signal is deasserted during 
the last data beat of the burst, as determined 
by the value of BE[0:3] at the time of the 
request.

PPCMPLBWRDBUS[0:127] M_wrDBus[0:127] O  
128-bit bus used to transfer data from a 
master to a slave during a PLB write 
transfer.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB 

Signal
Dir

Default 
Value

Description

Table 4-3: Bits in the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
SESR and SEAR are locked in DCR offsets 0x56, 0x57, and 0x58 
(only allows updating when no prior error condition is detected).

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved

26 SL_ETERM_MODE 0 This bit must always be cleared to 0. 

27 LOCKXFER 1
Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30 
is 0 to prevent posted write data.
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The PLB Master arbitration configuration register (ARB_XBC) is located at DCR address 
0x23 (within the 256-word DCR address block allocated to the embedded processor 
block). Table 4-4 summarizes the bits in the ARB_XBC register.

This register configures crossbar arbitration priority and mode operations. All 32 bits have 
tie-off values. Arbitration priority values apply to fixed and round-robin arbitration only, 
with 4 corresponding to the highest priority and 0 corresponding to the lowest priority. 
Values between 5 and 7 are reserved and should not be used due to unpredictable 
behavior. The five device priority values should be mutually exclusive so that no two or 
more devices can have the same priority.

30 WPOST 1

Write Posting.

• 0: No write posting (early data acknowledgment)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported 
if write posting is disabled. Interrupt status flag INT_CFG_ERR_M 
(DCR 0x20, bit 17) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.

Table 4-3: Bits in the CFG_PLBM Register (Continued)

Bits Field Default Description

Table 4-4: Bit Descriptions for the ARB_XBC Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0
Sync signal (TAttribute[7]) enable, if set; when reset, TAttribute[7] is 
ignored by the crossbar.

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU) 
• 01: For round robin
• 10: For fixed priority
• 11: Reserved (should not be used due to unpredictable behavior)
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SPLB Interfaces
The primary purpose of two crossbar SPLB interfaces is to allow PLB-based masters 
outside the embedded processor block in Virtex-5 FPGAs to share access to the main 
memory on the crossbar MCI. The crossbar is the primary means of establishing 
multiported access to the main memory in PowerPC 440 based systems. The SPLB 
interfaces also allow access to PLB-based memories and non-memory peripherals 
connected to the crossbar MPLB interface, which are also to be shared with the processor. 
However, users must exercise caution when connecting any type of bidirectional bridge-
like device, such as a PCI bridge, between separate buses connected to MPLB and SPLB to 
avoid potential deadlock situations (see “PLB Interconnection Techniques,” page 124). By 
default, XPS tools configure each SPLB address range to match only the crossbar MCI 
address space. Users must explicitly configure the embedded processor block to include 
the MPLB address spaces, if needed, in each SPLB address range.

The crossbar SPLB interface is a 128-bit wide slave on the PLB. The PLB to which it is 
connected is also populated by one or more masters, which can be of any mixture of data 
widths and functional capabilities. Due to the PLB interface limitations of the embedded 
processor block, a maximum of four masters can be connected to each SPLB interface. The 
SPLB can also be connected to the same PLB as the crossbar MPLB interface, as needed to 
achieve system connectivity requirements.

Transaction Types
The SPLB supports all transaction types allowed under the PLB Architecture Specification 
[Ref 4], which include:

• Single Unit

The SPLB can accept single-unit transfers of unaligned data from 1 to 16 bytes. All 
single-unit transfers of any size that can be issued by all masters of any size and 
capability range are compatible with the SPLB interface.

• Bursts

The SPLB can accept fixed length bursts of 2 to 16 data beats of aligned single words, 
doublewords, or quadwords. The crossbar can be configured to limit the maximum 
size, in quadwords, of all burst transfers propagated through the crossbar to be 16 
(default), 8, 4, or 2. Any burst requests received by the SPLB that exceed this 
configured limit are internally broken into multiple bursts of up to the maximum size. 
All burst transfers that can be issued by all masters of any size are compatible with the 
SPLB interface.

http://www.xilinx.com


100 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

• Cache Lines

The SPLB can accept transfers of aligned 4- or 8-word (16- or 32-byte) cache lines. 
Cache-line reads are returned in the same order as received from the targeted slave, 
beginning either with the first word of the cache line or the quadword containing the 
target word, and always proceeds sequentially through the remainder of the cache 
line. All cache-line transfers that can be issued by all masters of any size are compatible 
with the SPLB interface.

Four-word cache-line requests on the SPLB always appear as single transfers on the 
target master interface. The SPLB also automatically adjusts non-quadword aligned 
cache-line starting read addresses to quadword aligned addresses.

SPLB Interface Features
The SPLB can operate at an integer 1:N clock ratio with respect to the crossbar interconnect 
clock (CPMINTERCONNECTCLK), where 1 ≤N ≤16.

The SPLB never prematurely terminates a burst (by asserting rdBTerm/wrBTerm). If the 
targeted slave resides on the crossbar MPLB space and that slave, connected to the MPLB 
interface, prematurely terminates the burst, the MPLB interface continues to retry the 
residual command until that slave has completed the request.

For all transactions requested by narrower masters (32- or 64-bit native data width), the 
SPLB performs the required data steering to accept (write) or return (read) data in the byte 
lanes expected by the master.

The SPLB interface immediately acknowledges (asserts AddrAck) in the cycle following 
the sampling of the request signal from the master, when receiving requests that match its 
memory map, before the crossbar repeats the same request on the targeted crossbar master 
interface (MPLB or MCI). 

By default, the SPLB interface immediately asserts WrDAck (in the same cycle as 
AddrAck) in response to write requests, stores data received from the master in its write 
data FIFO, and queues a posted write to the targeted crossbar master interface. Each SPLB 
interface can be configured to prohibit posted writes. If the SPLB is unable to acknowledge 
a request because of a command/data FIFO full condition, the SPLB asserts the rearbitrate 
signal.

The SPLB fully supports address pipelining, up to four read commands and four write 
commands. By default, the SPLB responds to the assertion of SAvalid from the PLB arbiter 
by asserting AddrAck. Each SPLB interface can be configured to disable address 
pipelining.

The SPLB supports overlapped read and write transfers. That is, a read request that is 
received (signaled by PAValid) while a prior write data transfer is in progress is 
immediately forwarded to the crossbar and can begin transferring data concurrently, and 
vice-versa.
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SPLB Interface Signals
Table 4-5 summarizes the signals, in alphabetical order, of the SPLB 0 and SPLB 1 
interfaces.

Table 4-5: SPLB Interface Signals

Port Name (n = [0, 1])
Connects to PLB 

Signal
Dir

Default 
Value

Description

CPMPPCSnPLBCLK PLB_Clk I 1

This clock synchronizes the SPLB 
interface to the connected PLB arbiter. 
The SPLB can operate at an integer 1:N 
clock ratio with respect to the crossbar 
interconnect clock 
(CPMINTERCONNECTCLK), where 
1 ≤N ≤16.

 PLBPPCSnBE[0:15] PLB_BE[0:15] I x

For single-unit transfers, these signals act 
as byte enables to identify which bytes of 
the target being addressed are to be read 
from or written to. Each bit corresponds 
to a byte lane on the read or write data 
bus. For burst transfers, BE[0:3] indicates 
the number of data units of the requested 
size to be read or written, ranging from 
0001 = 2 units to 1111 = 16 units. This 
bus is not used during cache-line 
transfers.

 PLBPPCSnRNW PLB_RNW I x
The master drives this signal to indicate 
whether the request is for a read (High) or 
a write (Low) transfer.

PLBPPCSnABORT PLB_abort I 0
The purpose of this signal is to indicate 
that the master no longer requires the 
data transfer it is currently requesting.

PLBPPCSnABUS[0:31] PLB_ABus[0:31] I x

32-bit starting address for the currently 
requested transfer. For single-unit 
transfers, this bus indicates the address of 
the first enabled byte lane. For cache-line 
reads, this bus indicates the target word 
that should be returned first (optimally) 
when reading the line containing the 
address.

PLBPPCSnBUSLOCK PLB_busLock I 0

The current master can use the busLock 
signal to lock bus arbitration and force 
the PLB arbiter to continue to grant the 
bus to that master and ignore all other 
pending requests.

PLBPPCSnLOCKERR PLB_lockErr I 0

The master asserts this signal to indicate 
whether or not the slave must lock the 
Slave Error Address Register (SEAR) and 
the Slave Error Status Register (SESR).
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PLBPPCSnMASTERID[0:1] PLB_masterID[0:1] I 00

These signals from the arbiter indicate the 
master identification sequence number to 
the slave. The SPLB interface supports a 
maximum of four masters on the 
connected PLB.

PLBPPCSnMSIZE[0:1] PLB_Msize[0:1] I 01

The master drives these signals to 
indicate its native data width, which also 
indicates the maximum size of the data 
unit that can be transferred during each 
data beat on the bus. 

• 00: 32 bits
• 01: 64 bits
• 10: 128 bits
• 11: Illegal

PLBPPCSnPAVALID PLB_PAValid I 0
The arbiter asserts this signal to indicate 
that there is a valid primary address and 
transfer qualifiers on the PLB outputs.

PLBPPCSnRDBURST PLB_rdBurst I 0

The master asserts this signal to indicate 
to the PLB arbiter that a burst read 
transfer is in progress. This signal is 
deasserted during the last data beat of the 
burst, as determined by the value of 
BE[0:3] at the time of the request.

PLBPPCSnRDPENDPRI[0:1] PLB_rdPendPri[0:1] I x

Not used by the embedded processor 
block in Virtex-5 FPGAs. The arbiter uses 
these signals to indicate the highest 
priority of any active read request input 
from all masters attached to the PLB or a 
pipelined read transfer that has been 
acknowledged and is pending.

PLBPPCSnRDPENDREQ PLB_rdPendReq I 0

Not used by the embedded processor 
block in Virtex-5 FPGAs. The arbiter 
drives this signal to indicate that a master 
has a read request pending on the PLB or 
a secondary read transfer has been 
acknowledged and is pending

PLBPPCSnRDPRIM PLB_rdPrim I 0

The PLB arbiter asserts this signal to 
indicate that a secondary read request 
that has already been acknowledged by a 
slave can now be considered a primary 
read request.

PLBPPCSnREQPRI[0:1] PLB_reqPri[0:1] I x

Not used by the embedded processor 
block in Virtex-5 FPGAs. The arbiter 
drives this signal to indicate the priority 
of the current request that the PLB arbiter 
has granted and is gating to the slaves.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 

Signal
Dir

Default 
Value

Description
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PLBPPCSnSAVALID PLB_SAValid I 0

The PLB arbiter asserts this signal to 
indicate to a PLB slave that there is a valid 
secondary or pipelined address and 
transfer qualifiers on the PLB outputs

PLBPPCSnSIZE[0:3] PLB_size[0:3] I 0

The encoded value of these signals 
indicates the size and type of the 
requested transfer. Supported values are: 

• 0000: Single-unit transfer of 1 to 16 
bytes, as determined by BE[0:15]

• 0001: 4-word cache line
• 0010: 8-word cache line
• 0011: 16-word cache line
• 1010: Burst of single-word data units
• 1011: Burst of doubleword data units
• 1100: Burst of quadword data units 

(number of data units to transfer for all 
bursts as indicated by BE[0:3]).

PLBPPCSnTATTRIBUTE[0] M_TAttribute[0] I 0
User-defined attribute. Used by the 
processor as the Write Through (W) 
Storage Attribute.

PLBPPCSnTATTRIBUTE[1] M_TAttribute[1] I 0
User-defined attribute. Used by the 
processor as the Caching Inhibited (I) 
Storage Attribute.

PLBPPCSnTATTRIBUTE[2] M_TAttribute[2] I 0
User-defined attribute. Used by the 
processor as the Memory Coherent (M) 
Storage Attribute.

PLBPPCSnTATTRIBUTE[3] M_TAttribute[3] I 0
User-defined attribute. Used by the 
processor as the Guarded (G) Storage 
Attribute.

PLBPPCSnTATTRIBUTE[4] M_TAttribute[4] I 0
User-defined attribute. Used by the 
processor to indicate the U0 Storage 
Attribute.

PLBPPCSnTATTRIBUTE[5] M_TAttribute[5] I 0
User-defined attribute. Used by the 
processor to indicate the U1 Storage 
Attribute.

PLBPPCSnTATTRIBUTE[6] M_TAttribute[6] I 0
User-defined attribute. Used by the 
processor to indicate the U2 Storage 
Attribute.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 
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http://www.xilinx.com


104 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PLBPPCSnTATTRIBUTE[7] M_TAttribute[7] I 0

Used by the crossbar as a Sync control 
signal when targeting the MPLB. Also 
used by the processor to indicate the U3 
Storage Attribute. The Sync signal, if 
asserted at the time of the request, is used 
to block subsequent MPLB transfers until 
the target slave deasserts its MBusy 
signal back to the MPLB master. The 
crossbar then propagates the slave's 
MBusy signal back to the originating 
master on the SPLB interface until it is 
deasserted by the slave. This allows the 
originating masters to ensure that the 
transaction (such as a posted write) is 
completed by the slave before issuing 
subsequent transfers.

PLBPPCSnTATTRIBUTE[8] M_TAttribute[8] I 0

User-defined attribute. Not used by the 
embedded processor block in Virtex-5 
FPGAs, but used in some systems to 
indicate an Ordered Transfer 
requirement. This signal is valid while 
M_request is active.

PLBPPCSnTATTRIBUTE[9:15] M_TAttribute[9:15] I 0
User-defined attributes (not used by the 
embedded processor block in Virtex-5 
FPGAs).

PLBPPCSnTYPE[0:2] PLB_type[0:2] I 0

Not used by the embedded processor 
block in Virtex-5 FPGAs. These signals 
are always driven to 000, indicating a 
memory type transfer.

PLBPPCSnUABUS[28:31] PLB_UABus[28:31] I x
Upper 4 bits of the embedded processor 
block's 36-bit physical address. These 4 
bits must always be set to 0000.

PLBPPCSnWRBURST PLB_wrBurst I 0

The master drives this signal to indicate 
to the PLB arbiter that a burst write 
transfer is in progress. This signal is 
deasserted during the last data beat of the 
burst, as determined by the value of 
BE[0:3] at the time of the request.

PLBPPCSnWRDBUS[0:127] PLB_wrDBus[0:127] I x
128-bit bus used to transfer data between 
a master and a slave during a PLB write 
transfer.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
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PLBPPCSnWRPENDPRI[0:1] PLB_wrPendPri[0:1] I x

Not used by the embedded processor 
block in Virtex-5 FPGAs. The arbiter 
drives these signals to indicate the 
highest priority of any active write 
request input from all masters attached to 
the PLB or a pipelined write transfer that 
has been acknowledged and is pending.

PLBPPCSnWRPENDREQ PLB_wrPendReq I 0

Not used by the embedded processor 
block in Virtex-5 FPGAs. The arbiter 
drives this signal to indicate that a master 
has a write request pending on the PLB or 
a secondary write transfer has been 
acknowledged and is pending.

PLBPPCSnWRPRIM PLB_wrPrim I 0

The PLB arbiter asserts this signal to 
indicate that a secondary or pipelined 
write request might be considered a 
primary write request in the clock cycle 
that follows.

PPCSnPLBADDRACK Sl_addrAck O  

This signal is asserted to indicate that the 
slave has acknowledged the address and 
will latch the address and all of the 
transfer qualifiers at the end of the 
current clock cycle.

PPCSnPLBMBUSY[0:3] Sl_MBusy[0:3] O  

These signals indicate to each connected 
master (according to the value of 
PLB_masterID[0:1]) that the SPLB 
interface is either busy performing a read 
or a write transfer, or has a read or write 
transfer pending for that master. The 
SPLB interface supports a maximum of 
four masters on the connected PLB. 
When the current transfer targets the 
MPLB interface, MBusy is propagated 
back from the targeted slave until it is 
deasserted by the slave (if the Sync signal 
was asserted at the time of the request) or 
until the current transfer completes on 
the MPLB (if Sync was not asserted, see 
M_TAttribute[7]).

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 
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PPCSnPLBMIRQ[0:3] Sl_MIRQ[0:3] O  

These signals indicate to each connected 
master (according to the value of 
PLB_masterID[0:1]) that the SPLB 
interface has encountered an event which 
it has deemed important to the master. 
MIRQ is generally used to indicate an 
error condition not associated with a read 
or write transfer currently in progress, for 
example, a write error or time-out during 
a posted write to the targeted slave. 
MIRQ is propagated back from the 
targeted slave to the originating master, if 
known. Otherwise it is broadcast to all 
PLB masters connected to the crossbar 
(including the processor). The SPLB 
interface supports a maximum of four 
masters on the connected PLB.

PPCSnPLBMRDERR[0:3] Sl_MRdErr[0:3] O  

These signals indicate to each connected 
master (according to the value of 
PLB_masterID[0:1]) that the SPLB 
interface has encountered an error during 
a read transfer that was initiated by this 
master, typically a transfer that is still in 
progress. When the current transfer 
targets the MPLB interface, MRdErr is 
propagated back from the targeted slave. 
The SPLB interface supports a maximum 
of four masters on the connected PLB.

PPCSnPLBMWRERR[0:3] Sl_MWrErr[0:3] O  

These signals indicate to each connected 
master (according to the value of 
PLB_masterID[0:1]) that the SPLB 
interface has encountered an error during 
a write transfer that was initiated by this 
master, typically a transfer that is still in 
progress. When the current transfer 
targets the MPLB interface, MWrErr is 
propagated back from the targeted slave 
if the transfer is still in progress (not 
posted). The SPLB interface supports a 
maximum of four masters on the 
connected PLB.

PPCSnPLBRDBTERM Sl_rdBTerm O  

This signal indicates to a master that the 
current burst read transfer in progress is 
to be terminated following the next read 
data beat. This signal is normally asserted 
only during the second-to-last beat of a 
fixed-length read burst, as determined by 
the value of BE[0:3] at the time of the 
request.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 

Signal
Dir

Default 
Value

Description
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PPCSnPLBRDCOMP Sl_rdComp O  

This signal indicates to the PLB arbiter 
that the read transfer is either complete or 
will be complete by the end of the next 
clock cycle.

PPCSnPLBRDDACK Sl_rdDAck O  

This signal indicates that the data on the 
Sl_rdDBus bus is valid and must be 
latched at the end of the current clock 
cycle.

PPCSnPLBRDDBUS[0:127] Sl_rdDBus[0:127] O  
128-bit data bus used to transfer data 
from a slave and to a master during a PLB 
read transfer.

PPCSnPLBRDWDADDR[0:3] Sl_rdWdAddr[0:3] O  

These signals indicate the relative word 
address within the cache line of the first 
word of the data unit currently being 
transferred as part of a requested cache-
line read transfer. Cache-line reads are 
returned in the same order as received 
from the targeted slave, beginning either 
with the first word of the cache line or the 
data unit (word, doubleword, or 
quadword aligned, depending on the 
targeted slave’s data width) containing 
the target word, and always proceeds 
sequentially through the remainder of the 
cache line, incrementing according to the 
size of the data units being transferred.

PPCSnPLBREARBITRATE    Sl_rearbitrate O  

This signal is asserted to indicate that the 
slave cannot perform the currently 
requested transfer and requires the PLB 
arbiter to re-arbitrate the bus.

PPCSnPLBSSIZE[0:1] Sl_SSize[0:1] O  
These signals are driven to 10 to indicate 
that the SPLB interface is a 128-bit slave.

PPCSnPLBWAIT Sl_wait O  

The SPLB interface never asserts this 
signal. This signal is used by other PLB 
slaves to indicate to the arbiter that the 
slave has recognized the PLB address as a 
valid address, but cannot latch the 
address and all the transfer qualifiers at 
the end of the current clock cycle.

PPCSnPLBWRBTERM Sl_wrBTerm O  

This signal indicates to a master that the 
current burst write transfer in progress is 
to be terminated following the next write 
data beat. This signal is normally asserted 
only during the second-to-last beat of a 
fixed-length write burst, as determined 
by the value of BE[0:3] at the time of the 
request.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 

Signal
Dir

Default 
Value

Description
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SPLB Configuration
One control register in the embedded processor block in Virtex-5 FPGAs controls the 
operation of each of the SPLB interfaces. The PLB Slave configuration register for SPLB 0 
(CFG_PLBS0) is located at DCR address 0x34. The configuration register for SPLB 1 
(CFG_PLBS1) is located at DCR address 0x44 (within the 256-word DCR address block 
allocated to the embedded processor block), with default values as shown in Table 4-6. 
Each of these registers also contain the master enable bits for two of the four DMA 
controllers in the embedded processor block, which do not affect SPLB interface operation. 
Refer to the PowerPC 440 Wrapper Data Sheet [Ref 7] for a list of the parameters that control 
the default values of these registers.

PPCSnPLBWRCOMP Sl_wrComp O  
This signal indicates to the arbiter the end 
of the current write transfer.

PPCSnPLBWRDACK Sl_wrDAck O  

This signal indicates that the data 
currently on the PLB_wrDBus bus is no 
longer required by the slave (write data is 
being latched at the end of the current 
clock cycle).

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB 

Signal
Dir

Default 
Value

Description

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers

Bits Field Default Description

0 LOCK_SESR 1

Lock SESR and SEAR if set (only allows updating when no prior error 
condition has been detected).
For CFG_PLBS0, locks DCR 0x36, 0x37, and 0x38.
For CFG_PLBS1, locks DCR 0x46, 0x47, and 0x48.

1 Reserved 0 Reserved

2 
DMA1_EN (PLBS0)

DMA3_EN (PLBS1)
0

DMA controller master enable 1.
For CFG_PLBS0: Enable DMA #1 controller.
For CFG_PLBS1: Enable DMA #3 controller.

3
DMA0_EN (PLBS0)

DMA2_EN (PLBS1)
0

DMA controller master enable 0.
For CFG_PLBS0: Enable DMA #0 controller.
For CFG_PLBS1: Enable DMA #2 controller.

4:5
DMA0_PRI (PLBS0)

DMA2_PRI (PLBS1)
00

DMA priority value 0.
For CFG_PLBS0: Priority of DMA #0 controller.
For CFG_PLBS1: Priority of DMA #2 controller.

6:7
DMA1_PRI (PLBS0)

DMA3_PRI (PLBS1)
00

DMA priority value 1.
For CFG_PLBS0: Priority of DMA #1 controller.
For CFG_PLBS1: Priority of DMA #3 controller.

8 Reserved 0 Reserved
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9:11 THRMIB 011

Maximum burst threshold when reading from the memory interface.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length 

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length 

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length 

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum 

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Maximum burst threshold when reading from MPLB.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length 

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length 

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length 

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum 

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMIB 011

Maximum burst threshold when writing to the memory interface.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length 

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length 

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length 

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum 

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers (Continued)

Bits Field Default Description
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In addition to the control register, each SPLB interface has a set of address template 
registers (TMPL*_PLBS*_MAP at DCR addresses 0x40 - 0x4F and 0x50 - 0x5F) that 
determine to which addresses the SPLB is to respond. The SPLB interface acknowledges 
requests based on the settings of these registers rather than waiting for any response from 
the targeted slave back through the crossbar. These template registers are normally set 
automatically by the EDK software, based on the addresses assigned to slaves connected to 
the crossbar. By default, EDK sets the template registers so that only the address range of 
the memory connected to the crossbar MCI (if any) is accessible via the SPLB, to avoid 

21:23 THWPLBM 011

Maximum burst threshold when writing to MPLB.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length 

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length 

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length 

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum 

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 28.

28 WPOST 1

Write Posting.

• 0: No write posting (early data acknowledgment)
• 1: Write posting enabled 

Bit 27 is cleared if this bit is 0. Only single transactions are supported if 
write posting is disabled. The corresponding interrupt status flag (in the 
Interrupt status register at DCR 0x20) is set if other types of transactions 
are received: INT_CFG_ERR_S0 (bit 3) for SPLB 0, or INT_CFG_ERR_S1 
(bit 11) for SPLB 1.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0
Log ABUS address mismatch error, if set, in the PLB slave miscellaneous 
status register (bit 2 of DCR 0x39 or 0x49)

31 CMD_CHK_DBL 0
Disable command (size) check, if set, in the PLB slave miscellaneous status 
register (bits 0 and 1 of DCR 0x39 or 0x49)

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers (Continued)

Bits Field Default Description
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potential deadlock situations (see “PLB Interconnection Techniques,” page 124). Users can 
override this setting to include addresses of slaves connected to the MPLB interface.

Command Translation
All data traffic through the crossbar is packed into 128-bit quadword-aligned units. 
However, each of the SPLB and MPLB interfaces may connect to masters and slaves that 
have various native widths of 32, 64, or 128 bits. For each data transfer (command) 
requested by one of the masters connected to the crossbar (processor, SPLB interface, DMA 
controller), command translation may be required to handle any combination of the 
following conditions:

1. A master connected to an SPLB interface has a native data width smaller than 128 bits 
and requires byte-lane steering or extra cycles to pack data into 128-bit units.

2. The slave’s native data width (connected to MPLB or MCI) is smaller than 128 bits and 
requires byte-lane steering or mirroring and/or extra cycles to unpack from 128 bits.

3. The length of a burst has to be adjusted for mismatched bus widths. 

4. The maximum length of a burst has been exceeded and requires breaking into multiple 
commands. 

5. Misaligned burst transfer beginning or ending off of a quadword boundary requires a 
single-unit transfer (up to three words) to be generated at the beginning and/or end of 
the transfer.

Each of the crossbar master interfaces (MPLB and MCI) maintains a command queue that 
can store several requests from the various crossbar sources (processor, SPLB, DMA) 
awaiting access to the connected PLB or memory controller. Commands in each queue are 
issued only in the order which they are queued. 

The re-arbitrate signal asserted by a PLB slave only allows the arbiter of that PLB to grant 
access to a different master requesting the bus. If the crossbar MPLB receives a re-arbitrate 
signal while requesting the bus, it backs off temporarily, as required, but always resumes 
with the request of the same command at the head of its command queue.

The crossbar’s command queues and internal data FIFOs allow it to adapt mismatched 
transfer rates among its various slave and master interfaces. Transfer rate mismatch can 
occur due to any combination of the following:

• Differing clock frequencies among the crossbar, the CPU and each of the SPLB, DMA, 
MPLB, and MCI interfaces.

• Multiple sources (CPU, SPLB, DMA) arbitrating for the same master interface (MPLB 
or MCI).

• Packing and unpacking data to interface to devices with native data widths less than 
128 bits connected to the MPLB or SPLB.

• Additional arbitration latency introduced when long bursts are broken into multiple 
shorter bursts.

• Inherent latency of gaining access to the PLB connected to the MPLB interface, and the 
response times of the slaves on that bus or of the memory controller connected via the 
MCI.
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Crossbar Timing
Crossbar Latency

The SPLB performs a store-and-forward operation for write commands, accordingly the 
latency depends on the type of transfer and the number of beats involved in the transfer. 
The minimum latency for a write or a read command presented to the SPLB interface to 
traverse the embedded block is six cycles. For read transactions, the embedded processor 
block adds another two or three cycles of latency to the return data path. Figure 4-1 shows 
a simplified timing model of the latencies for different types of transactions between SPLB 
and MPLB interfaces. Table 4-7 defines the values of n and m used in Figure 4-1.
 

When a request is received on the SPLB0/SPLB1 interface from the connected PLB arbiter, 
the interface responds by asserting AddrAck in the next cycle (otherwise it asserts the 
re-arbitrate signal if its FIFO is full). Provided there is no arbitration contention in the 
crossbar for the targeted master interface (MPLB or MCI), and provided there are no prior 
unacknowledged requests queued at either the SPLB or the master interface, and provided 

Figure 4-1: Simplified Crossbar Timing Model
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Table 4-7: Values of Symbols in Figure 4-1

Transfer Type n m

Write Single-unit 1

Write Line Line Length – 1

Write Burst Burst Length

Read Single-unit 1 0

Read Line 1 0

Read Burst 2 1

Notes: 
1. Line Length and Burst Length refer to the actual number of data beats required to transfer that data 

across the SPLB interface (before command translation by the crossbar), and therefore increases if the 
natural data width of the originating master is reduced to 64 or 32 bits.
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the SPLB, crossbar, and master interface are running at the same clock frequency (1:1:1 
clock ratio), a request is propagated from the SPLB onto the master interface after an 
additional five or more cycles, as indicated in Table 4-7.

The actual completion of each transfer on the MPLB side depends on the availability and 
response times of the connected PLB arbiter and target slave. Typically, the PLB arbiter 
introduces a minimum of one cycle latency between M_request and the assertion of 
PAvalid. PLB_addrAck can therefore be returned in one or more cycles, as is required. (The 
MPLB interface should not be used in a manner that would allow PLB_addrAck to be 
asserted during the same cycle as M_request.) For write transfers, PLB_wrDAck can be 
asserted at the same time as PLB_addrAck, or later. According to PLB v4.6 protocol, 
PLB_RdDAck must not be asserted prior to the second cycle following PLB_addrAck.

Transaction Waveforms
Figure 4-2 through Figure 4-12 show the waveforms for various transactions involving the 
SPLB and MPLB interfaces. While all are shown as read or write transfers between a 
master on the SPLB and a slave on the MPLB, the waveforms are representative of transfers 
originating at any of the crossbar slave interfaces (SPLB, processor PLB, DMA) or targeting 
either of the crossbar master interfaces (MPLB or MCI). In the following waveform figures, 
a trace in the center of a bus signal signifies values that are undetermined (in the context of 
the given transaction), not a high-impedance state.

Figure 4-2 shows a typical burst write transfer. Because the SPLB interface controller 
buffers all data before forwarding the command through crossbar, the latency varies with 
the length of the burst (number of data beats on the SPLB interface). In this case, a four unit 
burst results in nine cycles of latency between the SPLB and MPLB interfaces. Best-case 
waveforms are shown for response times of the connected PLB arbiter and target slave.

Figure 4-2: SPLB to MPLB 4-Quadword Burst Write Transaction
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Figure 4-3 shows a typical burst read transfer. The latency to propagate burst read 
commands to the MPLB is constant, seven cycles. Once the target slave responds, read data 
traverses back to the SPLB interface in three cycles for all burst transfers.

Figure 4-3: SPLB to MPLB 4-Quadword Burst Read Transaction

SPLB, MPLB,
Crossbar Clock

0 1 2 7 8 9 10 11 12 13 14 15 16 17

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_rdDBus
[0:127]

SPLB SI_addrAck

SPLB SI_rdDAck

AQW

7 Cycle Latency
(All Burst Reads)

QW(A)

A

UG200_c4_03_011408

QW
(A+16)

MPLB M_request

MPLB M_ABus

MPLB M_rdDBus [0:127]

MPLB PLB_rdDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

QW
(A+32)

QW
(A+48)

QW(A) QW
(A+16)

QW
(A+32)

QW
(A+48)

3 Cycle
Latency

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 115
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-4 shows how the number of data beats in a write burst transfer are multiplied 
when a slave smaller than 128 bits responds on the MPLB interface. The MPLB unpacks the 
two quadwords into 8 single words and steers them onto the lower byte lanes of the write 
data bus for the 32-bit slave. The write from the SPLB is posted, so the SPLB completes its 
transaction as soon as the two quadwords are transferred, unaffected by the size of the 
slave responding on the MPLB.

Figure 4-4: SPLB to MPLB 2-Quadword Burst Write by 128-Bit Master to 32-Bit Slave

SPLB, MPLB,
Crossbar Clock

0 1 2 3 7 8 9 10 11 12 13 14 15 16

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_wrDBus
[0:127]

SPLB SI_addrAck

SPLB SI_wrDAck

AQW

QW(A)

W(A)

A

UG200_c4_04_122807

QW
(A+16)

W(A+4) W(A+8) W(A+12)

MPLB M_request

MPLB M_ABus

MPLB M_wrDBus [0:31]
(Bits 32:127 Driven
But Not Sampled))

MPLB PLB_wrDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

W(A+16) W(A+20) W(A+24) W(A+28)

http://www.xilinx.com


116 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-5 shows how a burst read command from a 64-bit master is converted by the SPLB 
interface into a 128-bit burst (half the number of data beats) when propagating through the 
crossbar. The two quadwords returned from the MPLB are then unpacked by the SPLB 
interface and steered onto the lower byte lanes of the read data bus for the 64-bit master.

Figure 4-5: SPLB to MPLB 4-Doubleword Burst Read by 64-Bit Master from 128-Bit Slave (Aligned)
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Figure 4-6 shows the conversion of a single-unit write command by the 128-bit MPLB to a 
32-bit slave. Single-unit write and read commands propagate to the SPLB in 6 cycles 
(fixed). During the first write request by the MPLB, the entire quadword is presented on 
the write data bus, since the MPLB interface does not yet know the size of the slave that 
will respond. The 32-bit slave actually reads bytes 5 through 7, which are part of the single 
word that the ABus is pointing to. At that time, the MPLB interface knows that it must 
request additional write commands to transfer the remaining two single words to the 32-
bit slave. The ABus is incremented accordingly, but the MPLB still populates the write data 
bus and byte enables so that all data is still presented at the proper locations for any size 
slave.

Figure 4-6: SPLB to MPLB Single-Unit Write of Bytes 5-14 by 128-Bit Master to 32-Bit Slave
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Figure 4-7 shows the conversion of a single-unit read command by the 128-bit MPLB to a 
64-bit slave. Even though the original command received from the SPLB requested a 
doubleword, the address is not aligned on a doubleword boundary. Consequently, the 
MPLB needs to split the command into two single-unit reads. Before propagating the two 
words received from the slave back across the crossbar, the MPLB packs them into a single 
quadword unit, as is expected by the SPLB.

Figure 4-7: SPLB to MPLB Single-Unit Read of 2 Unaligned Words by 128-Bit Master from 64-Bit Slave
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Figure 4-8 shows a burst of six doubleword data units, where the beginning and ending of 
the burst do not align on quadword boundaries. In the SPLB interface, the burst is 
translated into a sequence of quadword-aligned commands. The unaligned start of the 
burst is translated into a single-unit transfer of eight bytes (doubleword 0), followed by a 
burst transfer of two aligned quadwords (doublewords 1 through 4). The sequence is then 
completed using another single-unit transfer of 8 bytes (doubleword 5). Upon receiving 
the three packets of data, the SPLB interface unpacks the data and presents a burst of six 
doublewords on the read data bus, as originally requested.

Figure 4-8: SPLB to MPLB 6-Doubleword Unaligned Burst Read from 128-Bit Slave
(Requested by a 64-Bit Master)
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Figure 4-9 shows back-to-back write burst requests. The second request (address B) is 
made at the same time as the first data transfer completes. Consequently it is presented as 
a primary request (PAvalid) by the arbiter. This timing is optimal in that it allows the write 
data bus to continually transfer data. On the MPLB interface, the resulting sequence of 
write requests typically leaves a 1-cycle bubble on the write data bus between each 
successive command (assuming best-case arbiter/slave response).

If the second request (address B) is instead issued on the SPLB before the completion of the 
first transfer, it would result in the pipelining of a secondary request. As the first data 
transfer completes, the arbiter asserts PLB_wrPrim to inform the SPLB interface to begin 
buffering the write data for the second transfer. However, the command latency and 
waveforms presented on the MPLB interface typically remain the same as shown in 
Figure 4-9.

Figure 4-9: SPLB to MPLB Back-to-Back 4-Quadword Burst Writes Between 128-Bit Devices
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Figure 4-10 shows back-to-back read burst requests, either from a master that supports 
address pipelining or from two masters concurrently requesting the bus. After the first 
request is acknowledged, the PLB arbiter asserts PLB_SAvalid. The SPLB interface always 
acknowledges SAvalid (provided its command queue is not already full) and latches the 
address and associated transfer qualifiers. Both the primary and secondary requests are 
forwarded to the MPLB command queue. The MPLB interface typically asserts the request 
for each subsequently queued command as the current read data transfer completes. This 
typically leaves a 2-cycle bubble on the read data bus between each successive command 
(assuming best-case arbiter/slave response).

Figure 4-10: SPLB to MPLB Pipelined 3-Quadword Burst Reads Between 128-Bit Devices
(Originating Master Supports Address Pipelining)
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Figure 4-11 shows the propagation of a burst write command coming from a PLB master 
operating at a slower clock frequency. A 2-unit burst write takes a total of seven cycles of 
latency to appear on the MPLB interface. As shown in Figure 4-1, the first 3 cycles (1 + n) of 
pipelining occur within the SPLB interface controller, paced by the slower SPLB clock, 
while the final two stages in the SPLB are synchronized to the faster crossbar clock. The 
sixth and seventh cycles of latency occur within the crossbar and MPLB interface, 
respectively, also at the higher clock frequency.

Figure 4-11: SPLB to MPLB 2-Quadword Burst Write with 1:2 Clock Ratio
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Figure 4-12 shows the typical waveforms for a read burst originating on the SPLB that 
targets the MPLB interface operating at a slower clock frequency. Read bursts have a total 
latency of seven cycles. The first 6 cycles occur at the higher crossbar and SPLB clock 
frequencies, while the seventh cycle is synchronized by the slower MPLB clock. The return 
data path typically takes one cycle in the MPLB domain plus two cycles in the crossbar and 
SPLB clock domains.

Figure 4-12: SPLB to MPLB 2-Quadword Burst Read with 2:1 Clock Ratio
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PLB Interconnection Techniques
The crossbar in the embedded processor block provides a high-performance pathway to 
allow memory and other peripherals to be shared between the processor and other masters 
in the system. There are many ways that external masters, memories, and peripherals can 
be connected to the crossbar. Overall system performance is generally improved by 
moving away from the single shared-bus interconnect paradigm toward a network of 
multiple independent buses that allow data to move around the system in parallel. This 
section describes some of the basic PLB interconnection strategies.

Figure 4-13 depicts the simple shared-bus topology, similar to the way peripherals can be 
connected to a PowerPC 405 processor in earlier Virtex architectures. In this example, the 
“main memory” for the processor is attached to a memory controller on the PLB. The 
performance of this topology might be sufficient, particularly if there are no other masters 
in the system that need to share any of these memory or peripheral devices. Even so, access 
to any high-latency peripherals by the data load/store unit might occasionally stall the 
processor’s instruction fetch.

Figure 4-13: Simple Processor-Centric Shared Bus Design
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Figure 4-14 simply replaces the PLB-based memory controller with one connected to the 
crossbar MCI. Overall latency to memory is slightly improved due to the elimination of 
PLB arbitration cycles. Because the pathways to main memory and peripherals are now 
independent, peripheral access can no longer interfere with instruction fetch.

Figure 4-14: Simple Processor-Centric Design Using Memory Controller Based 
Main Memory
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Figure 4-15 shows how another master device in the system can access main memory, 
peripherals, or both via the crossbar’s SPLB 0 or SPLB 1 interface. While access to either 
MCI or MPLB interface is now arbitrated, access by each master to opposite interfaces can 
be carried out in parallel. For example, the external master can read from main memory 
while the processor accesses any of the peripherals via the MPLB. Also, because the 
hardened crossbar can operate at higher frequency than the FPGA logic, accesses to main 
memory by the various masters can be queued up in the crossbar to maximize memory 
bandwidth.

Figure 4-15: Main Memory and Peripherals Shared Between Processor and 
External Master
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One form of external master is a high-speed I/O device, such as an Ethernet controller. As 
shown in Figure 4-16, rather than moving streams of data using PLB protocol, such devices 
are often connected via LocalLink channels to hardened DMA controllers inside the 
embedded processor block. As with the SPLB interfaces, the crossbar serves as the 
pathway from these DMA engines to main memory, regardless of whether main memory is 
connected on the MCI (as shown in Figure 4-16) or the MPLB interface (as in Figure 4-13).

Figure 4-16: Main Memory Shared Between Processor and DMA
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Another device that acts as both an external master and as a slave is a bridge to an external 
bus, such as PCI or PCI Express bus. In Figure 4-17, remote masters can access local main 
memory on the MCI via the crossbar SPLB 0/SPLB 1 interface. Also, the local processor 
can access remote slaves via the MPLB, which connects to a slave interface on the external 
bridge. There may also be a DMA connection to the external bridge (not shown) to 
accelerate locally initiated streaming transfers.

If a remote master also needed to access any of the local peripherals (or PLB-based 
memory) connected to the MPLB interface, the crossbar can provide a pathway from 
SPLB 0/SPLB 1 to MPLB. However, because outbound traffic from the processor to remote 
slaves occurs over the MPLB and because the MPLB uses an independent PLB/arbiter than 
SPLB 0/SPLB 1, it is possible for such a topology to become deadlocked. For example, if 
the processor is granted the MPLB to access a remote slave at about the same time as a 
remote master requests access to the crossbar, the outbound request might be held at the 
external bridge until the inbound traffic completes. But if the inbound request is for access 
to a peripheral on the MPLB, the crossbar does not allow that transaction to proceed until 
the pending request from the processor completes, thus leading to deadlock.

Figure 4-17: External Bridge with Remote Access to Main Memory and
Processor Access to Remote Peripherals
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One simple solution to avoid potential deadlock, in the case of an external bridge, is shown 
in Figure 4-18. Here, the same PLB is used to carry both inbound and outbound traffic, and 
it connects to both the MPLB and SPLB 0/SPLB 1 interfaces of the crossbar. The data traffic 
patterns are the same as in Figure 4-17, except that all inbound and outbound requests 
must first arbitrate for the same PLB before commencing, thus avoiding the risk of 
deadlock. However, sharing the same PLB between the processor and the external bridge 
master might reduce the overall throughput of the system.

Figure 4-18: External Bridge with Remote Access to Main Memory and
Locally Shared Peripherals
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Chapter 5

Memory Controller Interface

The Memory Controller Interface (MCI) block provides a bridge between the high-speed 
crossbar and a soft memory controller implemented in FPGA logic. The MCI provides a 
simple protocol that allows the soft memory controller to run much faster because it does 
not need to implement the more complex and more general PLB protocol. Figure 5-1 shows 
a soft memory controller interfacing to a physical memory outside the Virtex-5 FPGA on 
one side and the MCI of the embedded processor block on the other side. This architecture 
allows soft memory controllers to be designed for various types of external memories such 
as DDR2, QDR, and so on, without building a soft PLB interface.

Overview
In most processor-based systems, the overall performance is highly dependent on the 
latency and bandwidth between the processor and memory. Large memories are typically 
shared by the processor and other peripherals, making memory access a bottleneck. To 
resolve this issue, the embedded processor block in Virtex-5 FXT FPGAs contains a high-
speed memory interface connected to the crossbar to allow the processor and other high-
speed peripherals to share the memory efficiently. Figure 5-1, page 131 depicts the 
topology of the interconnection in the processor block including the Memory Interface 
block.

This interface improves the performance of external memory accesses, while preserving 
the flexibility to use various memory types. Therefore, the physical layer of the memory 
controller for different types of memory, such as DDR, QDR, and SRAM, is implemented as 

Figure 5-1: Memory Controller Interface
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soft logic, while the interface to the crossbar is hardened. This allows the crossbar to run at 
a higher frequency.

As explained in Chapter 2, “Embedded Processor Block Overview,” the crossbar 
eliminates blocking of transactions to the memory controller while other master/slave 
transactions are in process. Furthermore, the MCI block can support split transactions by 
allowing multiple transactions to be pipelined to the memory controller at once.

The notable features of this interface are as follows:

• All transactions to the FPGA logic are in constant burst lengths set by the user 
through a control register (possible burst lengths are 1, 2, 4, and 8)

• Addresses to the FPGA logic are automatically incremented to accommodate for the 
constant burst length feature

• The width of all transactions to the FPGA logic on the MCI is defined in a user-
programmable register (128, 64, and 32 bits)

• All control registers are accessible by the processor through DCR instructions or 
defined by the bitstream

• The MCI can operate at a clock ratio of 1:N (where N is an integer in the range [1:16]) 
with respect to the crossbar interconnect clock (CPMINTERCONNECTCLK)

• With a higher latency, the MCI can operate at a clock ratio of 2:3 with respect to the 
crossbar interconnect clock (CPMINTERCONNECTCLK)

Interface Features
The memory interface is a fast, compact, and convenient way of connecting memory to the 
embedded processor block in Virtex-5 FXT FPGAs. The MCI is designed to be similar to a 
simple FIFO interface rather than the more complicated PLB interface. The interface 
consists of an address bus, two data buses (one for each direction), and some control 
signals. All transactions to the FPGA logic are constant length, greatly simplifying the 
design of the soft memory controller. Every transaction requires at minimum an address, 
an address valid signal, and a signal (MIMCREADNOTWRITE) that indicates if the 
transaction is a read or a write. The MIMCADDRESSVALID signal is asserted for exactly 
one clock cycle for each transaction to the soft memory controller. The MCI can generate 
back-to-back reads and writes, and can switch from a read transaction to a write 
transaction on the next cycle. However, the MCI has an autohold feature that allows the 
next transaction to be delayed for a certain number of cycles under certain conditions as 
described in Table 5-1, page 135.

For write transactions, write data is presented on the write bus (MIMCWRITEDATA) 
WDD cycles after the MIMCADDRESSVALID signal is asserted. WDD is a user-
configurable parameter whose allowed values range from 0 through 10. For burst 
transactions, only the first address is presented to the soft memory controller, and the soft 
memory controller is responsible for incrementing the address appropriately for the rest of 
the data beats in the burst transaction. The burst length and burst width values are set 
using control registers as shown in Table 5-1, and are not part of the interface signal set 
described in Table 5-2, page 137.

For read transactions, the MCI block expects the data and a valid MCMIREADDATAVALID 
signal at some point in time on the read data bus (MCMIREADDATA). The MCI does not 
terminate transactions that have started. The MCI block can use the byte enable signals 
(MIMCBYTEEANBLE[0:15]) to make the writes byte-selectable. Refer to “Signal 
Descriptions,” page 137 for detailed descriptions of the input and output ports that 
constitute this interface.
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Although the physical data buses are 128 bits wide, the user can optionally downsize the 
bus by setting the BURSTWIDTH parameter described in Table 5-1. This option allows the 
soft memory controller to save some area when the memory data width is less than 128 
bits. For example, the user selects a 32-bit bus and the MCI has 256 bits of data to transmit, 
it sends out eight 32-bit back-to-back words to the fabric on MIMCWRITEDATA[0:31]. If 
the soft memory controller had to implement the muxes that selected different 32-bit 
portions of the 256-bit data, the soft memory controller would have been larger and slower. 
This muxing is also implemented on the read path of the MCI block, so that the soft 
memory controller does not have to form 128-bit words.

The soft memory controller is expected to support a single transaction type, in terms of 
burst length, as determined by the BURSTLENGTH parameter described in Table 5-1. The 
MCI converts internal PLB transactions of various burst lengths and widths into a 
corresponding number of the single transaction type supported by the soft memory 
controller. Every time the burst length is reached, a new address is generated to send to the 
FPGA logic. For example, assume the starting address is 0, a burst of four 128-bit words (64 
bytes) is to be sent to the soft memory controller, and the MCI is configured to be 128 bits 
wide with a burst length of 2. The transactions on the MCI are (address 0, write 0-15), 
(write 16-31), (address 32, write 32-47), and (write 48-63).

The configurable BURSTLENGTH parameter allows different memory controllers with 
different requirements to be attached to the MCI, while keeping the logic in the soft 
memory controller to a minimum. For example, one memory device might only support 
burst lengths of 8, while another simpler memory device might only support single-word 
transactions (burst lengths of 1). 

The MCI block takes the address directly from the crossbar and sends it to the FPGA logic, 
adjusting the address when required for bursts. The MCI block does not know what 
memory is connected to it. Therefore, if the connected memory ranges from 0x000 
through 0x7FF, when a user writes to address 0x900, the memory at address 0x100 is 
overwritten. The MCI block assumes that the user is aware of this issue.

To simplify the row and bank detect logic even further, the MCI block produces two bits 
that tell the soft memory controller if the bank and row have changed from the previous 
burst. These signals are based on a mask that covers the upper 32 bits of the 36-bit address 
range. These signals reduce the need for slow and expensive comparison operations in the 
soft memory controller. 

A by-product of having the bank and row conflict signals is that the MCI block knows 
when the soft memory controller might have to stall due to a bank or a row change. When 
the memory controller has to close one page and open another one, it cannot accept 
another transaction. In such cases, the memory controller just asserts the hold-off signal 
(MCMIADDRREADYTOACCEPT) to the MCI block, which stops delivering new 
addresses until the MCMIADDRREADYTOACCEPT signal is deasserted. Due to the time 
delay between the memory controller issuing the MCMIADDRREADYTOACCEPT signal 
and the MCI block reacting to it, an extra address or two might be released to the memory 
controller, causing it to overflow, unless the MCI block can predict this behavior and hold 
off on sending additional addresses and data. The MCI block can detect this change and 
internally assert the hold-off signal. Because the MCI block does not know how long to 
auto-assert the hold-off signal, it only asserts the hold-off signal long enough for the 
memory controller’s MCMIADDRREADYTOACCEPT signal to start working. In other 
words, even though the MCI block internally asserts a hold-off signal, it relies on the 
memory controller to extend this signal sufficiently for the system to function. 

Four events might cause the auto hold-off to occur: change of bank, change of row, change 
of direction from read to write or write to read, or an ECC non-complete transaction. A 
control register defines which of these events or combination of these events actually 
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causes an auto hold-off. In addition, the control register defines how many cycles are 
inserted after a conflict occurs. Refer to “Control and Configuration,” page 135 for details 
on how to set the control registers.

The QDR support mode allows overlapping reads and writes. In this mode, a write 
address with its data can be sent on the MCI immediately followed by a read address in the 
next cycle. Assuming that the MCI block was set for a burst length of 4, in non-QDR mode, 
the MCI block must wait until after the fourth cycle of the write to start a read transaction. 
However, in the QDR mode, certain features of the MCI block are disallowed. All conflict 
enable bits in the DCR should be turned off. QDR does not recognize conflicting banks, so 
this is no longer necessary. More details are provided in the following sections.

Another mode of operation is the Read Modify Write mode. If an agent writes to an ECC 
protected memory but does not write the entire protected word, the (FPGA logic based) 
memory controller must first read the original word, modify certain bytes with the new 
write data, recalculate the ECC, and finally write the new ECC protected word to physical 
memory. This process requires many cycles. Therefore, without this feature built into the 
memory controller, the following procedure has to be used. The MCI block issues a write. 
The memory controller detects if all byte enables are true. If not, the hold-off signals must 
be asserted to the MCI block and the Read-Modify-Write sequence must be started. 

By the time the stall signal gets to the MCI block, the block might have issued multiple 
writes to the memory controller, thus overflowing its pipeline. When this feature is 
enabled, whenever the byte selects are not fully enabled, the MCI block institutes an auto-
hold sequence, which gives the memory controller time to assert its own address-not-
ready signal. Refer to “Control and Configuration,” page 135 for programming 
information and “Timing Diagrams,” page 137 for example timing diagrams. All the write 
data for this transaction is released to the soft memory controller before the MCI block 
looks at the address-not-ready signal. In other words, the MCI block finishes this 
transaction before deciding if it should send out the next transaction.

The PLB read data error signal (MCMIREADDATAERR), provided with the read data and 
data valid signals, can be asserted by the memory controller to tell the requesting master 
that something is wrong with the data, such as a parity error or an uncorrectable ECC error. 

When the soft memory controller asserts MCMIREADDATAERR, the error is passed along 
with the PLB read data back to the PLB master. If the PLB master is connected to one of the 
SPLB interfaces or if the read transaction originates from one of the DMA controllers, the 
error also sets a flag in the interrupt status register (IST, DCR 0x20) and can lead to an 
interrupt, if enabled. If the PLB master is the PowerPC 440 embedded processor, the read 
error causes a machine check exception when that data is used by the PowerPC 440 
embedded processor (for data reads) or the instruction is executed by the processor (for 
instruction reads).

Crossbar Transactions
The MCI block interfaces with the crossbar on one side and with the soft memory 
controller on the other side. Each side has its own clock domain, and synchronizers allow 
data to cross the clock boundaries.

The MCI block receives transactions from the crossbar, which receives these transactions 
from a number of different devices (see Figure 2-1, page 29). These transactions can 
originate from either the processor (three distinct PLB masters) or from the soft FPGA logic 
(two masters). Memory transactions can also originate from any of the four DMA 
controllers built into the embedded processor block in Virtex-5 FXT FPGAs. The MCI block 
relies on the PLB interfaces on the crossbar inputs to simplify certain transactions, such as 
indeterminate bursts. 
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Control and Configuration
Three registers, accessible through the DCR interface, are provided to allow control and 
configuration of the MCI block. The default value of these registers can be set using the 
configuration attributes on the processor block.

MI_ROWCONFLICT_MASK [0:31] Register
This register contains the mask used to detect row conflicts from one transaction to 
another. This register is at DCR address 0x11. The 32 bits in this register correspond to the 
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position 
identifies that bit as a row address bit. For example, if bits 8:20 are set to 1, the 
MIMCROWCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS 
change between the previous instruction sent to the soft memory controller and this 
instruction. The default value of this register is 0. 

MI_BANKCONFLICT_MASK [0:31] Register
This register contains the mask used to detect bank conflicts from one transaction to 
another. This register is at DCR address 0x12. The 32 bits in this register correspond to the 
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position 
identifies that bit as a bank address bit. For example, if bits 4:7 are set to 1, the 
MIMCBANKCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS 
change between the previous instruction sent to the soft memory controller and this 
instruction. The default value of this register is 0. 

MI_CONTROL [0:31] Register
This control register is at DCR address 0x10. Table 5-1 describes the meaning of each bit in 
the register.

Table 5-1: Bit Descriptions for the MI_CONTROL Register

Bit Name
Default 
Values

Description

[0] enable 0

• 1: The MCI is enabled. The PLB and DMA masters can access the 
soft memory controller through the crossbar.

• 0: The MCI is disabled, and any attempt to access the MCI 
through the crossbar will fail.

[1] Rowconflictholdenable 0

If there is a change between the row from the current address and 
the past address, setting this bit causes the MCI block to wait 
Autoholdduration number of cycles before starting up the next 
instruction. 

[2] Bankconflictholdenable 0

If there is a change between the bank from the current address and 
the past address, setting this bit causes the MCI block to wait 
Autoholdduration number of cycles before starting up the next 
instruction.

[3] Directionconflictholdenable 0

If there is a change of direction between the current address and the 
past address (from reads to writes and writes to reads), setting this 
bit causes the MCI block to wait Autoholdduration number of 
cycles before starting up the next instruction. 
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[4:5] Autoholdduration 00

This field tells the MCI block how long to hold off when there is a 
triggering event causing an autohold.

• 00: 2 cycles 
• 01: 3 cycles
• 10: 4 cycles
• 11: 5 cycles

[6] 2:3 Clock Ratio mode 0

Clock ratio mode:

• 0: Integer ratio of the MCI clock to the embedded processor 
block interconnect clock (CPMINTERCONNECTCLK)

• 1: Fractional ratio of the MCI clock to the embedded processor 
block interconnect clock (CPMINTERCONNECTCLK) (3/2)

[7] overlaprdwr 0

If this bit is set, a read transaction does not always block the next 
write transaction from going out. If this bit is not set, after every 
read or write, the amount of time for that burst will transpire before 
the next transaction is issued. This bit should be enabled for QDR.

[8:9] Burstwidth 00

Data per clock cycle:

• 00: Burst width = 128
• 01: Burst width = 64
• 10: Reserved
• 11: Burst width = 32

[10:11] Burstlength 00

Burst length:

• 00: Burst length = 1
• 01: Burst length = 2
• 10: Burst length = 4
• 11: Burst length = 8

[12:15] Write Data Delay (WDD) 0000
Values 0 through 10 are valid delays in terms of clock cycles. Values 
11 through 15 are reserved.

16 RMW 0

When this bit is set, if all the byte enables for a write are not enabled 
for this transaction, the MCI waits for a number of cycles 
determined by Autoholdduration before starting the next 
transaction.

[17:23] Reserved 0000000 These bits are reserved

24 PLB Priority Enable 1

• 0: First level arbitration is disabled for the PLB masters trying to 
access the MCI through the crossbar.

• 1: First level arbitration is enabled among the PLB masters trying 
to access the MCI through the crossbar

See “Arbitration” in Chapter 3 for more information.

[25:27] Reserved 000 These bits are reserved

[28]  Pipelined Read Enable 1

• 0: The crossbar does not accept a new read command until the 
current read command completes.

• 1: The crossbar accepts read commands destined for the MCI 
while the current read operation is still in progress.

Table 5-1: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name
Default 
Values

Description
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Signal Descriptions
Table 5-2 describes the MCI signals.

Timing Diagrams
The diagrams in this section show how this interface is used and the relationship between 
the signals. The diagrams show actual MCI signals, but PLB signal names can apply to any 
one of the PLB connections to the crossbar that can drive the MCI. Actual signal latencies 
across the crossbar are not shown. The conventions for bus values are as follows:

[29] Pipelined Write Enable 1

• 0: The crossbar does not accept a new write command until the 
current write command completes.

• 1: The crossbar accepts write commands destined for the MCI 
while the current write operation is still in progress.

[30] Reserved 1 Reserved

[31] Reserved 1 Reserved

Table 5-1: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name
Default 
Values

Description

Table 5-2: Memory Controller Interface Signals

Signal Dir Description

MIMCREADNOTWRITE O
Transaction type:

• 0: Write
• 1: Read

MIMCADDRESS[0:35] O Byte address

MIMCADDRESSVALID O This signal is the valid bit associated with MIMCADDRESS.

MIMCWRITEDATA[0:127] O Write data

MIMCWRITEDATAVALID O This signal indicates if the data on MIMCWRITEDATA is valid.

MIMCBYTEENABLE[0:15] O
This bus determines which bytes of MIMCWRITEDATA are to be written to 
the RAM.

MIMCBANKCONFLICT O
The soft memory controller uses this signal to determine if this address is in the 
same bank as the previous instruction.

MIMCROWCONFLICT O The soft memory controller uses this signal to determine if this address is in the 
same row as the previous instruction.

CPMMCCLK I MCI clock

MCMIREADDATA[0:127] I Read data

MCMIREADDATAVALID I
The soft memory controller asserts this signal to let the Memory Controller 
Interface block know that the data presented on MCMIREADDATA is valid.

MCMIREADDATAERR I
The soft memory controller asserts this signal to indicate something is wrong 
with the read data, possibly a parity or ECC error that was detected by the 
memory controller.

MCMIADDRREADYTOACCEPT I
Whenever the soft memory controller is ready to accept another complete 
transaction from the MCI, it asserts this signal. 
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• A = address

• WR= write data

• RD = read data

The first digit after the letter represents the cycle transaction from the PLB. The first digit is 
followed by a period. The last set of digits represents blocks of data. For instance, if the PLB 
is transmitting two 128-bit quantities, it sends out WRX.0 and WRX.1.

Figure 5-2 shows major activity for a write request through all the major blocks of the hard 
interconnection. The operation starts at the processor, goes through the crossbar, the 
memory interface, the memory controller, and the actual memory (DDR). When the 
transaction leaves the MCI, the number of cycles depends on the type of memory. 
Therefore line breaks are used to indicate the variable cycle times. 

Figure 5-3 shows the key activities for a read request through all major blocks of the hard 
interconnection. The request starts at the processor, goes through the crossbar, the memory 
interface, the memory controller, the actual memory (DDR), and then back through those 
blocks. When the transaction leaves the MCI, the number of cycles depends on the type of 
memory. Therefore line breaks are used to represent the variable cycle times. 

Figure 5-2: System-Level Timing Diagram: Write
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Figure 5-4 shows a PLB burst sent through the MCI block. The address and data come out 
to the memory controller just as they arrived at the PLB interface. 

Figure 5-5 shows how a burst transfer from the PLB can get split into two separate 
transactions on the memory interface. The first line of data (A1 and WR1.1) is sent out 
without many changes. In the second burst to the memory controller, the MCI block creates 
a new address (A1.1) to go with the second set of data (WR1.2). Address A1.1 is 
incremented as appropriate.

Figure 5-3: System-Level Timing Diagram: Read
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Figure 5-4: Burst Transfer 1 (Memory Controller Interface = 128 Bits, Burst = 2, PLB = Cache Line)
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Figure 5-5: Burst Transfer 2 (Memory Controller Interface = 128 Bits, Burst = 1, PLB = Cache Line)
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Figure 5-6 shows how the data can get broken into smaller blocks on the MCI. The PLB 
sends the cache line in two 128-bit beats. Beat 1 has blocks 0 and 1 while Beat 2 has blocks 
2 and 3, where each block is 64 bits. When the address comes out of the FIFO, the control 
logic determines that not only does it have to create two separate bursts out of the original 
PLB transaction, but each of the new transactions has to have its data broken into smaller 
blocks. As can been seen on MIMCWRITEDATA, each 64-bit quantity comes out in its own 
cycle. This is helpful if the memory controller is connected 32-bit DDR DRAM.

Figure 5-7 shows the same basic data translation as Figure 5-6, except when the MCI is 
ready to send the data to the soft memory controller, the soft memory controller has not 
asserted MCMIADDRREADYTOACCEPT. The MCI waits for 
MCMIADDRREADYTOACCEPT to go High before starting the transaction. When the 
signal goes High, the MCI starts sending the new data to the soft memory controller three 
cycles later. Because the MCI is in 64 x 2 mode, only bits [0:63] of the data bus and bits [0:7] 
of the byte enable should be looked at; the rest of the bits are undefined.

Figure 5-6: Data Translation (Memory Controller Interface = 64 Bits, Burst = 2, PLB = Cache Line)
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Figure 5-8 shows two transactions coming from the PLB. The first transaction is two beats 
of 128 bits of write data, and the second transaction is one beat of 128 bits of data. Because 
MCI parameters are set as Burstlength = 4 and Burstwidth = 32 (4 x 32), a new address is 
required for every 128 bits of data. The first PLB transaction is broken up to 2 bursts of 
4 beats, each beat being 32 bits (2 x 4 x 32 = 256 bits of data). Addresses A1.0 and A1.1 are 
from the PLB address A1. The second transaction from the PLB is only 128 bits, so only one 
address is generated on the MCI.

Figure 5-7: Memory Controller Not Ready to Accept
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Figure 5-8: Burst Length Set to 4x32
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Figure 5-9 shows two transactions coming from the PLB. The first one is 2 beats of 128 bits 
of write data, and the second one is 1 beat of 128 bits of data. The first PLB transaction is 
matched in size and length to the MI, so it goes out exactly as it came in (2 x 128). The 
second transaction is only 128 bits wide, so it has to have 128 bits of data padded (all MI 
transactions are 2 x 128). In this case in cycle 8, the write data is still valid, however, the 
byte enables are set to zero to make sure the data is not actually written into any real 
memory.

Figure 5-10 shows the QDR operation. The PLB pushes a write, a read, and another write to 
the MCI block. Assuming that none of these transactions overlap in address space, the MCI 
block splits them up into two transactions each (the MCI block transactions are 2 x 64, 
while the PLB transactions are 2 x 128). Just after the first burst of the first write goes out, 
a read can occur before the next burst from that first transaction (R1.0 is between W1.0 and 
W1.2). The data is eventually returned to the MCI block as if this is not a QDR transaction.

Figure 5-9: Burst Length Set to 2x128
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Figure 5-10: QDR Mode (Memory Controller Interface Block Transactions = 2 x 64)
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In Figure 5-11:

• Autoholdduration = 2’b10 (4 cycles)

• WDD = 2

• Burst length = 2

Figure 5-11 shows when the MCMIADDRREADYTOACCEPT signal can be toggled in 
relation to the MIMCADDRESSVALID signal. 

In cycle 2, a normal, nonconflicted transaction occurs. Because WDD is set to 2, the data 
associated with that address occurs in cycles 4 and 5. (The burst length is set to 2, so there 
are two beats of data.) In cycle 4, an address is released that has a conflict. Due to the 
conflict, an autohold is asserted, lasting four cycles. 

Because the conflict signal is asserted, the memory controller chooses to lower the 
MCMIADDREADYTOACCEPT signal two cycles later (cycle 6). The MCI block waits for 
the memory controller to release the signal before sending transactions again. 

Transaction 3 occurs in cycle 14. There is also a conflict signal, however, the memory 
controller chooses not to toggle the MCMIADDREADYTOACCEPT signal. Therefore, the 
interface presents its next address six cycles later (four cycles for autohold off plus two 
cycles for the burst length).

In cycle 20, transaction 4 begins. Because it is not a conflict, its data is presented two cycles 
after the addressvalid is shown. Remember that WDD equals 2.

Figure 5-11: Autohold and MCMIADDRREADYTOACCEPT
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In Figure 5-12:

• Autoholdduration = 2’b00 (two cycles) 

• WDD = 2

• Burst length = 2

Figure 5-12 shows how the autoholdduration value can be set to zero. If the soft memory 
controller has a combinational path from the conflict bits to the 
MCMIADDREADYTOACCEPT signal, in theory the memory controller could react 
instantaneously to the assertion of the conflict. This operation is not recommended in real 
systems due to timing issues; however, it provides insight on how the autoholdduration 
value affects the next transaction.

Transaction 1 starts in cycle 2, the same as Figure 5-6. 

Transaction 2 starts the same in cycle 4; however, the memory controller deasserts the 
MCMIADDREADYTOACCEPT signal in the same cycle. Because autoholdduration is set 
to 00, the ready_window is shown much closer to the addressvalid signal. Because of the 
earlier start, the MCMIADDREADYTOACCEPT signal can be deasserted earlier, and the 
next transaction can begin in cycle 13. (The length of the MCMIADDREADYTOACCEPT 
signal being deasserted in Figure 5-7 is five cycles while in Figure 5-6 it is four cycles.)

The space between cycles 3 and 4 is now only four cycles (autoholdduration is set to 0, 
which means two cycles of delay plus the two cycles of burst length).

Transaction 4 is identical, except that it starts earlier.

In Figure 5-13, Autoholdduration = 2 internal cycles (0 external cycles). Figure 5-13 shows 
a system that is expecting a combinatorial path between conflict and 
MCMIADDRREADYTOACCEPT; however, the MCMIADDRREADYTOACCEPT signal 
goes Low in the cycle after the conflict (see time slice 4-5). 

Figure 5-12: Small Autohold
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Figure 5-13: Missed Ready to Accept
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In Figure 5-14:

• Autoholdduration = 2’b10

• WDD = 2

• Burst length = 2

• Burst width = 32 bits

Figure 5-14 shows what happens when the RMW bit is enabled in the control register. The 
data width is only 32 bits, so only 4 bits of the byte enable are used. An “F” means that all 
bytes are being written, and the “4” in cycle 6 shows that only one byte is being written.

In cycle 2, a normal transaction is issued, whose data phase is complete at the end of cycle 
5.

In cycle 4, a transaction begins, but the first beat only has one byte being written. Therefore 
autohold is turned on. Two cycles after the last byte enable for that transaction is shown, 
the memory controller drives the MCMIADDRREADYTOACCEPT signal Low, which the 
MCI block uses to stop giving new transactions. After the memory controller releases the 
MCMIADDRREADYTOACCEPT signal, the MCI block starts up new transactions, as 
indicated in cycle 13.

Board Layout Considerations
FPGAs afford a great deal of pinout flexibility; however, to maximize the performance of 
the PowerPC 440 processor to external DDR2 RAM, specific pin assignments must be used. 
To plan for migration between devices/packages, use these recommended pin 
assignments with Virtex-5 LXT or SXT devices in the same package. The recommended 
pinouts are available as UCFs in the data directory of the memory controllers that support 
the PowerPC 440 processors.

Figure 5-14: RMW Enabled
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Chapter 6

Reset, Clock, and Power Management 
Interfaces

Overview
This chapter describes the reset, clock, and power management interfaces to the embedded 
processor block in Virtex-5 FPGAs. These interfaces feature simplified signal timing and 
behavior for the user. The embedded processor block internally performs clock, reset, and 
control signal conditioning and synchronization to meet the needs of the processor and the 
subsystem within the embedded processor block. Logic inside the embedded processor 
block also helps ensure the block is properly reset upon FPGA configuration, and that 
unused logic is placed in a stable state.

Reset, Clock, and Power Management Interface
Table 6-1 describes the signals in the reset, clock, and power management interface of the 
embedded processor block. 

Table 6-1: Processor Block Reset, Clock, and Power Management Interface Signals

Signal Name Direction
Default
Value

Clock Function

C440RSTCHIPRESETREQ Output - CPMC440CLK
Indicates the processor is requesting 
a reset for itself and the processor 
block.

C440RSTCORERESETREQ Output - CPMC440CLK
Indicates the processor is requesting 
a reset for just itself.

C440RSTSYSTEMRESETREQ Output - CPMC440CLK
Indicates the processor is requesting 
a reset for the system.

CPMC440CLK Input 1 Main processor clock.

CPMC440CLKEN Input 1

Clock enable for the processor. A 
value of 1 specifies an active clock to 
the processor. A value of 0 disables 
the clock. Disabling the clock reduces 
dynamic power consumption.

CPMC440CORECLOCKINACTIVE Input 0 Static

When asserted, this signal indicates 
that the clock to the processor is 
disabled. This signal is sent by an 
external CPM to the processor to 
allow a debugger to read the status of 
the clock.
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CPMC440TIMERCLOCK Input 1
Async (Sampled by CPU 

clock)

Controls the frequency of the 
processor timers (Time Base, 
Watchdog, FIT, and DEC). The 
frequency of this clock must be less 
than or equal to half the frequency of 
CPMC440CLK.

CPMINTERCONNECTCLK Input 1

Main Embedded Processor Block 
clock for the processor block 
interconnect (crossbar). This clock is 
used for the processor PLB interfaces 
and the processor interconnect 
(crossbar).

CPMINTERCONNECTCLKEN Input 1 Async

Clock enable for the embedded 
processor block interconnect and the 
processor interfaces. A value of 1 
specifies an active clock to the PLB 
interface. A value of 0 disables the 
clock. Disabling the clock reduces 
dynamic power consumption.

CPMINTERCONNECTCLKNTO1 Input 1 Static

Specifies whether the clock ratio 
between the processor and the 
interconnect within the embedded 
processor block is an N:1 integer or a 
fractional multiple. A value of 1 
indicates the clock ratio is an N:1 
integer. A value of 0 indicates a 
fractional clock ratio of (2N+1)/2.

PPCCPMINTERCONNECTBUSY Output - CPMINTERCONNECTCLK

This status signal indicates if any 
PLB, DMA, or memory controller 
transactions are active inside the 
embedded processor block. A 1 
indicates transactions are active in 
the embedded processor block while 
a 0 indicates no transactions are 
active. This signal can determine 
when to reset the embedded 
processor block or put it in a low 
power state (disabled clock). 

RSTC440RESETCHIP Input 0 Async
Resets the entire embedded 
processor block including the 
processor core.

RSTC440RESETCORE Input 0 Async
Resets the processor core and the 
APU.

RSTC440RESETSYSTEM Input 0 Async
Resets the entire embedded 
processor block including the 
processor core.

Table 6-1: Processor Block Reset, Clock, and Power Management Interface Signals (Continued)

Signal Name Direction
Default
Value

Clock Function
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Clock and Reset During Configuration and Reconfiguration
During FPGA configuration, the embedded processor block in Virtex-5 FPGAs is clocked 
with an internal FPGA configuration clock and is automatically reset so that it can be ready 
for operation after configuration. The user need only ensure that the 
CPMINTERCONNECTCLK clock signal is glitch-free. 

During a Static Reconfiguration or Grestore event, the embedded processor block repeats 
the reset and startup sequence. During an active reconfiguration, the embedded processor 
block is not automatically reset, but can be reset by the user using the 
RSTC440RESETCHIP, RSTC440RESETCORE, or RSTC440RESETSYSTEM control signals.

System-Level Considerations
The embedded processor block in Virtex-5 FPGAs internally buffers, conditions, and 
synchronizes clock, reset, and power management signals for the user to simplify timing 
and behavior. However, some system level considerations must be made.

The RSTC440RESETCHIP, RSTC440RESETCORE, and RSTC440RESETSYSTEM control 
signals can be asserted asynchronously to the embedded processor block. The user only 
needs to ensure that the reset pulse width is sufficient to be detected by the embedded 
processor block. The CPMINTERCONNECTCLK signal must be stable and running before 
the reset signals are deasserted. The embedded processor block internally resynchronizes 
the reset signals, and holds them for the proper number of clock cycles. It takes eight 
CPMINTERCONNECTCLK clock cycles for the reset signal to propagate through the 
entire embedded processor block. During this delay, some of the interfaces will continue to 
be active for up to eight CPMINTERCONNECTCLK clock cycles after the reset signal is 
detected.

The processor core records the specific reset signal (one of three signals possible) that was 
last used to reset the processor core. This record is stored in the DBSR register. However, 
the reset signals provided by the user are first synchronized and extended for the required 
number of clock cycles by additional logic in the embedded processor block. This logic 
always releases the core reset signal last, regardless of how the user reset inputs are 
sequenced. As a result, the processor core always records the core reset signal as the last 
reset.

The CPMC440TIMERCLOCK signal is used when the CCR1[TCS] bit is set to 1. This signal 
can be an asynchronous clock signal because it is internally synchronized to the processor 
clock. The frequency of this clock must not be greater than half the frequency of 
CPMC440CLK to ensure that CPMC440TIMERCLOCK can be sampled properly. 

Clocking inside the processor block can be disabled to place it in sleep mode to reduce 
power consumption. The CPMC440CLKEN and CPMINTERCONNECTCLKEN signals 
can be used to enable or disable the clocks in the processor and embedded processor block 
interconnect, respectively. The PPCCPMINTERCONNECTBUSY signal indicates if there 
are any active PLB transactions inside the embedded processor block and can be used to 
ensure conditions are safe to enter sleep mode.

The clock frequency ratio between processor clock and interconnect clock can be N:1 or 
(2N+1)/2, where N is an integer greater than 0. Example ratios are 1:1, 2:1, 3:1 or 3:2. The 
CPMINTERCONNECTCLKNTO1 signal must be statically set to one for ratios of N:1, and 
to zero for ratios of (2N+1)/2. The latency of transactions between the core and 
interconnect is improved for integer clock ratios.
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Because the processor and crossbar clocks are likely to be running at higher speeds than 
the fabric clocks, it is highly recommended that the C440RSTxxxRESETREQ signals be 
synchronized to the clock domain in which they will be consumed.

Clock Insertion Delays and PLL Usage
All clocks used by the embedded processor block must be positive-edge aligned. The only 
exceptions are local link clocks that do not need a fixed frequency or phase relationship 
with the other clocks, and the DCR clock when the DCR is operated in asynchronous 
mode.

The embedded processor block uses its own clock trees to distribute its internal clocks, 
CPMC440CLK, and CPMINTERCONNECTCLK. As a result, there is a delay between the 
clock edges presented at the edge of the embedded processor block and the clock edges at 
the internal flip-flops. The DESKEW_ADJUST attribute in the Virtex-5 FPGA PLL blocks 
can be set on each clock output to delay the output by an amount that matches the clock 
insertion delay within the embedded processor block. Clocks connected to the embedded 
processor block and to the buses and peripherals connected to the block should be 
generated from a PLL block with the appropriate setting for the DESKEW_ADJUST 
attribute: 

• NONE for no delay used for CPMC440CLK and CPMINTERCONNECTCLK.

• PPC for a delay equal to the clock insertion delay within the embedded processor 
block used for all other clocks (such as the PLB clocks that are synchronous to 
CPMINTERCONNECTCLK).

The allowed frequency ratios for these clocks with respect to CPMINTERCONNECTCLK 
are shown Table 6-2.

Table 6-2: Interface Clock Frequency Ratios

Clock Signal
Allowed Frequency Ratios With Respect to 

CPMINTERCONNECTCLK

CPMMCCLK 2:3, OR 1:N, where N is any integer in the range [1:16]

CPMPPCMPLBCLK 1:N, where N is any integer in the range [1:16]

CPMPPCS0PLBCLK 1:N, where N is any integer in the range [1:16]

CPMPPCS1PLBCLK 1:N, where N is any integer in the range [1:16]

CPMDCRCLK 1:N, where N is any integer in the range [1:16]

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 151
UG200 (v1.6) January 20, 2009

R

Chapter 7

Device Control Register Bus

Introduction
The embedded processor block in Virtex-5 FPGAs, which is a CoreConnect based system-
on-a-chip, uses the Device Control Register (DCR) bus for device configuration, and 
control and status accesses. This chapter provides an overview of the DCR arrangement 
used in the processor block. Refer to the CoreConnect Bus Architecture Product Brief [Ref 2] 
and Device Control Register Bus 3.5 Architecture Specifications [Ref 3] for more information.

Figure 7-1 shows a block diagram of the connections of various DCR blocks within the 
embedded processor block. This chapter focuses on the DCR controller. Information 
pertaining to individual DCR masters and slaves can be found in the design specifications 
associated with the blocks.

Figure 7-1 shows the logical connectivity between the controller and the masters and 
slaves. There are 2 DCR masters and 11 DCR slaves. Of these, one master and one slave are 
external to the embedded processor block.

Figure 7-1: Embedded Processor Block DCR Arrangement (with Address Offsets)
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A mixed daisy-chain and distributed-OR DCR bus topology (see [Ref 3]) is used within the 
embedded processor block. In the daisy-chain scheme, data buses are daisy-chained 
together. In the distributed-OR scheme, the slave data outputs are logically ORed together 
to form the final output sent to the DCR master. All slave transfer acknowledge signals are 
ORed together and sent to the DCR master.

The main features of the DCR controller in the embedded processor block in Virtex-5 FXT 
FPGAs are:

• A mixed daisy-chain and distributed-OR DCR bus topology

• Support for dual DCR masters with round-robin arbitration

• Integrated bus lock capability to allow atomic DCR operation

• Support for indirect addressing

• 10-bit DCR address in direct addressing mode

• 12-bit DCR address in indirect addressing mode

• 32-bit data bus

• Support for the time-out wait feature

• DCR access time-out detection

• Selectable synchronous or asynchronous interface with external DCR devices

Design and Implementation
The DCR controller is situated between the masters and slaves. Commands from the 
masters are sent through the DCR controller to the DCR slaves, and responses from the 
slaves are sent to the masters via the DCR controller. The tasks for which the controller is 
responsible are described in the following subsections.

Partial Address Decoding
The DCR controller carries out partial DCR address decoding to determine to which DCR 
slave a DCR read/write command is intended. Table 7-1 shows the DCR address map. 

The DCR controller supports both direct and indirect addressing modes. In the direct 
addressing mode, which has a 10-bit address space of 1024 locations, the DCR controller 
occupies 256 address locations with a starting address that can be configured by two-bit 
tie-off pins, TIEDCRBASEADDR[0:1], to 0x000, 0x100, 0x200, or 0x300. In the indirect 
addressing mode (see “Indirect Addressing,” page 153), which has an expanded 12-bit 
DCR address space of 4096 locations, the DCR address space is identical to that in the 
direct addressing mode and is always located inside the first 1024 locations.
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Indirect Addressing
The indirect addressing mode allows the DCR slave address to be defined by the content of 
DCR 0x00 rather than over the DCR address bus. Indirect addressing is carried out 
through two dedicated DCR locations at offsets 0x00 and 0x01 (as shown in Table 7-1). 
Both locations are accessible through direct addressing only, and they are the only two 
DCR locations of the entire DCR address space that cannot be accessed through indirect 
addressing. Indirect read or write access to either of the two locations results in a DCR 
time-out (bit 31 of 0x02 is set).

The steps to do indirect addressing are:

1. Through direct addressing, write a 12-bit target DCR address to 0x00. If configured 
(see “Register 0x02: Control, Configuration, and Status Register,” page 161), this step 
triggers an auto bus lock action to reserve the bus for indirect access.

2. Through direct addressing, read or write to offset 0x01 as if reading or writing to the 
target DCR address. This step releases the auto bus lock, if any.

Table 7-1: DCR Map with Address Offsets

Block Address Offset and Range

Indirect Mode Address Register 0x00

Indirect Mode Access Register 0x01

DCR Controller Status and Control Register 0x02

Reserved 0x03

Auxiliary Processor Unit (APU) Controller 0x04 – 0x05

Reserved 0x06 – 0x0F

Memory Interface 0x10 – 0x12

Reserved 0x13 – 0x1F

Crossbar 0x20 – 0x33

PLB Slave 0 (PLBS0) 0x34 – 0x43

PLB Slave 1 (PLBS1) 0x44 – 0x53

PLB Master (PLBM) 0x54 – 0x5F

Reserved 0x60 – 0x7F

DMA Engine 0 (DMAC0) 0x80 – 0x90

Reserved 0x91 – 0x97

DMA Engine 1 (DMAC1) 0x98 – 0xA8

Reserved 0xA9 – 0xAF

DMA Engine 2 (DMAC2) 0xB0 – 0xC0

Reserved 0xC1 – 0xC7

DMA Engine 3 (DMAC3) 0xC8 – 0xD8

Reserved 0xD9 – 0xDF

Reserved 0xE0 – 0xFF
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The second step does not need to occur right after the first step. When the target address is 
written to 0x00, it stays there until overwritten by another value. The 12-bit DCR address 
consists of a 2-bit DCR UABUS address and a 10-bit DCR ABUS address (see “DCR 
Controller Registers,” page 160). All 256 DCRs in the embedded processor block in Virtex-5 
FPGAs are located within the first 1024 locations for both direct and indirect addressing. 
Figure 7-2 shows an example of direct and indirect addressing. Register 0x00 is assumed 
to contain 12’h059 at the beginning. If the ABUS address is 0x01, address 12’h059 is 
used (indirect addressing); otherwise the 10-bit ABUS address, preceded by a 2-bit value of 
00 is used instead (direct addressing).

Dual DCR Master Arbitration
If either the processor’s DCR master or the external DCR master is active, the active master 
has all the available DCR bandwidth. If both masters are active, only one master can gain 
access to the DCR slave at a time. Arbitration is based on a Work Conserving Round Robin 
(WCRR) strategy, where a master who has just accessed a DCR slave has a lower priority 
for another access unless the other master does not have a pending slave access request. 
With this arbitration scheme, each master can receive around 50% or more of the available 
DCR bandwidth if the bus is not locked (see “Bus Lock”) by either master. Figure 7-3 
shows a simplified arbitration diagram.

Figure 7-2: Direct and Indirect Addressing Examples
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Bus Lock

A consequence of having two active DCR masters is that both masters might attempt to 
access the same DCR location right after one another, creating a data incoherence situation. 
The DCR controller provides a bus locking mechanism to help to prevent this situation 
from happening. When the bus is locked, the locking master has exclusive access to the 
DCR slaves, and the other master must wait until the locking master releases the lock. It is, 
therefore, important that the locking master does not hold on to the DCR bus for too long 
a time to adversely affect the other master. The DCR controller has two types of bus locks: 
normal and auto.

Normal Bus Lock

The master that wants to lock the bus writes a 1 to a particular bit in register 0x02 (see 
“Register 0x02: Control, Configuration, and Status Register,” page 161). If the processor 
DCR master wants to lock the bus, it writes a 1 to bit 0 of register 0x02. If the external 
master wants to lock the bus, it writes a 1 to bit 2. If the bus is already locked by a master, 
a lock request by the other master might not be successful, depending on whether the lock 
requesting master supports time-out waits(1) (see “Time-out Wait,” page 157 for more 
details) and how long the first master holds the lock.

If the lock-requesting master supports time-out waits, it acquires the lock as soon as the 
locking master releases the lock. However, if the lock-requesting master does not support 
time-out waits, and the locking master holds the lock for a sufficiently long time, a DCR 
time-out for the lock-requesting master might occur, resulting in an unsuccessful lock (the 
lock bit is not set in this case). It is important for an external master that does not support 
time-out waits to read back register 0x02 to confirm a successful lock.

Auto Bus Lock

When a master writes to register 0x00 to update an indirect address, the DCR bus, by 
default, is automatically locked for that master until it reads from or writes to 0x01 to 
release the lock. This auto-lock feature, which can be disabled by clearing bit 4 of register 
0x02, reduces the number of DCR operations required for an atomic indirect access 
operation. It is important that the master accesses register 0x01 after writing to 0x00 to 
release the lock, otherwise the bus remains locked and the other master cannot access the 
bus. The auto bus lock status can be read from register 0x02. Bit 1, if set, indicates an auto 
bus lock is active for the processor, and bit 3 serves the same function for the external 
master. Bits 1 and 3 are read only.

Figure 7-3: Dual DCR Master Arbitration
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1.  When there is a master that does not support time-out waits with another master that might lock the bus, the 
first master must lock the bus for reliable operation, unless it is certain that the second master will not lock the 
bus for an extended period of time, leading to a time-out in the first master.
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Because only one master can lock the bus at a time, for register 0x02, bit 0, bit 1, or both can 
be set, or bit 2, bit 3, or both can be set. Both bits 0/1 and bits 2/3 cannot be set.

While the bus is locked by a master, the other master can read but cannot modify the 
content of register 0x02 (see Figure 7-4). Both DCR accesses (by the locking master and the 
read of register 0x02 by the other master) share the same available bus bandwidth. 

Round-Robin Arbitration

The round-robin arbitration with the bus lock feature is based on a four-state finite state 
machine as shown in Figure 7-4. 

The arbiter operates in the following manner:

• The arbiter is in the idle state when there is no DCR access.

• The arbiter goes into the c440 state if the current state is idle AND there is a processor 
DCR request that is either the only request OR the preferred request (if the external 
master is also requesting)

• When the processor access is done, the arbiter does one of the following:

♦ Goes to the idle state

♦ Remains in the c440 state if there is a bus lock condition, 

♦ Goes to the xm state if there is an external master request, or

♦ Goes to the 0x02_rd state if there is a bus lock condition AND the external master 
wants to read register 0x02.

• If the arbiter is in the 0x02_rd state, it returns to the locking master state after the DCR 
access.

Similar state transitions occur for the external master, with xm replacing c440, and vice-
versa, in the above bullets.

Figure 7-4: A 4-State Arbitration State Diagram with Simplified Branches
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Time-out Wait
The time-out wait signal in a DCR bus is used to inhibit the time-out counter in a master 
from counting. The DCR controller propagates the time-out wait signal from the external 
DCR slave to one of the two DCR masters. The embedded processor block’s DCR slaves do 
not generate time-out wait signals, and so no propagation is necessary. 

When the DCR bus is locked by a master, the time-out wait signal to the other master is set 
to temporarily inhibit the time-out wait count in that master. This restraint prevents the 
bus lock period from being counted as part of the wait time for the other master. It is 
possible that the external DCR master does not support time-out waits. Figure 7-5 shows 
the time-out wait arrangement in the DCR controller.

Input and Output Interfaces
The interface signals with the external DCR master and slave are shown in Table 7-2 and 
Table 7-3. 

Figure 7-5: Time-out Wait Arrangement
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Table 7-2: DCR Controller’s Slave Port Signals (Connected to the External Master)

Signal Name Direction Description

DCRPPCDSREAD I Master DCR read command

DCRPPDCSWRITE I Master DCR write command

DCRPPCDSABUS[0:9] I Master DCR address bus

DCRPPCDSDBUSOUT[0:31] I Master DCR data bus out

PPCDSDCRACK O Slave DCR acknowledge

PPCDSDCRDBUSIN[0:31] O Slave DCR bus in (for the master)

PPCDSDCRTIMEOUTWAIT O Slave DCR time-out wait indicator
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Table 7-4 defines the input clocks for the DCR controller.

Interface Timings

The DCR bus is a positive-edge synchronous bus. The controller supports both 
synchronous as well as asynchronous external DCR devices.

In the synchronous interface mode, the external DCR clock frequency has to be an integer 
fraction (between 1 and 1/16) of the interconnection clock frequency 
(CPMINTERCONNECTCLK), and the DCR clock has to be edge-synchronous to that clock. 
Clock insertion delays must be taken into account when using a PLL to generate the DCR 
clock, and the DCR clock output of the PLL must have its DESKEW_ADJUST attribute set 
to PPC.

In the asynchronous interface mode, the DCR clock does not have to be synchronous to any 
clock ratio. The asynchronous interface approach results in an increase in latency and a 
drop in throughput. 

The master and slave interfaces can be configured independently to operate either 
synchronously or asynchronously. The interface modes after reset are defined by two 
attribute bits that are defined in the following way:

• PPCDS_ASYNCMODE (external master interface): 

♦ 0: Synchronous mode

♦ 1: Asynchronous mode

• PPCDM_ASYNCMODE (external slave interface):

♦ 0: Synchronous mode

♦ 1: Asynchronous mode

Table 7-3: DCR Controller’s Master Port Signals (Connected to the External Slave)

Signal Name Direction Description

PPCDMDCRREAD O Master DCR read command

PPCDMDCRWRITE O Master DCR write command

PPCDMDCRUABUS[20:21] O Master DCR upper address bus

PPCDMDCRABUS[0:9] O Master DCR address bus

PPCDMDCRDBUSOUT[0:31] O Master DCR data bus out, 0 when idle

DCRPPCDMACK I Slave DCR acknowledge

DCRPPCDMDBUSIN[0:31] I Slave DCR bus in (for the master)

DCRPPCDMTIMEOUTWAIT I Slave DCR time-out wait indicator

Table 7-4: DCR Controller's Input Clocks

Signal Name Direction Description

CPMINTERCONNECTCLK I
Embedded processor block interconnect 
clock

CPMDCRCLK I
DCR clock, optional, needed for 
synchronous interface only
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If either or both interfaces are to operate synchronously, an edge-synchronous DCR clock 
must be applied to the embedded processor block. If both master and slave operate 
asynchronously, no DCR clock is required (the unused DCR clock pin has to be tied to 1). 
There is only one DCR clock input to the embedded processor block, and both the external 
DCR master and slave are expected to reference to the same DCR clock in the synchronous 
mode.

Asynchronous Mode

In asynchronous mode, synchronization of the interface signals is needed where the read 
and write command signals from a master are synchronized (for example, through double 
flip-flopping) by the slave who receives them, as shown in Figure 7-6. The acknowledge 
and the time-out wait signals from the slave are synchronized by the master who receives 
them. The address bus and the data bus signals are synchronized through the DCR 
protocol. The signals from a sender should be glitch-free.

Interface Timing Diagram

The general timing requirements follow that of the DCR bus architecture specifications. 
Figure 7-7 shows a typical timing diagram (clocks not shown), which is applicable to both 
synchronous and asynchronous modes (see [Ref 3] for more information).

Figure 7-6: Synchronization for the Asynchronous Interface Mode
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In Figure 7-7, the slave asserts the acknowledge signal when a write operation is complete 
or when read data has been placed on the bus. As a result the slave should sample the write 
data at point α, and the master should sample the read data at point β. The dbusin buses 
from internal slaves are driven to 0 when not active. The DCR controller drives bypass data 
(dbusin is the same as dbusout) onto the dbusin bus for both the external and internal 
masters when not active.

DCR Controller Registers
There are three registers in the DCR controller. These registers are needed for indirect 
addressing, arbitration, and interface mode select.

Register 0x00: Indirect Address Register

This register contains the address used in indirect addressing. The indirect address is 
formed by a 2-bit upper address bus (UABUS[20:21]) value and a 10-bit address bus 
(ABUS[0:9]) value. This register, shown in Figure 7-8, is both readable and writable. All 
unused bits in the register return 0s when read.

Register 0x01: Indirect Access Register

This location is used as a proxy to indirectly access the DCR slaves. When location 0x01 is 
accessed, the DCR controller replaces the DCR address (0x01) with the content of register 
0x00 for address decoding. The DCR master reads or writes to the 12-bit address stored in 
register 0x00. This location is both readable and writable.

Figure 7-7: DCR Timing Diagram
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Figure 7-8: Register 0x00
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Register 0x02: Control, Configuration, and Status Register

Register 0x02, shown in Figure 7-9, handles control, configuration, and status. Table 7-5 
describes the fields within the register.

0 1 2 3 4 5 6 7 8 29 30 31
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c440 
time
out

xm 
time
out

Figure 7-9: Register 0x02

Table 7-5: Bit Descriptions for Register 0x02

Bit Name Dir
Default 
Value

Description

0 c440 lock R/W 0
Processor bus lock bit. Can be written to and read by the processor DCR master. 
The external master can also read this bit. 

1 c440 alock RO 0 Processor auto bus lock bit. 

2 xm lock R/W 0
External master bus lock bit. Can be written to and read by the external DCR 
master. The processor DCR master can also read this bit. 

3 xm alock RO 0 External DCR master auto bus lock bit. 

4 auto-lock R/W 1

Configures the auto-lock feature. The default value for this bit is 1 to enable the 
auto-lock. This bit is cleared to disable the auto-lock function. This bit is 
initialized by the embedded processor block attribute 
DCR_AUTOLOCK_ENABLE.

5 xm asyn RO 0

Indicates the external DCR master interface asynchronous mode. 

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute 
PPCDM_ASYNCMODE. 

6 xs asyn RO 0

Indicates the external DCR slave interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute 
PPCDS_ASYNCMODE. 

7 xm towait R/W 0

Configures the external DCR master time-out wait support. By default, this bit is 
0, so that the external DCR master is assumed not to support time-out waits (the 
signal is tied to 0), but this setting also works with a master that supports time-
out waits. This bit is set to 1 if the external master supports time-out waits, 
allowing for better performance for the external master if the processor DCR 
Master locks the bus.

8:29 Reserved - 0 Reserved.
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The DCR controller prevents more than one master from locking the bus, so writing to bit 
0 or 2 might not lead to changes in those bit locations. 

30
c440 
timeout

Read/
Clear

0
Set if a processor DCR master access time-out occurs. This bit is cleared on writes. 
If the bus is locked, only the locking master can clear it, and the other master can 
read it but not clear it. 

31
xm 
timeout

Read/
Clear

0
Set if an external DCR master access time-out occurs. This bit is cleared on writes. 
If the bus is locked, only the locking master can clear it, and the other master can 
read it but not clear it. 

Table 7-5: Bit Descriptions for Register 0x02 (Continued)

Bit Name Dir
Default 
Value

Description
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Chapter 8

Interrupt Controller Interface

Functional Description
The Interrupt Controller interface allows an external interrupt controller to send interrupts 
to the processor. An interrupt output signal is generated whenever any of the devices 
connected to the PLB interfaces of the crossbar raises an error or interrupt signal, as 
described in Chapter 3, “Crossbar.”

Related Processor Behavior
The PowerPC embedded architecture defines two architected interrupts: external and 
critical. Because critical interrupts have precedence over external interrupts, a critical interrupt 
can interrupt the processing of an external interrupt. The interface provides dedicated input 
signals for each of these interrupts. Table 8-1 shows how each of these interrupts is enabled 
and lists the registers that the processor uses to save the machine state.
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On-Core Interrupt Sources
Table 8-2 shows the on-core sources of each type of interrupt.

Table 8-1: Architected Interrupts

Designation
Enabled 

by

PC and 
MSR 

Saved in

Vector 
Offset from

Description

External 
Interrupt

MSR[EE]
SRR0, 
SRR1

IVOR4

When external interrupts are enabled and no critical interrupt is 
asserted, the processor:

• Completes the current instruction (except loads/stores, which 
might be partially completed)

• Saves the next program counter (PC) and the current MSR in the 
SRR0 and SRR1 registers, which are part of the PowerPC 
architecture. More information can be found in the PPC440x5 
CPU Core User's Manual [Ref 5].

• Disables external interrupts
• Resumes execution at the PC formed by IVPR and IVOR4. IVPR 

and IVOR4 are part of the PowerPC embedded architecture. 
More information can be found in the PPC440x5 CPU Core User's 
Manual, [Ref 5].

Upon executing the rfi instruction, the processor re-enables 
external interrupts, loads the PC and the MSR from their saved 
locations, and resumes execution.

Critical 
Interrupt

MSR[CE]
CSRR0, 
CSRR1

IVOR0

When critical interrupts are enabled, the processor:

• Completes the current instruction (except loads/stores, which 
might be partially completed)

• Saves the next PC and the current MSR in the CSRR0 and CSRR1 
registers, which are identical to the SRR0 and SRR1 registers, 
except they are in effect for critical interrupts only

• Disables all interrupts
• Resumes execution at the PC formed by IVPR and IVOR0

Upon executing the rfci instruction, the processor re-enables 
interrupts, loads the PC and the MSR from their saved locations, 
and resumes execution.

Table 8-2: On-Core Interrupt Sources

Interrupt Type Source Description

External Interrupt
FIT Fixed Interval Timer

DEC Decrement Timer

Critical Interrupt Watchdog timer expiration Second watchdog timer expiration
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Interrupt Interface Signals
The Interrupt Controller interface consists of dedicated inputs for the external and critical 
interrupts. Both inputs are active High and level sensitive (once asserted, the signal must 
remain asserted until explicitly cleared by system software). 

Each input includes a metastability flop, so its source need not meet any timing 
requirements (it can be treated as a false path).

Table 8-3 lists the Interrupt Interface signals.

Usage Requirements
The requirements in this section must be met to correctly use the Interrupt Controller 
interface.

The level-sensitive treatment of the inputs by the processor requires that an interrupt 
signal, once asserted, remains asserted until explicitly cleared by system software. This 
requirement implies that software-accessible register(s) must be available on the interrupt 
controller for this purpose. It is critical that the processor’s transactions with these registers 
complete atomically to avoid accidentally handling the same interrupt multiple times. For 
example, if the write transaction to clear an interrupt was delayed by write posting, the ISR 
might return before the IRQ line deasserts. This situation would cause the processor to be 
immediately interrupted again even though the cause is the same interrupt event. The 
effects of this situation range from reduced performance to data loss or failure, depending 
upon the application (for example, IRQ handlers for peripherals with clear-on-read 
registers could lose data). These problems can be avoided by using either the 
Sync TAttribute described in Chapter 3, “Crossbar,” or the DCR interface for these 
registers.

Table 8-3: Interrupt Controller Interface Signals

Signal Name Description

EICC440EXTIRQ External Interrupt input

EICC440CRITIRQ Critical Interrupt input

PPCEICINTERCONNECTIRQ

Interrupt request from the crossbar. Users can 
connect this signal to one of the interrupt 
input signals or to an interrupt controller that 
combines interrupt signals from various 
sources.
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Chapter 9

JTAG Interface

The JTAG interface, on the embedded processor block in Virtex-5 FXT FPGAs, provides the 
ability for an external debug tool to gain control of the processor for debug purposes. 
Through the JTAG interface and using the debug facilities designed into the processor core, 
a debugger can single step the processor and interrogate internal processor states to 
facilitate hardware and software debugging.

There are two recommended ways of connecting the JTAG interface on the embedded 
processor block:

• Use the TAP controller inside the processor independently by connecting the JTAG 
interface signals directly to the FPGA programmable I/Os. 

• Daisy-chain the processor’s TAP controller with the FPGA’s TAP controller using the 
JTAG_PPC Processor IP module supplied by Xilinx as part of the software and IP 
products. 

With one exception, the JTAG interface follows IEEE Standard 1149.1, which defines a test 
access port (TAP) and Boundary-Scan architecture. In the standard, TRST is listed as an 
optional signal but the JTGC440TRSTNEG signal is required in the embedded processor 
block. The JTAG interface of the FPGA does not provide this optional TRST pin. The 
JTGC440TRSTNEG signal must be wired to user I/O or internally tied High. When wiring 
to user I/O, place an external 10 KΩ pull-up resistor on the trace. Refer to 
“JTGC440TRSTNEG,” page 169 for details. Other than this exception, the JTAG interface 
supports user-specific instructions, as allowed by the standard, which provide the ability 
to gain control of the processor for debug.

JTAG Interface I/O Symbol
Figure 9-1 illustrates the inputs and outputs of the JTAG interface.

Figure 9-1: JTAG Interface Block Symbol
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JTAG Interface I/O Signal Descriptions
Table 9-1 describes the JTAG interface signals in alphabetical order.

Table 9-1: JTAG Interface I/O Signals

Signal
I/O 

Type
If Unused Function

C440JTGTDO O No Connect

JTAG Test Data Out (TDO). JTAG serial data out port.

This signal transmits data from the processor’s TAP. Data from the 
selected TAP shift register is shifted out on TDO.

This serial output from the test logic is fed from either the instruction 
register or a test data register, depending on the sequence previously 
applied at TMS. During shifting, data applied at TDI appears at TDO 
after a number of TCK cycles determined by the length of the register 
included in the serial path. The signal driven through TDO changes 
state following the falling edge of TCK. When data is not being shifted 
through the chip, TDO should be three-stated.

C440JTGTDOEN O No Connect
The processor’s driver enable signal for the JTAG TDO signal.

This signal is the driver-enable signal to the FPGA’s three-state driver 
for the Test Data Out (TDO) signal.

JTGC440TCK I See IEEE 1149.1

JTAG Test Clock (TCK). The processor’s JTAG logic source clock. 

TCK is the source clock for the processor’s TAP. This clock is 
independent of the system clock(s) for the chip so that test operations 
can be synchronized between the various chips on a printed wiring 
board. Both the rising and falling edges of this clock are significant. The 
rising edge is used to load signals applied at the TAP input pins (TMS) 
and (TDI), while the falling edge is used to clock signals out through the 
TAP TDO pin.

JTGC440TDI I High

JTAG Test Data In (TDI). JTAG serial data in port.

TDI is used to input serial data into the TAP. When the TAP enables the 
use of the TDI signal, the TDI signal is sampled on the rising edge of 
TCK, and this data is input to the selected TAP shift register.

Data applied at this serial input is fed into the instruction register or into 
a test data register, depending on the sequence previously applied at 
TMS. Typically, the signal applied at TDI is controlled to change state 
following the falling edge of TCK, while the registers shift in the value 
received on the rising edge. Like TMS, TDI should be equipped with a 
pull-up resistor or otherwise designed such that, when it is not driven 
from an external source, the test logic perceives a logic 1.
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Connecting PPC440 JTAG Logic Directly to Programmable I/O
The simplest way to access the PPC440 JTAG logic is to wire the processor block’s JTAG 
signals directly to programmable I/O. For devices with multiple PPC440 blocks, users may 
wire each set of PPC440 JTAG signals directly to programmable I/O (Figure 9-2), chain the 
processors together with programmable interconnect and wire the combined PPC440 
JTAG chain to programmable I/O (Figure 9-3), or multiplex a single set of JTAG pins to 
multiple embedded blocks (Figure 9-4).

Each of these connection styles requires additional I/O and a separate JTAG chain for the 
PPC440 embedded block(s). The PPC440 embedded blocks must not be placed in the same 
JTAG chain as the dedicated device JTAG pins because the chain will be broken by the 
missing PPC440 JTAG logic prior to FPGA configuration.

The TRST signal, which is not implemented on any Xilinx devices, is available on the IBM 
PPC440 embedded block. This signal may be wired to user I/O or internally tied High. If 
wired to user I/O, an external 10 ΩW pull-up resistor should be placed on the trace.

JTGC440TMS I High

JTAG Test Mode Select (TMS). Determines the mode in which the TAP 
operates.

TMS is sampled by the TAP on the rising edge of TCK. The TAP state 
machine uses TMS to determine the mode in which the TAP operates.

The operation of the test logic is controlled by the sequence of 1s and 0s 
applied at this input, with the signal value typically changing on the 
falling edge of TCK. This signal sequence is fed to the TAP controller, 
which samples the value at TMS on each rising edge of TCK. The TAP 
controller uses this information to generate the clock and control signals 
required by the other test logic blocks. On the chip, TMS should be 
pulled High when it is not driven from an external source.

JTGC440TRSTNEG I High

TRST provides an asynchronous reset of the TAP controller. If this signal 
is asserted to a logic 0, the TAP controller is asynchronously reset to the 
Test-Logic-Reset controller state. This signal is negative active at the 
processor boundary. 

The designer can connect this signal to a TRST chip input pin. During 
the power on reset (POR) sequence, the JTGC440TRSTNEG signal is 
asserted (driven Low) internally. After that, separate control of the 
processor’s JTAG logic reset and non-JTAG logic reset can be 
accomplished. The system designer must carefully determine how to 
make the JTAG reset logically responsive to the system and chip resets, 
depending on the debug requirements and debug tool requirements.

Table 9-1: JTAG Interface I/O Signals (Continued)

Signal
I/O 

Type
If Unused Function
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Figure 9-2: Correct Wiring of JTAG Chains with Individual PPC440 Connections 
(Separate JTAG Chains)
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Figure 9-3: Correct Wiring of JTAG Chains with Individual PPC440 JTAG 
Connections (Internally Chained PPC440 Embedded Blocks)
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Figure 9-4: Correct Wiring of JTAG Chain with Multiplexed PPC440 Connection
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Connecting PPC440 JTAG Logic in Series with the Dedicated Device 
JTAG Logic

An alternative to connecting the PPC440 JTAG logic directly to programmable I/O is to 
wire it in series with the dedicated device JTAG logic. This is done by wiring the JTAG 
signals on the PPC440 embedded block to a special design element called the JTAGPPC440 
primitive in the user design. The Instruction Register length remains constant, regardless 
of how the PPC440 embedded blocks are used and regardless of whether or not the device 
is configured. 

Prior to configuration, the most-significant IR bits are placed in a dummy register which is 
either 4 or 8 bits in length, depending on the number of available PPC440 embedded blocks 
in the device (4 bits for devices with one PPC440 and 8 bits for devices with two PPC440 
blocks). This register is used as a placeholder only. After configuration, if the user connects 
the PPC440 JTAG logic in series with the dedicated device JTAG logic, the most significant 
IR bits are used by the PPC440 embedded blocks. Thus, the overall IR length remains the 
same for the device at all times.

When the PPC440 JTAG logic is connected in series with the dedicated JTAG logic, the 
C440JTGTDO signal of each embedded block is connected to the JTGC440TDI of the next. 
The JTGC440TCK and JTGC440TMS signals are connected to each PPC440 embedded 
block in parallel. The /TRST signal, which is not implemented on the device, is 
implemented on the IBM PPC440 embedded block. When wiring the PPC440 JTAG logic in 
series with the FPGA JTAG logic, this signal must be pulled High.

For more information, see the Virtex-5 FPGA user guides.
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Figure 9-5: PPC440 Core JTAG Logic Connected in Series with FPGA JTAG Logic Using the JTAGPPC440 
Primitive
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When the PPC440 JTAG logic is connected in series with the dedicated device JTAG logic, 
only one JTAG chain is required on the printed circuit board. All JTAG logic is accessed 
through the dedicated JTAG pins with this connection style.

For devices with more than one PPC440 embedded block, users must connect the JTAG 
logic for ALL of the PPC440 embedded blocks on the device when using this connection 
style, even if some are not otherwise used. The JTAG signals are the only signals on unused 
PPC440 embedded blocks that need to be connected. The PPC440 embedded block that 
first sees TDI from the JTAGPPC440 primitive recognizes the first four most significant bits 
in the Instruction Register; the next PPC440 embedded block sees the next four most 
significant bits, and so on.
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Chapter 10

Debug Interface

The Debug interface inputs into the embedded processor block in Virtex-5 FXT FPGAs can 
provide additional debug enhancements for the designer. The signals on this interface 
provide information and control to an external debug tool. They also allow customer 
debug logic to interrupt the normal processor flow through detection and reporting of an 
off-core debug event.

Debug Interface I/O Symbol
Figure 10-1 illustrates the inputs and outputs of the Debug interface.

Figure 10-1: Debug Interface Block Symbol
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Debug Interface I/O Signal Descriptions
Table 10-1 describes the Debug interface signals in alphabetical order.

Table 10-1: Debug Interface I/O Signals

Signal
I/O 

Type
If Unused Function

C440DBGSYSTEMCONTROL[0:7] O No Connect Reserved by IBM. Leave this signal unconnected.

DBGC440DEBUGHALT I 0

This signal enables an external source to stop the 
processor. It connects to a chip pin to allow an external 
debugger, such as RISCWatch, to request that the 
processor halt its instruction processing so that the 
external debugger can control the processor. External 
debuggers can also issue a stop command to the 
processor via the JTAG interface. However, this stop 
request is cleared when the processor is reset, requiring 
the external debug tool to regain control while the 
processor is fetching instructions. When using debugHalt 
to stop the processor, a processor reset does NOT cause 
the debugHalt control signal to reset, and the processor is 
stopped at the reset vector.

Note: The debugHalt chip input on the RISCWatch 
connector is negative active and needs to be inverted 
(and synchronized to the processor clock) before being 
brought into this positive active core input.

If the chip has clock control circuitry and the clocks to the 
processor are turned off (either by external gating or 
deassertion of CPMC440CLOCKEN, and 
CPMC440CORECLOCKINACTIVE is driven High), the 
debugHalt signal should be used by an external 
debugger as a way to alert clock and power management 
control logic to re-enable clocks to perform RISCWatch 
debug activity. If clock control circuitry exists that can 
prevent the core from getting clocks, and this circuitry 
can be active during RISCWatch debug activity, the 
debugHalt signal is required to re-enable clocks to the 
processor.

When the debugHalt signal is deasserted (and no stop 
request is active on the JTAG interface), the chip should 
return to the sleep mode it was in before RISCWatch 
asserts debugHalt, as long as no other condition that 
would cause the chip to leave sleep mode prevents it 
from doing so.
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DBGC440SYSTEMSTATUS[0:4] I 0 Reserved by IBM. Connect this signal to 0.

DBGC440UNCONDDEBUGEVENT I 0

Feeds the UDE bit of the DBSR and allows user debug 
logic to interrupt normal CPU flow.

This input feeds the UDE (unconditional debug event) bit 
of the DBSR (Debug Status Register). This input is useful 
for designers who want their own debug logic external to 
the processor. This capability allows the designer to:

• Cause a debug interrupt in internal debug mode
• Stop the processor in external debug mode
• Send a trigger event code on the processor’s trace bus

Table 10-1: Debug Interface I/O Signals (Continued)

Signal
I/O 

Type
If Unused Function
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Chapter 11

Trace Interface

The embedded processor block in Virtex-5 FXT FPGAs provides a trace interface that 
enables the connection of an external trace tool and allows for user-extended trace 
functions. Users can have full trace capability without adding FPGA logic, although 
including some trace control logic can provide some benefits.

Trace Interface I/O Symbol
Figure 11-1 illustrates the inputs and outputs of the trace interface.

Figure 11-1: Trace Interface Block Symbol
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Trace Interface I/O Signal Descriptions
Table 11-1 defines the trace interface signals in alphabetical order.

Table 11-1: Trace Interface I/O Signals

Signal
I/O 

Type
If Unused Function

C440TRCBRANCHSTATUS[0:2] O No Connect

Branch status bus for branch instructions 
represented in the trace cycle (trcCycle). This signal 
provides branch execution status used by the trace 
tool in combination with other instruction status to 
reconstruct the execution flow of a program.

C440TRCCYCLE O No Connect

This signal represents the trace cycle. It is used to 
synchronize the trace period with the four CPU clock 
cycles. To reduce the amount of chip I/O switching, 
the core broadcasts new execution status, branch 
status, and trace status every fourth core cycle.

The rising edge of the C440TRCCYCLE signal 
corresponds with the new trace cycle. This signal is 
not a clock signal. If it is to be used as a clock, the 
designer must ensure proper timing of this signal.

C440TRCEXECUTIONSTATUS[0:4] O No Connect

Encoded execution status bus for the instructions 
represented in the trcCycle. To reduce the amount of 
chip I/O switching, the core broadcasts execution 
status every fourth core cycle during each broadcast. 
C440TRCCYCLE defines the cycle that trace data is 
broadcast.

C440TRCTRACESTATUS[0:6] O No Connect

Encoded trace status bus. This signal provides 
additional information to execution and branch 
status required by a trace tool to reconstruct the 
execution flow of a program.

C440TRCTRIGGEREVENTOUT O
Wrap to Trigger 

Event In

CPU (debug) trigger event indication for trace logic.

Processor-defined debug events can be programmed 
to create trigger events to external trace logic. This 
signal is a summary of all processor-defined trigger 
events. For a trigger event generated by this signal to 
be in step with execution status for RISCTrace, this 
signal must be combinatorially returned to the 
processor on TRCC440TRIGGEREVENTIN within 
the same clock cycle of the processor clock, 
CPMC440CLK. In case this timing constraint is hard 
to meet, a multi-cycle constraint (relaxing the period 
to 4x the period of CPMC440CLK) can be used.

Assuming no special function is required, the 
designer is required to tie this output to the 
TRCC440TRIGGEREVENTIN pin. For more 
information on debug events, refer to the PPC440x5 
Core User Manual.
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C440TRCTRIGGEREVENTTYPE[0:13] O No Connect

Identifies the debug event that caused 
C440TRCTRIGGEREVENTOUT to be asserted. 
Processor-defined debug events can be programmed 
to create trigger events to external trace logic. 
Table 11-2 defines the processor-defined debug 
events in this bus.

Designers use these signals to develop more 
elaborate triggering schemes based on type or 
sequence of processor-generated trigger events. For 
a trigger event generated by these signals to be “in 
step” with execution status for RISC Trace, this 
signal must be combinatorially returned to the 
processor on the TRCC440TRIGGEREVENTIN 
input. For more information on debug events, refer 
to the PPC440x5 Core User Manual.

Table 11-1: Trace Interface I/O Signals (Continued)

Signal
I/O 

Type
If Unused Function

Table 11-2: Processor-Defined Debug Events

C440_trcTriggerEventType 
Bit

Trigger Event Type

0
Instruction Address 
Compare 1 (IAC1)

1
Instruction Address 
Compare 2 (IAC2)

2
Instruction Address 
Compare 3 (IAC3)

3
Instruction Address 
Compare 4 (IAC4)

4
Data Address Compare 1 
(DAC1RD)—Read

5
Data Address Compare 1 
(DAC1WR)—Write

6
Data Address Compare 2 
(DAC2RD)—Read

7
Data Address Compare 2 
(DAC2WR)—Write

8 Trap Instruction (TRAP)

9 Interrupt (IRPT)

10 Unconditional (UDE)

11 Return (RET)
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TRCC440TRACEDISABLE I 0

This signal is used only in special circumstances to 
disable trace from outside the embedded processor 
block. For normal operation, this signal should be 
tied Low.

TRCC440TRIGGEREVENTIN I
Wrap to Trigger 

Event Out

Trigger event input to trace logic. The processor uses 
this input to generate trigger event codes in the trace 
status bus, C440_traceStatus[0:3]. A trigger event 
can be derived from processor trigger events, trigger 
event types, or from any other external source. If this 
signal is generated with on-chip combinational logic 
using processor-generated trigger events, the trigger 
event code on the trace status bus corresponds to the 
current execution status being broadcast. The 
RISCTrace tool can identify which instruction 
caused the trigger event.

If the trigger event is generated from an external 
source, the trigger event code on the trace status bus 
corresponds to the execution status of the current 
instruction.

If the trigger event is not generated from an external 
source, the designer is required to connect the 
C440TRCTRIGGEREVENTOUT pin to the 
TRCC440TRIGGEREVENTIN pin.

Table 11-1: Trace Interface I/O Signals (Continued)

Signal
I/O 

Type
If Unused Function
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Section III:  Controllers

Chapter 12, “Auxiliary Processor Unit Controller”

Chapter 13, “DMA Controller”
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Chapter 12

Auxiliary Processor Unit Controller

Overview
The native 440 instruction set can be extended with the Auxiliary Processor Unit (APU) 
controller. Custom instructions are executed by an FPGA fabric coprocessor module 
(FCM), also referred to as a coprocessor or auxiliary processor. This module enables a 
much tighter integration between an application-specific function and the processor 
pipeline than is possible using a bus peripheral. 

The APU controller has two purposes: 

• Performs clock domain synchronization between the fast processor clock and the slow 
FCM interface clock

• Decodes certain FCM instructions and notifies the CPU of the CPU resources needed 
by the instruction (for example, source data from the CPU’s general-purpose 
registers)

A floating-point unit (FPU) is an example of an FCM candidate. For an FCM FPU, the APU 
controller can decode all PowerPC floating-point instructions. The FCM interface is a 
Xilinx adaptation of the native APU interface implemented on the IBM processor. The hard 
core APU controller bridges the processor APU interface and the external FCM interface. 
This chapter provides detailed information on the FCM interface and its features.

Feature Summary
The key characteristics and features of the APU controller and FCM are listed in this 
section.

The APU controller:

• Can hold or stall the processor pipeline at various pipe stages

• Supports instructions that do and do not return data to the processor

• Can pipeline up to three instructions at a time, providing for low communication 
overhead in the instruction issue to the APU controller

• Decodes all FPU instructions in the Book E specification except for the “extended” 
FPU load/store instructions not supported by the processor

• Contains up to 16 user-defined instruction (UDI) configuration registers

The 16 UDIs can decode a full primary and extended opcode or can be configured to 
only decode a shortened version of the extended opcode. This “wildcard” option 
allows the FCM to use five bits of extended opcode as it chooses.

• Decodes FCM loads and stores with byte, halfword, word, doubleword, and 
quadword sizes
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• Decodes Vector Multimedia Extension (VMX) instructions, which are a subset of FCM 
loads and stores (these are also known as Altivec instructions)

• Sends FCM decoded information for user-defined, FPU, and load/store instructions 
to ease the decoding responsibilities of the FCM

• Has separate 128-bit load and store buses

• Has only one instruction in play at a time with the FCM. If the FCM is pipelined, it can 
execute multiple instructions at a time that do not return data to the processor. 

• Sends a signal to the FCM notifying it of a second instruction that will be sent 
immediately after the current FCM instruction is finished. This will allow the FCM to 
do some amount of pipelining if desired and can increase instruction throughput.

The FCM:

• Can run at integer multiples (1:1 up to 16:1) of the processor clock period. The FCM 
cannot run at a speed faster than the processor.

Interface Description
The APU controller is tightly coupled with the processor pipeline. It tracks each FCM 
instruction through the processor pipeline to know when to expect certain signals. On the 
other side, it has a simpler control and data interface with the FCM block, having only one 
instruction in play at any given time. Figure 12-1 shows the control and data flow between 
the APU controller and the processor. Figure 12-2 shows the data flow between the APU 
controller and the FCM.
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Figure 12-1: Data Flow between the Processor and the APU Controller
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Figure 12-2: Data Flow between APU Controller and FCM
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Table 12-1 summarizes the signals between the APU controller and the FCM. 

Table 12-1: APU to FCM Signal Descriptions

Interface Signal Direction Function

APUFCMDECFPUOP Output APU controller decoded FPU instruction.

APUFCMDECLDSTXFERSIZE[0:2] Output

This bus indicates the APU controller decoded load/store transfer 
size.

• 100: Byte
• 010: Halfword
• 001: Word
• 011: Doubleword
• 111: Quadword

APUFCMDECLOAD Output
A High on this output indicates an APU controller decoded load 
instruction. 

APUFCMDECNONAUTON Output
This signal is asserted to indicate the presence of an APU controller 
decoded instruction that is a non-autonomous instruction (this 
includes Store instructions because stores return data to the CPU). 

APUFCMDECSTORE Output
A High on this output indicates an APU controller decoded store 
instruction. 

APUFCMDECUDI[0:3] Output This bus specifies the decoded UDI register. 

APUFCMDECUDIVALID Output This signal is asserted to indicate APUFCMDECUDI[0:3] is valid.

APUFCMENDIAN Output
This signal indicates the setting of the load/store endian attribute.

• 0: big endian
• 1: little endian

APUFCMFLUSH Output This signal is asserted to flush the FCM instruction.

APUFCMINSTRUCTION[0:31] Output This bus contains the instruction presented to the FCM.

APUFCMINSTRVALID Output
This signal is asserted to indicate the instruction on 
APUFCMINSTRUCTION[0:31] is valid.

APUFCMLOADBYTEADDR[0:3] Output
This bus specifies at which of the 16 bytes the data begins for the load 
transfer. 

APUFCMLOADDATA[0:127] Output This 128-bit bus contains load data. 

APUFCMLOADDVALID Output This signal is asserted to indicate APUFCMLOADDATA[0:127] is 
valid. 

APUFCMMSRFE0 Output
This signal indicates the value of MSR[FE0]. It is used for FPU 
instructions only.

APUFCMMSRFE1 Output
This signal indicates the value of MSR[FE1]. It is used for FPU 
instructions only.

APUFCMNEXTINSTRREADY Output

This signal is asserted to indicate the APU controller will send the next 
autonomous instruction along with all data on the clock cycle after the 
current FCM instruction is finished (when FCMAPUDONE is 
asserted). 

APUFCMOPERANDVALID Output This signal is asserted to indicate the instruction operands are valid.

APUFCMRADATA[0:31] Output This bus contains the instruction operand from GPR(Ra).
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Instruction Decoding
The processor presents up to two instructions to the APU controller during the Pre-Decode 
stage. The APU controller can decode up to two FCM instructions in the same cycle. It can 
also decode all FPU instructions (except the “extended” load/store instructions) and up to 
16 UDIs, FCM loads and stores, and VMX loads and stores. The APU controller decodes 
the instructions to notify the processor what resources the instruction requires (for 
example, if the instruction is a load, its transfer size, and any source data needed). The 
APU controller also generates certain decode signals for the FCM to ease the FCM decode 
logic.

With the exception of some FPU instructions, FCM instructions conform to the general 
format shown in Figure 12-3. 

APUFCMRBDATA[0:31] Output This bus contains the instruction operand from GPR(Rb).

APUFCMWRITEBACKOK Output
This signal is asserted to indicate it is safe for the FCM to commit 
internal state changes.

FCMAPUCONFIRMINSTR Input
This signal is asserted to indicate the FCM does not cause an exception 
for this instruction. This signal is used for non-autonomous 
operations with late confirmation. 

FCMAPUCR[0:3] Input
This bus contains the condition record bits for the CR field, specified 
by the instruction.

FCMAPUDONE Input
This signal is asserted to indicate completion of the FCM instruction 
in the APU controller.

FCMAPUEXCEPTION Input
This signal is asserted to indicate an FCM generated program 
exception. The exception must be enabled by the processor to trap.

FCMAPUFPSCRFEX Input
This signal is asserted to indicate an FPU instruction generated an 
exception. The level on this signal should reflect the value of the 
FPSCR[FEX] bit in the FPU. 

FCMAPURESULT[0:31] Input This bus contains the FCM execution result, which is passed to the 
CPU through the APU controller.

FCMAPURESULTVALID Input
When this signal is asserted, values on FCMAPURESULT[0:31], 
FCMAPUCR[0:3], or FCMAPUSTOREDATA[0:127] are valid.

FCMAPUSLEEPNOTREADY Input

This signal is asserted to indicate the FCM is still executing an 
instruction. This signal determines when the CPU is allowed to enter 
sleep mode. The APU Controller prevents the CPU from requesting 
sleep mode while an instruction is inside the APU controller. The FCM 
can use this signal to extend this time after an instruction has 
completed in the APU, but this signal must not be tied High. If not 
used, this signal must be tied Low.

FCMAPUSTOREDATA[0:127] Input This 128-bit bus contains separate store data.

Table 12-1: APU to FCM Signal Descriptions (Continued)

Interface Signal Direction Function

0 5 6 10 11 15 16 20 21 31

Primary Opcode RT RA RB Extended Opcode

Figure 12-3: FCM Instruction Format

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 193
UG200 (v1.6) January 20, 2009

Instruction Decoding
R

The processor uses both primary and extended opcodes to identify potential FCM 
instructions. The opcodes are decoded by the APU controller to identify uniquely the 
specific FCM instruction resource needs. Generally, the RA and RB fields specify operand 
registers, and the RT field specifies the target register. UDIs can be configured to interpret 
these bit fields differently. For example, the five-bit fields can be used for immediate 
values. UDIs can also be configured to allow for five “wildcard” bits in the extended 
opcode. When in wildcard mode, bits [21:25] of the instruction can be used in any way. For 
example, the user can use these five bits as another FCM register (but not as a CPU register 
value), a 5-bit immediate value, or to configure a group of instructions using only one UDI 
register.

FPU Instructions
The APU controller can be enabled to decode for all the floating-point instructions (except 
the “extended” load/store instructions) when an FPU is attached on the FCM interface. 
Refer to the Book E: Enhanced PowerPC Architecture Specification [Ref 1] for detailed 
information about the floating-point instructions. The APU controller can selectively 
disable the following six groups of floating-point instructions: 

• complex arithmetic

• conversion

• estimate/select 

• FPSCR

• single-precision only

• double-precision only

Table 12-2 lists the instructions in these groups.

Table 12-2: Floating-Point Instructions by Group

Complex Arithmetic Group

fdiv fdiv. fdivs fdivs. fsqrt fsqrt.

fsqrts fsqrts.

Conversion Group

fcfid fctid fctidz fctiw fctiw. fctiwz

fctiwz. frsp frsp.

Estimate/Select Group

fres fres. frsqrte frsqrte. fsel fsel. 

FPSCR Group

mcrfs mffs mffs. mtfsb0 mtfsb0. mtfsb1

mtfsb1. mtfsf mtfsf. mtfsfi mtfsfi.

Single-Precision Only Group

lfs lfsu lfsx lfsux stfs stfsu

stfsx stfsux fadds fadds. fsubs fsubs.

fdivs fdivs. fmuls fmuls. fsqrts fsqrts.

fmadds fmadds. fnmadds fnmadds. fmsubs fmsubs.
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The APU controller also provides decode signals to the FCM/FPU. These signals include 
the following information:

• Whether the instruction is an FPU instruction

• Whether the instruction is a Load or Store instruction

• The size of the transfer (if the instruction is a Load or a Store)

• Whether the instruction is a non-autonomous instruction (includes store instructions)

FCM User-Defined Instructions
The user can configure up to 16 UDI registers to be decoded by the APU controller. The 
UDIs conform to the standard FCM instruction format. The interpretation of the RA, RB, 
and RT fields are up to the FCM. In other words, the FCM can use the separate five-bit 
fields as the registers in the processor’s GPR, as immediate values, as internal FCM 
registers, or for some other purpose. The specific primary and extended opcodes that UDIs 
can use are shown in Table 12-3.

The user also can “wildcard” some of the extended opcode. When a wildcard is set for a 
particular UDI, the extended opcode bits [21:25] can be used as the user wishes. Thus the 
user can use these five bits as immediate values, an internal FCM register, or to define a 
group of instructions that have the same extended opcode bits [26:31]. When using 
“wildcard” mode for instructions, the user must follow these restrictions: 

1. No other UDI can be configured with the same primary opcode and extended opcode 
bits [26:31].

fnmsubs fnmsubs.

Double-Precision Only Group

lfd lfdu lfdx lfdux stfd stfdu

stfdx stfdux stfiwx fadd fadd. fsub

fsub. fdiv fdiv. fmul fmul. fsqrt

fsqrt. fmadd fmadd. fnmadd fnmadd. fmsub

fmsub. fnmsub fnmsub.

Table 12-2: Floating-Point Instructions by Group (Continued)

Table 12-3: Primary and Extended Opcodes

Primary Opcode [0:5] Extended Opcode [21:31] Description

0     (= 0b000000)
0b00000000000 Illegal

All except above
Available for UDIs that do not set the 
CR bits

4     (= 0b000100)

0b------1--0- MAcc and Xilinx reserved

0b1----000110
Available for UDIs that do need to set 
the CR bits

All except above
Available for UDIs that do not set the 
CR bits
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2. All instructions in the same UDI group must use the same options. In other words, the 
group must all be autonomous, must all use Ra source operand, must all be non-
autonomous with early confirm, and so on.

UDIs are configured using UDI Configuration registers, which can be accessed through the 
DCR interface. 

Any processor resources needed for the UDI are defined in the APU controller UDI 
registers as well as in the APU Controller Configuration register. These two types of 
registers are explained in detail in “APU Configuration,” page 203.

When a UDI is decoded by the APU controller, the FCM receives decoded information 
along with the 32-bit instruction. The decode signals include the following information:

• Bit encoded UDI register number (4’h0 = UDI0, 4’h1 = UDI1, and so on)

• Valid bit for the UDI register number

• Whether the instruction is a non-autonomous instruction 

FCM Load/Store Instructions
The APU has the ability to decode and issue FCM load and store instructions, which allow 
the transfer of data between the processor’s memory system and the Fabric Coprocessor 
Module (FCM). The processor handles the address calculation and also passes data 
to/from the memory. An FCM load transfers data from a memory location to a destination 
register in the FCM and vice-versa for an FCM store. An FCM load/store can be of size 
byte, halfword, word, doubleword, or quadword. The FCM load/store can also be of type 
Update or not. Update capable instructions update the base address register RA with the 
calculated effective address. Figure 12-4 shows the format of the FCM load/store 
instructions.

Primary Opcode [0:5] Extended Opcode [21:31]

0 1 1 1 1 1 U W0 L/S W1 W2 0 0 1 1 1 0

Figure 12-4: FCM Load/Store Instruction Format

Table 12-4: FCM Load/Store Instruction Encoding

Bit Description

U

Update Capability.

0: Not update capable

1: Update capable

W[0:2]

Size.

000: Byte

001: Halfword

010: Word

x11: Quadword

100 Doubleword

101: Invalid

110: Invalid

L/S

Load/Store.

0: Load

1: Store
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The APU controller also provides decode signals to the FCM for load/store instructions. 
These signals contain the following information:

• Load instruction

• Store instruction

• Size of transfer

♦ 100 = byte

♦ 010 = halfword

♦ 001 = word

♦ 011 = doubleword

♦ 111 = quadword

• Non-autonomous instruction (in the case of a store)

Instruction Execution
There are two major classes of FCM instructions: storage (loads and stores) and non-
storage. The storage instructions are more rigidly defined and are tightly coupled with the 
processor pipeline. The non-storage instructions have more flexibility as to their opcodes 
and their function.

Storage Instructions (FCM Loads and Stores)
The FCM can execute loads and stores in bytes, halfwords, words, doublewords, and 
quadwords. The processor executes the address calculation for any load or store and also 
passes the data to/from memory. The processor also replaces the base address with the 
effective address when executing any load or store with an update. Load instructions are 
considered to be autonomous (they do not stall the processor pipeline until finished and do 
not return data to the processor), and store instructions are considered to be non-
autonomous (they stall the processor pipeline until the store data is returned).

All load and store data must be contained within a quadword boundary. For example, a 
quadword load must have an address aligned on the quadword boundary (byte 0 of the 
128 bits), but a doubleword load can have a starting address at byte 0, 1, 2, 3, 4, 5, 6, 7, or 8. 
For load data, the APU Controller sends the entire 128-bit bus along with the starting byte 
address to the FCM. The FCM must look at the starting byte address to determine where in 
the 128 bits the valid data resides. For stores, the data should be returned in the most 
significant bits. For example, a store with a byte length should be on bits [0:7], a word on 
bits [0:31], and so on. The APU Controller steers the data correctly to the processor.

The APU controller supports a 128-bit load bus and a 128-bit store bus, allowing for the 
transfer of a full quadword in one FCM clock cycle. In Virtex-4 FX devices, this transfer 
took four clock cycles over a 32-bit bus (see [Ref 8] for more information). The APU 
controller accepts up to three loads or stores from the processor at a time, which allows the 
APU controller, for example, to buffer a second and third quadword while it is sending the 
first quadword to the FCM. The second quadword is then ready to send to the FCM 
immediately following the first transfer and overlaps any overhead needed in receiving 
the data of the second transfer from the processor. Figure 12-5 is a simple block diagram of 
the load data flow in the APU controller.
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If the FCM load/store instruction is flushed from the processor pipeline, the APU 
controller notifies the FCM by sending a Flush signal. The load/store instruction can be 
flushed from the pipeline because of an address alignment exception, a TLB miss, an access 
with an endian attribute not supported by the hardware, or if a previous instruction causes 
the pipeline to flush. Similar to the Flush signal, the APU controller provides the 
APUFCMWRITEBACKOK signal, which indicates when an FCM load instruction can no 
longer be flushed and can safely update its internal registers. This signal is optional for 
store instructions (this signal can cause a performance hit for stores). 

The APUFCMNEXTINSTRREADY signal can be used to improve instruction throughput 
for load instructions. This signal is asserted High when the next load instruction and all of 
its data are ready to be sent to the FCM. A High on this signal means that as soon as the 
APU controller receives an asserted FCMAPUDONE signal for the current instruction, the 
next load instruction with all data is sent on the next FCM cycle. Because the FCM knows 
when the next instruction will arrive, it can assert FCMAPUDONE High during that same 
cycle. Thus the load instruction can be sent and completed in one FCM clock cycle.

Load Execution Details

Load instructions follow a specific sequence of signals on the FCM interface. This 
description applies for both APU and FPU loads. The FCM receives the following signals 
when the instruction is sent:

• APUFCMINSTRVALID = 1

• APUFCMDECFPUOP = 1 if FPU or 0 if APU

• APUFCMDECLOAD = 1

• APUFCMDECLDSTXFERSIZE[0:2] = 100 (byte), 010 (halfword), 001 (word), 011 
(doubleword), or 111 (quadword)

• APUFCMINSTRUCTION[0:31] = the 32-bit instruction

During the same cycle, the instruction signals initially go High or at a later cycle the FCM 
receives the following signals:

• APUFCMLOADDVALID = 1

• APUFCMLOADDATA[0:127] = load data bus

• APUFCMLOADBYTEADDR[0:3] = starting byte address of the data within the 16 
bytes

• APUFCMENDIAN = 1 if little endian format or 0 if big endian format

Figure 12-5: APU Controller Load Data Flow
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All of the above signals remain valid until the transaction is complete. The transaction is 
complete when one of the following occurs: 

• The FCM received a pulse of APUFCMWRITEBACKOK = 1 and then sends back 
FCMAPUDONE = 1 during the same cycle or sometime after receiving either 
APUFCMWRITEBACKOK or APUFCMLOADDVALID (whichever is later)

or

• If the instruction is flushed from the processor pipeline, it receives 
APUFCMFLUSH = 1. 

If the latter occurs the FCM should not return FCMAPUDONE = 1 for this instruction. 

Store Execution Details

There are two main types of store instructions: stores using writebackok and stores that do 
not need or want writebackok. Stores without writebackok often have better performance. 
Both types can be used with either APU or FPU stores. To set the store to use writebackok, bit 
16 of the APU Control Register bit must be set to 1. Both types of stores begin the same 
way:

• APUFCMINSTRVALID = 1

• APUFCMDECFPUOP = 1 if FPU or 0 if APU

• APUFCMDECSTORE = 1

• APUFCMDECLDSTXFERSIZE[0:2] = 100 (byte), 010 (halfword), 001 (word), 011 
(doubleword), or 111 (quadword)

• APUFCMINSTRUCTION[0:31] = the 32-bit instruction

• APUFCMDECNONAUTON = 1

For stores that do not need to wait for APUFCMWRITEBACKOK to be asserted (if no 
resources in the FCM are updated based on the store completing):

• FCMAPURESULTVALID = 1, set High when the store data bus is valid

• FCMAPUSTOREDATA[0:127] = store data bus, data should be in the most-significant 
bits of the bus (for example, a byte transfer at FCMAPUSTOREDATA[0:7] or a word 
transfer at FCMAPUSTOREDATA[0:31])

• FCMAPUDONE = 1, set High in the same cycle or after FCMAPURESULTVALID

Note: If the store instruction is flushed before FCMAPUDONE is asserted, the APU Controller can 
assert APUFCMFLUSH for a store that does not use writebackok. In this case, the FCM should not 
assert FCMAPUDONE.

For stores that wait for APUFCMWRITEBACKOK (either resources in the FCM are 
updated when the store completes, or the FCM could have a different endianess than the 
memory and needs to wait for APUFCMENDIAN), the FCM must wait until the following 
signals are received:

• APUFCMWRITEBACKOK = 1 (pulsed), if the store will complete

• APUFCMENDIAN = 1 (little endian) or 0 (big endian), and valid the same cycle as 
APUFCMWRITEBACKOK

• APUFCMFLUSH = 1 if the store was flushed from the processor pipeline (the FCM 
does not receive APUFCMWRITEBACKOK)
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When the FCM receives an asserted APUFCMWRITEBACKOK, it can send the following 
signals in the same or any later cycle:

• FCMAPURESULTVALID = 1, set High when the store data bus is valid

• FCMAPUSTOREDATA[0:127] = store data bus, data should be in the most-significant 
bits of the bus (for example, a byte transfer at FCMAPUSTOREDATA[0:7] or a word 
transfer at FCMAPUSTOREDATA[0:31])

• FCMAPUDONE = 1, set High the same cycle or after FCMAPURESULTVALID is 
asserted

For more details on the signal timing, refer to “Timing Diagrams for the APU Controller,” 
page 212.

Non-Storage Instructions
The APU controller supports three execution modes: autonomous, non-autonomous with 
early confirmation, and non-autonomous with late confirmation.

• Autonomous Instructions

Instructions in the autonomous class do not stall the processor pipeline. They are 
typically fire-and-forget type instructions that do not return any result data or 
condition record bits to the processor. The FCM cannot generate an exception for this 
class of instruction. The APU controller automatically confirms to the processor that 
this instruction will not cause an exception, which allows the FCM to receive an 
asserted APUFCMWRITEBACKOK signal (when the instruction can no longer be 
flushed from the processor pipeline) as soon as possible. An example of an 
autonomous instruction is an instruction that reads the contents of two general-
purpose registers (GPRs) without returning any data to the processor.

• Non-autonomous with Early Confirmation Instructions

Instructions in the non-autonomous class stall normal execution in the processor 
pipeline until the FCM instruction is completed. These instructions can return result 
data and/or status (condition record bits) to the processor. For Non-autonomous with 
Early Confirmation instructions, the FCM cannot generate an exception. The APU 
controller automatically confirms to the processor that this instruction will not cause 
an exception, which allows the FCM to receive the APUFCMWRITEBACKOK signal 
(when the instruction can no longer be flushed from the processor pipeline) as soon as 
possible. 

• Non-autonomous with Late Confirmation Instructions

Instructions in the non-autonomous class stall normal execution in the processor 
pipeline until the FCM instruction is completed. These instructions can return result 
data and/or status (condition record bits) to the processor. For Non-autonomous 
instructions with Late Confirmation, the APU controller waits for the FCM to confirm 
that this instruction does not cause an exception (FCMAPUCONFIRMINSTR), which 
allows the FCM to throw a precise exception for the instruction, if necessary. It also 
causes the APUFCMWRITEBACKOK signal to arrive somewhat later than in the case 
of Early Confirmation. This instruction type has not been optimized for performance; 
however, this instruction type does allow the FCM to generate its own precise 
instruction exception. 

There are no other instruction types that support FCM generated precise exceptions. 
FPU instructions in the FPSCR group are always executed as Non-autonomous with 
Late Confirmation instructions. Also, when MSR[FE0] or MSR[FE1] is set to 1, all non-
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storage FPU instructions execute as Non-autonomous with Late Confirmation 
instructions. 

Non-Storage Instruction Execution

Non-storage instructions can use source data from the GPR in the processor, send 
result data to the GPR in the processor, and update Condition Record (CR) bits in the 
processor. The APU controller does not allow the FCM to return Carry or Overflow 
data to the processor. 

For non-storage instructions that return data back to the processor (result data or CR 
bits), FCMAPURESULTVALID must assert High at least one clock cycle before 
FCMAPUDONE. However, for FPU/APU store instructions that also return the data 
back to the processor, FCMAPURESULTVALID and FCMAPUDONE can assert High 
in the same clock cycle.

To improve performance, the APU controller accepts up to three FCM instructions at a 
time from the processor, allowing the APU controller, for example, to finish the first 
FCM instruction at the same time it receives the source data for the second and third 
FCM instructions. The second instruction then has all of its source data ready to send 
once the first FCM instruction has finished and overlaps the overhead of starting the 
second and third instructions in the processor pipeline.

If the FCM non-storage instruction is flushed from the processor pipeline, the APU 
controller notifies the FCM by sending a Flush signal. The instruction can be flushed 
from the pipeline because of an FCM generated exception or if a previous instruction 
causes the pipeline to flush. Similar to the Flush signal, the APU controller provides a 
signal indicating when an FCM non-storage instruction can no longer be flushed and 
can safely update its internal registers (APUFCMWRITEBACKOK). 

The APUFCMNEXTINSTRREADY signal can be used to improve instruction 
throughput for autonomous instructions. This signal is driven High when the next 
autonomous instruction and all of its data (if any) are ready to be sent to the FCM. A 
High on this signal means that as soon as the APU controller receives an asserted 
FCMAPUDONE signal for the current instruction, the next autonomous instruction 
with all data is sent on the very next FCM cycle. Because the FCM knows when the 
next instruction will arrive, it can drive FCMAPUDONE High during that same cycle, 
allowing the autonomous instruction to be sent and completed in one FCM clock cycle.

Exceptions
There are three main scenarios when exceptions occur due to UDI or FPU instructions:

• Storage exceptions (in the case of UDI or FPU load/store instructions)

• Exceptions generated by the APU controller decoder (for example, when decoding is 
disabled)

• FCM generated exceptions

Storage Exceptions
The processor generates storage exceptions for UDI and FPU load/store instructions 
under certain circumstances because the processor handles the address calculation, TLB 
access, and cache and/or memory access. The following exceptions might occur when 
executing a UDI or FPU load/store instruction:

• Read Access Control Exception
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While in user mode (MSR[PR] = 1), a load instruction attempts to access a location in 
memory that is not enabled for read access in user mode. While in supervisor mode 
(MSR[PR] = 0), a load instruction attempts to access a location in memory that is not 
enabled for read access in supervisor mode.

• Write Access Control Exception

While in user mode (MSR[PR] = 1), a store instruction attempts to access a location in 
memory that is not enabled for write access in user mode. While in supervisor mode 
(MSR[PR] = 0), a store instruction attempts to access a location in memory that is not 
enabled for write access in supervisor mode.

• Byte Ordering Exception

This exception, which is indicated by the Endian attribute bit, occurs when the 
attached FCM does not support the current byte ordering of the memory. When a 
load/store instruction is executed with TrapBE (APU Control register bit [21]) or 
TrapLE (APU Control register bit [22]), this exception might occur.

• Data TLB Error Interrupt

This exception occurs when a load/store instruction attempts to access a virtual 
address for which a valid TLB entry does not exist.

• Alignment Interrupt

This exception occurs when a load/store instruction references a data storage operand 
that crosses a quadword boundary.

APU Controller Decode Exceptions
The APU controller can cause exceptions when the APU Control register has been 
configured to disable certain instruction decoding. The following exceptions might occur 
when executing a UDI or FPU instruction:

• Floating-Point Unavailable Interrupt 

This exception occurs when an attempt is made to execute a floating-point instruction 
that is recognized by the APU controller (FCM Enable = 1 and FPU Decode Disable = 
0) and MSR[FP] = 0.

• Illegal Instruction Exception

This exception occurs when there is an attempt to execute the following:

♦ a UDI or FPU instruction and FCM Enable = 0

♦ an FPU instruction and FPU Decode Disable = 1

♦ a UDI instruction and UDI Decode Disable = 1

♦ an FCM Load/Store instruction and Load/Store Decode Disable = 1

• Unimplemented Operation Exception

This exception occurs when an attempt is made to execute the following:

♦ an instruction in the FPU Complex Arithmetic group and MSR[FP] = 1, FPU 
Decode Disable = 0, and FPU complex arithmetic Disable = 1. 

♦ an instruction in the FPU Convert group and MSR[FP] = 1, FPU Decode Disable = 
0, and FPU convert. Disable = 1. 

♦ an instruction in the FPU Estimate/Select group and MSR[FP] = 1, FPU Decode 
Disable = 0, and FPU estimate/select Disable = 1. 
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♦ an instruction in the FPU FPSCR group and MSR[FP] = 1, FPU Decode Disable = 
0, and FPU FPSCR Disable = 1. 

♦ an instruction in the FPU single-precision only group and MSR[FP] = 1, FPU 
Decode Disable = 0, and FPU single-precision Disable = 1. 

♦ an instruction in the FPU Double-precision only group and MSR[FP] = 1, FPU 
Decode Disable = 0, and FPU double-precision Disable = 1.

• Privileged Instruction Exception

This exception occurs when MSR[PR] = 1 (user mode) and an attempt is made to 
execute a UDI instruction that is privileged.

FCM Generated Exceptions
The FCM can also generate precise exceptions. To generate precise exceptions, the 
instruction must be non-autonomous with late confirm. Because of this restriction, no 
load/store instructions can cause a precise exception generated by the FCM. If the FCM 
wishes to generate an exception for a different type of instruction, the FCM should 
generate an external interrupt to the processor. The following exceptions can be generated 
by the FCM:

• Floating-Point Enabled Exception

This exception occurs when the execution or attempted execution of a recognized 
floating-point instruction causes FPSCR[FEX] to be set to 1. The floating-point 
instruction must be executed as non-autonomous with late confirm. If MSR[FE0, FE1] 
are non-zero, a precise Program Interrupt occurs. If MSR[FE0, FE1] are zeros, the 
instruction completes normally. When MSR[FE0, FE1] become non-zero and 
FPSCR[FEX] is still set to 1, a “delayed” or imprecise Program Interrupt occurs. When 
MSR[FE0, FE1] is non-zero, all FPU instructions are forced to be of type non-
autonomous with late confirm to keep the FPU generated exceptions precise. When 
MSR[FE0, FE1] is zero, only the FPSCR instructions are implemented as non-
autonomous with late confirmation to allow for imprecise interrupts.

• Auxiliary Processor Enabled Exception

This exception occurs during the attempted execution of a UDI of type non-
autonomous with late confirm. If the FCM drives FCMAPUEXCEPTION High instead 
of asserting FCMAPUCONFIRMINSTR, the precise exception occurs.

FPU Generated Exception Execution Details
FPU generated exceptions must follow a strict sequence. As stated before, the instruction 
must be a non-autonomous instruction with late confirm. FPU instructions can only 
generate an exception when FPSCR[FEX] is set to 1. After the instruction has been sent to 
the FPU the following sequence should occur:

• FCMAPUEXCEPTION = 1 (held, not pulsed)

• FCMAPUFPSCRFEX = 1 (held, not pulsed)

When the APU controller sees these signals, it responds with:

• APUFCMWRITEBACKOK =1 if the FPU exception was processed/accepted, 0 if not

• APUFCMFLUSH = 1 if a previous exception was received, 0 if the FPU exception is 
accepted

The transaction is complete when either the FPU receives an asserted APUFCMFLUSH or 
when the FPU returns FCMAPUDONE = 1 after receiving APUFCMWRITEBACKOK = 1. 
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If APUFCMFLUSH is asserted, the FPU must deassert FCMAPUEXCEPTION and 
FCMAPUFPSCRFEX (FPSCR[FEX] must not be updated in the FPU because the 
instruction was flushed). If APUFCMWRITEBACKOK is asserted, the FPU can deassert 
FCMAPUEXCEPTION when sending FCMAPUDONE or leave it High to be cleared later 
by software. If FCMAPUEXCEPTION is left High, any later non-autonomous instruction 
with late confirm is seen as causing an exception. FCMAPUFPSCRFEX should remain 
High until FPSCR[FEX] has been cleared by software.

APU Generated Exception Execution Details
APU generated exceptions follow a similar sequence to FPU exceptions but they are 
simpler. Again, only non-autonomous instructions with late confirm can generate an 
exception. After the FCM has received the instruction the following sequence occurs:

• FCMAPUEXCEPTION = 1 (held, not pulsed)

When the APU controller sees these signals, it responds with:

• APUFCMWRITEBACKOK = 1 if the APU exception was processed/accepted, 0 if not

• APUFCMFLUSH = 1 if a previous exception was received and 0 if the APU exception 
is accepted

The transaction is complete when either the FCM receives an asserted APUFCMFLUSH or 
when the FCM returns FCMAPUDONE = 1 after receiving APUFCMWRITEBACKOK = 1. 
If an asserted APUFCMFLUSH is received, the FCM must deassert FCMAPUEXCEPTION. 
If an asserted APUFCMWRITEBACKOK is received, the FCM can deassert 
FCMAPUEXCEPTION when sending FCMAPUDONE or leave it High to be cleared later 
by software. If FCMAPUEXCEPTION is left High, any later non-autonomous instruction 
with late confirm is seen as causing an exception.

For more details on the signal timing, refer to “Timing Diagrams for the APU Controller,” 
page 212.

APU Configuration

Enabling the APU Controller
The MSR register must be configured before the processor can use the APU controller. 
Table 12-5 describes the APU controller-related bits in the MSR.

Table 12-5: APU Controller-Related MSR Bits

Bit(s) in MSR Description

18
FCM floating-point unit present

• 1: true
• 0: false

(20,23)

Floating-point exception mode (FE0,FE1):

• (0,0): Ignore floating-point exceptions
• (1,0): Imprecise recoverable mode
• (0,1): Imprecise non-recoverable mode
• (1,1): Precise mode
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Configuration Registers
The APU controller is configured through a single 32-bit APU Configuration register and 
16 32-bit UDI registers. 

DCR Access to Configuration Registers

The APU and UDI configuration registers are accessed through the DCR interface. The 16 
UDI registers share the same DCR address. Figure 12-6 shows the DCR access of UDI 
registers.

A DCR read from or write to the UDI configuration register address uses a 4-bit read/write 
pointer register in the APU controller to select which specific UDI configuration to read or 
write. This pointer auto-increments after each DCR read or write operation. To load the 
read/write pointer with a specific value, the user must perform a ghost write to the UDI 
configuration DCR address. This write does not affect the contents of any UDI 
configuration registers, only the read/write pointer. 

A DCR read performed to the UDI configuration address after a ghost write returns the 
contents of the desired UDI configuration register, and a DCR write writes to the desired 
UDI configuration register.

Refer to Chapter 7, “Device Control Register Bus,” for more information on 
programmatically accessing these configuration registers.

Figure 12-6: DCR Access of UDI Registers
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APU Control Register

The APU Control register turns on or off various features in the APU controller. Figure 12-7 
shows the bits in the APU Control register. Table 12-6 defines the bits within the register.

0 1 4 5 6 7

Reset 
UDI/Control 

Registers

LD/ST 
Decode 
Disable

UDI Decode 
Disable

Force UDI 
Non-Auton. 

Late Confirm

8 9 10 11 12 13 14 15

FPU Decode 
Disable

FPU Complex 
Arith. Disable

FPU Convert 
Disable

FPU 
Estimate/

Select Disable

FPU Single 
Precision 
Disable

FPU Double 
Precision 
Disable

FPU FPSCR 
Disable

Force FPU 
Non-Auton. 

Late Confirm

16 17 18 19 20 21 22 23

Store 
WriteBack OK

Ld/St Priv. 
Op

Force Align LE Trap BE Trap

24 30 31

FCM
Enable

Figure 12-7: APU Control Register

Table 12-6: Bit Descriptions for the APU Control Register

Bit Name
Default 
Value

Description

0
Reset UDI/Control 
Registers

-
When a 1 is written to this bit, all the UDI registers are reset to their default 
values. The rest of the bits in the control register are also reset to their 
default values. When read, this bit always returns a 0.

1:4 Reserved - Reserved

5 LD/ST Decode Disable 0
When set, this bit disables all FCM Load/Store decoding in the APU 
controller. This does not affect FPU Load/Store instructions. An FCM 
Load/Store in the program causes an illegal instruction exception.

6 UDI Decode Disable 0
When set, this bit disables all UDI decoding in the APU controller. This does 
not affect FCM Load/Store or FPU instructions. A UDI instruction in the 
program causes an illegal instruction exception.

7
Force UDI Non-
Autonomous, Late 
Confirm

0
When set, this bit forces any non-storage UDI instruction to be executed as 
a non-autonomous instruction with late confirm regardless of the type 
indicated in the UDI register.

8 FPU Decode Disable 1
When set, this bit disables all FPU decoding in the APU controller. An FPU 
instruction in the program causes an illegal instruction exception.

9
FPU Complex 
Arithmetic Disable

0

When set, this bit disables decoding for all FPU divide and square root 
instructions (fdiv, fdiv., fdivs, fdivs., fsqrt, fsqrt., fsqrts, fsqrts.). An FPU 
complex arithmetic instruction in the program when FPU Decode is not 
disabled causes an unimplemented instruction exception.
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10 FPU Convert Disable 0

When set, this bit disables decoding for all FPU convert instructions (fcfid, 
fctid, fctidz, fctiw, fctiw., fctiwz, fctiwz., frsp, frsp.). An FPU convert 
instruction in the program when FPU Decode is not disabled causes an 
unimplemented instruction exception.

11
FPU Estimate/select 
Disable

0

When set, this bit disables decoding for all FPU estimate instructions (fres, 
fres., frsqrte, frsqrte., fsel, fsel.). An FPU estimate instruction in the program 
when FPU Decode is not disabled causes an unimplemented instruction 
exception.

12
FPU Single Precision 
Disable

0

When set, this bit disables decoding for all FPU single-precision only 
instructions (lfs, lfsu, lfsx, lfsux, stfs, stfsu, stfsx, stfsux, fadds, fadds., fsubs, 
fsubs., fdivs, fdivs., fmuls, fmuls., fsqrts, fsqrts., fmadds, fmadds., fnmadds, 
fnmadds., fmsubs, fmsubs., fnmsubs, fnmsubs.). A single-precision FPU 
instruction in the program when FPU Decode is not disabled causes an 
unimplemented instruction exception.

13
FPU Double Precision 
Disable

0

When set, this bit disables decoding for all FPU double-precision only 
instructions (lfd, lfdu, lfdx, lfdux, stfd, stfdu, stfdx, stfdux, stfiwx, fadd, 
fadd., fsub, fsub., fdiv, fdiv., fmul, fmul., fsqrt, fsqrt., fmadd, fmadd., 
fnmadd, fnmadd., fmsub, fmsub., fnmsub, fnmsub.). If a double-precision 
FPU instruction is encountered in the program and FPU Decode is not 
disabled, an unimplemented instruction exception occurs.

14 FPU FPSCR Disable 0

When set, this bit disables decoding for all FPSCR FPU instructions (mcrfs, 
mffs, mffs., mtfsb0, mtfsb0., mtfsb1, mtfsb1., mtfsf, mtfsf., mtfsfi, mtfsfi.). 
An FPSCR instruction in the program when FPU Decode is not disabled 
causes an unimplemented instruction exception.

15
Force FPU Non-
Autonomous, Late 
Confirm

0
When set, this bit forces all non-storage FPU instructions to be executed as 
non-autonomous instructions with late confirm.

16 Store WritebackOK 0

When this bit is set, the APU controller waits to send a WritebackOK signal 
to the FCM for all store instructions (both APU and FPU stores). The 
WritebackOK signal is sent after the store instruction passes the LWB stage 
in the CPU pipe, which can cause a slight performance hit when executing 
store instructions.

17 LD/ST Privilege 0 When this bit is set, any load or store UDI executes in privileged mode (this 
does not affect FPU load/store instructions).

18:19 Reserved - Reserved

20 Force Align 0

When this bit is set, any load or store (both APU and FPU) forces alignment. 
The address is forced to align on the natural boundary of the transfer (word 
boundary for a word transfer, doubleword boundary for a doubleword 
transfer, and so forth). This also prevents an alignment exception.

21 LE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the 
Endian storage attribute is 1’b1 (little Endian).

22 BE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the 
Endian storage attribute is 1’b0 (big Endian).

Table 12-6: Bit Descriptions for the APU Control Register (Continued)

Bit Name
Default 
Value

Description
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User-Defined Instruction (UDI) Configuration Registers

For all UDIs, the user needs to configure the primary and extended opcodes along with 
any necessary execution options. Figure 12-8 shows the UDI Configuration register bits. 
Table 12-7 defines the bits in the UDI Configuration register. 

23:30 Reserved - Reserved

31 FCM Enable 0
When this bit is set, the FCM interface is enabled and the APU controller 
decodes instructions. When this bit is cleared, bits 5, 6, and 8 are 
overridden. The APU controller does not decode any instructions.

Table 12-6: Bit Descriptions for the APU Control Register (Continued)

Bit Name
Default 
Value

Description

0 1 7

Primary 
Opcode

Extended Opcode [0:6]

8 11 12 13 14 15

Extended Opcode [7:10]
Privilege 

Op
Ra Enable Rb Enable GPR Write

16 17 18 20 21 22 23

CR Enable CR Field [0:2] Register # [0:1]

24 25 26 27 28 29 30 31

Register # [2:3] Type Wildcard En

Figure 12-8: UDI Configuration Register

Table 12-7: Bit Descriptions for the UDI Configuration Register

Bit Name Description

0 Primary Opcode
• 0: 6’b000000 (opcode 0)
• 1: 6’b000100 (opcode 4)

1:11 Extended Opcode 11 bits of the full extended opcode

12 Privilege Op
When this bit is set, this instruction must execute in 
privilege mode.

13 Ra Enable
When this bit is set, this instruction needs to read the Ra 
source operand from the GPR.

14 Rb Enable
When this bit is set, this instruction needs to read the Rb 
source operand from the GPR.

15 GPR Write
When this bit is set, this instruction writes a result to the 
Rt register in the GPR. 

http://www.xilinx.com


208 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Clocking
The FCM can be clocked at integer multiples of the processor clock. The clock ratio 
between the processor and FCM can range from 1:1 up to 16:1. In other words, the FCM can 
run at the same speed as the processor or slower. The two clocks must be rising-edge 
aligned.

The APU controller uses the processor clock for the APU controller/processor interface as 
well as its internal logic. All inputs and outputs on the APU controller/FCM interface are 
synchronized using the FCM clock.

16 CR Enable
When this bit is set, this instruction returns Condition 
Record (CR) bits to the CR field indicated in 
CRField[0:2].

17 Reserved Reserved

18:20 CRField[0:2]
Indicates which field receives the condition record (if 
the CR Enable bit in the instruction is set to 1).

21 Reserved Reserved

22:25 Register #

Indicates the register number (0 – 15). This value is only 
used when setting the DCR read/write pointer 
(Type = 2’b11), but can be viewed when reading the 
UDI contents through a DCR read.

26:27 Type

 Indicates the operation type of the instruction:

• 00: Non-autonomous, early confirm
• 01: Non-autonomous, late confirm
• 10: Autonomous
• 11: Sets read/write pointer to value in Register # 

field

28:29 Reserved Reserved

30 Wildcard

When this bit is set, bits [1:5] are not considered as the 
extended opcode but can be anything. Instead only bits 
[6:11] are checked. When this bit is cleared, the entire 11 
bits of the extended opcode are checked.

31 En
This bit enables the UDI. It indicates that the opcode 
and options written in the UDI are valid and should be 
used during decode.

Table 12-7: Bit Descriptions for the UDI Configuration Register (Continued)

Bit Name Description
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Processor Migration
This section describes key points for customers migrating their APU hardware and 
software IP from the 405 processor to the 440 processor. 

New Features
To improve performance, the APU controller supports a 128-bit load bus and a 128-bit store 
bus. The transfer of a full quadword can occur in one FCM clock cycle. Previously, this 
transfer took four clock cycles.

A new signal, APUFCMNEXTINSTRREADY, helps to increase instruction throughput. 
This signal is driven High when the next load instruction and all of its data are ready to be 
sent to the FCM. A High on this signal means that as soon as FCMAPUDONE is asserted 
for the current instruction, the APU controllers sends the next load instruction with all data 
on the next FCM cycle. Because the FCM knows when the next instruction will arrive, it 
can drive FCMAPUDONE High during that same cycle, which allows for the load 
instruction to be sent and completed all in one FCM clock cycle.

New “wildcard” option for each of the 16 UDI registers.

The user must specify the CR enable option in the UDI register for any instruction that 
returns CR status. Previously, this bit was not needed.

APU Controller now pipelines up to three instructions internally, making it possible to 
achieve back-to-back instructions on the FCM interface.

APUFCMMSRFE0 and APUFCMMSRFE1 are new signals for use with the FPU. These 
signals determine the precise/imprecise exception mode for floating-point instructions.

FPU exceptions have OS support automatically, and no special APU configuration is 
needed.

FCMAPUFPSCRFEX is a new signal used for FPU generated exceptions. It reflects the 
value of FPSCR[FEX].

The APU Controller now provides decoded information to the FCM that indicates if the 
instruction is a load or a store, its transfer size, and if it is an FPU operation or a non-
autonomous instruction.

During an FCM transaction, the signals from the APU remain valid until the end of the 
transaction. The only signals that are pulsed are APUFCMWRITEBACKOK and 
APUFCMFLUSH.

The new FCMAPUCONFIRMINSTR signal is used for non-autonomous instructions with 
late confirmation to indicate that the FCM will not generate an exception for that 
instruction.

Dropped Features
UDIs no longer send Carry or Overflow information back to the processor. The embedded 
processor does not support Carry or Overflow reporting for UDIs. However, UDIs can still 
send their own Condition Record (CR) bits to any of eight CR fields and are defined by the 
user.

Storage UDIs (loads and stores) no longer force big-Endian steering. The embedded 
processor in Virtex-5 FPGAs does not support this feature. Instead the FCM needs to watch 
the Endian bit of the hardware and take care of any byte swapping based on its own 
Endian configuration.
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In the previous version of the APU controller, the FCM could decode and “steal” the 
Integer Divide instruction from the processor and execute it in the FCM. This feature is not 
supported by the embedded processor in Virtex-5 FPGAs.

FCM decoded instructions are no longer supported. Previously, the APU Controller passed 
an unknown instruction to the FCM for the FCM to decode. This is no longer possible. 
Only instructions decoded by the APU Controller are passed to the FCM.

Non-autonomous blocking instructions have been replaced with non-autonomous with 
early confirmation instructions. This new class of instructions is similar to non-
autonomous blocking instructions; however, the APUFCMWRITEBACKOK signal can no 
longer be received in a specific cycle.

Non-autonomous non-blocking instructions have been replaced with non-autonomous 
with late confirmation instructions. This new class is similar to non-autonomous non-
blocking instructions; however, the APUFCMWRITEBACKOK signal is received before 
FCMAPUDONE is asserted in response.

Interface Changes
This section describes the changes in the APU to FCM interface.

Table 12-8: FCM Interface Signals

FCM Interface Signal Direction Function

APUFCMDECFPUOP(1) Output APU controller decoded FPU instruction.

APUFCMDECLDSTXFERSIZE[0:2](1) Output

APU controller decoded load/store transfer size. 

• 100: byte
• 010: halfword
• 001: word
• 011: doubleword
• 111: quadword

APUFCMDECLOAD(1) Output APU controller decoded load instruction.

APUFCMDECNONAUTON(1) Output
APU controller decoded instruction that is a non-autonomous 
instruction. Store instructions are also included because stores 
return data to the CPU. 

APUFCMDECSTORE(1) Output APU controller decoded store instruction.

APUFCMDECUDI[0:3](2) Output Specifies the UDI register decoded.

APUFCMINSTRVALID(2) Output
Indicates if the instruction on APUFCMINSTRUCTION[0:31] 
is valid. This signal now only applies to instructions decoded 
by the APU controller.

APUFCMLOADBYTEADDR[0:3](2) Output Now specifies at which of the 16 bytes the data begins. 

APUFCMLOADDATA[0:127](2) Output 128-bit load data bus. This bus is now wider.

APUFCMLOADDVALID(2) Output APUFCMLOADDATA[0:127] is valid.

APUFCMMSRFE0(1) Output
This signal indicates the value of MSR[FE0]. It is used for FPU 
instructions only.

APUFCMMSRFE1(1) Output
This signal indicates the value of MSR[FE1]. It is used for FPU 
instructions only.
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Table 12-9 summarizes signals that were in the previous APU controller/FCM interface 
but are no longer available.

APUFCMNEXTINSTRREADY(1) Output

This signal indicates the APU controller sends the next 
instruction, along with all data, on the clock cycle after the 
current FCM instruction is finished (when FCMAPUDONE is 
received).

FCMAPUCONFIRMINSTR(1)

Input
Indicates the FCM does not cause an exception for this 
instruction. This signal is used for non-autonomous with late 
confirmation instructions.

FCMAPUFPSCRFEX(1)
Input

Indicates an FPU instruction generated an exception. This 
should be the value of FPSCR[FEX] bit in the FPU.

FCMAPUSTOREDATA[0:127](1) Input 128-bit separate store data bus.

Notes: 
1. This is a new signal or bus.
2. This signal has changed in bus size or function from the 405 version of the signal.

Table 12-8: FCM Interface Signals (Continued)

FCM Interface Signal Direction Function

Table 12-9: Unsupported Signals

Signal Function

FCMAPUDCDXEROVEN FCM decoded instruction that returns overflow.

FCMAPUDCDXERCAEN FCM decoded instruction that returns carry.

FCMAPUDCDFORCEBESTEERING FCM decoded load/store that forces big-Endian 
steering.

FCMAPUXEROV Overflow result of FCM instruction.

FCMAPUXERCA Carry result of FCM instruction.

FCMAPUINSTRACK Valid instruction decoded in the FCM.

FCMAPUDECODEBUSY Allows FCM to do a multicycle instruction decode 
before returning FCMPAUINSTRACK. 

FCMAPUDCDGPRWRITE FCM decoded instruction writes back to GPR. 

FCMAPUDCDRAEN FCM decoded instruction needs data from GPR(Ra). 

FCMAPUDCDRBEN FCM decoded instruction needs data from GPR(Rb).

FCMAPUDCDPRIVOP
FCM decoded instruction executes in privileged 
mode. 

FCMAPUDCDFORCEALIGN
FCM decoded load/store instruction with forced 
alignment. 

FCMAPUDCDCREN
FCM decoded instruction sets condition record (CR) 
bits. 

FCMAPUEXECRFIELD[0:2]
FCM decoded instruction sets which CR field to 
update. 

FCMAPUDCDLOAD FCM decoded load instruction.
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Timing Diagrams for the APU Controller
This section provides timing diagrams that show the maximum throughput of 
instructions. The examples show waveforms for autonomous instructions, quadword 
loads, non-autonomous instructions with early confirm, quadword stores, non-
autonomous instructions with late confirm, APU enabled exceptions (both accepted by 
CPU and flushed), and FPU enabled exceptions (both accepted by CPU and flushed). For 
each transaction, the instruction, decoded information, and any source or load data 
remains valid until the APU controller receives an asserted FCMAPUDONE. 
APUFCMWRITEBACKOK or APUFCMFLUSH are pulsed once for each instruction. All 
signals coming from the FCM should be pulsed for one FCM clock signal unless stated 
otherwise.

FCMAPUDCDSTORE FCM decoded store instruction.

FCMAPUDCDUPDATE FCM decoded load/store with update.

FCMAPUDCDLDSTBYTE FCM decoded load/store byte transfer. 

FCMAPUDCDLDSTHW FCM decoded load/store halfword transfer. 

FCMAPUDCDLDSTWD FCM decoded load/store word transfer. 

FCMAPUDCDLDSTDW FCM decoded load/store doubleword transfer. 

FCMAPUDCDLDSTQW FCM decoded load/store quadword transfer. 

FCMAPUDCDTRAPLE
FCM decoded load/store that causes an alignment 
exception if the Endian attribute is 1’b1. 

FCMAPUDCDTRAPBE
FCM decoded load/store that causes an alignment 
exception if the Endian attribute is 1’b0. 

FCMAPUFPUOP FCM decoded FPU instruction. 

FCMAPUEXEBLOCKINGMCO FCM decoded instruction of blocking class. 

FCMAPUEXENONBLOCKINGMCO FCM decoded instruction of blocking class.

FCMAPULOADWAIT
FCM is not yet ready to receive next load data. This 
signal is no longer necessary because data remains 
valid until FCMAPUDONE is asserted.

APUFCMDECODED

Indicates the APU controller decoded the 
instruction. Because there are now only APU 
controller decoded instructions, this signal is not 
necessary.

APUFCMXERCA Carry in for extended arithmetic.

Table 12-9: Unsupported Signals (Continued)

Signal Function
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Figure 12-9 shows back-to-back autonomous instructions. To achieve the back-to-back 
instructions on the FCM interface, the clock ratio must be 3:1 or larger. This timing diagram 
assumes the FCM signals are flopped (the FCM cannot respond in the same clock cycle that 
an instruction is sent). (Refer to Figure 12-10 for an example with an FCM that uses the 
same cycle response logic.) If the FCM can respond using same cycle logic, the APU 
controller can achieve back-to-back transactions at a 2:1 clock ratio. The first instruction is 
sent to the FCM as soon as possible along with the UDI number that was decoded. The 
operands along with APUFCMWRITEBACKOK are ready in the next cycle. The FCM can 
then respond by asserting FCMAPUDONE on the next clock cycle. In the meantime, 
because the APU controller can accept up to three instructions, the APU controller has 
received the next autonomous instruction and its operands. Because the APU controller 
has all pieces of the second UDI, it asserts APUFCMNEXTINSTRREADY High, so that the 
cycle after FCMAPUDONE is asserted, the next instruction will be presented with its 
associated data. The FCM then can assert FCMAPUDONE on the following clock cycle. At 
this point, new instructions can be sent to the FCM every clock cycle.

Figure 12-9: Autonomous Back-to-Back Instructions (3:1 Clock Ratio or Higher)
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Figure 12-10 shows back-to-back autonomous instructions. To achieve the back-to-back 
instructions on the FCM interface (assuming the FCM uses combinatorial logic), the clock 
ratio must be 2:1 or larger. Figure 12-10 assumes the FCM signals are not flopped (the FCM 
can respond in the same clock cycle an instruction is sent). In this diagram, the first 
instruction is sent to the FCM as soon as possible along with the decoded UDI number. The 
operands are ready in the next cycle along with APUFCMWRITEBACKOK. The FCM can 
then respond with FCMAPUDONE on the same clock cycle. In the meantime, because the 
APU Controller can accept up to three instructions, the APU Controller has received the 
next Autonomous instruction along with its operands. At this point, new instructions can 
be sent to the FCM every clock cycle.

Figure 12-10: Autonomous Back-to-Back Instructions (2:1 Clock Ratio or Higher, 
Assumes Same Cycle Response)
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Figure 12-11 shows back-to-back quadword loads. At clock ratios of 4:1 and larger, the 
FCM can receive one quadword each cycle. At smaller clock frequencies, the FCM can 
receive two quadwords every three cycles with more bubbles at a 1:1 clock ratio. 
Figure 12-11 assumes the FCM signals are flopped. (Refer to Figure 12-12 for an example of 
a quadword load that uses the same cycle response logic in the FCM.) If the FCM can 
achieve same cycle response, back-to-back transfers are possible each FCM clock cycle at a 
3:1 clock ratio. In this timing diagram, the instruction is sent immediately with 
APUFCMDECLOAD and APUFCMDECLDSTXFERSIZE[0:2]. When the load data has 
been sent by the processor, the APU controller passes the load data to the FCM with 
APUFCMLOADADDR[0:3], which indicates the byte at which the data begins on the load 
data bus. By this time, the second instruction and its associated data have been received. 
When the FCM asserts FCMAPUDONE for instruction 1, the APU controller asserts 
APUFCMNEXTINSTRREADY High to indicate it will send all the data for the second 
instruction on the next cycle. The FCM can then assert FCMAPUDONE High for 
instruction 2. This pattern continues for back-to-back quadword loads so that the FCM 
receives one load every clock cycle.

Figure 12-11: Quadword Load Back-to-Back Instructions (4:1 Clock Ratio or 
Higher)
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Figure 12-12 shows back-to-back quadword loads. At clock ratios of 3:1 and larger, the 
FCM can receive one quadword each cycle. Figure 12-12 assumes the FCM signals are not 
flopped. In this timing diagram, the instruction is sent immediately along with 
APUFCMDECLOAD and APUFCMDECLDSTXFERSIZE[0:2]. Once the load data has 
been sent by the processor, the APU Controller passes the load data to the FCM along with 
APUFCMLOADADDR[0:3], which indicate the byte at which the data begins on the load 
data bus. The FCM can then respond with FCMAPUDONE in the same cycle. This pattern 
continues for back-to-back quadword loads so that the FCM can receive one every clock 
cycle.

Figure 12-12: Quadword Load Back-to-Back Instructions (3:1 Clock Ratio or 
Higher)
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Figure 12-13 shows back-to-back non-autonomous instructions with early confirm. At 
clock ratios of 3:1 or larger, the FCM can return a result every other clock cycle. 
Figure 12-13 assumes the FCM signals are flopped. (Refer to Figure 12-14 for an example of 
an FCM with combinatorial logic.) In Figure 12-13, the first instruction is sent to the FCM 
as soon as possible along with the decoded UDI number and APUFCMDECNONAUTON, 
which indicates the instruction type (non-autonomous). The operands are ready with 
APUFCMWRITEBACKOK in the next cycle. The FCM can then respond with the result 
data (FCMAPURESULT[0:31], FCMAPURESULTVALID) on the next clock cycle. In the 
subsequent clock cycle, the FCMAPUDONE is asserted. The next instruction has all of its 
source data, so both the instruction and data can be sent in the same cycle. The FCM then 
returns its result in the following cycle, allowing for one FCM instruction every three clock 
cycles.

Figure 12-13: Non-Autonomous Instructions with Early Confirm Back-to-Back (3:1 
Clock Ratio or Higher)
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Figure 12-14 shows back-to-back non-autonomous instructions with early confirm. At 
clock ratios of 2:1 or larger, the FCM can return a result every other clock cycle. 
Figure 12-14 assumes the FCM signals are not flopped. In this diagram, the first instruction 
is sent to the FCM as soon as possible along with the decoded UDI number and 
APUFCMDECNONAUTON, indicating that the instruction is of type Non-autonomous. 
The operands are ready in the next cycle along with APUFCMWRITEBACKOK. The FCM 
can then respond with the result data (FCMAPURESULT[0:31], FCMAPURESULTVALID) 
in the same clock cycle. Because the next instruction has all of its source data, both the 
instruction and data can be sent in the same cycle. The FCM then returns its result 
immediately and in the next clock cycle asserts FCMAPUDONE, allowing for one FCM 
instruction every two clock cycles.

Figure 12-14: Non-Autonomous Instructions with Early Confirm Back-to-Back (2:1 
Clock Ratio or Higher)
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Figure 12-15 shows back-to-back quadword stores. At clock ratios of 2:1 and larger, the 
FCM can receive one quadword every other cycle. Figure 12-15 assumes the FCM signals 
are flopped. The FCM signals must be combinatorial in order to send a quadword store 
each clock cycle. (Refer to Figure 12-16 for an example of a combinatorial response from 
the FCM.) In Figure 12-15, the instruction is sent immediately along with 
APUFCMDECSTORE, APUFCMDECLDSTXFERSIZE[0:2], and 
APUFCMDECNONAUTON. Any instruction that returns data or status to the CPU is 
considered to be non-autonomous. A store acts as a non-autonomous instruction with 
early confirm. Because the store in this example is without WritebackOK, the FCM can then 
respond with FCMAPUSTOREDATA[0:127], FCMAPURESULTVALID, and 
FCMAPUDONE on the next FCM clock. On the next cycle, the APU controller can send the 
second store, allowing the FCM to send one quadword store every other clock cycle.

Figure 12-15: Quadword Store Back-to-Back Instructions without WritebackOK (2:1 
Clock Ratio or Higher)
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Figure 12-16 shows back-to-back quadword stores. At clock ratios of 2:1 and larger, the 
FCM can receive one quadword every clock cycle. Figure 12-16 assumes the FCM signals 
are not flopped. The FCM signals must be combinatorial in order to send a quadword store 
each clock cycle. In this timing diagram, the instruction is sent immediately along with 
APUFCMDECSTORE, APUFCMDECLDSTXFERSIZE[0:2], and 
APUFCMDECNONAUTON. Any instruction that returns data or status to the CPU is 
considered to be Non-autonomous. A store instruction acts as a non-autonomous 
instruction with early confirm. Because the store in this example is without WritebackOK, 
the FCM can respond with FCMAPUSTOREDATA[0:127], FCMAPURESULTVALID, and 
FCMAPUDONE on the same FCM clock. On the next cycle, the APU controller can send 
the second store, allowing the FCM to send one quadword store every clock cycle.

Figure 12-16: Quadword Store Back-to-Back Instructions without WritebackOK (2:1 
Clock Ratio or Higher) and with Same Cycle Response from FCM
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Figure 12-17 shows back-to-back non-autonomous instructions with late confirm. At clock 
ratios of 2:1 or larger, the FCM can return a result every six clock cycles. Figure 12-17 
assumes the FCM signals are flopped. In Figure 12-17, the first instruction is sent to the 
FCM as soon as possible along with the decoded UDI number and 
APUFCMDECNONAUTON, which indicates the instruction type (non-autonomous). The 
operands are ready in the next cycle, and at the same time the FCM asserts 
FCMAPUCONFIRMINSTR, indicating that the instruction will not cause a precise 
exception. When the APU controller has received FCMAPUCONFIRMINSTR, it asserts 
APUFCMWRITEBACKOK as soon as possible. APUFCMWRITEBACKOK is asserted at 
the earliest cycle in this example. The FCM can then respond with the result data 
(FCMAPURESULT[0:31], FCMAPURESULTVALID) on the next clock cycle. The next 
instruction has all of its source data, so it can send the instruction and data in the same 
cycle. The FCM then confirms the instruction will not cause an exception. 

Figure 12-17: Non-Autonomous Instructions with Late Confirm Back-to-Back (2:1 
Clock Ratio or Higher)
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Figure 12-18 shows an APU exception (generated by the FCM). Figure 12-18 assumes the 
FCM signals are flopped. The instruction must be non-autonomous with late confirm. 
Instead of asserting FCMAPUCONFIRMINSTR after receiving the instruction, the FCM 
holds FCMAPUEXCEPTION High. This signal can be driven anytime after the FCM has 
received the instruction; it does not have to wait for operand data. In this case, the CPU 
takes the APU enabled exception; no other interrupt has higher priority. The APU 
controller asserts APUFCMWRITEBACKOK to let the FCM know the exception was 
received. During that cycle or at a later cycle, the FCM must assert FCMAPUDONE to 
complete the transaction. When FCMAPUDONE is asserted, the FCM can deassert 
FCMAPUEXCEPTION or, if wanted, leave it High to be cleared by software. If the FCM 
keeps FCMAPUEXCEPTION High, any later instructions of type non-autonomous with 
late confirm are seen as causing an exception.

Figure 12-18: APU Enabled Exception that is Received by the CPU
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Figure 12-19 shows an APU exception (generated by the FCM). Figure 12-19 assumes the 
FCM signals are flopped. The instruction must be non-autonomous with late confirm. 
Instead of asserting FCMAPUCONFIRMINSTR after receiving the instruction, the FCM 
holds FCMAPUEXCEPTION High. This signal can be asserted anytime after the FCM has 
received the instruction; it does not have to wait for operand data. In this case, the CPU 
takes an earlier or higher priority interrupt and flushes the APU instruction that is trying to 
generate an exception. The APU controller asserts APUFCMFLUSH to let the FCM know 
the exception was flushed. When APUFCMFLUSH is asserted, the FCM must deassert 
FCMAPUEXCEPTION. The FCM should not assert FCMAPUDONE.

Figure 12-19: APU Enabled Exception that is Flushed by the CPU
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Figure 12-20 shows an FPU exception (generated by the FCM). Figure 12-20 assumes the 
FCM signals are flopped. The instruction must be non-autonomous with late confirm and 
must set the FPSCR[FEX] bit. Instead of asserting FCMAPUCONFIRMINSTR after 
receiving the instruction, the FCM holds FCMAPUEXCEPTION and FCMAPUFPSCRFEX 
High. These signals can be asserted anytime after the FCM has received the instruction. In 
this case, the CPU takes the FPU enabled exception; no other interrupt has higher priority. 
The APU controller asserts APUFCMWRITEBACKOK to let the FCM know the exception 
was received. During that cycle or at a later cycle, the FCM must assert FCMAPUDONE to 
complete the transaction. When FCMAPUDONE is asserted, the FCM can deassert 
FCMAPUEXCEPTION or, if wanted, this signal can remain High to be cleared by software. 
If the FCM keeps FCMAPUEXCEPTION High, any later instructions of type non-
autonomous with late confirm are seen as causing an exception. FCMAPUFPSCRFEX must 
remain High until cleared by software. For the CPU to recognize an FPU exception, 
MSR[FE0,FE1] must be non-zero. Otherwise the exception is not seen by the CPU until 
these bits become non-zero.

Figure 12-20: FPU Enabled Exception that is Received by the CPU
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Chapter 13

DMA Controller

The DMA controller consists of four independent DMA engines that provide high-
performance direct memory access for streaming data. Peripherals can directly transfer 
data to and from a memory controller connected to the processor block. Peripherals are 
connected to the DMA engines through the LocalLink interface. The DMA engines can be 
monitored and controlled through their Device Control Registers (DCRs).

DMA Controller Features
The key features of the DMA controller are listed below:

• Four complete full-duplex DMA engines 

• Generic LocalLink interfaces stream data in and out of the engines

• Efficient command translation generates bursts from and to memory for payload 
transfers

• 32-byte aligned bursts for DMA descriptor reads

• Efficient 16-byte aligned commands for DMA descriptor writes

• High-performance payload read pipelining to the target memory

• Non-blocking RX and TX operations with respect to the target memory

• Asynchronous LocalLink clock allows the user logic to run at any frequency relative 
to the processor block

• DMA engines broadcast application-specific data across the LocalLink interfaces

• Separate DMA engine reset feature for locked-up engines

• Dynamic descriptor appending

• Interrupt coalescing mechanism

• Interrupt delay timer mechanism

• Simple software use model
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DMA Operation
Each DMA engine consists of two independent DMA channels, one for TX and the other 
for RX, allowing full-duplex operation per engine. Figure 13-1 shows a high-level block 
diagram of a single DMA engine.

The LocalLink protocol is used to transfer data packets from peripherals to memory, and 
from memory to peripherals. A LocalLink packet consists of the packet header, the packet 
payload, and the packet footer. The DMA TX engine collects data from one or more 
contiguous regions of memory to create the payload for a data packet that it then transmits 
over the TX LocalLink interface. The DMA RX engine receives a data packet from a 
peripheral, and writes the payload to one or more memory locations as specified by the 
control registers (descriptors).

Each DMA channel is controlled by separate descriptors, which are data structures set up 
by the CPU before the DMA operations commence. Among other things, these descriptors 
control how much data is to be transferred and the location of the data in system memory. 
Descriptors can be chained together, allowing either a sequence of separate memory blocks 
to be combined into a transmitted data packet or a received data packet to be broken up 
and saved in a sequence of separate memory blocks.

The CPU sets up the DMA by first creating the sequence of descriptors in memory and 
then writing the address of the first descriptor to the Current Descriptor Pointer DCR 
register. Finally, the CPU starts the DMA operation by writing the address of the last 
descriptor in the sequence to the Tail Descriptor Pointer DCR register.

This last write action triggers the DMA engine to fetch a new descriptor from the location 
pointed to by the Current Descriptor Pointer register. In the case of a transmit channel, the 
DMA engine starts fetching data from the memory locations indicated by the descriptor, 
and starts the process of creating and sending a data packet. After transmitting all the data 
indicated by the current descriptor, the DMA engine fetches the next descriptor, if any, and 
continues to transmit data indicated by that descriptor. 

In the case of a receive channel, the DMA engine waits for the data packet to be received 
from the external peripheral, and starts copying the received data to the memory locations 
indicated by the current descriptor. If more data is received, the next descriptor is fetched, 
and the received data is copied to the corresponding memory locations. This process 
continues until the end of the received payload.

Figure 13-1: High-Level Block Diagram of Single DMA Engine

To/From Crossbar
DMA to

Embedded
Processor Block

Interface

UG200_c13_01_051408

TX/RX
Arbiter

TX DMA
Channel

RX DMA
Channel

TX
LocalLink
Interface

To RX LocalLink
Device

From RX LocalLink
Device RX

LocalLink
Interface

http://www.xilinx.com


Embedded Processor Block Reference Guide www.xilinx.com 227
UG200 (v1.6) January 20, 2009

DMA Operation
R

Descriptor Format
The descriptor consists of eight words as shown in Table 13-1. 

The Next Descriptor Pointer field indicates from where in memory the next descriptor 
should be fetched. This field must be eight-word aligned (the five least-significant bits 
must be 0s). The Buffer Address field is a byte aligned address pointing to the payload 
source/destination. The Buffer Length field is the length of the payload to transfer in bytes. 
The Sts/Ctrl field is a single byte that contains status and control information for the DMA 
channel. The Application Defined Data fields are for the explicit use of the application and 
are broadcasted over the LocalLink interface at appropriate times. 

For the TX channel, the application data is transmitted down the LocalLink interface 
during the first descriptor that sets the Start of Packet (SOP) bit on the LocalLink interface. 
For the RX channel, the application data is received from the LocalLink interface and 
written back to the last DMA descriptor that was in progress when the LocalLink interface 
encountered an End of Packet (EOP). Details of how descriptor information is transferred 
to and from a LocalLink packet are provided in “DMA TX LocalLink Interface,” page 229 
and “DMA RX LocalLink Interface,” page 231. See [Ref 6] for more information on the 
LocalLink interface.

Table 13-1: Descriptor Format

Word# Byte Offset
Descriptor Field

MSB LSB

0 0x00 Next Descriptor Pointer

1 0x04 Buffer Address

2 0x08 Buffer Length

3 0x0C Sts/Ctrl Application-Defined Data

4 0x10 Application-Defined Data

5 0x14 Application-Defined Data

6 0x18 Application-Defined Data

7 0x1C Application-Defined Data
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The Sts/Ctrl byte format is shown in Table 13-2.

Table 13-2: Descriptor Status/Control Byte Format

Bit# Sts/Ctrl Field Field Type Description

0 (msb) DMA_ERROR Status The DMA sets this bit when an error is encountered. It is a copy of 
the Error Interrupt bit status (see “Interrupt Mechanism,” page 
234).

1 DMA_INT_ON_END Ctrl The CPU sets this bit to cause the DMA to generate an interrupt 
event when the current descriptor has been completed. 

2 DMA_STOP_ON_END Ctrl The CPU sets this bit to cause the DMA channel to halt when the 
current descriptor has been completed. The DMA can be restarted 
by rewriting to the Tail Descriptor Pointer register. 
DMA_STOP_ON_END and DMA_INT_ON_END are 
independent of each other. As such, the DMA can be made to do 
any of four possible operations: 

• Halt with an interrupt
• Halt without an interrupt
• Interrupt without halting
• Nothing at all

An alternate mechanism for halting the channel is when the 
descriptor Tail Pointer equals the descriptor Current Pointer.

3 DMA_COMPLETED Status The DMA sets this bit to indicate that the current descriptor has 
been completed (the payload is transferred).

• For the TX Channel:

Set when the Buffer Length decrements to zero.

• For the RX Channel:

Set when the Buffer Length decrements to zero or when EOP is 
received on the RX LocalLink interface. The Buffer Length does 
not specify how much data was transferred in this case.

4 DMA_START_OF_PACKET Status/Ctrl • TX Channel: (Ctrl)

The CPU sets this bit to instruct the LocalLink interface to 
initiate a header for the packet. 

• RX Channel: (Status)

When an SOP is asserted on the LocalLink RX interface, the 
DMA sets this bit in the descriptor.

5 DMA_END_OF_PACKET Status/Ctrl • TX Channel: (Ctrl)

The CPU sets this bit to instruct the LocalLink interface to 
initiate a footer for the packet. 

• RX Channel: (Status)

When an EOP is asserted on the LocalLink RX interface, the 
DMA sets this bit in the descriptor.

6 DMA_CHANNEL_BUSY Status The DMA sets this bit to indicate that the DMA Channel is busy. 
No DMA registers should be written during this time (except for 
the Descriptor Tail Pointer). Register reads are allowed at any time.

7 (lsb) Undefined N/A N/A
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Using Descriptors to Describe a Packet
The descriptors can be used in two ways to describe a packet:

1. A single descriptor describes a packet in its entirety. 

2. Multiple descriptors are chained together to describe a single packet. 

For the first case, the SOP and EOP flags are both set in the same descriptor. For TX, these 
are set by the CPU. For RX, they are set by the DMA when the LocalLink interface receives 
them.

In the second case, multiple non-contiguous descriptors are chained together to form an 
apparently contiguous data payload across the LocalLink interface.

DMA Legacy Mode
A legacy mode is supported for users who want to port legacy designs using older Virtex 
devices. In this legacy mode, a write to the DCR Current Descriptor Pointer register 
triggers a DMA operation, and the DCR Tail Descriptor Pointer register is not used. This 
mode is enabled by writing a 0 to the TailPtrEn field of the control register. When this 
legacy mode is enabled, the Tail == Current Pointer comparison is not used. Thus the 
Dynamic Descriptor Appending Mechanism cannot be used in this legacy mode (see 
“Dynamic Descriptor Appending,” page 237) because the Tail Descriptor Pointer is not 
used. Contact your local Xilinx representative for more information on using this mode.

DMA TX LocalLink Interface
This interface is compatible with the Xilinx LocalLink Specification as outlined in [Ref 6]. It 
is basically a synchronous, point-to-point connection that serves as a user interface to 
Xilinx intellectual property (IP) designs. 

This unidirectional interface sends data out of the LocalLink interface for consumption by 
some external device, such as an EMAC. Full-duplex operation is achieved by using an RX 
and TX LocalLink pair simultaneously. Figure 13-2 shows the high-level connection of the 
TX LocalLink interface.

Data is sent out over the LocalLink interface as a packet, described by header, payload, and 
footer components. The sof_n signal initiates the header of the packet. Between the time 
this signal is asserted and the time the sop_n signal is asserted, the header of the packet is 
transmitted. Between the sop_n signal assertion and the eop_n signal assertion, the 
payload is transmitted. Finally, the information between eop_n and eof_n constitutes the 

Figure 13-2: Block Diagram of TX LocalLink Interface
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footer. Information is deemed to be valid on the interface whenever src_rdy_n and 
dst_rdy_n are asserted simultaneously. The TX agent (DMA) or the RX agent can become 
Not-Ready at any time during transmission by deasserting src_rdy_n or dst_rdy_n.

For the DMA TX LocalLink interface, only two of the three packet components are used: 
the header and the payload components. During the header portion of the transmission, 
the control information in the first descriptor associated with a packet is transmitted over 
the LocalLink interface. The payload portion transfers the actual data associated with the 
first descriptor and possibly additional linked descriptors. When the payload completes, 
as indicated by the assertion of eop_n, the packet is framed immediately by the assertion of 
the eof_n signal. The eof_n signal is always asserted exactly one cycle after eop_n is 
asserted. See Figure 13-3 and Figure 13-4 for more details.

Because the packet payload is specified in number of bytes and the first complete 32-bit 
payload word is always sent coincident with sop_n, the last payload word might be 
incomplete. That is, only some of the four bytes might be valid at the end of a packet. The 
rem[0:3] signals are used as a mask and indicate which of the bytes in the last payload 
word are valid. At all other times during the transmission, rem[0:3] is driven to a value of 
4’b0000, indicating all bytes are valid. Table 13-3 shows an example of rem[0:3] for the 
last word of a payload (indicated by the assertion of eop_n).

Because the footer is not relevant for TX, the single footer byte indicated in Table 13-3 is 
ignored by the LocalLink receiving device, because it is not part of the payload.

Figure 13-3 shows how the data packet for transmission is assembled from the descriptor 
information. Data is provided to the TX LocalLink module as it becomes available. 
Whenever data is available to send, the TX LocalLink interface can potentially assert 
src_rdy_n.

Table 13-3: TX LocalLink REM[0:3] Value During EOP_N

Rem[0:3] 0 0 0 1

Data Bus (MSB) [0:7] [8:15] [16:23] [24:31]

Payload Bytes Footer Bytes

Figure 13-3: Assembly of Transmit Data Packet
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Figure 13-4 shows a single frame from the DMA engine (source) to the FPGA logic 
(destination). The header length is always eight words with Word 0 first. The payload size 
is indicated in the header and can be variable. The End of Frame signal needs to be asserted 
one cycle after the End of Payload signal because the footer component is not used. When 
the End of Payload is asserted, the REM data indicates which bytes are valid for the last 
word of the payload. Each asserted REM bit (active Low) represents a valid DATA byte. 
REM[0] is associated with DATA[0:7], and REM[3] is associated with DATA[24:31]. Data is 
sampled every cycle that DST_RDY and SRC_RDY are asserted.

DMA RX LocalLink Interface
This interface is essentially the “other end” of the interface described in “DMA TX 
LocalLink Interface,” page 229. The DMA RX LocalLink interface is a unidirectional 
interface, receiving data from the LocalLink interface sent by some external device, such as 
an EMAC. Full-duplex operation is achieved by using an RX and TX LocalLink pair 
simultaneously. Figure 13-5 shows the high-level connection of the RX LocalLink interface.

Figure 13-4: TX Timing

Header

4’b0000

Payload

REM

UG200_c13_08_111408

LL_CLK

LL_DST_RDY_N

LL_SRC_RDY_N

LL_SOF_N

LL_SOP_N

LL_DATA[0:31]

LL_REM[0:3]

LL_EOP_N

LL_EOF_N

Figure 13-5: Block Diagram of RX LocalLink Interface
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As before, data is received from the LocalLink interface as a packet, described by header, 
payload, and footer components. The sof_n signal initiates the header of the packet. 
Between the time this signal is asserted and the time the sop_n signal is asserted, the 
header of the packet is received. Between the sop_n signal assertion and the eop_n signal 
assertion, the payload is received. Finally, the information between eop_n and eof_n 
constitutes the footer. Information is deemed to be valid on the interface whenever 
src_rdy_n and dst_rdy_n are asserted simultaneously. The TX agent or the RX agent 
(DMA) can become “Not-Ready” at any time during reception by deasserting src_rdy_n or 
dst_rdy_n.

For the DMA RX LocalLink interface, only two of the three packet components are used: 
the payload and the footer components. Any information received during the header 
portion of the packet is ignored by the interface. It is therefore recommended that sop_n is 
asserted exactly one cycle after sof_n has been asserted. That is, do not transmit garbage 
header data because it is discarded.

The payload portion transfers the actual data associated with the DMA operation. When 
the payload completes, as indicated by the assertion of eop_n, the footer portion 
commences. As in the case of TX, the rem[0:3] signals indicate where the payload bytes end 
and where the footer bytes begin. For RX, any footer bytes indicated by the rem[0:3] signals 
are discarded. The following eight bytes of footer data are handled as shown in 
Figure 13-6. Refer to “Descriptor Format,” page 227 for more details.

After these eight words are received, the packet should be framed immediately by the 
assertion of the eof_n signal. This signal is required to always be asserted coincident with 
the last of the eight footer words.

Figure 13-6 shows how the received data packet is copied to memory, based on the 
descriptors, and how the descriptors are updated.

Whenever sop_n or eop_n is asserted by the peripheral that is transmitting data over this 
LocalLink interface, the corresponding status bit is set in the corresponding 
RX_STATUS_REG DCR, and is later updated to the current descriptor memory. Figure 13-7 
shows a single frame from the FPGA logic (source/transmitter) to the DMA engine 
(destination/receiver).

Figure 13-6: LocalLink Frame and the Descriptor Chain for an RX Operation
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The footer length is always 8 words with Word 0 first. The payload size is indicated in the 
footer and can be variable. The Start of Payload signal needs to be asserted one cycle after 
the Start of Frame signal because the header component is not used. Just as for TX, when 
the End of Payload is asserted, the REM data indicates which bytes are valid for the last 
word of the payload.

Masking of Application Data Update
The MaskEnable mode can be enabled by setting a DCR bit called appMasken. When this 
mode is active, the first three words of the footer's second quadword (words 4, 5, and 6) can 
be selectively updated to memory by using a special encoding in the last corresponding 
rem[0:3] signal values. The rem bits are active Low. A Low on a rem bit means update the 
word. The following restrictions apply when using this mode:

1. The last word of the footer, Word 7, must always be updated to memory. 

2. The written words must be contiguous. For example, Word 5 and Word 7 cannot be 
updated without updating Word 6, too. Any value of rem[0:3] other than 4’b0000 is 
illegal when this mode is enabled.

Table 13-4 provides further clarification. 

Figure 13-7: Single Frame to DMA Engine
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Table 13-4: RX LocalLink REM[0:3] during Masking Application Data Mode

Footer Word # REM[0:3] Resultant Action/Comments

Word 0 0000
Must be 0000. The mask is not valid for this word. The word is always 
updated to memory.

Word 1 0000
Must be 0000. The mask is not valid for this word. The word is always 
updated to memory.

Word 2 0000
Must be 0000. The mask is not valid for this word. The word is always 
updated to memory.
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DMA Addressing Limitation
The descriptor tables are configured as blocks of eight words, with the buffer address and 
next descriptor pointers described by 32-bit fields. However, the processor block supports 
36-bit addresses, and the DMA engine extends the 32-bit address to 36 bits by statically 
setting the values of the four most significant bits of the address to 0.

Interrupt Mechanism
There are two interrupt pins (INT) per DMA engine, one for RX and one for TX. Eight 
internal events can cause the INT pins to be asserted. These events are:

1. TX Delay Timer times out

2. RX Delay Timer times out

3. TX Interrupt Coalescing Counter reaches zero

4. RX Interrupt Coalescing Counter reaches zero

5. Maskable TX Error Condition

6. Maskable RX Error Condition

7. Non-Maskable TX Error Condition

8. Non-Maskable RX Error Condition

There are separate interrupt enable bits for the RX channel (RxIrqEn) and the TX channel 
(TxIrqEn). Additionally, the RX and TX delay timers, the RX and TX coalescing counters, 
and the RX and TX Error Irqs can be independently enabled or disabled by DCR control 
fields. This way the interrupt sources of interest can be controlled precisely. The two non-
maskable interrupts do not have individual interrupt enable controls. Setting these bits 
causes a non-recoverable serious system issue. The status of all the interrupt sources can 
always be read in the interrupt register. The enable bits control whether or not that 
particular interrupt source causes the interrupt pin to be asserted to the CPU or not 
(excluding the non-maskable interrupts).

Figure 13-8 shows the higher level connection of the interrupt events to the interrupt 
output pin.

Word 3 0000
Must be 0000. The mask is not valid for this word. The word is always 
updated to memory.

Word 4 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 5 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 6 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 7 0000
Must be 0000. The mask is not valid for this word. The word is always 
updated to memory.

Table 13-4: RX LocalLink REM[0:3] during Masking Application Data Mode (Continued)

Footer Word # REM[0:3] Resultant Action/Comments
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When the CPU is interrupted, it reads the corresponding TX or RX DCR Interrupt register 
to find out the source of the interrupt. The interrupt register has a separate interrupt bit for 
each of the three interrupt sources, as shown in Figure 13-8. The interrupt can then be 
cleared by writing a “1” to the corresponding field(s) in the DCR Interrupt register. This 
does not apply to the non-maskable interrupts.

Maskable Error Interrupts
The Maskable Error interrupt bit is set if any of the following conditions are true:

1. The Delay Timer Interrupt Counter overflows (this event can be disabled).

2. The Coalescing Interrupt Counter overflows (this event can be disabled).

3. The Current Descriptor Pointer is written while the channel is busy.

No further action is taken by the DMA other than the setting of the Error bit.

Non-Maskable Error Interrupts
The Non-Maskable Error interrupt bit is set if any of the following conditions are true:

1. The Internal PLB subsystem issues a rdDataErr to the DMA.

2. The Internal PLB subsystem issues a wrDataErr to the DMA.

In both cases, the LocalLink interface is frozen immediately to prevent any data corruption 
from occurring. The only way to recover from this situation is to reset the DMA engine 
(either power down or software/hardware DMA reset).

Figure 13-8: DMA Engine Interrupt Scheme
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Delay Timer
Figure 13-9 shows the mechanism used for the TX Delay Timer interrupt generation.

The delay timer is needed because interrupt coalescing is used in the DMA. For example, 
if the RX coalescing counter is set to 10, every 10 packets received will generate an 
interrupt. But assume five packets are received on the Ethernet and then the channel goes 
idle (no traffic). The CPU never processes the five packets because no interrupt is 
generated, and this interrupt happens only when (or if) five more packets arrive. To avoid 
this latency, a timer is needed that will fire when all of the following are true:

• a packet has been received 

• some (software settable) time has elapsed 

• no more packets are received during this time

The only purpose of this timer is to avoid large latencies in the received packet (which is 
sitting in main memory by this time) from being processed by the CPU when there is non-
continuous traffic on the wire.

The Clock Divider module uses a 10-bit tie-off value (embedded processor block attribute 
DMAn_TXIRQTIMER or DMAn_RXIRQTIMER) to determine how many LocalLink clock 
cycles to count before generating a single clkDivideEn pulse. A typical LocalLink clock 
speed of 200 MHz translates to a 5.12 µs clkDivideEn period. Therefore the 8-bit timer can 
count up to a maximum of 256 * 5.12 = 1.3 ms, before generating an interrupt.

When the coalescing counter fires, the delay timer is automatically cleared.

Interrupt Coalescing Counter
The interrupt coalescing counter is an additional mechanism used for interrupt handing. It 
relieves the CPU from having to service an interrupt at the end of every packet. Instead, a 
preloadable number of interrupt events (up to 256) generates a single interrupt to the CPU. 
Figure 13-10 shows the mechanism used for the TX coalescing counter interrupt 
generation.

Figure 13-9: Delay Timer Interrupt Scheme
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On reset, the dmairqcoalesce.txirqcount[0:7] value is used to load the coalescing counter. 
The CoalesceCounterValue field in the DCR TX Interrupt Register can be subsequently 
programmed with any eight-bit value. On every eop or irq-on-end (selected by the 
UseIntOnEnd field in the DCR), the counter decrements. When the coalescing counter 
reaches 0, the DMA increments the four-bit int counter. Whenever the four-bit int counter 
is non-zero, it generates an interrupt to the CPU (if the irq enable bit of the respective 
channel is set). Whenever the interrupt is acknowledged (DCR write of 1), the four-bit int 
counter is decremented. The contents of the CoalesceCounterValue field are reloaded 
when the four-bit int counter is incremented. 

The CPU also can force the counter to load the contents of the CoalesceCounterValue field 
by writing to the ldIrqCnt field of the TX Channel Control register. 

This approach is used because there are not enough unique DCR addresses to allow a DCR 
write to a unique address for loading the TX and RX counters. 

When the delay timer fires, the coalescing counter is automatically reloaded.

Dynamic Descriptor Appending
The DMA controller allows the CPU to allocate more work to the DMA channel 
dynamically. Two DCRs are defined for this purpose per DMA channel: the Current 
Descriptor Pointer and the Tail Descriptor Pointer. A typical software sequence to start a 
DMA operation is:

1. Set up the descriptors in memory.

2. Write the Current Descriptor Pointer register with the first descriptor base address in 
memory.

3. Write the Tail Descriptor Pointer register with the last descriptor base address.

Writing to the Tail Descriptor Pointer register triggers a start for the DMA channel. From 
this time on, software should NOT write the Current Descriptor Pointer register unless it is 
certain that the descriptor chain has stopped executing. The descriptor fetching and 
executing continue until the StopOnEnd bit is encountered or until the Current Descriptor 
Pointer register equals the Tail Descriptor Pointer register. At this point, the Descriptor 
state machine of the channels returns to the IDLE state. The DMA checks if the Current 

Figure 13-10: Coalescing Counter Interrupt Scheme
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Descriptor Pointer register equals the Tail Descriptor Pointer register after it has executed 
the current descriptor. Software can restart operation by repeating the three steps above.

For software to add more descriptors dynamically to the existing chain, it simply writes a 
new address to the Tail Descriptor Pointer register at any time during the DMA process. It 
does NOT have to wait for the DMA channel to be IDLE to do this. Software can write the 
Tail Descriptor Pointer even if the DMA is IDLE. In this case, the DMA continues to execute 
from where it left off. See “Software/Device Driver Considerations” for more information.

DMA Engine Reset
The DMA controller provides the capability to reset a particular DMA engine (both RX and 
TX channels simultaneously) whenever a lockup situation arises, typically over the 
LocalLink interface. There are two separate mechanisms available for this purpose: a 
hardware reset and a software reset.

Hardware Engine Reset Mechanism
With this interface, all inputs and outputs are synchronous to the LocalLink clock. This 
scheme is useful if hardware needs to reset the engine directly. Two pins are added per 
DMA engine: a rst_engine_req input and a rst_engine_ack output. When an engine reset is 
required, the rst_engine_req pin is asserted for one cycle. The DMA engine immediately 
asserts the rst_engine_ack output pin. This output can be used as an external logic reset. It 
then proceeds to shut down operations and waits for all the pipelined commands to flush 
through the processor block before deasserting the rst_engine_ack output pin. This 
indicates that the engine reset operation is completed.

Software Engine Reset Mechanism
The DMA Control register contains a software reset bit. When a 1 is written to the SwReset 
bit, it initiates the reset sequence for that particular engine. At the same time, the 
DMALLRSTENGINEACK output pin is asserted, synchronous to the LocalLink clock. This 
output can be used as an external logic reset. Software needs to now poll the SwReset bit 
until it is sampled cleared, which indicates that the reset sequence has completed and the 
pipeline is flushed. Simultaneously with the SwReset bit being cleared, the 
DMALLRSTENGINEACK pin is automatically deasserted.

Whenever the DMA engine reset function is used, there is no guarantee that the current 
descriptor completed correctly. The assumption should be that the descriptor did not 
complete and it should be restarted again using the normal CPU technique for kicking off 
a new DMA operation.

Software/Device Driver Considerations
Software applications use the DMA controller by first setting up a linked list of descriptors 
in memory, and then writing the addresses of the head and tail of this list to 
TX_CURDESC_PTR and TX_TAILDESC_PTR, respectively (or to RX_CURDESC_PTR and 
RX_TAILDESC_PTR). This list of descriptors can correspond to one or more packets on the 
LocalLink interface. As each descriptor is processed by the DMA controller, status bits are 
updated in memory by the DMA controller, and the software application running on the 
processor can read these bits to monitor the progress. When the DMA controller completes 
processing of a descriptor, it sets the DMA_COMPLETED status bit in the descriptor to 1. 
The software application then processes the data received for an RX transaction. Finally, 
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the software application frees up the memory used by the descriptor. So a descriptor has 
the following life cycle:

1. It is first created/allocated in memory.

2. Then it is pre-processed by the software application to set up data and control values, 
and attached to the descriptor chain.

3. Then it is handed over to the DMA controller hardware.

4. Finally, it is post-processed and freed.

Software applications typically send and receive packets repeatedly over a period of time, 
and the Dynamic Descriptor Appending mode (or Tail_pointer mode) allows the above 
steps to be done much more efficiently by organizing the descriptors into a ring instead of 
a simple chain, as shown in Figure 13-11.
 

Figure 13-11: Descriptor Organization (Ring)
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The ring typically has more descriptors than needed for a single transaction on an RX or TX 
channel. For the very first transaction, the software application writes both the 
CURDESC_PTR and TAILDESC_PTR to the DMA controller. For subsequent transactions, 
the software application simply writes the TAILDESC_PTR after setting up the next set of 
descriptors. Figure 13-12 shows a snapshot of such a ring at some point in its operation.

Figure 13-12 shows a descriptor ring with some descriptors in each possible state. The 
descriptors that are under the control of the DMA controller hardware are framed by 
CURDESC_PTR and TAILDESC_PTR. CURDESC_PTR is set initially by the software 
application, and thereafter updated by the DMA controller hardware to point to the 
current descriptor that is being processed by the DMA controller hardware. 

Descriptors 8 and 9 are in the pre-processing stage, indicating that the software application 
has filled in the control and data values for these descriptors for the next transaction but 
not handed them over to the DMA controller hardware yet. When the software application 
is done with updating the descriptors for the next transaction, it simply updates the 
TAILDESC_PTR to point to the last descriptor updated. 

Descriptors 2, 3, and 4 are in the post-processing state, indicating that the DMA controller 
hardware has finished processing them and has set their DMA_COMPLETED status bit to 
1. The software application marks them as free, after doing whatever post-processing is 
needed. This scheme improves the efficiency of the DMA transfer process in several ways:

• By allocating a separate descriptor ring for each DMA channel, the software 
application ensures that descriptors are allocated and freed in the same order.

Figure 13-12: Descriptor Ring Snapshot
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• Instead of making the operating system software handle the allocation and freeing of 
memory for each transaction, the software application/driver uses a lightweight 
allocation/free scheme that simply updates a few fields in pre-allocated descriptors.

• Instead of writing two hardware registers (CURDESC_PTR and TAILDESC_PTR) for 
each transaction, the software application writes just one register (TAILDESC_PTR) 
for all but the first transaction.

Specific additional considerations are:

• The CURDESC_PTR register as well as the NXTDESC_PTR field of the descriptor 
must be eight-word aligned. The TAILDESC_PTR can have any byte alignment.

• To reliably allow appending descriptors, software must not modify the 
STATUS/CONTROL field of any descriptor that it makes visible to the hardware.

• It is very difficult for software to manage descriptors in cacheable memory. As a result 
of writing any byte in a descriptor in cacheable memory, the CPU might then write the 
whole 32-byte descriptor, which could interfere with updates the hardware has done.

• The hardware can fetch the last descriptor that software makes available long before 
using it. Thus the NXTDESC_PTR pointer in the descriptor to which the 
TAILDESC_PTR points must point to what will be the next updated descriptor by 
software because that pointer cannot be changed. The descriptor ring scheme 
described earlier avoids this problem.

• For TX, it is not recommended to set a StopOnEnd bit in a descriptor without the EOP 
bit being set (or without the CURDESC_PTR == TAILDESC_PTR comparison being 
TRUE).

• Each DMA engine must operate in a 4 Gbyte segment of memory. It is software’s 
responsibility to ensure that a DMA operation does not roll over into a new 4 Gbyte 
segment. Refer to “DMA Addressing Limitation,” page 234 for details.

• If the CPU is interrupted due to a descriptor being completed (or if the CPU reads the 
DMA engine status register), the CPU can process completed buffer descriptors by 
following the descriptor chain from the last completed buffer descriptor (BD). Refer to 
“Implementation Note” for this use mode.

• The descriptor buffer length field should never be programmed to a value of 0.

• There are two methods to stop the descriptor fetching process:

♦ If the descriptor status field, StopOnEnd, is set.

♦ If the CURDESC_PTR register equals the TAILDESC_PTR register and the current 
descriptor has been completed.

♦ If either of these conditions is TRUE, the DMA channel stops the descriptor 
fetching process. In this case, a subsequent write to the Tail Descriptor Pointer 
register restarts the fetching process.

Implementation Note
For RX DMA, a descriptor update occurs after the payload is successfully received from 
the LocalLink and written to memory. This update always consists of two separate single 
quadword writes to memory. The first quadword write is essentially the descriptor 
“status” byte, plus three bytes of user application data. The second quadword write is four 
words of user application data. One of the fields in the status byte, the “completed” field, 
indicates that a descriptor is completed by the DMA. 

When software reads the updated “status” from memory, it is not sure if the second 
quadword has been written to memory yet. Technically, the packet is completed when the 
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second quadword is updated to memory, because it might contain information used by 
software (for example, packet size).

In order to overcome this behavior, a word of the second descriptor quadword in memory 
must now be pre-initialized to a unique pattern, for example, 32’hFFFF_FFFF. When the 
second quadword is updated by the DMA, this pre-initialized word is now overwritten. 
The application must ensure that the word is overwritten with a different pattern. The 
driver now uses this fact to indicate if a packet has been completed or not. 

Programming Interface and Registers
The register address map and register details presented in this section are identical for all 
DMA engines.

DCR Address Map
Table 13-5 lists the address map for the DCRs.

Table 13-5: DCR Address Map

DCR Addresses Mnemonic Register Description Direction

0x80,0x98,0xB0,0xC8 TX_NXTDESC_PTR TX Next Descriptor Pointer RW(1)

0x81,0x99,0xB1,0xC9 TX_CURBUF_ADDR TX Current Buffer Address Register RW(1)

0x82,0x9A,0xB2,0xCA TX_CURBUF_LENGTH TX Current Buffer Length Register RW(1)

0x83,0x9B,0xB3,0xCB TX_CURDESC_PTR TX Current Descriptor Pointer RW

0x84,0x9C,0xB4,0xCC TX_TAILDESC_PTR TX Tail Descriptor Pointer RW

0x85,0x9D,0xB5,0xCD TX_CHANNEL_CTRL TX Channel Control Register RW

0x86,0x9E,0xB6,0xCE TX_IRQ_REG TX Interrupt Register RD-ACK

0x87,0x9F,0xB7,0xCF TX_STATUS_REG TX Status Register RW(1)

0x88,0xA0,0xB8,0xD0 RX_NXTDESC_PTR RX Next Descriptor Pointer RW(1)

0x89,0xA1,0xB9,0xD1 RX_CURBUF_ADDR RX Current Buffer Address Register RW(1)

0x8A,0xA2,0xBA,0xD2 RX_CURBUF_LENGTH RX Current Buffer Length Register RW(1)

0x8B,0xA3,0xBB,0xD3 RX_CURDESC_PTR RX Current Descriptor Pointer RW

0x8C,0xA4,0xBC,0xD4 RX_TAILDESC_PTR RX Tail Descriptor Pointer RW

0x8D,0xA5,0xBD,0xD5 RX_CHANNEL_CTRL RX Channel Control Register RW

0x8E,0xA6,0xBE,0xD6 RX_IRQ_REG RX Interrupt Register RD-ACK

0x8F,0xA7,0xBF,0xD7 RX_STATUS_REG RX Status Register RW(1)

0x90,0xA8,0xC0,0xD8 DMA_CONTROL_REG DMA Control Register RW

Notes: 
1. These registers are loaded from the descriptors and updated dynamically by the DMA engine. As such, they should not be written 

during normal operation. Writing them is made available for debug purposes only.
2. See also the DMA enable and DMA priority fields of the SPLB 0 and SPLB 1 configuration registers (CFG_PLBS0/1) Table 4-6, 

page 108 in Chapter 4.
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DCR Descriptions
This section describes the fields within the DCRs in detail.

TX Next Descriptor Pointer 

Figure 13-13 shows the TX Next Descriptor Pointer. Table 13-6 defines the bits in this 
pointer.

TX Current Buffer Address Register

Figure 13-14 shows the TX Current Buffer Address register. Table 13-7 defines the bits in 
this register.

TX Current Buffer Length Register

Figure 13-15 shows the TX Current Buffer Length register. Table 13-8 defines the bits in this 
register.

0 31

Address

Figure 13-13: TX Next Descriptor Pointer

Table 13-6: Bit Description for TX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must 
be eight-word aligned.

0 31

Address

Figure 13-14: TX Current Buffer Address

Table 13-7: Bit Description for TX Current Buffer Address

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes 
dynamically when the DMA is operating. This address is a byte 
address. 

0 7 8 31

Reserved[0:7] Length

Figure 13-15: TX Current Buffer Length Register

Table 13-8: Bit Description for the TX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be transferred. This 
field changes dynamically when the DMA is operating.

[0:7] Reserved
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TX Current Descriptor Pointer

Figure 13-16 shows the TX Current Descriptor Pointer register. Table 13-9 defines the bits 
in this register.

TX Tail Descriptor Pointer

Figure 13-17 shows the TX Tail Descriptor Pointer register. Table 13-10 defines the bits in 
this register.

TX Channel Control Register

Figure 13-18 shows the TX Channel Control register. Table 13-11 defines the bits in this 
register. This register controls operation for the TX channel only. The default value of this 
register is user configurable through the DMAn_TXCHANNELCTRL parameters on the 
processor block instantiation in the user’s design.

0 31

Address

Figure 13-16: TX Current Descriptor Pointer

Table 13-9: Bit Descriptions for the TX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. Must be eight-
word aligned.

0 31

Address

Figure 13-17: TX Tail Descriptor Pointer

Table 13-10: Bit Descriptions for the TX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

These bits contain the address of the last descriptor to be fetched. When 
this register is written to, it initiates a fetch from the address pointed to 
by the TX Current Descriptor Pointer register. This register can be 
updated dynamically, while the DMA channel is busy. The control 
register field, TailPtrEn, must be set for this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] Reserved Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 13-18: TX Channel Control Register
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TX Interrupt Register

This register contains the interrupt status bits for the TX channel as well as read-only status 
for the TX coalescing and delay timer counters and timers. There are three regular 
interrupt sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable 
interrupts (NMI): PlbRdErr and PlbWrErr.

A regular interrupt can be acknowledged (and hence cleared if the corresponding counter 
equals 0), by writing a “1” to the respective interrupt status bit in this register. The NMIs 
can only be cleared by issuing a reset to the DMA (hard or soft).

Figure 13-19 shows the TX Interrupt register. Table 13-12 defines the bits in this register. 

Table 13-11: Bit Descriptions for the TX Channel Control Register

Bit Name Description

[31] Coalescing Mechanism Interrupt Enable Enable (1) or disable (0) the Coalescing interrupt mechanism. 

[30] Delay Timer Mechanism Interrupt Enable
Enable (1) or disable (0) the Delay Timer interrupt 
mechanism. 

[29] Error Detect Mechanism Interrupt Enable
Enable (1) or disable (0) the Error Detection interrupt 
mechanism. 

[25:28] Reserved Reserved

[24] Master Interrupt Enable

When set, this bit indicates that the DMA TX channel is 
enabled to generate interrupts to the CPU. This is the master 
enable for the TX channel. Individual interrupt sources can 
be enabled or disabled separately.

[23] Load the Interrupt Coalescing Counter
Writing a 1 to this field forces the loading of the Interrupt 
Coalescing counters from the DCR IrqCount[0:7] field. This 
bit is self-clearing.

[22] Use the Interrupt-On-End Mechanism
• 1: Select the interrupt-on-end mechanism for interrupt 

coalescing.
• 0: Select the eop mechanism for interrupt coalescing. 

[21] Use 1-bit Interrupt Counters

When this bit is enabled, the four-bit Interrupt Coalescing 
counter and two-bit Delay Timer counters are forced to be 
one-bit only. For certain device driver applications, this is a 
desirable use model.

[20] Reserved Reserved

[16:19] Msb Address These bits contain the statically assigned, most-significant 
four bits of the DMA address. This field must be all zeros.

[8:15] Interrupt Coalescing Count Value

These bits contain the eight-bit value to be preloaded into the 
TX interrupt coalescing counter. They are loaded into the 
counter when a write to the TX LdIrqCnt field is performed 
and subsequently reloaded whenever the Count reaches 0. 

[0:7] Interrupt Delay Time-out Value

These bits hold the compare value for the TX interrupt delay 
timer. The value in this field is compared to the TX Irq Delay 
Timer output. When they are equal, a TX interrupt event is 
generated. 
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24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16:17] CoalesceIrqCounter[0:3] DelayIrqCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 13-19: TX Interrupt Register

Table 13-12: Bit Descriptions for the TX Interrupt Register

Bit Name Default Description

[31]
Coalescing Counter 

Interrupt
1’b0

When this bit is 1 the TX DMA channel has a pending interrupt 
because of a TX Coalescing interrupt counter greater-than-0 
condition. This bit is ORed with the two other TX interrupt bits 
and ANDed with the TX Interrupt Enable bit to produce the TX 
Irq pin. Even if the TxIrqEn bit is disabled, software can still 
poll this bit. Acknowledging a TX interrupt due to a coalescing 
counter condition is accomplished by writing a 1 to this bit. 
This action decrements the TX Coalescing interrupt counter.

[30]
Delay Timer 

Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt 
because of a TX Delay Timer interrupt counter greater-than-0 
condition. This bit is ORed with the two other TX interrupt bits 
and ANDed with the TX Interrupt Enable bit to produce the TX 
Irq pin. Even if the TxIrqEn bit is disabled, software can still 
poll this bit. Acknowledging a TX interrupt due to a Delay 
Timer counter condition is accomplished by writing a 1 to this 
bit. This action decrements the TX Delay Timer interrupt 
counter.

[29] Error Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt 
because of a TX error that has occurred. This bit is ORed with 
the two other TX interrupt bits and ANDed with the TX 
Interrupt Enable bit to produce the TX Irq pin. Even if the 
TxIrqEn bit is disabled, software can still poll this bit. 
Acknowledging a TX interrupt due to an error is accomplished 
by writing a 1 to this bit. This action clears this bit.

[28]
PLB Write Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error 
from the PLB due to a PLB write operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error 
from the PLB due to a PLB read operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[24:26] Reserved
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TX Status Register

Figure 13-20 shows the TX Status register. Table 13-13 defines the bits in this register. Even 
though most of these fields are writable via DCR, this is purely for debug purposes. In 
normal operation, this register should not be directly written.

[22:23] Delay Timer 
Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the two-bit counter used to store the number of TX 
Delay Timer interrupts that are outstanding.

[18:21] 
Coalescing 

Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the four-bit counter used to store the number of TX 
coalescing counter interrupts that are outstanding.

[16:17] Reserved

[8:15] 
Coalescing Counter 

Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Coalescing Counter.

[0:7] Delay Timer Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Delay Timer.

Table 13-12: Bit Descriptions for the TX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop TXChannelBusy Reserved

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 13-20: TX Status Register

Table 13-13: Bit Descriptions for the TX Status Register

Bit Name Default Description

[31] Reserved

[30]
TX Channel 

Busy
1’b0

When cleared to zero, this bit indicates that the channel has 
completely flushed out all its queues and that the TX DMA has 
no more work allocated to it.

[29]
DMA End of 

Packet 1’b0

When set, this bit indicates that the current descriptor is the 
final one of a packet. For TX, the CPU sets this bit in the 
descriptor to indicate that this is the last descriptor of a packet 
to be transmitted.

[28]
DMA Start of 

Packet
1’b0

When set, this bit indicates that the current descriptor is the 
start of a packet. For TX, the CPU sets this bit in the descriptor 
to indicate that this is the first descriptor of a packet to be 
transmitted.
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RX Next Descriptor Pointer

Figure 13-21 shows the RX Next Descriptor Pointer register. Table 13-14 defines the bits in 
this register.

RX Current Buffer Address Register

Figure 13-22 shows the RX Current Buffer Address register. Table 13-15 defines the bits in 
this register.

[27]
DMA 

Completed
1’b0

When set, this bit indicates that the DMA has transferred all 
data defined by the current descriptor. In the case of TX, the 
DMA transfers data until the length field specified in the 
descriptor is zero, and then sets this bit.

[26] DMA Stop On 
End

1’b0

When this bit is set, the DMA is forced to halt operations when 
the descriptor is completed. The CPU sets this bit in the status 
field of the descriptor. This bit is then read into the DMA TX 
Status register as each descriptor is processed. It is 
recommended that this bit be set on the EOP descriptor only. 

[25]
DMA Interrupt 

on End
1’b0

When this bit is set, the DMA is forced to generate an interrupt 
event when the descriptor is completed. The CPU sets this bit 
in the status field of the descriptor. This bit is then read into the 
DMA TX Status register as each descriptor is processed. A 
typical use model would be to set this bit on the EOP 
descriptor only. However, it might be set for intermediate 
descriptors, too. Refer to the UseIntOnEnd field in the TX 
Channel Control register for details on how to enable this 
feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered a TX error. This bit 
is a copy of the ErrorIrq bit in the TX Interrupt register.

[0:23] Reserved

Table 13-13: Bit Descriptions for the TX Status Register (Continued)

Bit Name Default Description

0 31

Address

Figure 13-21: RX Next Descriptor Pointer

Table 13-14: Bit Descriptions for the RX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must 
be eight-word aligned.

0 31

Address

Figure 13-22: RX Current Buffer Address Register
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RX Current Buffer Length Register

Figure 13-23 shows the RX Current Buffer Length register. Table 13-16 defines the bits in 
this register.

RX Current Descriptor Pointer

Figure 13-24 shows the RX Current Descriptor Pointer register. Table 13-17 defines the bits 
in this register.

RX Tail Descriptor Pointer

Figure 13-25 shows the RX Tail Descriptor Pointer register. Table 13-18 defines the bits in 
this register.

Table 13-15: Bit Descriptions for the RX Current Buffer Address Register

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes 
dynamically when the DMA is operating. This address is a 
byte address. 

0 7 8 31

Reserved[0:7] Length

Figure 13-23: RX Current Buffer Length Register

Table 13-16: Bit Descriptions for the RX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be 
transferred. This field changes dynamically when the DMA is 
operating.

[0:7] Reserved

0 31

Address

Figure 13-24: RX Current Descriptor Pointer

Table 13-17: Bit Descriptions for the RX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. 
Must be eight-word aligned.

0 31

Address

Figure 13-25: RX Tail Descriptor Pointer
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RX Channel Control Register

Figure 13-26 shows the RX Channel Control register. Table 13-19 defines the bits in this 
register. This register controls operation for the RX channel only. The default value of this 
register is user configurable through the DMAn_RXCHANNELCTRL parameters on the 
processor block instantiation in the user’s design.

Table 13-18: Bit Descriptions for the RX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

Contains the address of the last descriptor to be fetched. When 
this register is written to, it initiates a fetch from the address 
pointed to by the RX Current Descriptor Pointer register. This 
register can be updated dynamically, while the DMA channel 
is busy. The control register field, TailPtrWrEn, must be set for 
this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] AppMaskEn Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 13-26: RX Channel Control Register

Table 13-19: Bit Descriptions for the RX Channel Control Register

Bit Name Description

[31] Coalescing Mechanism Interrupt Enable Enable (1) or disable (0) the Coalescing interrupt mechanism.

[30] Delay Timer Mechanism Interrupt Enable
Enable (1) or disable (0) the Delay Timer interrupt 
mechanism. 

[29] Error Detect Mechanism Interrupt Enable
Enable (1) or disable (0) the Error Detection interrupt 
mechanism. 

[25:28] Reserved Reserved Bits.

[24] Master Interrupt Enable

When this bit is set, the DMA RX channel is enabled to 
generate interrupts to the CPU. This is the master enable for 
the RX channel. Individual interrupt sources can be enabled 
or disabled separately.

[23] Load the Interrupt Coalescing Counter
Writing a 1 to this bit forces the loading of the Interrupt 
Coalescing counters from the DCR IrqCount[0:7] field. This 
bit is self-clearing.

[22] Use the Interrupt-On-End Mechanism
• 1: Select the interrupt-on-end mechanism for interrupt 

coalescing.
• 0: Select the eop mechanism for interrupt coalescing. 
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RX Interrupt Register

This register contains the interrupt status bits for the RX channel as well as the read-only 
status for the RX coalescing and Delay timer counters. There are three regular interrupt 
sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable interrupts 
(NMI): PlbRdErr and PlbWrErr. A regular interrupt can be acknowledged (and hence 
cleared if the corresponding counter equals 0) by writing a “1” to the respective interrupt 
status bit in this register. The NMIs can only be cleared by issuing a reset to the DMA (hard 
or soft).

Figure 13-27 shows the RX Interrupt register. Table 13-20 defines the bits in this register.

[21] Use 1-bit Interrupt Counters

When this bit is enabled, the four-bit Interrupt Coalescing 
counter and two-bit Delay Timer counters are forced to be 
one-bit only. For certain device driver applications, this is a 
desirable use model.

[20] Application Data Mask Enable
This bit enables the Application Data Mask mode. Refer to 
“Masking of Application Data Update,” page 233 for details 
of operation.

[16:19] Msb Address
These bits contain the statically assigned, most-significant 
four bits of the DMA address. This field must be all zeros.

[8:15] Interrupt Coalescing Count Value

These bits contain the eight-bit value to be preloaded into the 
RX interrupt coalescing counter. This value is loaded into the 
counter when a write to the RX LdIrqCnt field is performed 
and subsequently reloaded whenever the Count reaches 0. 

[0:7] Interrupt Delay Time-out Value

These bits hold the compare value for the RX interrupt delay 
timer. The value in this register is compared to the RX Irq 
Delay Timer output. When they are equal, an RX interrupt 
event is generated. 

Table 13-19: Bit Descriptions for the RX Channel Control Register (Continued)

Bit Name Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16] WrQEmpty CoalesceCounter[0:3] DelayCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 13-27: RX Interrupt Register
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Table 13-20: Bit Descriptions for the RX Interrupt Register

Bit Name Default Description

[31]
Coalescing 

Counter Interrupt
1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX Coalescing interrupt counter greater-than-0 
condition. This bit is ORed with the two other RX interrupt bits 
and ANDed with the RX Interrupt Enable bit to produce the RX 
Irq pin. Even if the RxIrqEn or IrqCoalesceEn bit is disabled, 
software can still poll this bit. Acknowledging an RX interrupt 
due to a coalescing counter condition is accomplished by 
writing a 1 to this bit. This action decrements the RX Coalescing 
interrupt counter.

[30] Delay Timer 
Interrupt

1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX Delay Timer interrupt counter greater-than-0 
condition. This bit is ORed with the two other RX interrupt bits 
and ANDed with the RX Interrupt Enable bit to produce the RX 
Irq pin. Even if the RxIrqEn or IrqDelayEn bit is disabled, 
software can still poll this bit. Acknowledging an RX interrupt 
due to a Delay Timer counter condition is accomplished by 
writing a 1 to this bit. This action decrements the RX Delay 
Timer interrupt counter.

[29] Error Interrupt 1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX error that has occurred. This bit is ORed with 
the two other RX interrupt bits and ANDed with the RX 
Interrupt Enable bit to produce the RX Irq pin. Even if the 
RxIrqEn or IrqErrorEn bit is disabled, software can still poll this 
bit. Acknowledging an RX interrupt due to an Error is 
accomplished by writing a 1 to this bit. This action clears this 
bit.

[28]
PLB Write Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error 
from the PLB due to a PLB write operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error 
from the PLB due to a PLB read operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23]
Delay Timer 

Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the two-bit counter used to store the number of RX 
Delay Timer interrupts that are outstanding.

[18:21] Coalescing 
Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the four-bit counter used to store the number of RX 
coalescing counter interrupts that are outstanding.

[17]
Write Command 

Queue Empty 
Status

This read-only field is useful for debug purposes. It indicates 
whether the Write Command Queue is empty (1) or not (0). If 
the DMA is paused, reading this field indicates that all the write 
data associated with the pending commands has been flushed.
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RX Status Register

Figure 13-28 shows the RX Status register. Table 13-21 defines the bits in this register. Even 
though most of these fields are writable via DCR, this register is purely for debug 
purposes. In normal operation, this register should not be directly written.

[16:] Reserved

[8:15]
Coalescing 

Counter Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Coalescing Counter.

[0:7]
Delay Timer 

Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Delay Timer.

Table 13-20: Bit Descriptions for the RX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop ChainBusy RXChanBusy

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 13-28: RX Status Register

Table 13-21: Bit Descriptions for the RX Status Register

Bit Name Default Description

[31] RX Channel Busy 1’b0
When this bit is cleared to zero, the channel has completely 
flushed out all its queues AND the RX DMA has no more work 
allocated to it.

[30]
DMA Descriptor 

Chain Busy 1’b0

When this bit is set, the Descriptor Chain is still active/busy. This 
means the DMA still has pending descriptors to process. When 
this bit is cleared, it DOES NOT guarantee that all the queues 
have been flushed out to memory; there might still be some 
pending descriptor writes.

[29] DMA End of Packet 1’b0

When this bit is set, the current descriptor is the final one of a 
packet. For RX, when an EOP is received by the LocalLink 
interface, the DMA sets this bit in the descriptor to inform the 
CPU that the current descriptor is the last of a received packet.

[28]
DMA Start of 

Packet
1’b0

When this bit is set, the current descriptor is the start of a packet. 
For RX, when an SOP is received by the LocalLink interface, the 
DMA sets this bit in the descriptor to inform the CPU that the 
current descriptor is the first of a received packet.
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DMA Control Register

Figure 13-29 shows the DMA Control register. Table 13-22 defines the bits in this register. 
This register contains control fields that affect both the RX and TX channels. The default 
value of bit 31 is 0. The default value of bits 26:29 is determined by bits 2:5 of the 
DMAn_CONTROL attribute on the processor block instantiation in the user’s design.

[27] DMA Completed 1’b0

When this bit is set, the DMA has transferred all data defined by 
the current descriptor. For RX, the DMA transfers data until the 
length field specified in the descriptor is zero OR when it receives 
an EOP indication from the LocalLink interface. At that point, the 
DMA sets this bit. 

[26] DMA Stop On End 1’b0

When this bit is set, the DMA is forced to halt operations when 
the descriptor is completed. The CPU sets this bit in the status 
field of the descriptor. This bit is then read into the DMA RX 
Status register as each descriptor is processed. It is recommended 
that this bit be set, corresponding to an EOP descriptor only. 

[25]
DMA Interrupt on 

End 1’b0

When this bit is set, the DMA is forced to generate an interrupt 
event when the descriptor is completed. The CPU sets this bit in 
the status field of the descriptor. This bit is then read into the 
DMA RX Status register as each descriptor is processed. A typical 
use model is to set this bit on the EOP descriptor only. However, 
it can be set for intermediate descriptors, too. Refer to the 
UseIntOnEnd field in the RX Channel Control register for details 
of how to enable this feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered an RX error. This bit is 
a copy of the ErrorIrq bit in the RX Interrupt register. 

[0:23] Reserved

Table 13-21: Bit Descriptions for the RX Status Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Reserved[24:25] PlbErrDisable OverFlowErrDisable[0:1] TailPtrEn Reserved SwReset

0 23

Reserved[0:23]

Figure 13-29: DMA Control Register

Table 13-22: Bit Descriptions for the DMA Control Register

Bit Name Description

[31] Software Reset

Writing a 1 to this bit forces the DMA engine (both RX and TX channels) to shut 
down and reset itself. Because the DMALLRSTENGINEACK output is asserted 
when this bit is a 1, it can be used to reset a remote LocalLink device while the 
DMA engine is resetting itself. After setting this bit, software must poll it until 
the bit is cleared by the DMA, which indicates that the reset process is done and 
the pipeline has been flushed. 

[30] Reserved
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Physical Interface
Each DMA engine has the following interfaces:

• LocalLink interface

• Miscellaneous

[29] Tail Pointer Enable

When this bit is set, the Tail Pointer mechanism is enabled. In this mode, writing 
to the tail pointer initiates a DMA transaction and the comparison (tail pointer 
== current pointer) ends descriptor execution. When cleared, the legacy mode of 
writing to the current pointer to initiate a transfer is supported. Refer to “DMA 
Legacy Mode,” page 229 for details. 

[27:28] Overflow Counter 
Error Interrupt Disable

When this bit is set, the error interrupt is disabled when either the two-bit Delay 
Timer counter or the four-bit Coalescing counter overflows. Bit [27] is used for 
the RX channel, and Bit [28] is used for the TX channel.

[26] PLB Error Disable

When this bit is set, error checking is disabled due to reads/writes to and from 
the crossbar PLB. If one of these errors occurs, the DMA reacts as follows:

• PLB Error Disable = 1’b1:

The DMA ignores the error and continues as usual.

• PLB Error Disable = 1’b0:
♦ Read Data Error. The DMA logs a plb_rd_error NMI bit in the appropriate 

interrupt register (RX or TX). The LocalLink interface is frozen 
immediately.

♦ Write Data Error. The DMA logs a plb_wr_error NMI bit in both RX and 
TX interrupt registers. The LocalLink interfaces is frozen immediately.

[0:25] Reserved

Table 13-22: Bit Descriptions for the DMA Control Register (Continued)

Bit Name Description

Table 13-23: DMA Controller Signals

Signal Name Dir Description

LocalLink Interface

DMALLTXD[0:31] Out
This 32-bit bus contains the TX data. It is valid when DMALLTXSRCRDYN 
and LLDMATXDSTRDYN are asserted.

DMALLTXREM[0:3] Out
The TX remainder bus is used as the data mask for the last word of the 
header, the payload, or the footer. 

DMALLTXSOFN Out This active-Low signal is asserted to indicate the TX start of frame. 

DMALLTXEOFN Out This active-Low signal is asserted to indicate the TX end of frame. 

DMALLTXSOPN Out This active-Low signal is asserted to indicate the TX start of payload. 

DMALLTXEOPN Out This active-Low signal is asserted to indicate the TX end of payload. 

DMALLTXSRCRDYN Out
This active-Low signal is asserted to indicate the TX source is ready and the 
DMA has valid data on outputs.

DMALLRXDSTRDYN Out
This active-Low signal is asserted to indicate the RX destination is ready 
and the DMA is ready to receive data.
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DMALLRSTENGINEACK Out

This active-High signal is asserted to acknowledge a DMA engine reset. It 
is asserted as soon as the SwReset bit is written or the 
DMALLRSTENGINEREQ signal is asserted. This signal is deasserted when 
the DMA has completed its internal reset sequence. This pin can be used to 
reset external devices.

LLDMARSTENGINEREQ In
This active-High signal is asserted to request a DMA engine reset. This 
signal should be asserted for one cycle only when a reset is required. The 
reset is completed when the DMALLRSTENGINEACK signal is Low.

LLDMATXDSTRDYN In
This active-Low signal is asserted to indicate the TX connecting device is 
ready to receive data.

LLDMARXD[0:31] In
This 32-bit bus contains RX data. It is valid when DMALLRXSRCRDY and 
LLDMARXDSTRDY are asserted. 

LLDMARXREM[0:3] In
The RX remainder bus is used as the data mask for the last word of the 
header, the payload, or the footer. 

LLDMARXSOFN In This active-Low signal is asserted to indicate the RX start of frame. 

LLDMARXEOFN In This active-Low signal is asserted to indicate the RX end of frame. 

LLDMARXSOPN In This active-Low signal is asserted to indicate the RX start of payload.

LLDMARXEOPN In This active-Low signal is asserted to indicate the RX end of payload.

LLDMARXSRCRDYN In
This active-Low signal is asserted to indicate the RX connecting device has 
valid data on the RX LocalLink outputs.

CPMDMALLCLK In This input provides the clock for the LocalLink interface and DMA.

Miscellaneous Signals

DMATXIRQ Out This output is the DMA engine TX interrupt to the processor.

DMARXIRQ Out This output is the DMA engine RX interrupt to the processor.

Table 13-23: DMA Controller Signals (Continued)

Signal Name Dir Description
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Section IV:  Programming Considerations

Chapter 14, “DCR Programming Considerations”

Chapter 15, “APU Programming”

Chapter 16, “Additional Programming Considerations”
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Chapter 14

DCR Programming Considerations

Overview of the Device Control Registers (DCRs) Map
DCR registers are CPU accessible registers for device configuration, control, and statuses. 
The Processor Block DCR map is shown in Table 14-1. The map contains a block of 256 
locations that is relocatable with the starting address defined by a two-bit tie-off value, 
TIEDCRBASEADDR[0:1](1).

1.  In this document, bold upper case names are software names.

Table 14-1: Processor Block DCR Map

Block Sub-Block Address Offset and Range

DCR Controller
DCR Controller 0x00 – 0x02

Reserved 0x03

APU Controller
Auxiliary Processor Unit (APU) Controller 0x04 – 0x05

Reserved 0x06 – 0x0F

MCI
Memory Controller Interface (MCI) 0x10 – 0x12

Reserved 0x13 – 0x1F

PLB Interfaces + 
Crossbar

Crossbar 0x20 – 0x33

PLB Slave 0 (PLBS0) 0x34 – 0x43

PLB Slave 1 (PLBS1) 0x44 – 0x53

PLB Master (PLBM) 0x54 – 0x5F

Reserved 0x60 – 0x7F

DMA Engines

DMA Engine 0 (DMAC0) 0x80 – 0x90

Reserved 0x91 – 0x97

DMA Engine 1 (DMAC1) 0x98 – 0xA8

Reserved 0xA9 – 0xAF

DMA Engine 2 (DMAC2) 0xB0 – 0xC0

Reserved 0xC1 – 0xC7

DMA Engine 3 (DMAC3) 0xC8 – 0xD8

Reserved 0xD9 – 0xDF

Reserved 0xE0 – 0xFF
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Detailed Descriptions
The register map can be divided into five sections corresponding to the five main 
functional blocks (excluding the processor) within the embedded processor block in 
Virtex-5 FXT FPGAs:

• DCR controller

• Auxiliary Processing Unit (APU) Controller

• Memory Controller Interface (MCI)

• PLB Interfaces and Crossbar

• DMA Engines

Detailed descriptions of the DCR registers are provided in the following sections. The 
same information is also available from individual design specifications.

DCR Controller (0x00 – 0x02)
There are three registers in the DCR controller. These registers are needed for indirect 
addressing, arbitration, and interface mode select.

Register 0x00: Indirect Address Register

This register contains the address used in indirect addressing. The indirect address is 
formed by a 2-bit upper address bus (UABUS[20:21]) value and a 10-bit address bus 
(ABUS[0:9]) value. This register, shown in Figure 14-1, is both readable and writable. All 
unused bits in the register return 0s when read.

Register 0x01: Indirect Access Register

This location is used as a proxy to indirectly access the DCR slaves. When location 0x01 is 
accessed, the DCR controller replaces the DCR address (0x01) with the content of register 
0x00 for address decoding. The DCR master reads or writes to the 12-bit address stored in 
register 0x00. This location is both readable and writable.

Register 0x02: Control, Configuration, and Status Register

Register 0x02, shown in Figure 14-2, handles control, configuration, and status. Table 14-2 
describes the fields within the register.

0 19 20 21 22 31

Reserved UABUS[20:21] ABUS[0:9]

Figure 14-1: Register 0x00

0 1 2 3 4 5 6 7 8 29 30 31

c440 
lock

c440 
alock

xm 
lock

xm 
alock

auto-
lock

xm 
asyn

xs 
asyn

xm 
towait

Reserved
c440 
time
out

xm 
time
out

Figure 14-2: Register 0x02
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The DCR controller prevents more than one master from locking the bus, so writing to bit 
0 or 2 might not lead to changes in those bit locations. All unused bits in this register return 
0s when read.

Table 14-2: Bit Descriptions for Register 0x02

Bit Name Dir Default Description

0 c440 lock R/W 0
Processor bus lock bit. Can be written to and read by the processor DCR master. 
The external master can also read this bit. 

1 c440 alock RO 0 Processor auto bus lock bit. 

2 xm lock R/W 0
External master bus lock bit. Can be written to and read by the external DCR 
master. The processor DCR master can also read this bit. 

3 xm alock RO 0 External DCR master auto bus lock bit. 

4 auto-lock R/W 1

Configures the auto-lock feature. The default value for this bit is 1 to enable the 
auto-lock. This bit is cleared to disable the auto-lock function. This bit is 
initialized by the embedded processor block attribute 
DCR_AUTOLOCK_ENABLE.

5 xm asyn RO 0

Indicates the external DCR master interface asynchronous mode. 

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute 
PPCDM_ASYNCMODE. 

6 xs asyn RO 0

Indicates the external DCR slave interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute 
PPCDS_ASYNCMODE. 

7 xm towait R/W 0

Configures the external DCR master time-out wait support. By default, this bit is 
0, so that the external DCR master is assumed not to support time-out waits (the 
signal is tied to 0), but this setting also works with a master that supports time-
out waits. This bit is set to 1 if the external master supports time-out waits, 
allowing for better performance for the external master if the processor DCR 
Master locks the bus.

8:29 Reserved - 0 Reserved.

30
c440 
timeout

Read/
Clear 0

Set if a processor DCR master access time-out occurs. This bit is cleared on writes. 
If the bus is locked, only the locking master can clear it, and the other master can 
read it but not clear it. 

31
xm 
timeout

Read/
Clear

0
Set if an external DCR master access time-out occurs. This bit is cleared on writes. 
If the bus is locked, only the locking master can clear it, and the other master can 
read it but not clear it. 
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APU Controller (0x04 – 0x05)

Register 0x04: User-Defined Instruction (UDI) Configuration Registers

For all UDIs that are not loads or stores, the user needs to configure the primary and 
extended opcodes along with any necessary execution options. Figure 14-3 shows the UDI 
Configuration register bits. Table 14-3 defines the bits in the UDI Configuration register. 
The UDI configuration registers are initialized by embedded processor block attributes 
APU_UDI0 through APU_UDI15.

0 1 7

Primary 
Opcode

Extended Opcode [0:6]

8 11 12 13 14 15

Extended Opcode [7:10]
Privilege 

Op
Ra Enable Rb Enable GPR Write

16 17 18 20 21 22 23

CR Enable CR Field [0:2] Register # [0:1]

24 25 26 27 28 29 30 31

Register # [2:3] Type Wildcard En

Figure 14-3: UDI Configuration Register

Table 14-3: Bit Descriptions for the UDI Configuration Register

Bit Name Description

0 Primary Opcode
• 0: 6’b000000 (opcode 0)
• 1: 6’b000100 (opcode 4)

1:11 Extended Opcode 11 bits of the full extended opcode

12 Privilege Op When this bit is set, this instruction must execute in 
privilege mode.

13 Ra Enable When this bit is set, this instruction needs to read the Ra 
source operand from the GPR.

14 Rb Enable
When this bit is set, this instruction needs to read the Rb 
source operand from the GPR.

15 GPR Write
When this bit is set, this instruction writes a result to the 
Rt register in the GPR. 

16 CR Enable
When this bit is set, this instruction returns Condition 
Record (CR) bits to the CR field indicated in 
CRField[0:2].

17 Reserved Reserved

18:20 CRField[0:2]
Indicates which field receives the condition record (if 
the CR Enable bit in the instruction is set to 1).
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Register 0x05: APU Control Register

The APU Control register turns on or off various features in the APU controller. Figure 14-4 
shows the bits in the APU Control register. Table 14-4 defines the bits within the register. 
The APU control register is initialized by embedded processor block attribute 
APU_CONTROL.

21 Reserved Reserved

22:25 Register #

Indicates the register number (0 – 15). This value is only 
used when setting the DCR read/write pointer 
(Type = 2’b11), but can be viewed when reading the 
UDI contents through a DCR read.

26:27 Type

 Indicates the operation type of the instruction:

• 00: Non-autonomous, early confirm
• 01: Non-autonomous, late confirm
• 10: Autonomous
• 11: Sets read/write pointer to value in Register # 

field

28:29 Reserved Reserved

30 Wildcard

When this bit is set, bits [1:5] are not considered as the 
extended opcode but can be anything. Instead only bits 
[6:11] are checked. When this bit is cleared, the entire 
11 bits of the extended opcode are checked.

31 En
This bit enables the UDI. It indicates that the opcode 
and options written in the UDI are valid and should be 
used during decode.

Table 14-3: Bit Descriptions for the UDI Configuration Register (Continued)

Bit Name Description

0 1 4 5 6 7

Reset 
UDI/Control 

Registers

LD/ST 
Decode 
Disable

UDI Decode 
Disable

Force UDI 
Non-Auton. 

Late Confirm

8 9 10 11 12 13 14 15

FPU Decode 
Disable

FPU Complex 
Arith. Disable

FPU Convert 
Disable

FPU 
Estimate/

Select Disable

FPU Single 
Precision 
Disable

FPU Double 
Precision 
Disable

FPU FPSCR 
Disable

Force FPU 
Non-Auton. 

Late Confirm

16 17 18 19 20 21 22 23

Store 
WriteBack OK

Ld/St Priv. 
Op

Force Align LE Trap BE Trap

24 30 31

FCM
Enable

Figure 14-4: APU Control Register
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Table 14-4: Bit Descriptions for the APU Control Register

Bit Name Default Description

0
Reset UDI/Control 
Registers

-
When a 1 is written to this bit, all the UDI registers are reset to their default 
values. The rest of the bits in the control register are also reset to their 
default values. When read, this bit always returns a 0.

1:4 Reserved - Reserved

5 LD/ST Decode Disable 0
When set, this bit disables all FCM Load/Store decoding in the APU 
controller. This does not affect FPU Load/Store instructions. An FCM 
Load/Store in the program causes an illegal instruction exception.

6 UDI Decode Disable 0
When set, this bit disables all UDI decoding in the APU controller. This does 
not affect FCM Load/Store or FPU instructions. A UDI instruction in the 
program causes an illegal instruction exception.

7
Force UDI Non-
Autonomous, Late 
Confirm

0
When set, this bit forces any non-storage UDI instruction to be executed as 
a non-autonomous instruction with late confirm regardless of the type 
indicated in the UDI register.

8 FPU Decode Disable 1
When set, this bit disables all FPU decoding in the APU controller. An FPU 
instruction in the program causes an illegal instruction exception.

9
FPU Complex 
Arithmetic Disable

0

When set, this bit disables decoding for all FPU divide and square root 
instructions (fdiv, fdiv., fdivs, fdivs., fsqrt, fsqrt., fsqrts, fsqrts.). An FPU 
complex arithmetic instruction in the program when FPU Decode is not 
disabled causes an unimplemented instruction exception.

10 FPU Convert Disable 0

When set, this bit disables decoding for all FPU convert instructions (fcfid, 
fctid, fctidz, fctiw, fctiw., fctiwz, fctiwz., frsp, frsp.). An FPU convert 
instruction in the program when FPU Decode is not disabled causes an 
unimplemented instruction exception.

11 FPU Estimate/select 
Disable

0

When set, this bit disables decoding for all FPU estimate instructions (fres, 
fres., frsqrte, frsqrte., fsel, fsel.). An FPU estimate instruction in the program 
when FPU Decode is not disabled causes an unimplemented instruction 
exception.

12 FPU Single Precision 
Disable

0

When set, this bit disables decoding for all FPU single-precision only 
instructions (lfs, lfsu, lfsx, lfsux, stfs, stfsu, stfsx, stfsux, fadds, fadds., fsubs, 
fsubs., fdivs, fdivs., fmuls, fmuls., fsqrts, fsqrts., fmadds, fmadds., fnmadds, 
fnmadds., fmsubs, fmsubs., fnmsubs, fnmsubs.). A single-precision FPU 
instruction in the program when FPU Decode is not disabled causes an 
unimplemented instruction exception.

13
FPU Double Precision 
Disable

0

When set, this bit disables decoding for all FPU double-precision only 
instructions (lfd, lfdu, lfdx, lfdux, stfd, stfdu, stfdx, stfdux, stfiwx, fadd, 
fadd., fsub, fsub., fdiv, fdiv., fmul, fmul., fsqrt, fsqrt., fmadd, fmadd., 
fnmadd, fnmadd., fmsub, fmsub., fnmsub, fnmsub.). If a double-precision 
FPU instruction is encountered in the program and FPU Decode is not 
disabled, an unimplemented instruction exception occurs.

14 FPU FPSCR Disable 0

When set, this bit disables decoding for all FPSCR FPU instructions (mcrfs, 
mffs, mffs., mtfsb0, mtfsb0., mtfsb1, mtfsb1., mtfsf, mtfsf., mtfsfi, mtfsfi.). 
An FPSCR instruction in the program when FPU Decode is not disabled 
causes an unimplemented instruction exception.
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Memory Controller Interface (0x10 – 0x12)

Register 0x10 – MI_CONTROL [0:31]

This register is initialized by embedded processor block attribute MI_CONTROL.

15
Force FPU Non-
Autonomous, Late 
Confirm

0 When set, this bit forces all non-storage FPU instructions to be executed as 
non-autonomous instructions with late confirm.

16 Store WritebackOK 0

When this bit is set, the APU controller waits to send a WritebackOK signal 
to the FCM for all store instructions (both APU and FPU stores). The 
WritebackOK signal is sent after the store instruction passes the LWB stage 
in the CPU pipe, which can cause a slight performance hit when executing 
store instructions.

17 LD/ST Privilege 0
When this bit is set, any load or store UDI executes in privileged mode (this 
does not affect FPU load/store instructions).

18:19 Reserved - Reserved

20 Force Align 0

When this bit is set, any load or store (both APU and FPU) forces alignment. 
The address is forced to align on the natural boundary of the transfer (word 
boundary for a word transfer, doubleword boundary for a doubleword 
transfer, and so forth). This also prevents an alignment exception.

21 LE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the 
Endian storage attribute is 1’b1 (little Endian).

22 BE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the 
Endian storage attribute is 1’b0 (big Endian).

23:30 Reserved - Reserved

31 FCM Enable 0
When this bit is set, the FCM interface is enabled and the APU controller 
decodes instructions. When this bit is cleared, bits 5, 6, and 8 are 
overridden. The APU controller does not decode any instructions.

Table 14-4: Bit Descriptions for the APU Control Register (Continued)

Bit Name Default Description

Table 14-5: Bit Descriptions for the MI_CONTROL Register

Bit Name Default Description

[0] enable 0

• 1: The MCI is enabled, and PLB and DMA masters can access 
the soft memory controller through the crossbar.

• 0: The MCI is disabled, and any attempt to access the MCI 
through the crossbar will fail.

[1] Rowconflictholdenable 0

If there is a change between the row from the current address and 
the past address, setting this bit causes the MCI block to wait 
Autoholdduration number of cycles before starting up the next 
instruction, assuming the MCMIADDRREADYTOACCEPT 
signal is asserted. 
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[2] Bankconflictholdenable 0

If there is a change between the bank from the current address 
and the past address, setting this bit causes the MCI block to wait 
Autoholdduration number of cycles before starting up the next 
instruction, assuming the MCMIADDRREADYTOACCEPT 
signal is asserted. 

[3] Directionconflictholdenable 0

If there is a change of direction between the current address and 
the past address (from reads to writes and writes to reads), 
setting this bit causes the MCI block to wait Autoholdduration 
number of cycles before starting up the next instruction, 
assuming the MCMIADDRREADYTOACCEPT signal is 
asserted. 

[4:5] Autoholdduration 00

This field tells the MCI block how long to hold off, while waiting 
for the memory controller’s MCMIADDRREADYTOACCEPT 
signal to become asserted, assuming there was a triggering event 
causing an autohold.

• 00: 2 cycles 
• 01: 3 cycles
• 10: 4 cycles
• 11: 5 cycles

[6] 2:3 Clock Ratio mode 0

Clock ratio mode:

• 0: Integer ratio of the MCI clock to the embedded processor 
block interconnect clock (CPMINTERCONNECTCLK)

• 1: Fractional ratio of the MCI clock to the embedded processor 
block interconnect clock (CPMINTERCONNECTCLK) (3/2)

[7] overlaprdwr 0

In DDR mode, after every read or write, the equivalent amount 
of time of the burst is inserted before requesting the next 
transaction. In QDR mode, the reads and writes are separate 
transactions. In this mode, a read transaction does not block the 
next write transaction from going out. 

[8:9] Burstwidth 00

Data per clock cycle:

• 00: Burst width = 128
• 01: Burst width = 64
• 10: Reserved
• 11: Burst width = 32

[10:11] Burstlength 00

Burst length:

• 00: Burst length = 1
• 01: Burst length = 2
• 10: Burst length = 4
• 11: Burst length = 8

[12:15] Write Data Delay (WDD) 0000
Values 0 through 10 are defined. Values 11 through 15 are 
reserved.

16 RMW 0
Allows the MCI block to always autohold if all the byte enables 
for a write are not turned on for that transaction.

[17:23] Reserved 0000000 These bits are reserved

Table 14-5: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name Default Description
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Register 0x11: MI_ROWCONFLICT_MASK [0:31] 

This register contains the mask used to detect row conflicts from one transaction to 
another. This register is at DCR address 0x11. The 32 bits in this register correspond to the 
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position 
identifies that bit as a row address bit. For example, if bits 8:20 are set to 1, the 
MIMCROWCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS 
change between the previous instruction sent to the soft memory controller and this 
instruction. The default value of this register is 0. 

Register 0x12: MI_BANKCONFLICT_MASK [0:31]

This register contains the mask used to detect bank conflicts from one transaction to 
another. This register is at DCR address 0x12. The 32 bits in this register correspond to the 
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position 
identifies that bit as a bank address bit. For example, if bits 4:7 are set to 1, the 
MIMCBANKCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS 
change between the previous instruction sent to the soft memory controller and this 
instruction. The default value of this register is 0. 

DCRs for the PLB Interfaces and Crossbar (0x20 – 0x5F)
A block of 64 DCR locations (0x20 to 0x5F) is allocated for use by the crossbar, two PLB 
slaves (PLBS0 and PLBS1), the PLB Master (MPLB), and the Address Map configuration 
registers. Four separate DCR lists are shown in Table 14-6 through Table 14-9. 

All the interrupt status bits of the PLB interfaces and the crossbar are consolidated in the 
Interrupt Status register at 0x20. 

There are 54 registers defined in Table 14-6 to Table 14-9. Twenty registers (including 13 for 
address mapping) use tie-off values (embedded processor block attributes) rather than 

24 PLB Priority Enable 1

• 0: First level arbitration is disabled for the PLB Masters trying 
to access the MCI through the crossbar.

• 1: First level arbitration is enabled among the PLB Masters 
trying to access the MCI through the crossbar

See “Arbitration” in Chapter 3 for more information.

[25:27] Reserved 000 These bits are reserved

[28]  Pipelined Read Enable 1

• 0: The crossbar does not accept a new read command until the 
current read command completes.

• 1: The crossbar accepts read commands destined for the MCI 
while the current read operation is still in progress.

[29] Pipelined Write Enable 1

• 0: The crossbar does not accept a new write command until 
the current write command completes.

• 1: The crossbar accepts write commands destined for the MCI 
while the current write operation is still in progress.

[30] Reserved 1 Reserved

[31] Reserved 1 Reserved

Table 14-5: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name Default Description
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hardware-defined default values after reset. The tie-offs allow user control over the 
register default values. 

Table 14-6: List of DCRs for the Crossbar

Address Mnemonic Description Type

Global Configuration and Status 

0x20 IST Interrupt Status Register
Clear on Write to bit 
and Read Only

0x21 IMASK Interrupt Mask Register R/W

0x22 - Reserved -

Crossbar for PLB Master Configuration

0x23 ARB_XBC Arbitration Configuration Register R/W

Crossbar for PLB Master Status

0x24 FIFOST_XBC FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for PLB Master Hardware Debug

0x25 - Reserved -

0x26 MISC_XBC Miscellaneous Control and Status R/W, Write Only

0x27 - Reserved -

Crossbar for MCI Configuration

0x28 ARB_XBM Arbitration Configuration Register R/W

Crossbar for MCI Status

0x29 FIFOST_XBM FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for MCI Hardware Debug

0x2A SM_ST_XBM State Machine States Register Read Only

0x2B MISC_XBM Miscellaneous Control and Status R/W, Write Only

0x2C - Reserved -

Address Map Configuration

0x2D TMPL0_XBAR_MAP Template Register 0 for Crossbar R/W

0x2E TMPL1_XBAR_MAP Template Register 1 for Crossbar R/W

0x2F TMPL2_XBAR_MAP Template Register 2 for Crossbar R/W

0x30 TMPL3_XBAR_MAP Template Register 3 for Crossbar R/W

0x31 TMPL_SEL_REG Template Selection Register R/W

0x32 - Reserved -

0x33 - Reserved -
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Table 14-7: List of DCRs for PLB Slave 0 (SPLB 0)

Address Mnemonic Description Type

Configuration

0x34 CFG_PLBS0 Configuration Register R/W

0x35 - Reserved -

 Status

0x36 SEAR_U_PLBS0 Slave Error Address Register, upper 4 bits Clear on Write to 0x38

0x37 SEAR_L_PLBS0 Slave Error Address Register, lower 32 bits Clear on Write to 0x38

0x38 SESR_PLBS0 Slave Error Status Register Clear on Write

0x39 MISC_ST_PLBS0 Miscellaneous Status Register Clear on Write to bit

0x3A PLBERR_ST_PLBS0 PLB Error Status Clear on Write to bit

 Hardware Debug

0x3B SM_ST_PLBS0 State Machine States Register Read Only

0x3C MISC_PLBS0 Miscellaneous Control and Status R/W, WO, RO

0x3D CMD_SNIFF_PLBS0 Command Sniffer R/W

0x3E CMD_SNIFFA_PLBS0 Command Sniffer Address R/W

0x3F - Reserved -

 Address Map

0x40 TMPL0_PLBS0_MAP Template Register 0 R/W

0x41 TMPL1_PLBS0_MAP Template Register 1 R/W

0x42 TMPL2_PLBS0_MAP Template Register 2 R/W

0x43 TMPL3_PLBS0_MAP Template Register 3 R/W

Table 14-8: List of DCRs for the PLB Slave 1 (SPLB 1)

Address Mnemonic Description Type

Configuration

0x44 CFG_PLBS1 Configuration Register R/W

0x45 - Reserved -

 Status

0x46 SEAR_U_PLBS1 Slave Error Address Register, upper 4 bits Clear on Write to 0x48

0x47 SEAR_L_PLBS1 Slave Error Address Register, lower 32 bits Clear on Write to 0x48

0x48 SESR_PLBS1 Slave Error Status Register Clear on Write

0x49 MISC_ST_PLBS1 Miscellaneous Status Register Clear on Write to bit

0x4A PLBERR_ST_PLBS1 PLB Error Status Clear on Write to bit
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 Hardware Debug

0x4B SM_ST_PLBS1 State Machine States Register Read Only

0x4C MISC_PLBS1 Miscellaneous Control and Status R/W, WO, RO

0x4D CMD_SNIFF_PLBS1 Command Sniffer R/W

0x4E CMD_SNIFFA_PLBS1 Command Sniffer Address R/W

0x4F - Reserved -

Address Map

0x50 TMPL0_PLBS1_MAP Template Register 0 R/W

0x51 TMPL1_PLBS1_MAP Template Register 1 R/W

0x52 TMPL2_PLBS1_MAP Template Register 2 R/W

0x53 TMPL3_PLBS1_MAP Template Register 3 R/W

Table 14-8: List of DCRs for the PLB Slave 1 (SPLB 1) (Continued)

Address Mnemonic Description Type

Table 14-9: List of DCRs for the PLB Master (MPLB)

Address Mnemonic Description Type

Configuration

0x54 CFG_PLBM Configuration Register R/W

0x55 - Reserved -

Status

0x56 FSEAR_U_PLBM
FPGA Logic Slave Error Address Register, upper 4 
bits

Clear on Write to 0x58

0x57 FSEAR_L_PLBM
FPGA Logic Slave Error Address Register, lower 32 
bits

Clear on Write to 0x58

0x58 FSESR_PLBM FPGA Logic Slave Error Status Register Clear on Write

0x59 MISC_ST_PLBM Miscellaneous Status Clear on Write to bit

0x5A PLBERR_ST_PLBM PLB Error Status Clear on Write to bit

Hardware Debug

0x5B SM_ST_PLBM State Machine States Register Read Only

0x5C MISC_PLBM Miscellaneous Control and Status R/W, Write Only

0x5D CMD_SNIFF_PLBM Command Sniffer R/W

0x5E CMD_SNIFFA_PLBM Command Sniffer Address R/W

0x5F - Reserved -
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Registers 0x20 to 0x33: DCRs for the Crossbar

0x20: Interrupt Status Register (IST), Clear on Writes, Read Only

This register contains all the interrupt status bits of the two PLB slave interfaces, PLB 
Master interface, and the crossbar (see Table 14-10). All register bits are cleared on writes, 
except those that are marked as read only (RO). Writing a 1 to a clear-on-write bit clears it. 
The read-only bits are cleared by writing to their corresponding source DCRs. For 
example, bit 7 is cleared by writing 0s to the PLBS0 FIFO Error Status register.

Note: Even if a particular interrupt is masked, these status bits are still set if the error condition is 
detected. 

Table 14-10: Bit Definitions for the IST Register

Bits Field Type Default Description

0:2 Reserved - 000 Reserved

3 INT_CFG_ERR_S0 RO 0
Configuration or command error, PLBS0. See register 0x39 for 
further information.

4 INT_MIRQ_S0 RO 0 PLB MIRQ error, PLBS0

5 INT_MRDERR_S0 Clr on Wr 0
Read transaction error, PLBS0. See registers 0x36 through 0x38 
for further information.

6 INT_MWRERR_S0 Clr on Wr 0
Write transaction error, PLBS0. See registers 0x36 through 0x38 
for further information.

7 INT_FIFO_ERR_S0 RO 0
FIFO error interrupt, PLBS0. See register 0x39 for further 
information.

8:10 Reserved - 000 Reserved

11 INT_CFG_ERR_S1 RO 0
Configuration or command error, PLBS1. See register 0x49 for 
further information.

12 INT_MIRQ_S1 RO 0 PLB MIRQ error, PLBS1

13 INT_MRDERR_S1 Clr on Wr 0
Read transaction error, PLBS1. See registers 0x46 through 0x48 
for further information.

14 INT_MWRERR_S1 Clr on Wr 0
Write transaction error, PLBS1. See registers 0x46 through 0x48 
for further information.

15 INT_FIFO_ERR_S1 RO 0
FIFO error interrupt, PLBS1. See register 0x49 for further 
information.

16 Reserved - 0 Reserved

17 INT_CFG_ERR_M RO 0
Configuration error, PLBM. See register 0x59 for further 
information.

18 INT_MIRQ_M RO 0 PLB MIRQ error, PLBM

19 INT_MRDERR_M Clr on Wr 0
Read transaction error, PLBM. See registers 0x56 through 0x58 
for further information.

20 INT_MWRERR_M Clr on Wr 0
Write transaction error, PLBM. See registers 0x56 through 0x58 
for further information.

21 INT_ARB_TOUT_M Clr on Wr 0 PLB Time-out error, PLBM

22 Reserved - 0 Reserved
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0x21: Interrupt Mask Register (IMASK), R/W

This register contains the interrupt mask information (see Table 14-11). Clearing a bit to 0 
masks the interrupt generation from the corresponding interrupting source in register 
0x20. This register is initialized by embedded processor block attribute 
INTERCONNECT_IMASK.

23 Reserved - 0 Reserved

24 INT_FIFO_ERR_M RO 0
FIFO error interrupt, PLBM. See register 0x59 for further 
information.

25 INT_FIFO_ERR_XM RO 0
FIFO error, Crossbar for PLBM. See register 0x58 for further 
information.

26 INT_FIFO_ERR_MCI RO 0
FIFO error, Crossbar for MCI. See register 0x5D for further 
information.

27:31 Reserved - 0 Reserved

Table 14-10: Bit Definitions for the IST Register (Continued)

Bits Field Type Default Description

Table 14-11: Bit Definitions for the IMASK Register

Bits Field Default Description

0:2 Reserved 111 Reserved

3 M_INT_CFG_ERR_S0 1 Interrupt mask for configuration or command error, PLBS0

4 M_INT_MIRQ_S0 1 Interrupt mask for general error, PLBS0

5 M_INT_MRDERR_S0 1 Interrupt mask for read transaction error, PLBS0

6 M_INT_MWRERR_S0 1 Interrupt mask for write transaction error, PLBS0

7 M_INT_FIFO_ERR_S0 1 Interrupt mask for FIFO error, PLBS0

8:10 Reserved 111 Reserved

11 M_INT_CFG_ERR_S1 1 Interrupt mask for configuration or command error, PLBS1

12 M_INT_MIRQ_S1 1 Interrupt mask for general error, PLBS1

13 M_INT_MRDERR_S1 1 Interrupt mask for read transaction error, PLBS1

14 M_INT_MWRERR_S1 1 Interrupt mask for write transaction error, PLBS1

15 M_INT_FIFO_ERR_S1 1 Interrupt mask for FIFO error interrupt, PLBS1

16 Reserved 1 Reserved

17 M_INT_MPLB_ERR_M 1 Interrupt mask for configuration error, PLBM

18 M_INT_MIRQ_M 1 Interrupt mask for general error, PLBM

19 M_INT_MRDERR_M 1 Interrupt mask for read transaction error, PLBM

20 M_INT_MWRERR_M 1 Interrupt mask for write transaction error, PLBM

21 M_INT_ARB_TOUT_M 1 Interrupt mask for PLB time-out error, PLBM

22 Reserved 1 Reserved

23 Reserved 1 Reserved
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0x23: Crossbar for PLB Master Arbitration Configuration Register (ARB_XBC), 
R/W

This register configures crossbar arbitration priority and mode operations (see 
Table 14-12). This register is initialized by embedded processor block attribute 
PPCM_ARBCONFIG. Arbitration priority values apply to fixed and round-robin 
arbitration only, with 4 corresponding to the highest priority and 0 to the lowest priority. 
Values between 5 and 7 are reserved and should not be used due to unpredictable 
behavior. The five device priority values must be mutually exclusive so that no two or 
more devices can have the same priority, otherwise there are unpredictable results.

24 M_INT_FIFO_ERR_M 1 Interrupt mask for FIFO error interrupt, PLBM

25 M_INT_FIFO_ERR_XM 1 Interrupt mask for FIFO error, Crossbar for PLBM

26 M_INT_FIFO_ERR_MCI 1 Interrupt mask for FIFO error, Crossbar for MCI

27:31 Reserved 5`b1 Reserved

Table 14-11: Bit Definitions for the IMASK Register (Continued)

Bits Field Default Description

Table 14-12: Bit Definitions for the ARB_XBC Register 

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0 Sync TAttribute (bit 7) enable, if set

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU) 
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead 

to unpredictable behavior)
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0x24: Crossbar for PLB Master FIFO Overflow and Underflow Status Register 
(FIFOST_XBC), Clear on Writes

This register indicates the FIFO overflow and underflow status for the PLB Master (see 
Table 14-13). Individual register bits are cleared by writing 1s to them. Bit 31 of the 
interrupt register is set if any of the FIFO overflow or underflow bit is set. None of these 
bits should ever be set under normal operating conditions.

0x26: Crossbar for PLB Master Miscellaneous Control and Status Register 
(MISC_PLBM), R/W or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see 
Table 14-14). Read values for write-only bits are always 0s.

0x28: Crossbar for MCI Arbitration Configuration Register (ARB_XBM), R/W

This register configures crossbar arbitration priority and mode operations (see 
Table 14-15). This register is initialized by embedded processor block attribute 
MI_ARBCONFIG. Arbitration priority values apply to fixed and round-robin arbitration 
only with 4 corresponding to the highest priority and 0 to the lowest priority. Values 
between 5 and 7 are reserved and should not be used due to unpredictable behavior. The 
five device priority values must be mutually exclusive so that no two or more devices can 
have the same priority, otherwise unpredictable results could occur.

Table 14-13: Bit Definitions for the FIFOST_XBC Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Indicates a write command queue overflow, when set

29 FIFO_UF_RCMDQ 0
Indicates a write command queue underflow, when 
set

30 FIFO_OF_WCMDQ 0 Indicates a read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Indicates a read command queue underflow, when set

Table 14-14: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only Write a 1 to this bit to reset the 
Read Command Queue

31 FIFO_WCMDQ_RST 0 Write Only Write a 1 to this bit to reset the 
Write Command Queue

Table 14-15: Bit Definitions for the ARB_XBM Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority
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0x29: Crossbar for MCI FIFO Overflow and Underflow Status Register 
(FIFOST_XBM), Clear on Writes

This register indicates the FIFO overflow and underflow status for the MCI (see 
Table 14-16). Individual register bits are cleared by writing 1s to them. Bit 31 of the 
interrupt register is set if the FIFO overflow or underflow bit is set. None of the bits should 
ever be set under normal operating conditions.

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28:29 Reserved 0 Reserved

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU) 
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead 

to unpredictable behavior)

Table 14-16: Bit Definitions for the FIFOST_XBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Write command queue overflow, when set

29 FIFO_UF_RCMDQ 0 Write command queue underflow, when set

30 FIFO_OF_WCMDQ 0 Read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Read command queue underflow, when set

Table 14-15: Bit Definitions for the ARB_XBM Register (Continued)

Bits Field Default Description

http://www.xilinx.com


276 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x2B: Crossbar for MCI Miscellaneous Control and Status Register (MISC_XBM), 
R/W or Write Only

This register contains miscellaneous control and status bits for the MCI (see Table 14-17). 
Read values for write-only bits are always 0s.

0x2D to 0x30: Crossbar Template Registers, R/W

There are four 32-bit template registers for the crossbar (see Table 14-18). Selection of one of 
the four registers for address mapping is done through the Template Selection Register. 
Each bit of a 32-bit register corresponds to 128 MByte address space for a total of 4 GB 
addressing. Traffic is routed to the MCI if the address is within the 128 MB address range 
that has the template bit set; otherwise the traffic is routed to the PLB Master. These 
registers are initialized by embedded processor block attributes 
XBAR_ADDRMAP_TMPL0 through XBAR_ADDRMAP_TMPL3.

0x31: Template Selection Register (TMPL_SEL_REG), R/W

This register is the template selection register for specifying the address mapping template 
(see Table 14-19). There are 16 x 2-bit entries in this register corresponding to a 16 x 4-GB 
address space. Each two-bit field identifies which of the four TMPL*_XBAR_MAP 
registers are used to map crossbar addresses, which of the four TMPL*_PLBS0_MAP 
registers are used to enable address decoding on SPLB0, and which of the four 
TMPL*_PLBS1_MAP registers are used to enable address decoding on SPLB1. By default, 
all of these address template registers are configured so that template 0 controls all 
crossbar mapping and SPLB interface decoding for the lower 4 GB address space. Because 
EDK supports only the lower 4 GB space, there is normally no reason for users to use 
templates 1 through 3. This register is initialized by embedded processor block attribute 
INTERCONNECT_TMPL_SEL.

Table 14-17: Bit Definitions for the MISC_XBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Read 
Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Write 
Command Queue

Table 14-18: Crossbar Template Registers

Address Mnemonic Default Description

0x2D TMPL0_XBAR_MAP 32’hFFFF_0000 Template Register 0 for Crossbar

0x2E TMPL1_XBAR_MAP 32’h0000_0000 Template Register 1 for Crossbar

0x2F TMPL2_XBAR_MAP 32’h0000_0000 Template Register 2 for Crossbar

0x30 TMPL3_XBAR_MAP 32’h0000_0000 Template Register 3 for Crossbar

Table 14-19: Bit Definitions for the TMPL_SEL_REG Register

Bits Field Default Description

0:31 SEL 32’h3FFF_FFFF 16 2-bit values for template register selection
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DCRs for PLB Slave 0, SPLB 0 (0x34 to 0x43)

0x34: PLB Slave 0 Configuration Register (CFG_PLBS0), R/W

This register configures PLB Slave 0 operation (see Table 14-20). This register is initialized 
by embedded processor block attribute PPCS0_CONTROL.

Table 14-20: Bit Definitions for the CFG_PLBS0 Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x36, 0x37, and 0x38) 
are locked. 

1 Reserved 0 Reserved

2 DMA1_EN 0
• 0: Disable DMA1
• 1: Enable DMA1

3 DMA0_EN 0
• 0: Disable DMA0
• 1: Enable DMA0

4:5 DMA0_PRI 00

DMA0 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA1_PRI 00

DMA1 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.
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16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if 

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining

• 0: Disables write address pipelining
• 1: Enables write address pipelining 

Cleared automatically when bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting

• 0: No write posting (early data acknowledge)
• 1: Enables write posting 

Bit 27 is cleared when this bit is 0. Only single transactions are supported 
when write posting is disabled. The interrupt status flag (bit 3 of Crossbar 
register 0x20) is set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

Table 14-20: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description
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0x36: PLB Slave 0 Error Address Register (SEAR_U_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 14-21). The content is valid if 
bit 0 of register 0x38 is set. A failed transaction corresponds to a command address 
mismatch or an illegal command. This register is also used by the command sniffer (see 
registers 0x3D and 0x3E).

0x37: PLB Slave 0 Error Address Register (SEAR_L_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the lower 32-bit 
address of 36-bit address of a failed transaction (see Table 14-22). The content is valid if bit 
0 of register 0x38 is set. A failed transaction corresponds to a command address mismatch 
or an illegal command. This register is also used by the command sniffer (see registers 
0x3D and 0x3E).

0x38: PLB Slave 0 Error Status Register (SESR_PLBS0), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 14-23). A 
failed transaction corresponds to a command address mismatch or an illegal command. 
The slave interface only supports the following commands: 

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only 
single transfers are supported, any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x3D and 0x3E).

The content is valid when bit 0 is set. See also registers 0x36 and 0x37. This register is 
cleared by writing to it. When bit 0 of 0x34 is set, this register is only updated when bit 0 
becomes 0. When bit 0 of 0x34 is not set, this register is updated every time an error or sniff 
event is detected.

30 AERR_LOG 0 Log ABUS address mismatch error, when set (see bit 2 in register 0x39)

31 CMD_CHK_DBL 0 Disable command (size) check, when set (see bits 0 and 1 in register 0x39) 

Table 14-20: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-21: Bit Definitions for the SEAR_U_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-22: Bit Definitions for the SEAR_L_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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0x39: PLB Slave 0 Miscellaneous Status Register (MISC_ST_PLBS0), Clear on 
Writes

This register contains miscellaneous status bits for PLB Slave 0 (see Table 14-24). 
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 3 
of the Interrupt Status register is set if the configuration error bit, the illegal command bit, 
or the address mismatch error bit is set. Bit 7 of the Interrupt Status register is set if any 
FIFO overflow or underflow bit is set. None of these bits should ever be set under normal 
operating conditions.

Table 14-23: Bit Definitions for the SESR_PLBS0 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is 
supported.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-24: Bit Definitions for the MISC_ST_PLBS0 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write 
posting is configured (see register 0x34) but a line or a burst transfer is 
detected.

1 ILLEGAL_CMD 0
Illegal command detected. The supported commands include: size = 
4’h0, 4’h1, 4’h2, 4’h3, 4’hA, 4’hB, or 4’hC. Qualified by bit 31 of 
register 0x34.

2 ADDR_ERR 0 Address mismatch error. Qualified by bit 30 of register 0x34.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred
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0x3A: PLB Slave 0 PLB Error Status Register (PLBERR_ST_PLBS0), Clear on 
Writes

This register contains MIRQ status bits for PLB Slave 0 (see Table 14-25). Individual 
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB 
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status 
or conversion of slave MwrErr into MIRQ because of write posting. Refer to the PLB 
Architecture Specification [Ref 4] for more information on the MIRQ signal.

0x3B: PLB Slave 0 State Machine States Register (SM_ST_PLBS0), Read Only

This register indicates the states of the PLB Slave 0 state machine (see Table 14-26). This 
register is reserved for internal use.

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 14-24: Bit Definitions for the MISC_ST_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-25: Bit Definitions for the PLBERR_ST_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

29 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

30 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

31 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

Table 14-26: Bit Definitions for the SM_ST_PLBS0 Register

Bits Field Default Description

0:31 Reserved 0 Reserved
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0x3C: PLB Slave 0 Miscellaneous Control and Status Register (MISC_PLBS0), 
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 0 (see 
Table 14-27). Write-only bits always read as 0s.

0x3D: PLB Slave 0 Command Sniffer Register (CMD_SNIFF_PLBS0), R/W

This register contains the description of a command (the address is specified in 0x3E) that 
is to be monitored (see Table 14-28). The result is placed in registers 0x38 through 0x3A. 
This register is used for debugging purposes.

Table 14-27: Bit Definitions for the MISC_PLBS0 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS0 is in 64-bit mode
• 1: PLBS0 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

Table 14-28: Bit Definitions for the CMD_SNIFF_PLBS0 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’b0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match
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0x3E: PLB Slave 0 Command Sniffer Address Register (CMD_SNIFFA_PLBS0), 
R/W

This register, used in conjunction with register 0x3D, contains the address for command 
sniffing (see Table 14-29).

0x40 to 0x43: PLB Slave 0 Template Registers, R/W

Table 14-30 lists the set of four 32-bit template registers for PLB Slave 0. Selection of one of 
four registers for address mapping is done through the Template Selection Register. Each 
bit of a 32-bit register corresponds to a 128 MB address space for a 4 GB addressing. Set a 
bit to 1 to enable the corresponding 128 MB address space. These registers are initialized by 
embedded processor block attributes PPCS0_ADDRMAP_TMPL0 through 
PPCS0_ADDRMAP_TMPL3.

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-28: Bit Definitions for the CMD_SNIFF_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-29: Bit Definitions for the CMD_SNIFFA_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 14-30: PLB Slave 0 Template Registers

Address Mnemonic Default Description

0x40 TMPL0_PLBS0_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 0

0x41 TMPL1_PLBS0_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 0

0x42 TMPL2_PLBS0_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 0

0x43 TMPL3_PLBS0_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 0
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DCRs for PLB Slave 1, SPLB 1 (0x44 to 0x53)

0x44: PLB Slave 1 Configuration Register (CFG_PLBS1), R/W

This register configures PLB Slave 1 operation (see Table 14-31). This register is initialized 
by embedded processor block attribute PPCS1_CONTROL.

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x46, 0x47, and 0x48) 
are locked.

1 Reserved 0 Reserved

2 DMA3_EN 0
• 0: Disable DMA3
• 1: Enable DMA3

3 DMA2_EN 0
• 0: Disable DMA2
• 1: Enable DMA2

4:5 DMA2_PRI 00

DMA2 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA3_PRI 00

DMA3 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.
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16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

20 Reserved 0 Reserved

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if 

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if 

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if 

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if 

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfer.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically if bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 27 is cleared if this bit is 0. Only single transactions are supported if write 
posting is disabled. Interrupt status flag (bit 11 of Crossbar register 0x20) is 
set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description
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0x46: PLB Slave 1 Error Address Register (SEAR_U_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 14-32). The content is valid if 
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address 
mismatch or an illegal command. This register is also used by the command sniffer (see 
registers 0x4D and 0x4E).

0x47: PLB Slave 1 Error Address Register (SEAR_L_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the lower 32-bit 
address of the 36-bit address of a failed transaction (see Table 14-33). This content is valid 
if bit 0 of register 0x48 is set. A failed transaction corresponds to a command address 
mismatch or an illegal command. This register is also used by the command sniffer (see 
registers 0x4D and 0x4E).

0x48: PLB Slave 1 Error Status Register (SESR_PLBS1), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 14-34). A 
failed transaction corresponds to a command address mismatch or an illegal command. 
The slave interface only supports the following commands: 

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only 
single transfers are supported, and any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x4D and 0x4E). 

The content is valid if bit 0 is set. See also registers 0x46 and 0x47. This register is cleared 
by writing to it. If bit 0 of register 0x44 is set, this register is only updated when bit 0 
becomes 0. If bit 0 of register 0x44 is not set, this register is updated every time an error or 
sniff event is detected.

30 AERR_LOG 0 Log ABUS address mismatch error, if set (see bit 2, register 0x49)

31 CMD_CHK_DBL 0 Disable command (size) check, if set (see bits 0 and 1, register 0x49)

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description

Table 14-32: Bit Definitions for the SEAR_U_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-33: Bit Definitions for the SEAR_L_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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0x49: PLB Slave 1 Miscellaneous Status Register (MISC_ST_PLBS1), Clear on 
Writes

This register contains miscellaneous status bits for PLB Slave 1 (see Table 14-35). 
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 11 
of the Interrupt Status register is set if the configuration error bit, the illegal command bit, 
or the address mismatch error bit is set. Bit 15 of the Interrupt Status register is set if any 
FIFO overflow or underflow bit is set. None of these bits should ever be set under normal 
operating conditions.

Table 14-34: Bit Definitions for the SESR_PLBS1 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is 
supported.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-35: Bit Definitions for the MISC_ST_PLBS1 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0

When this bit is set, a write posting configuration 
error occurred. No write posting is configured (see 
register 0x44) but a line or a burst transfer is 
detected.

1 ILLEGAL_CMD 0

Illegal command detected. The supported 
commands include: size = 4’h0, 4’h1, 4’h2, 4’h3, 
4’hA, 4’hB, or 4’hC. Qualified by bit 31 of register 
0x44.

2 ADDR_ERR 0
Address mismatch error. Qualified by bit 30 of 
register 0x44.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0
When this bit is set, a Read Data Queue overflow 
occurred

19 FIFO_UF_RDAT 0
When this bit is set, a Read Data Queue underflow 
occurred
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0x4A: PLB Slave 1 PLB Error Status Register (PLBERR_ST_PLBS1), Clear on 
Writes

This register contains the MIRQ status bits for PLB Slave 1 (see Table 14-36). Individual 
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB 
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status 
or conversion of slave MwrErr into MIRQ because of write posting.

20 FIFO_OF_WDAT 0
When this bit is set, a Write Data Queue overflow 
occurred

21 FIFO_UF_WDAT 0
When this bit is set, a Write Data Queue underflow 
occurred

22 FIFO_OF_SRDQ 0
When this bit is set, a Slave Read Queue overflow 
occurred

23 FIFO_UF_SRDQ 0
When this bit is set, a Slave Read Queue underflow 
occurred

24 FIFO_OF_SWRQ 0
When this bit is set, a Slave Write Queue overflow 
occurred

25 FIFO_UF_SWRQ 0
When this bit is set, a Slave Write Queue underflow 
occurred

26 FIFO_OF_MRDQ 0
When this bit is set, a Master Read Queue overflow 
occurred

27 FIFO_UF_MRDQ 0
When this bit is set, a Master Read Queue underflow 
occurred

28 FIFO_OF_MWRQ 0
When this bit is set, a Master Write Queue overflow 
occurred

29 FIFO_UF_MWRQ 0
When this bit is set, a Master Write Queue underflow 
occurred

30 FIFO_OF_INCMD 0
When this bit is set, an Input Command Queue 
overflow occurred

31 FIFO_UF_INCMD 0
When this bit is set, an Input Command Queue 
underflow occurred

Table 14-36: Bit Definitions for the PLBERR_ST_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 14-35: Bit Definitions for the MISC_ST_PLBS1 Register (Continued)

Bits Field Default Description
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0x4B: PLB Slave 1 State Machine States Register (SM_ST_PLBS1), Read Only

This register indicates the states of the state machine for PLB Slave 1 (see Table 14-37). This 
register is reserved for internal use.

0x4C: PLB Slave 1 Miscellaneous Control and Status Register (MISC_PLBS1), 
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 1 (see 
Table 14-38). Write-only bits always read as 0s.

0x4D: PLB Slave 1 Command Sniffer Register (CMD_SNIFF_PLBS1), R/W

This register contains the description of a command (whose address is specified in register 
0x4E) that is to be monitored (see Table 14-39). The results are placed in registers 0x48 
through 0x4A. This register is used for debugging purposes.

Table 14-37: Bit Definitions for the SM_ST_PLBS1 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 14-38: Bit Definitions for the MISC_PLBS1 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS1 is in 64-bit mode
• 1: PLBS1 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only
Write a 1 to this bit to reset the 
Read Data Queue

26 FIFO_WDAT_RST 0 Write Only
Write a 1 to this bit to reset the 
Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only
Write a 1 to this bit to reset the 
Master Write Queue

31 FIFO_INCMD_RST 0 Write Only
Write a 1 to this bit to reset the 
Input Command Queue

Table 14-39: Bit Definitions for the CMD_SNIFF_PLBS1 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture disabled
• 1: Command command enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched
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0x4E: PLB Slave 1 Command Sniffer Address (CMD_SNIFFA_PLBS1), R/W

This register, used in conjunction with register 0x4D, contains the address (lower 32 bits) 
for command sniffing (see Table 14-40).

0x50 to 0x53: PLB Slave 1 Template Registers, R/W

Table 14-41 lists the set of four 32-bit template registers for PLB Slave 1. Selection of one of 
four registers for address mapping is done through the Template Selection Register. Each 
bit of a 32-bit register corresponds to 128 MB address space for a total of 4 GB addressing. 
Set a bit to 1 to enable the corresponding 128 MB address space. These registers are 
initialized by embedded processor block attributes PPCS1_ADDRMAP_TMPL0 through 
PPCS1_ADDRMAP_TMPL3.

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0

Enable master ID match, if set

• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-40: Bit Definitions for the CMD_SNIFFA_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32-bit of a 36-bit address

Table 14-39: Bit Definitions for the CMD_SNIFF_PLBS1 Register (Continued)

Bits Field Default Description
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DCRs for PLB Master, MPLB (0x54 to 0x5F)

0x54: PLB Master Configuration Register (CFG_PLBM), R/W

This register configures PLB Master operation (see Table 14-42). This register is initialized 
by embedded processor block attribute PPCM_CONTROL.

Table 14-41: PLB Slave 1 Template Registers

Address Mnemonic Default Description

0x50 TMPL0_PLBS1_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 1

0x51 TMPL1_PLBS1_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 1

0x52 TMPL2_PLBS1_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 1

0x53 TMPL3_PLBS1_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 1

Table 14-42: Bit Definitions for the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x56, 0x57, and 
0x58) are locked.

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved (can lead to unexpected behavior, if set to 1).

26 SL_ETERM_MODE 0
When this bit is set, slave early burst termination is supported. Bits 28 
and 29 are cleared automatically when this bit is set. This mode 
prevents R/W command re-ordering.

27 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30 is 
0 to prevent posted write data.
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0x56: FPGA Logic Slave Error Address Register (FSEAR_U_PLBM), Clear on 
Writes

This register is cleared by writing to register 0x58. This register captures the upper 4-bit 
address of a 36-bit address of a failed transaction (see Table 14-43). The content is valid if 
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following 
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This 
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x57: FPGA Logic Slave Error Address Register (FSEAR_L_PLBM), Clear on 
Writes

This register is cleared by writing to register 0x58. This register captures the lower 32-bit 
address of a 36-bit address of a failed transaction (see Table 14-44). The content is valid if 
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following 
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This 
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x58: FPGA Logic Slave Error Status Register (FSESR_PLBM), Clear on Writes

This register is cleared by writing to it. This register captures the transaction qualifiers of a 
failed transaction (see Table 14-45). A failed transaction corresponds to one of the 
following conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave 
MrdErr. 

This register is also used by the command sniffer (see registers 0x5D – 0x5E).

The content is valid if bit 0 is set. See also registers 0x56 and 0x57. If bit 0 of register 0x54 
is set, this register is only updated when bit 0 becomes 0. If bit 0 of register 0x54 is not set, 
the register is updated every time an error or sniff event is detected.

30 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported 
if write posting is disabled. Interrupt status flag (bit 17 of Crossbar 
register 0x20) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.

Table 14-42: Bit Definitions for the CFG_PLBM Register (Continued)

Bits Field Default Description

Table 14-43: Bit Definitions for the FSEAR_U_PLBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-44: Bit Definitions for the FSEAR_L_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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0x59: PLB Master Miscellaneous Status Register (MISC_ST_PLBM), Clear on 
Writes

This register contains miscellaneous status bits for the PLB Master (see Table 14-46). 
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 17 
of the Interrupt Status register is set if either or both of the configuration error bits are set. 
Bit 24 of the Interrupt Status register is set if any FIFO overflow or underflow bit is set. 
None of these bits should ever be set under normal operating conditions.

Table 14-45: Bit Definitions for the FSESR_PLBM Register

Bits Field Default Description

0 VLD 0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 0 M_lockErr to the PLB slave

2 PLBS_DMA 0

• 1: Command from PLB slave 0 or 1
• 0: Command from a DMA engine. Value is only valid if 

MID is 3 or 4.

3:5 MID 3’b0

Master ID.

• 000: ICUR
• 001: DCUW
• 010: DCUR
• 011: PLBS0
• 100: PLBS1

6:7 SSIZE 2’b0 Slave size (00, 01, or 10). 11 indicates address time-out.

8:10 TYPE 3’b0 PLB Type. Only 000 for memory transfers is supported.

11 RNW 0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-46: Bit Definitions for the MISC_ST_PLBM Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write 
posting is configured (see register 0x54) but a line or a burst transfer is 
detected.

1 ETERM_CFG_ERR 0
When this bit is set, a slave early burst termination configuration error 
occurred. Early termination is not configured (see register 0x54), but 
early termination is detected.

2:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred
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0x5A: PLB Master PLB Error Status Register (PLBERR_ST_PLBM), Read Only or 
Clear on Writes

This register contains MIRQ status bits for the PLB Master (see Table 14-47). Bits 19:31 are 
PLB MIRQ status bits that can be set due to either the propagation of the slave MIRQ status 
or conversion of slave MwrErr into MIRQ because of write posting. 

• If the slave PLB MIRQ signal, which is latched at the slave, is set, all MIRQ bits in the 
register are set. They are read only, so they are cleared when the PLB MIRQ is cleared. 

• If the slave PLB MwrErr, which is a pulse, is set and write posting is enabled, one of 
the MIRQ bits is set. In this case, the register bit is cleared by writing a 1 to the bit. 

Bits 19 and 20 correspond to MIRQ errors for writes that originated from the DMA engines 
in SPLB0/1. 

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 14-46: Bit Definitions for the MISC_ST_PLBM Register (Continued)

Bits Field Default Description

Table 14-47: Bit Definitions for the PLBERR_ST_PLBM Register

Bits Field Default Description

0:18 Reserved 0 Reserved

19 PLBS0_DMA_MIRQ 0 PLB Slave 0, DMA MIRQ

20 PLBS1_DMA_MIRQ 0 PLB Slave 1, DMA MIRQ

21 C440_MIRQ_ICUR 0 Processor ICUR MIRQ

22 C440_MIRQ_DCUW 0 Processor DCUW MIRQ

23 C440_MIRQ_DCUR 0 Processor DCUR MIRQ

24 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

25 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

26 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

27 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ
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0x5B: PLB Master State Machine States Register (SM_ST_PLBM), Read Only

This register indicates the states of the state machine for the PLB Master (see Table 14-48). 
This register is reserved.

0x5C: PLB Master Miscellaneous Control and Status Register (MISC_PLBM), R/W 
or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see 
Table 14-49). Write-only bits always read as 0s. 

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 14-48: Bit Definitions for the SM_ST_PLBM Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 14-47: Bit Definitions for the PLBERR_ST_PLBM Register (Continued)

Bits Field Default Description

Table 14-49: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0 Reserved 0 Write Only Reserved

1:2 FLUSH_MODE 00 R/W

Flush mode select

• 00: Automatic addrAck time-out flush
• 01 - 10: Reserved
• 11: No flush

3 Reserved 0 R/W Reserved

4:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue
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0x5D: PLB Master Command Sniffer Register (CMD_SNIFF_PLBM), R/W

This register contains the description of a command (whose address is specified in register 
0x5E) that is to be monitored (see Table 14-50). The results are placed in registers 0x58 
through 0x5A. This register is used for debugging purposes.

0x5E: PLB Master Command Sniffer Address (CMD_SNIFFA_PLBM), R/W

This register, used in conjunction with register 0x5D, contains the ABUS address (lower 
32 bits) for command sniffing (see Table 14-51).

Table 14-50: Bit Definitions for the CMD_SNIFF_PLBM Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 SPLBNDMA_EN 0
• 0: Disable SPLBndma match
• 1: Enable SPLBndma match

29 SPLB_MID_EN 0
• 0: Disable SPLB_MID match
• 1: Enable SPLB_MID match

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-51: Bit Definitions for the CMD_SNIFFA_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address
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DMA Engines (0x80 – 0xDF)
Table 14-52 lists the address map for the DCRs.

Table 14-52: DCR Address Map

DCR Addresses Mnemonic Register Description Direction

0x80,0x98,0xB0,0xC8 TX_NXTDESC_PTR TX Next Descriptor Pointer RW(1)

0x81,0x99,0xB1,0xC9 TX_CURBUF_ADDR TX Current Buffer Address Register RW(1)

0x82,0x9A,0xB2,0xCA TX_CURBUF_LENGTH TX Current Buffer Length Register RW(1)

0x83,0x9B,0xB3,0xCB TX_CURDESC_PTR TX Current Descriptor Pointer RW

0x84,0x9C,0xB4,0xCC TX_TAILDESC_PTR TX Tail Descriptor Pointer RW

0x85,0x9D,0xB5,0xCD TX_CHANNEL_CTRL TX Channel Control Register RW

0x86,0x9E,0xB6,0xCE TX_IRQ_REG TX Interrupt Register RD-ACK

0x87,0x9F,0xB7,0xCF TX_STATUS_REG TX Status Register RW(1)

0x88,0xA0,0xB8,0xD0 RX_NXTDESC_PTR RX Next Descriptor Pointer RW(1)

0x89,0xA1,0xB9,0xD1 RX_CURBUF_ADDR RX Current Buffer Address Register RW(1)

0x8A,0xA2,0xBA,0xD2 RX_CURBUF_LENGTH RX Current Buffer Length Register RW(1)

0x8B,0xA3,0xBB,0xD3 RX_CURDESC_PTR RX Current Descriptor Pointer RW

0x8C,0xA4,0xBC,0xD4 RX_TAILDESC_PTR RX Tail Descriptor Pointer RW

0x8D,0xA5,0xBD,0xD5 RX_CHANNEL_CTRL RX Channel Control Register RW

0x8E,0xA6,0xBE,0xD6 RX_IRQ_REG RX Interrupt Register RD-ACK

0x8F,0xA7,0xBF,0xD7 RX_STATUS_REG RX Status Register RW(1)

0x90,0xA8,0xC0,0xD8 DMA_CONTROL_REG DMA Control Register RW

Notes: 
1. These registers are loaded from the descriptors and updated dynamically by the DMA engine. As such, they should not be written 

during normal operation. Writing them is made available for debug purposes only.
2. See also the DMA enable and DMA priority fields of the SPLB0 and SPLB1 configuration registers (CFG_PLBS0/1) Table 4-6, 

page 108 in Chapter 4.
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Register 0x80, 0x98, 0xB0, 0xC8 – TX Next Descriptor Pointer 
(TX_NXTDESC_PTR)

Figure 14-5 shows the TX Next Descriptor Pointer. Table 14-53 defines the bits in this 
pointer.

Register 0x81, 0x99, 0xB1, 0xC9 – TX Current Buffer Address 
(TX_CURBUF_ADDR)

Figure 14-6 shows the TX Current Buffer Address register. Table 14-54 defines the bits in 
this register.

Register 0x82, 0x9A, 0xB2, 0xCA – TX Current Buffer Length 
(TX_CURBUF_LENGTH)

Figure 14-7 shows the TX Current Buffer Length register. Table 14-55 defines the bits in this 
register.

0 31

Address

Figure 14-5: TX Next Descriptor Pointer

Table 14-53: Bit Description for TX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must 
be eight-word aligned.

0 31

Address

Figure 14-6: TX Current Buffer Address

Table 14-54: Bit Description for TX Current Buffer Address

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes 
dynamically when the DMA is operating. This address is a byte 
address. 

0 7 8 31

Reserved[0:7] Length

Figure 14-7: TX Current Buffer Length Register

Table 14-55: Bit Description for the TX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be transferred. This 
field changes dynamically when the DMA is operating.

[0:7] Reserved
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Register 0x83, 0x9B, 0xB3, 0xCB – TX Current Descriptor Pointer 
(TX_CURDESC_PTR)

Figure 14-8 shows the TX Current Descriptor Pointer register. Table 14-56 defines the bits 
in this register.

Register 0x84, 0x9C, 0xB4, 0xCC – TX Tail Descriptor Pointer 
(TX_TAILDESC_PTR)

Figure 14-9 shows the TX Tail Descriptor Pointer register. Table 14-57 defines the bits in 
this register.

0 31

Address

Figure 14-8: TX Current Descriptor Pointer

Table 14-56: Bit Descriptions for the TX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. Must be eight-
word aligned.

0 31

Address

Figure 14-9: TX Tail Descriptor Pointer

Table 14-57: Bit Descriptions for the TX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

These bits contain the address of the last descriptor to be fetched. 
When this register is written to, it initiates a fetch from the address 
pointed to by the TX Current Descriptor Pointer register. This register 
can be updated dynamically, while the DMA channel is busy. The 
control register field, TailPtrEn, must be set for this feature to be 
enabled.
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Register 0x85, 0x9D, 0xB5, 0xCD – TX Channel Control 
(TX_CHANNEL_CTRL)

Figure 14-10 shows the TX Channel Control register. Table 14-58 defines the bits in this 
register. This register controls operation for the TX channel only. These registers are 
initialized by embedded processor block attributes DMA0_TXCHANNELCTRL through 
DMA3_TXCHANNELCTRL.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] Reserved Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 14-10: TX Channel Control Register

Table 14-58: Bit Descriptions for the TX Channel Control Register

Bit Name Default Description

[31] Coalescing Mechanism 
Interrupt Enable

dmtxchannelctrl[31] Enable (1) or disable (0) the Coalescing interrupt 
mechanism. 

[30] Delay Timer Mechanism 
Interrupt Enable

dmtxchannelctrl[30] Enable (1) or disable (0) the Delay Timer interrupt 
mechanism. 

[29] Error Detect Mechanism 
Interrupt Enable

dmtxchannelctrl[29] Enable (1) or disable (0) the Error Detection interrupt 
mechanism. 

[25:28] Reserved dmtxchannelctrl[25:28] Reserved

[24] Master Interrupt Enable dmtxchannelctrl[24]

When set, this bit indicates that the DMA TX channel 
is enabled to generate interrupts to the CPU. This is 
the master enable for the TX channel. Individual 
interrupt sources can be enabled or disabled 
separately.

[23]
Load the Interrupt 

Coalescing Counter 1’b0
Writing a 1 to this field forces the loading of the 
Interrupt Coalescing counters from the DCR 
IrqCount[0:7] field. This bit is self-clearing.

[22]
Use the Interrupt-On-

End Mechanism
dmtxchannelctrl[22]

• 1: Select the interrupt-on-end mechanism for 
interrupt coalescing.

• 0: Select the eop mechanism for interrupt 
coalescing. 

[21]
Use 1-bit Interrupt 

Counters
dmtxchannelctrl[21]

When this bit is enabled, the four-bit Interrupt 
Coalescing counter and two-bit Delay Timer counters 
are forced to be one-bit only. For certain device driver 
applications, this is a desirable use model.

[20] Reserved dmtxchannelctrl[20] Reserved
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Register 0x86, 0x9E, 0xB6, 0xCE – TX Interrupt Register (TX_IRQ_REG)

This register contains the interrupt status bits for the TX channel as well as read-only status 
for the TX coalescing and delay timer counters and timers. There are three regular 
interrupt sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable 
interrupts (NMI): PlbRdErr and PlbWrErr.

A regular interrupt can be acknowledged (and hence cleared if the corresponding counter 
equals 0), by writing a “1” to the respective interrupt status bit in this register. The NMIs 
can only be cleared by issuing a reset to the DMA (hard or soft).

Figure 14-11 shows the TX Interrupt register. Table 14-59 defines the bits in this register. 

[16:19] Msb Address dmtxchannelctrl[16:19]
These bits contain the statically assigned, most-
significant four bits of the DMA address. This field 
must be all zeros.

[8:15]
Interrupt Coalescing 

Count Value
dmtxchannelctrl[8:15]

These bits contain the eight-bit value to be preloaded 
into the TX interrupt coalescing counter. They are 
loaded into the counter when a write to the TX 
LdIrqCnt field is performed and subsequently 
reloaded whenever the Count reaches 0. 

[0:7]
Interrupt Delay Time-

out Value
dmtxchannelctrl[0:7]

These bits hold the compare value for the TX 
interrupt delay timer. The value in this field is 
compared to the TX Irq Delay Timer output. When 
they are equal, a TX interrupt event is generated. 

Table 14-58: Bit Descriptions for the TX Channel Control Register (Continued)

Bit Name Default Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16:17] CoalesceIrqCounter[0:3] DelayIrqCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 14-11: TX Interrupt Register
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Table 14-59: Bit Descriptions for the TX Interrupt Register

Bit Name Default Description

[31]
Coalescing Counter 

Interrupt
1’b0

When this bit is 1 the TX DMA channel has a pending interrupt 
because of a TX Coalescing interrupt counter greater-than-0 
condition. This bit is ORed with the two other TX interrupt bits 
and ANDed with the TX Interrupt Enable bit to produce the TX 
Irq pin. Even if the TxIrqEn bit is disabled, software can still 
poll this bit. Acknowledging a TX interrupt due to a coalescing 
counter condition is accomplished by writing a 1 to this bit. 
This action decrements the TX Coalescing interrupt counter.

[30]
Delay Timer 

Interrupt
1’b0

When this bit is 1, the TX DMA channel has a pending interrupt 
because of a TX Delay Timer interrupt counter greater-than-0 
condition. This bit is ORed with the two other TX interrupt bits 
and ANDed with the TX Interrupt Enable bit to produce the TX 
Irq pin. Even if the TxIrqEn bit is disabled, software can still 
poll this bit. Acknowledging a TX interrupt due to a Delay 
Timer counter condition is accomplished by writing a 1 to this 
bit. This action decrements the TX Delay Timer interrupt 
counter.

[29] Error Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt 
because of a TX error that has occurred. This bit is ORed with 
the two other TX interrupt bits and ANDed with the TX 
Interrupt Enable bit to produce the TX Irq pin. Even if the 
TxIrqEn bit is disabled, software can still poll this bit. 
Acknowledging a TX interrupt due to an error is accomplished 
by writing a 1 to this bit. This action clears this bit.

[28]
PLB Write Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error 
from the PLB due to a PLB write operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error 
from the PLB due to a PLB read operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23] 
Delay Timer 

Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the two-bit counter used to store the number of TX 
Delay Timer interrupts that are outstanding.

[18:21] 
Coalescing 

Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the four-bit counter used to store the number of TX 
coalescing counter interrupts that are outstanding.

[16:17] Reserved

[8:15] 
Coalescing Counter 

Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Coalescing Counter.

[0:7] Delay Timer Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Delay Timer.
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Register 0x87, 0x9F, 0xB7, 0xCF – TX Status Register (TX_STATUS_REG)

Figure 14-12 shows the TX Status register. Table 14-60 defines the bits in this register. Even 
though most of these fields are writable via DCR, this is purely for debug purposes. In 
normal operation, this register should not be directly written.

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop TXChannelBusy Reserved

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 14-12: TX Status Register

Table 14-60: Bit Descriptions for the TX Status Register

Bit Name Default Description

[31] Reserved

[30]
DMA Engine 

Busy
1’b0

When set, this read-only bit indicates that the respective 
channel is busy with a DMA operation. In general, software 
should not write any DMA registers while this bit is set. 
Reading of registers is allowed.

[29] DMA End of 
Packet

1’b0

When set, this bit indicates that the current descriptor is the 
final one of a packet. For TX, the CPU sets this bit in the 
descriptor to indicate that this is the last descriptor of a packet 
to be transmitted.

[28]
DMA Start of 

Packet
1’b0

When set, this bit indicates that the current descriptor is the 
start of a packet. For TX, the CPU sets this bit in the descriptor 
to indicate that this is the first descriptor of a packet to be 
transmitted.

[27]
DMA 

Completed
1’b0

When set, this bit indicates that the DMA has transferred all 
data defined by the current descriptor. In the case of TX, the 
DMA transfers data until the length field specified in the 
descriptor is zero, and then sets this bit.

[26] DMA Stop On 
End

1’b0

When this bit is set, the DMA is forced to halt operations when 
the descriptor is completed. The CPU sets this bit in the status 
field of the descriptor. This bit is then read into the DMA TX 
Status register as each descriptor is processed. It is 
recommended that this bit be set on the EOP descriptor only. 
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Register 0x88, 0xA0, 0xB8, 0xD0 – RX Next Descriptor Pointer 
(RX_NXTDESC_PTR)

Figure 14-13 shows the RX Next Descriptor Pointer register. Table 14-61 defines the bits in 
this register.

Register 0x89, 0xA1, 0xB9, 0xD1 – RX Current Buffer Address 
(RX_CURBUF_ADDR)

Figure 14-14 shows the RX Current Buffer Address register. Table 14-62 defines the bits in 
this register.

[25] DMA Interrupt 
on End

1’b0

When this bit is set, the DMA is forced to generate an interrupt 
event when the descriptor is completed. The CPU sets this bit 
in the status field of the descriptor. This bit is then read into the 
DMA TX Status register as each descriptor is processed. A 
typical use model would be to set this bit on the EOP 
descriptor only. However, it might be set for intermediate 
descriptors, too. Refer to the UseIntOnEnd field in the TX 
Channel Control register for details on how to enable this 
feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered a TX error. This bit 
is a copy of the ErrorIrq bit in the TX Interrupt register.

[0:23] Reserved

Table 14-60: Bit Descriptions for the TX Status Register (Continued)

Bit Name Default Description

0 31

Address

Figure 14-13: RX Next Descriptor Pointer

Table 14-61: Bit Descriptions for the RX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must 
be eight-word aligned.

0 31

Address

Figure 14-14: RX Current Buffer Address Register

Table 14-62: Bit Descriptions for the RX Current Buffer Address Register

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes 
dynamically when the DMA is operating. This address is a 
byte address. 
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Register 0x8A, 0xA2, 0xBA, 0xD2 – RX Current Buffer Length 
(RX_CURBUF_LENGTH)

Figure 14-15 shows the RX Current Buffer Length register. Table 14-63 defines the bits in 
this register.

Register 0x8B, 0xA3, 0xBB, 0xD3 – RX Current Descriptor Pointer 
(RX_CURDESC_PTR)

Figure 14-16 shows the RX Current Descriptor Pointer register. Table 14-64 defines the bits 
in this register.

Register 0x8C, 0xA4, 0xBC, 0xD4 – RX Tail Descriptor Pointer 
(RX_TAILDESC_PTR)

Figure 14-17 shows the RX Tail Descriptor Pointer register. Table 14-65 defines the bits in 
this register.

0 7 8 31

Reserved[0:7] Length

Figure 14-15: RX Current Buffer Length Register

Table 14-63: Bit Descriptions for the RX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be 
transferred. This field changes dynamically when the DMA is 
operating.

[0:7] Reserved

0 31

Address

Figure 14-16: RX Current Descriptor Pointer

Table 14-64: Bit Descriptions for the RX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. 
Must be eight-word aligned.

0 31

Address

Figure 14-17: RX Tail Descriptor Pointer

http://www.xilinx.com


306 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x8D, 0xA5, 0xBD, 0xD5 – RX Channel Control 
(RX_CHANNEL_CTRL)

Figure 14-18 shows the RX Channel Control register. Table 14-66 defines the bits in this 
register. This register controls operation for the RX channel only. These registers are 
initialized by embedded processor block attributes DMA0_RXCHANNELCTRL through 
DMA3_RXCHANNELCTRL.

Table 14-65: Bit Descriptions for the RX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

Contains the address of the last descriptor to be fetched. When 
this register is written to, it initiates a fetch from the address 
pointed to by the RX Current Descriptor Pointer register. This 
register can be updated dynamically, while the DMA channel 
is busy. The control register field, TailPtrWrEn, must be set for 
this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] AppMaskEn Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 14-18: RX Channel Control Register

Table 14-66: Bit Descriptions for the RX Channel Control Register

Bit Name Default Description

[31]
Coalescing Mechanism 

Interrupt Enable
dmrxchannelctrl[31]

Enable (1) or disable (0) the Coalescing interrupt 
mechanism.

[30]
Delay Timer Mechanism 

Interrupt Enable
dmrxchannelctrl[30]

Enable (1) or disable (0) the Delay Timer interrupt 
mechanism. 

[29]
Error Detect Mechanism 

Interrupt Enable
dmrxchannelctrl[29]

Enable (1) or disable (0) the Error Detection interrupt 
mechanism. 

[25:28] Reserved dmrxchannelctrl[25:28] Reserved Bits.

[24] Master Interrupt Enable dmrxchannelctrl[24]

When this bit is set, the DMA RX channel is enabled 
to generate interrupts to the CPU. This is the master 
enable for the RX channel. Individual interrupt 
sources can be enabled or disabled separately.

[23]
Load the Interrupt 

Coalescing Counter
1’b0

Writing a 1 to this bit forces the loading of the 
Interrupt Coalescing counters from the DCR 
IrqCount[0:7] field. This bit is self-clearing.
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Register 0x8E, 0xA6, 0xBE, 0xD6 – RX Interrupt Register (RX_IRQ_REG)

This register contains the interrupt status bits for the RX channel as well as the read-only 
status for the RX coalescing and Delay timer counters. There are three regular interrupt 
sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable interrupts 
(NMI): PlbRdErr and PlbWrErr. A regular interrupt can be acknowledged (and hence 
cleared if the corresponding counter equals 0) by writing a “1” to the respective interrupt 
status bit in this register. The NMIs can only be cleared by issuing a reset to the DMA (hard 
or soft).

Figure 14-19 shows the RX Interrupt register. Table 14-67 defines the bits in this register.

[22]
Use the Interrupt-On-

End Mechanism
dmrxchannelctrl[22]

• 1: Select the interrupt-on-end mechanism for 
interrupt coalescing.

• 0: Select the eop mechanism for interrupt 
coalescing. 

[21]
Use 1-bit Interrupt 

Counters
dmtxchannelctrl[21]

When this bit is enabled, the four-bit Interrupt 
Coalescing counter and two-bit Delay Timer counters 
are forced to be one-bit only. For certain device driver 
applications, this is a desirable use model.

[20] Application Data Mask 
Enable

dmrxchannelctrl[20]
This bit enables the Application Data Mask mode. 
Refer to “Masking of Application Data Update,” 
page 233 for details of operation.

[16:19] Msb Address dmtxchannelctrl[16:19]
These bits contain the statically assigned, most-
significant four bits of the DMA address. This field 
must be all zeros.

[8:15]
Interrupt Coalescing 

Count Value dmrxchannelctrl[8:15]

These bits contain the eight-bit value to be preloaded 
into the RX interrupt coalescing counter. This value is 
loaded into the counter when a write to the RX 
LdIrqCnt field is performed and subsequently 
reloaded whenever the Count reaches 0. 

[0:7]
Interrupt Delay Time-

out Value
dmrxchannelctrl[0:7]

These bits hold the compare value for the RX 
interrupt delay timer. The value in this register is 
compared to the RX Irq Delay Timer output. When 
they are equal, an RX interrupt event is generated. 

Table 14-66: Bit Descriptions for the RX Channel Control Register (Continued)

Bit Name Default Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16] WrQEmpty CoalesceCounter[0:3] DelayCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 14-19: RX Interrupt Register
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Table 14-67: Bit Descriptions for the RX Interrupt Register

Bit Name Default Description

[31]
Coalescing 

Counter Interrupt
1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX Coalescing interrupt counter greater-than-0 
condition. This bit is ORed with the two other RX interrupt bits 
and ANDed with the RX Interrupt Enable bit to produce the RX 
Irq pin. Even if the RxIrqEn or IrqCoalesceEn bit is disabled, 
software can still poll this bit. Acknowledging an RX interrupt 
due to a coalescing counter condition is accomplished by 
writing a 1 to this bit. This action decrements the RX Coalescing 
interrupt counter.

[30] Delay Timer 
Interrupt

1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX Delay Timer interrupt counter greater-than-0 
condition. This bit is ORed with the two other RX interrupt bits 
and ANDed with the RX Interrupt Enable bit to produce the RX 
Irq pin. Even if the RxIrqEn or IrqDelayEn bit is disabled, 
software can still poll this bit. Acknowledging an RX interrupt 
due to a Delay Timer counter condition is accomplished by 
writing a 1 to this bit. This action decrements the RX Delay 
Timer interrupt counter.

[29] Error Interrupt 1’b0

When this bit is 1, the RX DMA channel has a pending interrupt 
because of an RX error that has occurred. This bit is ORed with 
the two other RX interrupt bits and ANDed with the RX 
Interrupt Enable bit to produce the RX Irq pin. Even if the 
RxIrqEn or IrqErrorEn bit is disabled, software can still poll this 
bit. Acknowledging an RX interrupt due to an Error is 
accomplished by writing a 1 to this bit. This action clears this 
bit.

[28]
PLB Write Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error 
from the PLB due to a PLB write operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error 
Non-Maskable 

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error 
from the PLB due to a PLB read operation. This serious error 
causes the DMA to freeze the LocalLink interface as soon as it 
receives this indication from the crossbar. This bit can only be 
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23]
Delay Timer 

Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the two-bit counter used to store the number of RX 
Delay Timer interrupts that are outstanding.

[18:21] Coalescing 
Interrupt Counter

This read-only field is useful for debug purposes. It contains the 
value of the four-bit counter used to store the number of RX 
coalescing counter interrupts that are outstanding.

[17]
Write Command 

Queue Empty 
Status

This read-only field is useful for debug purposes. It indicates 
whether the Write Command Queue is empty (1) or not (0). If 
the DMA is paused, reading this field indicates that all the write 
data associated with the pending commands has been flushed.
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Register 0x8F, 0xA7, 0xBF, 0xD7 – RX Status Register (RX_STATUS_REG)

Figure 14-20 shows the RX Status register. Table 14-68 defines the bits in this register. Even 
though most of these fields are writable via DCR, this register is purely for debug 
purposes. In normal operation, this register should not be directly written.

[16:] Reserved

[8:15]
Coalescing 

Counter Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Coalescing Counter.

[0:7]
Delay Timer 

Value
This read-only field is useful for debug purposes. It contains the 
value of the eight-bit Delay Timer.

Table 14-67: Bit Descriptions for the RX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop ChainBusy RXChanBusy

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 14-20: RX Status Register

Table 14-68: Bit Descriptions for the RX Status Register

Bit Name Default Description

[31] Reserved

[30] DMA Engine Busy 1’b0

When this read-only bit is set, the respective channel is busy with 
a DMA operation. In general, software should not write any 
DMA registers while this bit is set. Reading of registers is 
allowed. 

[29] DMA End of Packet 1’b0

When this bit is set, the current descriptor is the final one of a 
packet. For RX, when an EOP is received by the LocalLink 
interface, the DMA sets this bit in the descriptor to inform the 
CPU that the current descriptor is the last of a received packet.

[28]
DMA Start of 

Packet
1’b0

When this bit is set, the current descriptor is the start of a packet. 
For RX, when an SOP is received by the LocalLink interface, the 
DMA sets this bit in the descriptor to inform the CPU that the 
current descriptor is the first of a received packet.

[27] DMA Completed 1’b0

When this bit is set, the DMA has transferred all data defined by 
the current descriptor. For RX, the DMA transfers data until the 
length field specified in the descriptor is zero OR when it receives 
an EOP indication from the LocalLink interface. At that point, the 
DMA sets this bit. 
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Register 0x90, 0xA8, 0xC0, 0xD8 – DMA Control Register 
(DMA_CONTROL_REG)

Figure 14-21 shows the DMA Control register. Table 14-69 defines the bits in this register. 
This register contains control fields that affect both the RX and TX channels. These registers 
are initialized by embedded processor block attributes DMA0_CONTROL through 
DMA3_CONTROL.

[26] DMA Stop On End 1’b0

When this bit is set, the DMA is forced to halt operations when 
the descriptor is completed. The CPU sets this bit in the status 
field of the descriptor. This bit is then read into the DMA RX 
Status register as each descriptor is processed. It is recommended 
that this bit be set, corresponding to an EOP descriptor only. 

[25]
DMA Interrupt on 

End 1’b0

When this bit is set, the DMA is forced to generate an interrupt 
event when the descriptor is completed. The CPU sets this bit in 
the status field of the descriptor. This bit is then read into the 
DMA RX Status register as each descriptor is processed. A typical 
use model is to set this bit on the EOP descriptor only. However, 
it can be set for intermediate descriptors, too. Refer to the 
UseIntOnEnd field in the RX Channel Control register for details 
of how to enable this feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered an RX error. This bit is 
a copy of the ErrorIrq bit in the RX Interrupt register. 

[0:23] Reserved

Table 14-68: Bit Descriptions for the RX Status Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Reserved[24:25] PlbErrDisable OverFlowErrDisable[0:1] TailPtrEn Reserved SwReset

0 23

Reserved[0:23]

Figure 14-21: DMA Control Register

Table 14-69: Bit Descriptions for the DMA Control Register

Bit Name Description

[31] Software Reset

Writing a 1 to this bit forces the DMA engine (both RX and TX channels) to shut 
down and reset itself. Because the dma_ll_rst_engine_ack output is asserted when 
this bit is a 1, it can be used to reset a remote LocalLink device while the DMA 
engine is resetting itself. After setting this bit, software must poll it until the bit is 
cleared by the DMA, which indicates that the reset process is done and the pipeline 
has been flushed. 

[30] Reserved

[29] Tail Pointer Enable

When this bit is set, the Tail Pointer mechanism is enabled. In this mode, writing 
to the tail pointer initiates a DMA transaction and the comparison (tail pointer == 
current pointer) ends descriptor execution. When cleared, the legacy mode of 
writing to the current pointer to initiate a transfer is supported. Refer to “DMA 
Legacy Mode,” page 229 for details. 
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[27:28]
Overflow Counter 

Error Interrupt 
Disable

When this bit is set, the error interrupt is disabled when either the two-bit Delay 
Timer counter or the four-bit Coalescing counter overflows. Bit [27] is used for the 
RX channel, and Bit [28] is used for the TX channel.

[26] PLB Error Disable

When this bit is set, error checking is disabled due to reads/writes to and from the 
crossbar PLB. If one of these errors occurs, the DMA reacts as follows:

• PLB Error Disable = 1’b1:

The DMA ignores the error and continues as usual.

• PLB Error Disable = 1’b0:
♦ Read Data Error. The DMA logs a plb_rd_error NMI bit in the appropriate 

interrupt register (RX or TX). The LocalLink interface is frozen immediately.
♦ Write Data Error. The DMA logs a plb_wr_error NMI bit in both RX and TX 

interrupt registers. The LocalLink interfaces is frozen immediately.

[0:25] Reserved

Table 14-69: Bit Descriptions for the DMA Control Register (Continued)

Bit Name Description
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Chapter 15

APU Programming

Introduction
This chapter describes the Xilinx extension of the PowerPC 440 ISA through the Auxiliary 
Processor Unit (APU) of the embedded processor block in Virtex-5 FXT FPGAs. The 
processor relies on custom Fabric Coprocessing Modules (FCMs) implemented in the 
FPGA logic to execute these instructions. An FCM can be either a user IP or a Xilinx IP.

This chapter lists the APU instruction set extension supported by the processor on Virtex-5 
FXT devices.

The notation FCM5 in this document indicates a five-bit immediate value. The 
interpretation of the value is left to the FCM. Typically, this is the register value on the 
FCM.

Refer to the “Document Convention” section of the PowerPC Processor Reference Guide for 
definitions of the remaining notations.

If there is an unconnected FPU in hardware, the APU and the Disable FPU Decode bits in 
the APU Control register must not be enabled by software because an FP unavailable 
exception will result. This condition implies that software can never enable the APU and 
clear the Disable FPU Decode bits in the APU Control register unless the designer knows 
whether a FPU is connected or not. Tools or the user must configure the APU control 
register properly. Without an FPU, the Disable FPU Decode bits should be set.
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udi<n>fcm
udi<n>fcm.

User-Defined Instructions (UDIs)

Description

The exact operation done by the instruction is determined by the user based on the FCM. 
For more information about user-defined instructions, refer to “FCM User-Defined 
Instructions,” page 194.

The Xilinx GNU assembler recognizes 32 UDIs:

• 16 instructions that modify the condition code (Rcn = 0)

• 16 instructions that do not modify the condition code (Rcn = 1)

Note that <n> in the mnemonic can range from 0 to 15. The instruction definition as 
provided by the user determines which conditional code register is to be modified. 

Special Notations for this Instruction

T : PowerPC GPR (rD)/ FCM Register (FCR)
A : PowerPC GPR (rD)/ FCM Register (FCR)/ 5 bit Immediate
B : PowerPC GPR (rD)/ FCM Register (FCR)/ 5 bit Immediate

Five bits each are available for the special notations defined above.

Pseudocode

Dependent on the user operation.

Registers Altered

Dependent on the user operation.

Exceptions

Dependent on the user operation.

Compatibility

These instructions are defined by Xilinx as UDIs that use the APU controller. The processor 
in the embedded processor block in Virtex-5 FXT FPGAs allows for 16 UDIs as compared 
to 8 allowed by the PowerPC 405 processor in Virtex-4 devices. 

udi<n>fcm T, A, B UDIs that do not modify the condition code register

udi<n>fcm. T, A, B UDIs that modify the condition code register

4 T A B 1 n 3 Rcn

0 5 6 10 11 15 16 20 21 22 25 26 30 31
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lbfcmux

Load Byte with Update Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The byte referenced by EA is sign-extended to 32 bits and loaded into the FCM5 register. 
The EA is loaded into rA.

Pseudocode

EA _ (rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+7 _ MEM(EA,1)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lbfcmux FCM5, rA, rB

31 FCM5 rA rB 519 0

0 5 6 10 11 15 16 20 21 30 31
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lhfcmux

Load Halfword with Update Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into the FCM5 
register. The EA is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+15 _ MEM(EA,2)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lhfcmux FCM5, rA, rB

31 FCM5 rA rB 551 0

0 5 6 10 11 15 16 20 21 30 31
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lwfcmux

Load Word With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The word referenced by EA is loaded into the FCM5 register. The EA is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lwfcmux FCM5, rA, rB

31 FCM5 rA rB 583 0

0 5 6 10 11 15 16 20 21 30 31
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ldfcmux

Load Double with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

Two words referenced by EA and EA +4 are loaded into the FCM5 register. The EA is 
loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

The instruction assumes that the FCM5 register is 64 bits wide.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

ldfcmux FCM5, rA, rB

31 FCM5 rA rB 775 0

0 5 6 10 11 15 16 20 21 30 31
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lqfcmux

Load Quad with Update Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

Four words referenced by EA through EA + 12 are loaded into the FCM5 register. The EA 
is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+8,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+12,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

The instruction assumes that the FCM5 register is 128 bits wide.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lqfcmux FCM5, rA, rB

31 FCM5 rA rB 615 0

0 5 6 10 11 15 16 20 21 30 31
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lbfcmx

Load Byte Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The byte referenced by EA is sign-extended to 32 bits and loaded into the FCM5 register. 

Pseudocode

EA _ (0|rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+7 _ MEM(EA,1)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lbfcmx FCM5, rA, rB

31 FCM5 rA rB 7 0

0 5 6 10 11 15 16 20 21 30 31
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lhfcmx

Load Halfword Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into the FCM5 
register. 

Pseudocode

EA _ ((0|rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+15 _MEM(EA,2)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
boundedly undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lhfcmx FCM5, rA, rB

31 FCM5 rA rB 39 0

0 5 6 10 11 15 16 20 21 30 31
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lwfcmx

Load Word Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The word referenced by EA is loaded into the FCM5 register. 

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lwfcmx FCM5, rA, rB

31 FCM5 rA rB 71 0

0 5 6 10 11 15 16 20 21 30 31
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ldfcmx

Load Double Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

Two words referenced by EA and EA + 4 are loaded into register(s) inferred by FCM5. 

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5. The exact implementation of the register inferred is to be 
determined by the user.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

ldfcmx FCM5, rA, rB

31 FCM5 rA rB 263 0

0 5 6 10 11 15 16 20 21 30 31
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lqfcmx

Load Quad Indexed (FCM) 

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

Four words referenced by EA through EA + 12 are loaded into register(s) inferred by 
FCM5. 

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+8,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+12,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5. The exact implementation of the register inferred is to be 
determined by the user.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed 
zone protection. This only applies to accesses in user mode when data relocation is 
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lqfcmx FCM5, rA, rB

31 FCM5 rA rB 103 0

0 5 6 10 11 15 16 20 21 30 31
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stbfcmux

Store Byte with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The least-significant byte of the register inferred by FCM5 is stored into the byte referenced 
by EA. The EA is loaded into the rA register.

Pseudocode 

EA _ (rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,1) _APU(FCM).dataeb:eb+7
(rA) _ EA

Registers Altered 

rA

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value 

• rA = 0

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stbfcmux FCM5, rA, rB

31 FCM5 rA rB 647 0

0 5 6 10 11 15 16 20 21 30 31
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sthfcmux

Store Halfword With Update Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

Two least-significant bytes of the register inferred by FCM5 are stored into the addressed 
referenced by EA. The EA is loaded into the rA register.

Pseudocode 

EA _ ((rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,2) _ APU(FCM).dataeb:eb+15
(rA) _EA

Registers Altered 

rA 

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stbfcmux FCM5, rA, rB

31 FCM5 rA rB 679 0

0 5 6 10 11 15 16 20 21 30 31
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stwfcmux

Store Word With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA. 
The EA is loaded into the rA register.

Pseudocode 

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
(rA) _ EA

Registers Altered 

rA

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value 

• rA = 0

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stwfcmux FCM5, rA, rB

31 FCM5 rA rB 711 0

0 5 6 10 11 15 16 20 21 30 31
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stdfcmux

Store Double With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA 
and EA + 4. The source register is assumed to be 64 bits wide. The EA is loaded into the rA 
register.

Pseudocode 

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
(rA) _ EA

Registers Altered 

rA

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

• rA = 0

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stdfcmux FCM5, rA, rB

31 FCM5 rA rB 903 0

0 5 6 10 11 15 16 20 21 30 31
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stqfcmux

Store Quad With Update Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA 
through EA+12. The source register is assumed to be 128 bits wide. The EA is loaded into 
the rA register.

Pseudocode 

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+8,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+12,4) _ APU(FCM).data
(rA) _ EA

Registers Altered 

rA

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

• rA = 0

stqfcmux FCM5, rA, rB

31 FCM5 rA rB 743 0

0 5 6 10 11 15 16 20 21 30 31
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Compatibility 

This instruction is predefined by Xilinx as using the APU controller.
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stbfcmx

Store Byte Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The least-significant byte of the register inferred by FCM5 is stored into the byte referenced 
by EA.

Pseudocode 

EA _ (0|rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,1) _ APU(FCM).dataeb:eb+7

Registers Altered 

None

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stbfcmx FCM5, rA, rB

31 FCM5 rA rB 135 0

0 5 6 10 11 15 16 20 21 30 31
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sthfcmx

Store Halfword Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The two least-significant bytes of the register inferred by FCM5 are stored into the address 
referenced by EA.

Pseudocode 

EA _ ((0|rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,2) _APU(FCM).dataeb:eb+15

Registers Altered 

None

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

sthfcmx FCM5, rA, rB

31 FCM5 rA rB 167 0

0 5 6 10 11 15 16 20 21 30 31
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stwfcmx

Store Word Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA.

Pseudocode 

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data

Registers Altered 

None

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stwfcmx FCM5, rA, rB

31 FCM5 rA rB 199 0

0 5 6 10 11 15 16 20 21 30 31
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stdfcmx

Store Double Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA. 
The source register is expected to be 64 bits wide.

Pseudocode 

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data

Registers Altered 

None

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller. 

stdfcmx FCM5, rA, rB

31 FCM5 rA rB 391 0

0 5 6 10 11 15 16 20 21 30 31
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stqfcmx

Store Quad Indexed (FCM)

Description 

An effective address (EA) is calculated by adding an index to a base address, which is 
formed as follows: 

• The contents of the rB register are used as the index. 

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as 
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA. 
The source register is expected to be 128 bits wide.

Pseudocode 

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+8,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+12,4) _ APU(FCM).data

Registers Altered 

None

Exceptions 

• Data storage: this exception is raised if the access is prevented by zone protection 
when data relocation is enabled. 

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes. 

• Data TLB miss: this exception is raised if data relocation is enabled and a valid 
translation entry corresponding to the EA is not found in the TLB. 

Execution of any of the following invalid instruction forms results in a boundedly 
undefined result rather than a program exception: 

• Reserved bits containing a non-zero value

Compatibility 

This instruction is predefined by Xilinx as using the APU controller.

stqfcmx FCM5, rA, rB

31 FCM5 rA rB 231 0

0 5 6 10 11 15 16 20 21 30 31
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Chapter 16

Additional Programming 
Considerations

This chapter contains additional information for programmers. The information here 
overrides what is specified in the PPC440x5 CPU Core User’s Manual [Ref 5] for PowerPC 
implementations in Virtex-5 FXT FPGAs.

Processor Version Register
The Processor Version Register (PVR) is a 32-bit read-only register typically used to 
identify a specific processor core and chip implementation. Software can read the PVR to 
determine processor core and chip hardware features. The PVR can be read into a GPR 
using the mfspr instruction. Valid PVR values are 0x7FF21910, 0x7FF21911, and 
0x7FF21912.

Processor Identification Register
The Processor Identification Register (PIR) is a read-only register that uniquely identifies a 
specific instance of a processor core, enabling software to determine exactly which 
processor it is running on. The PIR can be read into a GPR using the mfspr instruction. Bits 
[0:27] of the PIR are reserved. The default value for bits [28:31] of the PIR is 1111, but the 
value for these four bits can be defined by the user while configuring the processor as 
described in PowerPC 440 Wrapper Data Sheet [Ref 7].

Bit Settings for APU/FPU Usage
Whenever the APU/FPU is used, CCR0[9] must be set to 1. Whenever the APU/FPU is 
used, CCR0[26] must be set to 1 in any operating environment where ITLB exceptions can 
occur. ITLB exceptions can occur in operating systems such as Linux. If the APU/FPU is 
not used, CCR0[26] must be set to 0 to avoid performance degradation.
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clock ratio mode  136
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PLBM configuration  60
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H
hardware reset  238
header  229, 232
high-speed I/O device  127
hold-off signal  133

I
ICC  21
ICURD interface  33, 37
IEEE 1149.1  18, 26, 167
illegal command  69, 75, 76
indeterminate bursts  42
indirect access register  160
indirect address register  160
indirect addressing mode  152, 153
input command queue  69, 77, 83
instruction cache controller  21
instruction format

FCM general  192
FCM load/store  195

instruction set extension  313
instruction unit  20
instructions

autonomous  199
FCM load/store  195, 196
FCM non-storage  199
non-autonomous with early confir-

mation  199

non-autonomous with late confirma-
tion  199

INTERCONNECT_IMASK attribute  272
INTERCONNECT_TMPL_SEL attribute  

276
interfaces

APU  26, 31
crossbar MPLB  87
crossbar SPLB  99
DCR  26
DCURD  33, 38
DCUWR  33, 37
debug  177
DMA  34
DMA RX LocalLink  231
DMA TX LocalLink  229
ICURD  33, 37
interrupt controller  163
JTAG  26, 167
LocalLink  34
MCI  33
MPLB  33
PLB  25
PLB master  30
PLB slave  30
SPLB  38
trace  181

internal debug mode  24, 25, 179
interrupt coalescing  236

counter  236
interrupt controller

interface  163
usage requirements  165

interrupt enable bits  234
interrupt interface signals  165
interrupt mask register  61
interrupt masks  61, 272
interrupt sources  164, 245, 251
interrupt status  59
interrupt status register  59
interrupts

coalescing counter  246, 252
critical  163, 164
delay timer  246, 252
distributed PLB  42
DMA  234
error  246, 252
external  163, 164
maskable error  235
non-maskable  245, 251
non-maskable error  235
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PLB read error non-maskable  246, 
252

PLB write error non-maskable  246, 
252

TX delay timer  236
ISA  313
ITLB  23
ITLB exceptions  337

J
JTAG interface  26, 167

block symbol  167
signals  168

JTAG_PPC Processor IP module  167
JTAGPPC440 primitive  173, 175
JTGC440TRSTNEG signal  167

L
latency  114, 125

crossbar  112
ldIrqCnt field  237
limitations

crossbar  55
PLB interface  99

Linux  337
livelock  55
load and store instructions, FCM  195, 196
load instruction sequence  197
load/store endian attribute  191, 197, 201, 

206, 212
load/store pipeline  21
LocalLink channels  30
LocalLink interfaces  34, 225
lock transfers  67, 74, 80, 97, 110
locked transfers  47

M
machine state register  23, 24
maskable error interrupts  235
MaskEnable mode  233
master ID  68, 71, 75, 78, 82, 85
master priority  43, 44
master read queue  69, 77, 83
master size  68, 75
master write queue  69, 77, 83
maximum burst threshold

memory interface read  109
memory interface write  109
MPLB read  109

MPLB write  110
MBusy signal  39, 89
MCI  33, 41

arbitration configuration register  63
block  131
clock  137
description  132
disabling  42
enable bit  135
features  132
signals  137

MCMIADDRREADYTOACCEPT signal  
144, 145

MCMIREADDATAERR signal  134
memory interface  41
memory management unit  18, 22
MI_ARBCONFIG attribute  63
MI_BANKCONFLICT_MASK register  

135
MI_CONTROL attribute  265
MI_CONTROL register  135
MI_ROWCONFLICT_MASK register  

135
MIMCBANKCONFLICT signal  135, 267
MIMCROWCONFLICT signal  135, 267
MIRQ signal, SPLB  106
MIRQ status bits  70, 77, 83
mismatch  36
MMU  18, 20, 22
Mn_busLock signal  47
modes

128-bit  70, 78
64-bit  70, 78
arbitration  47, 62, 63, 98
asynchronous  158, 159
clock ratio  136
debug  24
debug wait  24
direct addressing  152
DMA legacy  229
external debug  24, 25, 179
flush  84
indirect addressing  152, 153
internal debug  24, 25, 179
MaskEnable  233
QDR support  134
Read Modify Write  134
real-time trace  24
slave early burst termination  80
sleep  54, 149, 178, 192
synchronous  158
wildcard  193

MPLB  40, 87
interface  33
signals  90

MPLBnMCI signal  53
MSR register  203

N
narrow slaves  89
next descriptor pointer field  227
non-autonomous with early confirmation 

instructions  199
non-autonomous with late confirmation 

instructions  199
non-maskable error interrupts  235
non-maskable interrupts  245, 251
non-storage instructions  199

O
opcodes

extended  187, 193, 194
primary  187, 193, 194

ordered transfer  96
output command queue, crossbar  35
overflow  62, 64, 76
overlapped transfers  89, 100
overlapping reads and writes  134

P
packet  229, 232

description of  229
parity error  21, 22
partial address decoding, DCR  152
payload  229, 232
periodic interrupt  24
pipelined read enable  136
pipelined write enable  137
pipelines  17, 20
pipelining

address  100
performance issue  45
read address  67, 74, 80, 97, 110
write address  67, 74, 80, 97, 110

PIR register  337
PLB  87

arbitration configuration register  61
configuration register  72, 80, 97, 108
error address register  68, 74, 75
error address registers  67
error status register  70, 75, 77, 83
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FIFO overflow and underflow status 
register  62

interconnection strategies  124
interfaces  25
limitations  99
master interface  30
MIRQ error  59, 60
miscellaneous control and status reg-

ister  63, 70, 78, 84
miscellaneous status register  69, 76, 

82
priority enable  136
protocol  49, 53, 127
size  69, 76, 82
slave interfaces  30
template registers  72, 79
time-out error  60
type  68, 75, 82

PLB Architecture Specification  34, 70, 87, 
99

PLB interfaces
primary function  36

PlbRdErr  245
PlbWrErr  245
ports, SPLB  33
power management

interface  147
signals  147

PowerPC 440 embedded processor  17
block diagram  20
features  17

PPC440 JTAG logic  169, 173
PPCCPMINTERCONNECTBUSY signal  

54, 149
PPCDM_ASYNCMODE attribute  158, 

161
PPCDS_ASYNCMODE attribute  158, 161
PPCM_ARBCONFIG attribute  61
PPCM_CONTROL attribute  80
PPCS0_ADDRMAP_TMPL attributes  72
PPCS0_CONTROL attribute  65
PPCS1_ADDRMAP_TMPL attributes  79
PPCS1_CONTROL attribute  72
precise exceptions  202
pre-decode stage  192
primary caches, list  18
primary opcode  187, 193, 194, 207
primary read request  102
primary write request  105
primitive, JTAGPPC440  173, 175
priority

DMA0/DMA1  65
DMA2/DMA3  72

process ID (PID)  23
processor auto bus lock  161
processor bus lock  161
processor DCR master access time-out  

162
processor identification register  337
processor pipeline  188
processor version register  337
programming considerations, DCR  259
programming differences  337
PVR register  337

Q
QDR  136, 266
QDR support mode  134
quadword transfers  53

R
R/W command re-ordering, prevention 

of  80
read command queue  62, 64
read data queue  69, 76, 82
read MCI threshold  66, 73
Read Modify Write mode  134
read PLB master threshold  66, 73
read transaction error  59, 60
real-time trace mode  24
re-arbitrate signal  111
registers

address template  51, 52
APU configuration  204
APU control  205
arbitration  44, 47
arbitration configuration  63
CFG_PLBS0  38
CFG_PLBS1  38
command sniffer  71, 78, 84
command sniffer address  71, 79, 85
control, configuration, and status  

161
crossbar template  64
DCR control, configuration, and sta-

tus  161
DCR indirect access  160
DCR indirect address  160
Debug Control Register 0  24
decrementer auto-reload  24
DMA control  254
error status  68, 75
FPGA logic error address  81

FPGA logic slave error address  81
interrupt mask  61
interrupt status  59
machine state  23, 24
MCI FIFO overflow and underflow 

status  64
MCI miscellaneous control and sta-

tus  64
MI_BANKCONFLICT_MASK  135
MI_CONTROL  135
MI_ROWCONFLICT_MASK  135
PLB arbitration configuration  61, 98
PLB configuration  65, 72, 80, 97, 108
PLB error address  67, 68, 74, 75
PLB error status  70, 77, 83
PLB FIFO overflow and underflow 

status  62
PLB miscellaneous control and sta-

tus  63, 70, 78, 84
PLB miscellaneous status  69, 76, 82
PLB template  72, 79
processor identification  337
processor version  337
RX channel control  250
RX current buffer address  248
RX current buffer length  249
RX current descriptor pointer  249
RX interrupt  251
RX next descriptor pointer  248
RX status  253
RX tail descriptor pointer  249
SEAR  65, 67, 68, 72, 74, 75, 80, 81, 

94, 101
SESR  65, 68, 72, 75, 80, 81, 94, 101
slave error status  81
template selection  51, 65
timer control  24
TX channel control  244
TX current buffer address  243
TX current buffer length  243
TX current descriptor pointer  244
TX interrupt  245
TX next descriptor pointer  243
TX status  247
TX tail descriptor pointer  244
UDI  194
UDI configuration  195, 204, 207

request priority  43
requirements

burst requests  87
cache-line transfers  87
crossbar  49
interrupt controller  165
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reset
DMA engine  238
hardware engine mechanism  238
interface  147
queues  63, 64, 70, 78, 84
signals  147
software engine mechanism  238

restrictions
MaskEnable mode  233
precise exceptions  202
wildcard  194

RISC CPU  17
RMW bit  146
round-robin

arbitration  156
priority scheme  37

RSTC440RESETCHIP signal  149
RSTC440RESETCORE signal  149
RSTC440RESETSYSTEM signal  149
RX channel control register  250
RX current buffer address register  248
RX current buffer length register  249
RX current descriptor pointer register  

249
RX interrupt register  251
RX next descriptor pointer register  248
RX status register  253
RX tail descriptor pointer register  249

S
SEAR register  65, 67, 68, 72, 74, 75, 80, 

81, 94, 97, 101, 108
secondary read request  102
secondary write request  105
SESR register  65, 68, 72, 75, 80, 81, 94, 97, 

101, 108
shadow TLBs  23
signals

APU controller and FCM  191
busy, slave PLB  38
clock interface  147
crossbar arbiters  49
DCR clock  158
DCR interface  157
debug interface  178
DMA controller  255
interrupt interface  165
JTAG interface  168
MBusy  39
MCI  137
MPLB interface  90

power interface  147
reset interface  147
SPLB interfaces  101
trace interface  182

simple integer pipeline  21
single transfers  53
single-unit transaction type  87
single-unit transfers  99
size match  79
Sl_rdWdAddr signal  37
slave early burst termination mode  80
slave interface, supported commands  68, 

75
slave read queue  69, 76, 82
slave size  82
slave write queue  69, 76, 82
sleep control  54
sleep mode  54, 149, 178, 192
soft errors, protection against  18, 21, 22
software reset  238
SOP  227
specifications

Device Control Register Bus 3.5 Ar-
chitecture  151

enhanced PowerPC architecture  193
PLB architecture  34, 70, 87, 99
Xilinx LocalLink  229

speculative prefetching, warning  21
SPLB

interfaces  38
SPLB interfaces

signals  101
SPLB ports  33
stall  133
standards

IEEE 1149.1  18, 26, 167
starvation  45, 46
static reconfiguration event  149
StopOnEnd bit  237
storage attribute  21, 22, 23, 89

caching inhibited  95, 103
guarded  95, 103
memory coherent  95, 103
user-defined  18, 23, 51, 95, 96, 103, 

104
write through  22, 95, 103

storage exceptions  200
store instruction sequence  198
store-with-allocate operation  22
store-without-allocate operation  22
Sts/Ctrl format  228
SwReset bit  238

Sync  89
sync control signal  89
Sync TAttribute  50, 62, 165

implementation  51
sync transaction request  50
synchronous mode  158

T
tail descriptor pointer register  237
TAP controller  167
TAttribute signal  89, 98
TCK  168
TDI  168
TDO  168
template selection register  51, 65
threshold

read MCI  66, 73
read PLB master  66, 73
write MCI  66, 73
write PLB master  67, 74

TIEDCRBASEADDR pins  152
tie-off pins  152
time base  18, 23, 148
time-out signal  89
time-out wait  155, 157
timer control register  24
timer status register  24
timers  18, 23
TLB  22, 51, 96
TMPL_SEL_REG register  51, 52
TMPLx_XBAR_MAP registers  51, 52
TMS  169
topology, DCR  152
trace cycle  182
trace interface  181

block symbol  181
signals  182

transaction rate mismatch  36
transaction types

MPLB  87
SPLB  99

transactions in flight  54
transfer rate mismatch  111
transfers

APU controller size  191
locked  47
quadword  53
single  53
size and type  95

translation lookaside buffer  22
trigger event indication  182
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TRST  169
TX channel control register  237, 244
TX current buffer address register  243
TX current buffer length register  243
TX current descriptor pointer register  244
TX delay timer interrupt  236
TX interrupt register  245
TX next descriptor pointer register  243
TX status register  247
TX tail descriptor pointer register  244

U
U3 attribute  89
UDI configuration registers  195, 204, 207
UDI registers  194
UDIs  195
unconnected FPU  313
underflow  62, 64, 76
user-defined storage attributes  18, 23, 51

V
valid bit  68, 75, 81
variable burst lengths  38, 41, 42

W
watchdog timer  18, 23, 148
waveforms

APU exception, CPU flushed  223
APU exception, CPU received  222
autohold  144, 145
autonomous instructions  213, 214
burst read command  116
burst transfer split  139
burst write command  122
DCR timing  160
enabled RMW bit  146
FPU exception  224
locked transfer  48
MCI data translation  141
MCI data translation not ready  141
missed ready to accept  145
non-autonomous instructions  217
non-autonomous instructions with 

early confirm  218
non-autonomous instructions with 

late confirm  221
PLB burst  139
QDR operation  143
quadword loads  215, 216

quadword read burst  123
quadword stores  219, 220
read burst requests  121
single-unit read  118
single-unit write  117
system-level read request  138
system-level write request  138
typical burst read transfer  114
typical burst write transfer  113
unaligned burst  119
write burst requests  120
write burst transfer  115

WCRR  154
wildcard  194, 208, 263
wildcard mode  193
write command queue  62, 64
write data queue  69, 76, 82
write MCI threshold  66, 73
write PLB master threshold  67, 74
write posting  67, 68, 70, 74, 75, 77, 80, 83, 

98, 110, 165
write posting error  69, 76, 82
write transaction error  59, 60
writebackok  198
write-through storage attribute  22

X
XBAR_ADDRMAP_TMPL attributes  64
Xilinx LocalLink Specification  229
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