
R

Embedded Processor
Block in Virtex-5 FPGAs

Reference Guide

UG200 (v1.6) January 20, 2009

Embedded Processor Block Reference Guide www.xilinx.com UG200 (v1.6) January 20, 2009

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2008–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. PCI,
PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

R

http://www.xilinx.com

UG200 (v1.6) January 20, 2009 www.xilinx.com Embedded Processor Block Reference Guide

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/15/08 1.0 Initial Xilinx release with ISE® Design Suite 10.1.

03/31/08 1.1 • Updated to remove references to unsupported features.
• Changed address 0x55 to reserved in Table 3-4. In Table 3-5 and Table 3-6, changed

bits 22 and 23 to reserved. Revised “Request Priority (Level 1 arbitration),” page 43.
Updated discussion on “Round-Robin Arbitration,” page 45. Changed bit 23 to
reserved in Table 3-37. In Table 3-41, changed bits 14–17 to reserved. In Table 3-43,
changed bits 22–24 to reserved.

• Changed bit 23 to reserved in Table 4-3.
• Updated descriptions of bit 7 and bit 16 in Table 5-1, page 135.
• Updated clock frequency ratio discussion on page 149. Updated description of

CPMINTERCONNECTCLKNTO1 in Table 6-1, page 147. Updated clock frequency
ratio and core reset discussions on page 149. Revised allowed CPMMCCLK ratios in
Table 6-2, page 150.

• In chapter 9, updated summary on page 167. Revised JTGC440TRSTNEG in Table 9-1,
page 168. Added “Connecting PPC440 JTAG Logic Directly to Programmable I/O”
and “Connecting PPC440 JTAG Logic in Series with the Dedicated Device JTAG
Logic.”

• Added to “Non-Storage Instruction Execution,” page 200. Updated timing diagrams
and descriptions for Figure 12-13, Figure 12-14, and Figure 12-17.

• Changed address 0x55 to reserved in Table 14-9. In Table 14-10 and Table 14-11,
changed bits 22 and 23 to reserved. Changed bit 23 to reserved in Table 14-42. In
Table 14-46, changed bits 14–17 to reserved. In Table 14-49, changed bits 22–24 to
reserved.

05/07/08 1.2 • Added updated DCR addresses and added mnemonics to Table 13-5 and Table 14-52.
• Revised Chapter 16, “Additional Programming Considerations,” added “Bit Settings

for APU/FPU Usage.”

05/09/08 1.2.1 • Minor typographical change.

05/13/08 1.3 • Corrected the MI_ROWCONFLICT_MASK [0:31] register and
MI_BANKCONFLICT_MASK [0:31] register on page 135 and page 267.

09/23/08 1.4 • Added index to document.
• Added to the function description of C440TRCTRIGGEREVENTOUT on page 182.
• Removed unsupported wildcard UDIs from page 314.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com UG200 (v1.6) January 20, 2009

11/25/08 1.5 In Chapter 5, “Memory Controller Interface”:

• Revised “Interface Features,” page 132.
• In Table 5-1, page 135, revised the descriptions of Rowconflictholdenable,

Bankconflictholdenable, Directionconflictholdenable, Autoholdduration, and RMW.
• In Table 5-2, page 137, revised the descriptions of MIMCBANKCONFLICT and

MIMCROWCONFLICT.
• Updated Figure 5-4, page 139, Figure 5-5, page 140, Figure 5-6, page 141, and

Figure 5-7, page 142.
• Added Figure 5-8, page 142 and Figure 5-9, page 143.
• Changed autostall to autohold.

In Chapter 13, “DMA Controller”:

• Revised “DMA Operation,” page 226.
• Updated Figure 13-2, page 229 and Figure 13-5, page 231.
• Revised second paragraph after Figure 13-2, page 229.
• Added Figure 13-3, page 230, Figure 13-4, page 231, Figure 13-6, page 232, and

Figure 13-7, page 233 and associated text.
• Revised third paragraph after Figure 13-5, page 231.
• Updated “DMA Addressing Limitation,” page 234.
• Rewrote “Software/Device Driver Considerations,” page 238.
• Corrected bit 30 description in Table 13-13, page 247.
• Corrected bit 31 description in Table 13-21, page 253.

01/20/09 1.6 • Added additional information on MCMIREADDATAERR for clarification to the last
paragraph of “Interface Features” on page 134.

• Updated documentation references.

Date Version Revision

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 5
UG200 (v1.6) January 20, 2009

Revision History . 3

Preface: About This Guide
Guide Contents . 11
Additional Documentation . 12
Additional Support Resources . 13
Typographical Conventions . 14

Online Document . 14

Section I: Introduction

Chapter 1: PowerPC 440 Embedded Processor
PowerPC 440 Embedded Processor Features . 17
PowerPC 440 Embedded Processor as an IBM PowerPC Implementation 19
Processor Organization . 19

Superscalar Instruction Unit . 20
Execution Pipelines . 20
Instruction and Data Cache Controllers . 21
Memory Management Unit (MMU) . 22
Timers . 23
Debug Facilities . 24

Processor Interfaces . 25
Processor Local Bus (PLB) . 25
Device Control Register (DCR) Interface . 26
Auxiliary Processor Unit (APU) Port . 26
JTAG Port . 26

Section II: Embedded Processor Block

Chapter 2: Embedded Processor Block Overview
Embedded Processor Block Components . 29
Crossbar and its Interfaces . 30
Control and other Interfaces . 30
Auxiliary Processor Unit Controller . 31
Direct Memory Access Controller. 31

Chapter 3: Crossbar
Overview . 33

Key Features . 34
Hardware Description . 35

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

Overview . 35
Hardware Interface . 37
Slave Ports . 37
Slave Port PLB Busy Signals . 38
Master Ports . 40
Interrupts . 42

Functional Description . 43
Arbitration. 43
Address Mapping . 51
Pipelining . 53
Miscellaneous Notes . 53
Miscellaneous Signals . 54

Usage Notes and Limitations . 55
Crossbar Limitations for PCI and PCI Express Designs . 55

Device Control Registers (DCRs) . 56
Overview of the DCR Map . 56
Detailed DCR Descriptions . 56

Chapter 4: PLB Interface
MPLB Interface . 87

Transaction Types . 87
MPLB Interface Features . 89
MPLB Interface Signals . 90
MPLB Configuration . 97

SPLB Interfaces . 99
Transaction Types . 99
SPLB Interface Features . 100
SPLB Interface Signals . 101
SPLB Configuration . 108

Command Translation . 111
Crossbar Timing . 112

Crossbar Latency . 112
Transaction Waveforms . 113

PLB Interconnection Techniques . 124

Chapter 5: Memory Controller Interface
Overview . 131
Interface Features . 132

Crossbar Transactions . 134
Control and Configuration . 135

MI_ROWCONFLICT_MASK [0:31] Register . 135
MI_BANKCONFLICT_MASK [0:31] Register . 135
MI_CONTROL [0:31] Register . 135

Signal Descriptions . 137
Timing Diagrams . 137
Board Layout Considerations . 146

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 7
UG200 (v1.6) January 20, 2009

R

Chapter 6: Reset, Clock, and Power Management Interfaces
Overview . 147
Reset, Clock, and Power Management Interface. 147
Clock and Reset During Configuration and Reconfiguration 149
System-Level Considerations . 149

Clock Insertion Delays and PLL Usage . 150

Chapter 7: Device Control Register Bus
Introduction . 151
Design and Implementation . 152

Partial Address Decoding . 152
Indirect Addressing . 153
Dual DCR Master Arbitration . 154
Time-out Wait . 157
Input and Output Interfaces . 157
DCR Controller Registers . 160

Chapter 8: Interrupt Controller Interface
Functional Description . 163

Related Processor Behavior . 163
On-Core Interrupt Sources . 164

Interrupt Interface Signals . 165
Usage Requirements . 165

Chapter 9: JTAG Interface
JTAG Interface I/O Symbol. 167
JTAG Interface I/O Signal Descriptions . 168

Connecting PPC440 JTAG Logic Directly to Programmable I/O 169
Connecting PPC440 JTAG Logic in Series with the Dedicated Device JTAG Logic 173

Chapter 10: Debug Interface
Debug Interface I/O Symbol. 177
Debug Interface I/O Signal Descriptions. 178

Chapter 11: Trace Interface
Trace Interface I/O Symbol . 181
Trace Interface I/O Signal Descriptions . 182

Section III: Controllers

Chapter 12: Auxiliary Processor Unit Controller
Overview . 187
Feature Summary . 187
Interface Description . 188

http://www.xilinx.com

8 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

Instruction Decoding . 192
FPU Instructions . 193
FCM User-Defined Instructions . 194
FCM Load/Store Instructions . 195

Instruction Execution. 196
Storage Instructions (FCM Loads and Stores) . 196
Non-Storage Instructions . 199

Exceptions . 200
Storage Exceptions . 200
APU Controller Decode Exceptions . 201
FCM Generated Exceptions . 202
FPU Generated Exception Execution Details . 202
APU Generated Exception Execution Details . 203

APU Configuration . 203
Enabling the APU Controller . 203
Configuration Registers . 204

Clocking . 208
Processor Migration . 209

New Features . 209
Dropped Features . 209
Interface Changes . 210

Timing Diagrams for the APU Controller . 212

Chapter 13: DMA Controller
DMA Controller Features . 225
DMA Operation. 226

Descriptor Format . 227
Using Descriptors to Describe a Packet . 229
DMA Legacy Mode . 229

DMA TX LocalLink Interface . 229
DMA RX LocalLink Interface. 231
Masking of Application Data Update . 233
DMA Addressing Limitation . 234
Interrupt Mechanism . 234

Maskable Error Interrupts . 235
Non-Maskable Error Interrupts . 235
Delay Timer . 236
Interrupt Coalescing Counter. 236

Dynamic Descriptor Appending . 237
DMA Engine Reset . 238

Hardware Engine Reset Mechanism . 238
Software Engine Reset Mechanism . 238

Software/Device Driver Considerations . 238
Implementation Note . 241

Programming Interface and Registers . 242
DCR Address Map . 242
DCR Descriptions . 243

Physical Interface . 255

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 9
UG200 (v1.6) January 20, 2009

R

Section IV: Programming Considerations

Chapter 14: DCR Programming Considerations
Overview of the Device Control Registers (DCRs) Map . 259
Detailed Descriptions . 260

DCR Controller (0x00 – 0x02) . 260
APU Controller (0x04 – 0x05) . 262
Memory Controller Interface (0x10 – 0x12) . 265
DCRs for the PLB Interfaces and Crossbar (0x20 – 0x5F). 267
DMA Engines (0x80 – 0xDF) . 297

Chapter 15: APU Programming
Introduction . 313

Chapter 16: Additional Programming Considerations
Processor Version Register . 337
Processor Identification Register . 337
Bit Settings for APU/FPU Usage . 337

http://www.xilinx.com

10 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 11
UG200 (v1.6) January 20, 2009

R

Preface

About This Guide

This reference guide is a description of the embedded processor block in Virtex®-5 FXT
FPGAs. Complete and up-to-date documentation of the Virtex-5 family of FPGAs is
available on the Xilinx website at http://www.xilinx.com/virtex5.

Guide Contents
This reference guide contains the following chapters:

• “Introduction”

♦ Chapter 1, “PowerPC 440 Embedded Processor”

• “Embedded Processor Block”

♦ Chapter 2, “Embedded Processor Block Overview”

♦ Chapter 3, “Crossbar”

♦ Chapter 4, “PLB Interface”

♦ Chapter 5, “Memory Controller Interface”

♦ Chapter 6, “Reset, Clock, and Power Management Interfaces”

♦ Chapter 7, “Device Control Register Bus”

♦ Chapter 8, “Interrupt Controller Interface”

♦ Chapter 9, “JTAG Interface”

♦ Chapter 10, “Debug Interface”

♦ Chapter 11, “Trace Interface”

• “Controllers”

♦ Chapter 12, “Auxiliary Processor Unit Controller”

♦ Chapter 13, “DMA Controller”

• “Programming Considerations”

♦ Chapter 14, “DCR Programming Considerations”

♦ Chapter 15, “APU Programming”

♦ Chapter 16, “Additional Programming Considerations”

http://www.xilinx.com
http://www.xilinx.com/virtex5

12 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Preface: About This Guide
R

Additional Documentation
The following documents are also available for download at
http://www.xilinx.com/virtex5.

• Virtex-5 Family Overview

The features and product selection of the Virtex-5 family are outlined in this overview.

• Virtex-5 FPGA Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the
Virtex-5 family.

• Virtex-5 FPGA User Guide

Chapters in this guide cover the following topics:

- Clocking Resources

- Clock Management Technology (CMT)

- Phase-Locked Loops (PLLs)

- Block RAM

- Configurable Logic Blocks (CLBs)

- SelectIO™ Resources

- SelectIO Logic Resources

- Advanced SelectIO Logic Resources

• Virtex-5 FPGA RocketIO GTP Transceiver User Guide

This guide describes the RocketIO™ GTP transceivers available in the Virtex-5 LXT
and SXT platforms.

• Virtex-5 FPGA RocketIO GTX Transceiver User Guide

This guide describes the RocketIO GTX transceivers available in the Virtex-5 TXT and
FXT platforms.

• Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide

This guide describes the dedicated Tri-Mode Ethernet Media Access Controller
available in the Virtex-5 LXT, SXT, TXT, and FXT platforms.

• Virtex-5 FPGA Integrated Endpoint Block User Guide for PCI Express Designs

This guide describes the integrated Endpoint blocks in the Virtex-5 LXT, SXT, TXT, and
FXT platforms used for PCI Express® designs.

• Virtex-5 FPGA XtremeDSP Design Considerations

This guide describes the XtremeDSP™ slice and includes reference designs for using
the DSP48E slice.

• Virtex-5 FPGA Configuration Guide

This all-encompassing configuration guide includes chapters on configuration
interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG
configuration, reconfiguration techniques, and readback through the SelectMAP and
JTAG interfaces.

• Virtex-5 FPGA System Monitor User Guide

The System Monitor functionality available in all the Virtex-5 devices is outlined in
this guide.

http://www.xilinx.com/virtex5
http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 13
UG200 (v1.6) January 20, 2009

Additional Support Resources
R

• Virtex-5 FPGA Packaging and Pinout Specification

This specification includes the tables for device/package combinations and maximum
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

• Virtex-5 FPGA PCB Designer’s Guide

This guide provides information on PCB design for Virtex-5 devices, with a focus on
strategies for making design decisions at the PCB and interface level.

The following documentation provides additional information useful to this Reference
Guide:

1. IBM Corp., Book E: Enhanced PowerPC Architecture Specification, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$
file/booke_rm.pdf

2. IBM Corp., CoreConnect Bus Architecture Product Brief, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9

3. IBM Corp., Device Control Register Bus 3.5 Architecture Specifications, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739

4. IBM Corp., PLB Architecture Specification, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4

5. IBM Corp., PPC440x5 CPU Core User’s Manual, http://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$
file/ppc440x5_um.pdf

6. Xilinx, LocalLink Interface Specification, SP006 (v2.0), July 25, 2005

7. Xilinx, DS621, PowerPC 440 Wrapper Data Sheet (installed as part of the EDK)
8. Xilinx, UG018, PowerPC 405 Processor Block Reference Guide

[Ref 8] does not apply to Virtex-5 FXT platforms but provides useful comparisons with
previous versions of Virtex devices.

Additional Support Resources
To search the database of silicon and software questions and answers, or to create a
technical support case in WebCase, see the Xilinx website at:
http://www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/support
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600682CC7/$file/booke_rm.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/2F9323ECBC8CFEE0872570F4005C5739
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/586E3FEF6442717287256EE800630F32/$file/ppc440x5_um.pdf
http://www.xilinx.com/bvdocs/userguides/ug018.pdf

14 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Preface: About This Guide
R

Typographical Conventions
This document uses the following typographical conventions. An example illustrates each
convention.

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Italic font

References to other documents
See the Virtex-5 FPGA
Configuration Guide for more
information.

Emphasis in text The address (F) is asserted after
clock event 2.

Underlined Text Indicates a link to a web page. http://www.xilinx.com/virtex5

Convention Meaning or Use Example

Blue text Cross-reference link to a location
in the current document

See the section “Additional
Support Resources” for details.

Refer to “DMA Operation” in
Chapter 13 for details.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest documentation.

http://www.xilinx.com
http://www.xilinx.com/virtex5

Embedded Processor Block Reference Guide www.xilinx.com 15
UG200 (v1.6) January 20, 2009

R

Section I: Introduction

Chapter 1, “PowerPC 440 Embedded Processor”

http://www.xilinx.com

16 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Introduction
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 17
UG200 (v1.6) January 20, 2009

R

Chapter 1

PowerPC 440 Embedded Processor

Virtex®-5 FXT FPGAs introduce an embedded processor block for PowerPC® 440
processor designs. This block contains the PowerPC 440x5 32-bit embedded processor
developed by IBM. The PowerPC 440x5 processor implements the IBM Book E: Enhanced
PowerPC Architecture.

This chapter contains the following sections:

• “PowerPC 440 Embedded Processor Features”

• “PowerPC 440 Embedded Processor as an IBM PowerPC Implementation”

• “Processor Organization”

• “Processor Interfaces”

PowerPC 440 Embedded Processor Features
The PowerPC 440 embedded processor contains a dual-issue, superscalar, pipelined
processing unit, along with other functional elements required to implement embedded
system-on-a-chip solutions. These other functions include memory management, cache
control, timers, and debug facilities. In addition to three separate 128-bit Processor Local
Bus (PLB) interfaces, the embedded processor provides interfaces for custom coprocessors
and floating-point functions, along with separate 32 KB instruction and 32 KB data caches.

The PowerPC 440 embedded processor includes the following features:

• High-performance, dual-issue, superscalar 32-bit RISC CPU

♦ Superscalar implementation of the full 32-bit Book E: Enhanced PowerPC
Architecture

♦ Seven-stage, highly pipelined microarchitecture

♦ Dual instruction fetch, decode, and out-of-order issue

♦ Out-of-order dispatch, execution, and completion

♦ High-accuracy dynamic branch prediction using a Branch History Table (BHT)

♦ Reduced branch latency using Branch Target Address Cache (BTAC)

♦ Three independent pipelines

- Combined complex integer, system, and branch pipeline

- Simple integer pipeline

- Load/store pipeline

♦ Single cycle multiply

♦ Single-cycle multiply-accumulate (DSP instruction set extensions)

♦ 9-port (6-read, 3-write) 32 x 32-bit General Purpose Register (GPR) file

http://www.xilinx.com

18 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 1: PowerPC 440 Embedded Processor
R

♦ Hardware support for all CPU misaligned accesses

♦ Full support for both big- and little-endian byte ordering

♦ Power management features

• Primary caches

♦ 32 KB instruction cache

♦ 32 KB data cache

♦ Single-cycle access

♦ 32-byte (eight word) line size

♦ 64-way associativity

♦ Write-back and write-through operation

♦ Control over whether stores allocate or write-through on cache miss

♦ Extensive load/store queues and multiple line fill/flush buffers

♦ Non-blocking with up to four outstanding load misses

♦ Cache line locking supported

♦ Caches can be partitioned to provide separate regions for “transient” instructions
and data

- High associativity permits efficient allocation of cache memory

♦ Critical word first data access and forwarding

♦ Cache tags and data are parity-protected against soft errors

• Memory Management Unit (MMU)

♦ Separate instruction and data shadow TLBs

♦ 64-entry, fully associative unified TLB array

♦ Variable page sizes (1 KB - 256 MB), simultaneously resident in TLB

♦ MMU supports 4-bit extended address bits (can formulate a 36-bit real address)

♦ Flexible TLB management with software page table search

♦ Storage attribute controls for write-through, caching inhibited, guarded, and byte
order (endianness)

♦ Four user-definable storage attribute controls (for controlling CodePack™ code
compression and transient data, for example)

♦ TLB tags and data are parity-protected against soft errors

• Debug facilities

♦ Extensive hardware debug facilities incorporated into the IEEE 1149.1 JTAG port

- Multiple instruction and data address breakpoints (including range)

- Data value compare

- Single-step, branch, trap, and other debug events

♦ Non-invasive, real-time software trace interface

• Timer facilities

♦ 64-bit time base

♦ Decrementer with auto-reload capability

♦ Fixed Interval Timer (FIT)

♦ Watchdog timer with critical interrupt and/or auto-reset

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 19
UG200 (v1.6) January 20, 2009

PowerPC 440 Embedded Processor as an IBM PowerPC Implementation
R

• Multiple embedded processor interfaces defined by the IBM CoreConnect on-chip
system architecture

♦ PLB interfaces

- Three independent 128-bit interfaces (internal to the embedded processor
block in Virtex-5 FPGAs) for instruction reads, data reads, and data writes

- Multiple CPU:PLB frequency ratios supported

♦ Auxiliary Processor Unit (APU) Port

- Functional extensions provided to the processor pipelines, including GPR file
operations

- 128-bit load/store interface (direct access between the APU and the primary
data cache)

- Interface can support APU execution of all PowerPC floating-point
instructions

- Attachment capability for DSP coprocessing such as accumulators and SIMD
computation

- Enables customer-specific instruction enhancements

♦ Device Control Register (DCR) interface for independent access to on-chip control
registers

- Avoids contention for high-bandwidth PLB system bus

♦ Clock and power management interface

♦ JTAG debug interface

PowerPC 440 Embedded Processor as an IBM PowerPC
Implementation

The PowerPC 440 embedded processor implements the full, 32-bit fixed-point subset of the
IBM Book E: Enhanced PowerPC architecture. The PowerPC 440 embedded processor
fully complies with this architectural specification. The 64-bit operations of the architecture
are not supported, and the embedded processor does not implement the floating-point
operations, although a floating-point unit (FPU) can be attached (using the APU interface).
Within the embedded processor, the 64-bit operations and the floating-point operations are
trapped, and the floating-point operations can be emulated using software.

See Appendix A, “Guidelines for 32-bit Book E” in Book E: Enhanced PowerPC Architecture
Specification [Ref 1] for more information on 32-bit subset implementations of the
architecture.

Note: This document differs from the Book E architecture specification in the use of bit numbering
for architected registers. Specifically, Book E defines the full, 64-bit instruction set architecture, where
all registers have bit numbers from 0 to 63, with bit 63 being the least significant. This document
describes the PowerPC 440 embedded processor, which is a 32-bit subset implementation of the
architecture. Accordingly, all architected registers are 32 bits in length, with the bits numbered from 0
to 31, where bit 31 is the least significant. Therefore, references to register bit numbers from 0 to 31
in this document correspond to bits 32 to 63 of the same register in the Book E architecture
specification.

Processor Organization
The PowerPC 440 embedded processor includes a seven-stage pipelined PowerPC
processor, which consists of a three-stage, dual- issue instruction fetch and decode unit

http://www.xilinx.com

20 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 1: PowerPC 440 Embedded Processor
R

with attached branch unit, together with three independent, four-stage pipelines for
complex integer, simple integer, and load/store operations, respectively. The PowerPC 440
embedded processor also includes a memory management unit (MMU), separate
instruction and data cache units, JTAG, debug, and trace logic, and timer facilities.

Figure 1-1 illustrates the logical organization of the PowerPC 440 embedded processor.

Superscalar Instruction Unit
The instruction unit of the PowerPC 440 embedded processor fetches, decodes, and issues
two instructions per cycle to any combination of the three execution pipelines and/or the
APU interface. The instruction unit includes a branch unit, which provides dynamic
branch prediction using a branch history table (BHT), as well as a branch target address
cache (BTAC). These mechanisms greatly improve the branch prediction accuracy and
reduce the latency of taken branches, such that the target of a branch can usually be
executed immediately after the branch itself, with no penalty.

Execution Pipelines
The PowerPC 440 embedded processor contains three execution pipelines: complex
integer, simple integer, and load/store. Each pipeline consists of four stages and can access
the nine-ported (six read, three write) GPR file. There are two identical copies of the GPR
file to improve performance and avoid contention for it. One copy is dedicated to the

Figure 1-1: Block Diagram of PowerPC 440 Embedded Processor

Complex
Integer

Pipe

GPR
File

Simple
Integer

Pipe

Branch
Unit

Instruction
Unit

Issue 0 Issue 1

Target
Address
Cache

Load
Store
Pipe

Interrupt
and

Timers

DCR Bus
JTAG
Debug
Trace

Clocks
and

Pwr Mgmt
MAC

GPR
File

4KB
BHT

Load/Store Queues

128-bit
PLB

128-bit
PLB

DTLBI-Cache Controller

Instruction Cache
(32 KB)

Data Cache
(32 KB)

ITLB

D-Cache Controller

MMU
64-entry

UG200_c1_01_022707

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 21
UG200 (v1.6) January 20, 2009

Processor Organization
R

complex integer pipeline, while the other is shared by the simple integer and the
load/store pipelines.

The complex integer pipeline handles all arithmetic, logical, branch, and system
management instructions (such as interrupt and TLB management, move to/from system
registers, and so on). This pipeline also handles multiply and divide operations, and 24
DSP instructions that perform a variety of multiply-accumulate operations. The complex
integer pipeline multiply unit can perform 32-bit x 32-bit multiply operations with single-
cycle throughput and three-cycle latency; 16-bit x 32-bit multiply operations have only
two-cycle latency. Divide operations take 33 cycles.

The simple integer pipeline can handle most arithmetic and logical operations, which do
not update the Condition Register (CR).

The load/store pipeline handles all load, store, and cache management instructions. All
misaligned operations are handled in hardware with no penalty on any operation
contained within an aligned 16-byte region. The load/store pipeline supports all
operations to both big-endian and little-endian data regions.

Instruction and Data Cache Controllers
The PowerPC 440 embedded processor provides separate instruction and data cache
controllers and 32 KB arrays, which allow concurrent access and minimize pipeline stalls.
Both cache controllers have 32-byte lines, and both are 64-way set-associative. Both caches
support parity checking on the tags and data in the memory arrays to protect against soft
errors. If a parity error is detected, the CPU causes a machine check exception.

The PowerPC instruction set provides a rich set of cache management instructions for
software-enforced coherency. The PowerPC 440 implementation also provides special
debug instructions that can directly read the tag and data arrays.

The instruction cache controller connects to the instruction-side PLB interface of the
processor. The data cache controller connects to the data read and data write PLB
interfaces.

Instruction Cache Controller (ICC)

The ICC delivers two instructions per cycle to the instruction unit of the PowerPC 440
embedded processor. The ICC also handles the execution of the PowerPC instruction cache
management instructions for coherency. The ICC includes a speculative prefetch
mechanism. These speculative pre-fetches can be abandoned if the instruction execution
branches away from the original instruction stream.

Note: Speculative prefetching should not be used with this version of the PowerPC 440 processor
because of known errors documented by IBM.

The ICC supports cache line locking at 16-line granularity. In addition, the notion of a
“transient” portion of the cache is supported, in which the cache can be configured such
that only a limited portion is used for instruction cache lines from memory pages
designated by a storage attribute from the MMU as being transient in nature. Such
memory pages would contain code that is unlikely to be reused once the processor moves
on to the next series of instruction lines. Thus performance may be improved by
preventing each series of instruction lines from overwriting all of the “regular” code in the
instruction cache.

http://www.xilinx.com

22 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 1: PowerPC 440 Embedded Processor
R

Data Cache Controller (DCC)

The DCC handles all load and store data accesses, as well as the PowerPC data cache
management instructions. All misaligned accesses are handled in hardware. Those
accesses contained within a halfline (16 bytes) are handled as a single request. Load and
store accesses that cross a 16-byte boundary are broken into two separate accesses by the
hardware.

The DCC interfaces to the APU port to provide direct load/store access to the data cache
for APU load and store operations. Such APU load and store instructions can access up to
16 bytes (one quadword) in a single cycle.

The data cache can be operated in a store-in (copy-back) or write-through manner,
according to the write-through storage attribute specified for the memory page by the
MMU. The DCC also supports both store-with-allocate and store-without-allocate operations,
such that store operations that miss in the data cache can either “allocate” the line in the
cache by reading it in and storing the new data into the cache, or alternatively bypass the
cache on a miss and simply store the data to memory. This characteristic can also be
specified on a page-by-page basis by a storage attribute in the MMU.

The DCC also supports cache line locking and “transient” data in the same manner as the
ICC (as described in “Instruction Cache Controller (ICC)”).

The DCC provides extensive load, store, and flush queues, such that up to three
outstanding line fills and up to four outstanding load misses can be pending, and the DCC
can continue servicing subsequent load and store hits in an out-of-order fashion. Store-
gathering can also be performed on caching inhibited, write-through, and without-allocate
store operations for up to 16 contiguous bytes. Finally, each cache line has four separate
dirty bits (one per doubleword), so that the amount of data flushed on cache line
replacement can be minimized.

Memory Management Unit (MMU)
The PowerPC 440 MMU generates a 36-bit real address as part of the translation process
from the 32-bit effective address, which is calculated by the processor as an instruction
fetch or load/store address. However, only a 32-bit (4 GB) address space is accessible in
Xilinx EDK systems. The high-order 4 bits of the 36-bit real address must be all zeros.

The MMU provides address translation, access protection, and storage attribute control for
embedded applications. The MMU supports demand paged virtual memory and other
management schemes that require precise control of logical to physical address mapping
and flexible memory protection. Working with appropriate system-level software, the
MMU provides the following functions:

• Translation of the 32-bit effective address space into the 36-bit real address space

• Page level read, write, and execute access control

• Storage attributes for cache policy, byte order (endianness), and speculative memory
access

• Software control of page replacement strategy

The translation lookaside buffer (TLB) is the primary hardware resource involved in the
control of translation, protection, and storage attributes. It consists of 64 entries, each
specifying the various attributes of a given page of the address space. The TLB is fully
associative; the entry for a given page can be placed anywhere in the TLB. The TLB tag and
data memory arrays are parity protected against soft errors. If a parity error is detected, the
CPU causes a machine check exception.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 23
UG200 (v1.6) January 20, 2009

Processor Organization
R

Software manages the establishment and replacement of TLB entries, which gives system
software significant flexibility in implementing a custom page replacement strategy. For
example, to reduce TLB thrashing or translation delays, software can reserve several TLB
entries for globally accessible static mappings. The instruction set provides several
instructions for managing TLB entries. These instructions are privileged and the processor
must be in supervisor state for them to be executed.

The first step in the address translation process is to expand the effective address into a
virtual address. The 32-bit effective address is appended to an 8-bit Process ID (PID) as
well as a 1-bit “address space” identifier (AS). The PID value is provided by the PID
register. The AS identifier is provided by the Machine State Register (MSR), which contains
separate bits for the instruction fetch address space (MSR[IS]) and the data access address
space (MSR[DS]). Together, the 32-bit effective address, the 8-bit PID, and the 1-bit AS form
a 41-bit virtual address. This 41-bit virtual address is then translated into the 36-bit real
address using the TLB.

The MMU divides the address space (effective, virtual, or real) into pages. Eight page sizes
(1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 16 MB, 256 MB) are simultaneously supported,
such that at any given time the TLB can contain entries for any combination of page sizes.
For an address translation to occur, a valid entry for the page containing the virtual
address must be in the TLB. An attempt to access an address for which no TLB entry exists
causes an Instruction (for fetches) or Data (for load/store accesses) TLB Error exception.

To improve performance, both the instruction cache and the data cache maintain separate
shadow TLBs. The instruction shadow TLB (ITLB) contains four entries, while the data
shadow TLB (DTLB) contains eight. These shadow arrays minimize TLB contention
between instruction fetch and data load/store operations. The instruction fetch and data
access mechanisms only access the main 64-entry unified TLB when a miss occurs in the
respective shadow TLB. The penalty for a miss in either of the shadow TLBs is three cycles.
Hardware manages the replacement and invalidation of both the ITLB and DTLB. No
system software action is required.

Each TLB entry provides separate user state and supervisor state read, write, and execute
permission controls for the memory page associated with the entry. If software attempts to
access a page for which it does not have the necessary permission, an Instruction (for
fetches) or Data (for load/store accesses) Storage exception occurs.

Each TLB entry also provides a collection of storage attributes for the associated page.
These attributes control cache policy (such as cachability and write-through as opposed to
copy-back behavior), byte order (big endian as opposed to little endian), and enabling of
speculative access for the page. In addition, a set of four, user-definable storage attributes
is provided. These attributes can be used to control various system-level behaviors, such as
instruction compression using IBM CodePack technology. They can also be configured to
control whether data cache lines are allocated upon a store miss, and whether accesses to a
given page should use the normal or transient portions of the instruction or data cache.

More details on the MMU implementation and the MMU programming model are
available in the PPC440x5 CPU Core User’s Manual [Ref 5].

Timers
The PowerPC 440 embedded processor contains a time base and three timers: a
decrementer (DEC), a fixed interval timer (FIT), and a Watchdog Timer. The time base is a
64-bit counter that gets incremented at a frequency either equal to the processor clock rate
or as controlled by a separate asynchronous timer clock input to the embedded processor.
No interrupt is generated as a result of the time base wrapping back to zero.

http://www.xilinx.com

24 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 1: PowerPC 440 Embedded Processor
R

The DEC is a 32-bit register that is decremented at the same rate at which the time base is
incremented. The user loads the DEC register with a value to create the desired interval.
When the register is decremented to zero, a number of actions occur: the DEC stops
decrementing, a status bit is set in the Timer Status register (TSR), and a decrementer
exception is reported to the interrupt mechanism of the PowerPC 440 embedded processor.
Optionally, the DEC can be programmed to automatically reload the value contained in the
Decrementer Auto-Reload register (DECAR), after which the DEC resumes decrementing.
The Timer Control register (TCR) contains the interrupt enable for the decrementer
interrupt.

The FIT generates periodic interrupts based on the transition of a selected bit from the time
base. Users can select one of four intervals for the FIT period by setting a control field in the
TCR to select the appropriate bit from the time base. When the selected time base bit
transitions from 0 to 1, a status bit is set in the TSR, and a Fixed Interval Timer exception is
reported to the interrupt mechanism of the PowerPC 440 embedded processor. The FIT
interrupt enable is contained in the TCR.

Similar to the FIT, the watchdog timer also generates a periodic interrupt based on the
transition of a selected bit from the time base. Users can select one of four intervals for the
watchdog period, again by setting a control field in the TCR to select the appropriate bit
from the time base. Upon the first transition from 0 to 1 of the selected time base bit, a
status bit is set in the TSR, and a watchdog timer exception is reported to the interrupt
mechanism of the PowerPC 440 embedded processor. The watchdog timer can also be
configured to initiate a hardware reset if a second transition of the selected time base bit
occurs prior to the first watchdog exception being serviced. This capability provides an
extra measure of recoverability from potential system lock-ups.

Debug Facilities
The PowerPC 440 debug facilities include debug modes for the various types of debugging
used during hardware and software development. Also included are debug events that
allow developers to control the debug process. Debug modes and debug events are
controlled using debug registers in the embedded processor. The debug registers are
accessed either through software running on the processor or through the JTAG port.

The next subsection provides a brief overview of the debug modes and development tool
support. More details on the debug control registers and their programming are available
in the PPC440x5 CPU Core User’s Manual [Ref 5].

Debug Modes

The PowerPC 440 embedded processor supports four debug modes: internal, external,
real-time trace, and debug wait. Each mode supports a different type of debug tool used in
embedded systems development. Internal debug mode supports software-based ROM
monitors, and external debug mode supports a hardware emulator type of debug. Real-
time trace mode uses the debug facilities to indicate events within a trace of processor
execution in real time. Debug wait mode enables the processor to continue to service real-
time critical interrupts while instruction execution is otherwise stopped for hardware
debug. The debug modes are controlled by Debug Control Register 0 (DBCR0) and the
setting of bits in the Machine State Register (MSR).

Internal debug mode supports accessing architected processor resources, setting hardware
and software breakpoints, and monitoring processor status. In internal debug mode,
debug events can generate debug exceptions, which can interrupt normal program flow so
that monitor software can collect processor status and alter processor resources.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 25
UG200 (v1.6) January 20, 2009

Processor Interfaces
R

Internal debug mode relies on exception-handling software—running on the processor—
along with an external communications path to debug software problems. This mode is
used while the processor continues executing instructions and enables debugging of
problems in application or operating system code. Access to debugger software executing
in the processor while in internal debug mode can be established through a
communications port in the system, such as a serial port or Ethernet connection.

External debug mode supports stopping, starting, and single-stepping the processor,
accessing architected processor resources, setting hardware and software breakpoints, and
monitoring processor status. In external debug mode, debug events can architecturally
“freeze” the processor. While the processor is frozen, normal instruction execution stops,
and the architected processor resources can be accessed and altered using a debug tool
attached through the JTAG port. This mode is useful for debugging hardware and low-
level control software problems.

Processor Interfaces
The interfaces to the PowerPC 440 embedded processor include:

• Processor Local Bus (PLB)

• Device configuration register (DCR) interface

• Auxiliary processor unit (APU) port

• JTAG, debug, and trace ports

• Interrupt interface

• Clock and power management interface

Some of these interfaces are described briefly in the following subsections.

Processor Local Bus (PLB)
There are three independent 128-bit PLB interfaces to the PowerPC 440 embedded
processor. One PLB interface supports instruction cache reads, while the other two support
data cache reads and writes. All three PLB interfaces are connected as masters to the
crossbar in the embedded processor block in Virtex-5 FPGAs.

The data cache PLB interfaces make requests for 32-byte lines, as well as for 1 to 15 bytes
within a 16-byte (quadword) aligned region. A 16-byte line request is used for quadword
APU load operations to caching inhibited pages, and for quadword APU store operations
to caching inhibited, write-through, or without allocate pages.

The instruction cache controller makes 32-byte line read requests.

Each of the PLB interfaces fully supports the address pipelining capabilities of the PLB,
and in fact can go beyond the pipeline depth and minimum latency that the PLB supports.
Specifically, each interface supports up to three pipelined request/acknowledge sequences
prior to performing the data transfers associated with the first request. For the data cache,
if each request must be broken into three separate transactions (for example, for a
misaligned doubleword request to a 32-bit PLB slave), then the interface actually supports
up to nine outstanding request/acknowledge sequences prior to the first data transfer.
Furthermore, each PLB interface tolerates a zero-cycle latency between the request and the
address and data acknowledge (that is, the request, address acknowledge, and data
acknowledge may all occur in the same cycle).

The PLB interfaces described above are not directly visible to the Virtex-5 FXT FPGA user.
These interfaces are connected to the crossbar described in Chapter 3, “Crossbar.” The

http://www.xilinx.com

26 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 1: PowerPC 440 Embedded Processor
R

Virtex-5 FXT FPGA user sees only the external interfaces on the embedded processor
block, which includes the PowerPC 440 and the crossbar interfaces. These external
interfaces are described in Chapter 2, “Embedded Processor Block Overview,” and the
subsequent chapters.

Device Control Register (DCR) Interface
The DCR interface provides a mechanism for the PowerPC 440 embedded processor to set
up and check status of other hardware facilities in the embedded processor block in the
Virtex-5 FPGA and elsewhere in the system. DCRs are accessed through the PowerPC
mfdcr and mtdcr instructions.

The interface is interlocked with control signals such that it can be connected to peripheral
units that can be clocked at different frequencies from the embedded processor.

The DCR interface also allows the PowerPC 440 embedded processor to communicate with
peripheral devices without using the PLB interface, avoiding the impact to the primary
system bus bandwidth, and without additional segmentation of the usable address map.

Auxiliary Processor Unit (APU) Port
This interface provides the PowerPC 440 embedded processor with the flexibility for
attaching a tightly coupled, coprocessor-type macro incorporating instructions that go
beyond those provided within the embedded processor itself. The APU port provides
sufficient functionality for attachment of various coprocessor functions, such as a fully
compliant PowerPC floating-point unit, or other custom function implementing
algorithms appropriate for specific system applications. The APU interface supports dual-
issue pipeline designs, and can be used with macros that contain their own register files, or
with simpler macros that use the CPU GPR file for source and/or target operands. APU
load and store instructions can directly access the PowerPC 440 data cache with operands
of up to a quadword (16 bytes) in length.

The APU interface provides the capability for a coprocessor to execute concurrently with
the PowerPC 440 embedded processor instructions that are not part of the PowerPC
instruction set. Accordingly, areas have been reserved within the architected instruction
space to allow for these customer-specific or application-specific APU instruction set
extensions.

JTAG Port
The JTAG port is enhanced to support the attachment of a debug tool. Through the JTAG
test access port, and using the debug facilities designed into the PowerPC 440 embedded
processor, a debug tool can single-step the processor and interrogate internal processor
state to facilitate hardware and software debugging. The enhancements, which comply
with the IEEE 1149.1 specification for vendor-specific extensions, are therefore compatible
with standard JTAG hardware for Boundary-Scan system testing.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 27
UG200 (v1.6) January 20, 2009

R

Section II: Embedded Processor Block

Chapter 2, “Embedded Processor Block Overview”

Chapter 3, “Crossbar”

Chapter 4, “PLB Interface”

Chapter 5, “Memory Controller Interface”

Chapter 6, “Reset, Clock, and Power Management Interfaces”

Chapter 7, “Device Control Register Bus”

Chapter 8, “Interrupt Controller Interface”

Chapter 9, “JTAG Interface”

Chapter 10, “Debug Interface”

Chapter 11, “Trace Interface”

http://www.xilinx.com

28 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Embedded Processor Block
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 29
UG200 (v1.6) January 20, 2009

R

Chapter 2

Embedded Processor Block Overview

The embedded processor block in Virtex-5 FXT devices contains several additional
modules along with the PowerPC 440 processor. These additional modules allow system
designers to improve the performance and reduce the cost of their designs. This chapter
provides an overview of the embedded processor block in Virtex-5 FPGAs and briefly
describes each of the additional modules and interfaces.

Embedded Processor Block Components
The main components of the embedded processor block in Virtex-5 FXT FPGAs are the
processor, the crossbar and its interfaces, the Auxiliary Processing Unit (APU) controller,
and the control (clock and reset) module. Figure 2-1 shows the embedded processor block
and its components.

The processor is described in detail in Chapter 1, “PowerPC 440 Embedded Processor.”
The processor has three PLB interfaces: one for instruction reads, one for data reads, and
one for data writes. Typically, all three interfaces access a single large external memory.
Peripheral access in PowerPC 440 systems is memory mapped, and the data PLB interfaces
typically connect to various peripherals directly or via bridges. Some of these peripherals

Figure 2-1: Embedded Processor Block in Virtex-5 FPGAs

Virtex-5 FXT Platform
Embedded Processor Block

PowerPC 440
Processor

ICURDAPU
Control

FCM
Interface

LocalLink0

LocalLink1

LocalLink2

LocalLink3

SPLB0

SPLB1

MPLB

Memory
Controller
Interface

Control
Interface

DCR
Interface

DMA

DMA

DMA

DMA

CPM/
Control

DCR

DCURD

DCUWR

UG200_c2_01_010708

http://www.xilinx.com

30 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 2: Embedded Processor Block Overview
R

might have Direct Memory Access (DMA) capability to improve data bandwidth and
performance. Other peripherals might rely on a separate DMA engine to provide this
improved data bandwidth between the peripheral and memory. Peripherals can be
implemented in soft logic, using the lookup tables (LUTs) and other primitive logic
elements provided by the FPGA, or the peripherals can be implemented in silicon.
Peripherals are hardened or implemented in silicon if they are likely to be used by a large
number of customers, or if hardening is necessary for performance reasons. Some
peripherals are implemented in Virtex-5 FXT silicon, such as integrated endpoints for PCI
Express designs and tri-mode Ethernet MACs implemented in silicon. These peripherals
have a LocalLink interface for high-bandwidth data transfers.

Crossbar and its Interfaces
The crossbar and its interfaces allow the processor with its three PLB interfaces, soft
peripherals with PLB interfaces, and peripherals with LocalLink interfaces to share access
to a high-performance memory controller. As shown in Figure 2-1, the crossbar has:

• Five PLB slave interfaces

♦ Three for the PLB interfaces from the processor

♦ Two for soft peripherals with PLB interfaces to allow these peripherals to access
the high-speed memory controller interface

• Four full-duplex LocalLink channels with built-in DMA control and access to the
memory controller interface

• One high-speed memory controller interface that hardens several parts of a typical
memory controller but leaves the physical interface to the memory to be implemented
as soft logic for reasons of flexibility

• One PLB master interface to allow the processor to connect to other peripherals in the
FPGA logic

Details of the crossbar capabilities are documented in Chapter 3, “Crossbar,” and details of
the crossbar interfaces that interface to the Virtex-5 FPGA logic are documented in
Chapter 4, “PLB Interface,” and Chapter 5, “Memory Controller Interface.”

Control and other Interfaces
The embedded processor block and the processor have several other standard interfaces.
The clock, power management, and reset interfaces are described in more detail in
Chapter 6, “Reset, Clock, and Power Management Interfaces.”

The processor has a Device Control Register (DCR) interface that allows control registers of
peripherals to be connected to a DCR bus and accessed through the register space of the
processor. The processor block has an additional DCR slave interface that allows external
peripherals to act as DCR masters and access the registers on the hardened DMA
controllers within the processor block. The DCR interface is documented in Chapter 7,
“Device Control Register Bus.” The Interrupt interface of the processor is documented in
Chapter 8, “Interrupt Controller Interface,” while the JTAG interface is documented in
Chapter 9, “JTAG Interface.” The debug and trace interfaces are documented in
Chapter 10, “Debug Interface,” and Chapter 11, “Trace Interface,” respectively.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 31
UG200 (v1.6) January 20, 2009

Auxiliary Processor Unit Controller
R

Auxiliary Processor Unit Controller
The embedded processor block in Virtex-5 FPGAs includes a hardened Auxiliary Processor
Unit (APU) controller driven by the APU interface on the processor. The APU interface on
the processor allows users to build an auxiliary processor to execute instructions that are
not part of the PowerPC 440 instruction set. However, this interface requires the auxiliary
processor to be clocked at the CPU speed and also be in complete lock-step with the
processor pipeline. The processor can run much faster than a soft core implemented on the
FPGA logic, so an auxiliary processor implemented in soft logic would force the processor
to run at a lower speed, reducing the performance gain. The APU controller directs and
synchronizes the CPU pipeline, allowing the soft auxiliary processor and the CPU to run at
different clock rates. Additionally, the APU controller can decode the instructions on
behalf of the soft auxiliary processor unit, resulting in faster overall instruction execution
for the instructions using the auxiliary processor. The APU controller and its interface to
the FPGA logic are described in detail in Chapter 12, “Auxiliary Processor Unit
Controller.”

Direct Memory Access Controller
The processor block includes a hardened Direct Memory Access (DMA) controller that
allows peripherals to directly transfer data to and from a memory controller connected to
the processor block via the memory controller interface or the PLB interface. The DMA
controller can be monitored and controlled through its Device Control Registers (DCRs).
The DMA controller has LocalLink data interfaces to peripherals. More information on the
DMA controller and its interfaces is available in Chapter 13, “DMA Controller.”

http://www.xilinx.com

32 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 2: Embedded Processor Block Overview
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 33
UG200 (v1.6) January 20, 2009

R

Chapter 3

Crossbar

Overview
The crossbar acts as a central arbitration and switching module that accepts master
requests from up to five groups of master devices and redirects the transactions to one of
two groups of slave devices. The crossbar also directs the responses from the slave devices
back to the correct master devices. All data passing from any master device to any slave
device within the embedded processor block in Virtex-5 FPGAs passes through the
crossbar.

Along with the processor, the crossbar is a hard block instantiated in silicon within the
Virtex-5 FPGA family. The crossbar forms the main interface into or out of the CPU. The
crossbar is also the main connection and switch point for any devices instantiated within
the FPGA logic that need to communicate with the processor or external memory visible to
the processor.

The crossbar functions conceptually as a simple switch. If a master asks for access to a slave
and wins arbitration, the crossbar acts as a switch to connect the requesting master with the
requested slave. This topology allows for a high-speed interconnect with an efficient
linkage of many high-performance masters. However, unlike a bus-only based topology,
transactions from one master to a slave are not always visible to all masters. This might
violate some bus-based ordering assumptions, which are discussed in“Usage Notes and
Limitations,” page 55.

Note: To simplify discussions, the term Crossbar in this document is defined as a block that consists
of internal modules that provide both switching and bridging functions.

Figure 2-1, page 29 shows the crossbar and its interfaces.

The crossbar has the following interfaces:

• ICURD: Instruction Cache Unit Read PLB interface of the processor

• DCUWR: Data Cache Unit Write PLB interface of the processor

• DCURD: Data Cache Unit Read PLB interface of the processor

• SPLB 0: Slave PLB 0 port used to attach soft PLB masters implemented in FPGA logic
to the embedded processor block

• SPLB 1: Slave PLB 1 port used to attach soft PLB masters implemented in FPGA logic
to the embedded processor block

• MPLB: Master PLB interface used to attach slaves implemented in FPGA logic to the
embedded processor block

• MCI: Memory controller interface used to attach high data rate memory controllers to
the embedded processor block. The MCI provides a simple protocol that allows the
soft memory controller to run at higher speeds because it does not need to implement
the more complex and more general PLB protocol. The MCI also decouples the high

http://www.xilinx.com

34 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

data rate memory from the MPLB slave interface, which thus can be used for slow
peripherals.

• LocalLink/DMA: Four LocalLink interfaces to the internal DMA engines and the
MPLB and MCI interfaces. Two LocalLink interfaces and an SPLB interface are locally
arbitrated before being arbitrated with the processor PLB interfaces for accessing the
MPLB and MCI, as shown in Figure 2-1, page 29.

With the exception of the LocalLink and MCI interfaces, all of the interfaces are Processor
Local Bus (PLB), adhering to the PLB Architecture Specification [Ref 4]. The MCI forms the
main interface to and from memory for both the processor as well as any of the PLB
devices.

Note: Ports or interfaces on the crossbar are named as per their roles on the PLB to which they
attach. For example, the SPLB 1 port on the crossbar acts as a PLB slave on the PLB that can be
attached to that port. If a master device on a PLB connected to the SPLB 1 crossbar port wishes to
transact with a slave device connected through the crossbar’s MPLB port, the connection is the PLB
master connects through the PLB to the crossbar SPLB port, which connects through the crossbar to
the MPLB port, connecting through the PLB to the slave device.

The MPLB, SPLB 1, and SPLB 0 ports can be connected to PLB system buses with any
desired mix of other PLB master and slave devices.

The crossbar sits between the five slave interfaces in the embedded processor block (three
slave interfaces to the processor and one each from the two SPLBs) and the two master
interfaces (the MPLB and the MCI). The crossbar redirects requests coming from the slave
interfaces to either master interface based on the address map and also redirects the data
phase from the slave to the respective requesting master. If multiple master requests occur
concurrently, the crossbar arbitrates between the multiple masters, lets the highest priority
master through, and buffers the other master(s) request.

The crossbar’s PLB interface adheres to the PLB Architecture Specification [Ref 4]. The
address width is 36 bits with 128-bit data. The embedded processor block in Virtex-5
FPGAs supports 36-bit physical addressing, but the top four bits are defined as zeros
within the Embedded Development Kit (EDK) tools and IP. PLB rules for larger buses
configuring to smaller bus widths are adhered to. Data transfer between slave ports
(SPLB 0 and SPLB 1) is not supported.

Key Features
The key features of the crossbar are as follows:

• The crossbar provides command pipelining for up to five transactions to the MCI and
MPLB, which can be running concurrently in the embedded processor block in
Virtex-5 FXT FPGAs. This allows the latency of the address phase to be hidden by
overlapping it with the data phase.

• Supported commands are single cycle, line transfers, fixed length burst, and
indeterminate length burst.

• Independent arbitration: one arbiter for the MPLB and another for the MCI.
Transactions can be issued to both the MPLB and the MCI at the same time.

• Address switch function: receives the primary and secondary commands from the
masters and issues the command to the correct slave.

• Data switch function: requires switching the correct master and slave buses together,
which enables the transaction, detects the end of the transaction, and switches to the
next data phase with minimal latency.

• The command and data phases are independent.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 35
UG200 (v1.6) January 20, 2009

Hardware Description
R

• The arbiter is required to remember the order and context (master and slave) of each
command so that the data phases are executed in the same order.

• Read and write data phases are independent and can run concurrently. There is a
separate command FIFO for each direction.

• Multiple crossbar to FPGA logic clock ratios are supported to optimize performance.

• All internal crossbar transactions are 128 bits wide. PLB rules that allow the use of
64-and 32-bit wide devices are supported by the crossbar block.

• The overall address space for the system is 64 Gbytes (36 bits of address) that can be
divided between the slaves. Various memory mappings can be configured through
bitstream or DCR operations.

Note: The embedded processor block in Virtex-5 FXT FPGAs supports 36-bit physical addressing,
but the top four bits are defined as zeros within the Embedded Development Kit (EDK) tools and IP.
Thus the available address space is 4 GB.

Hardware Description

Overview
The crossbar interconnects the processor and two SPLB interfaces to the memory interface
and the MPLB interface. This function allows for any PLB master in the device (including
the processor) to read and write to any memory-mapped location in the device connected
to the crossbar. It supports a 128-bit data bus, a 36-bit address bus, and memory mapping
to determine whether the memory interface or the MPLB is selected for the transfer. Most
optional features in the PLB specification are supported, including bus lock, rearbitration,
slave wait, master abort, master or slave terminate, and TAttribute.

The transfer types supported are single word, cache line, fixed length burst, and
indeterminate burst. Transfers can be unaligned for single word transfers. Also, word
steering, mirroring, conversion cycle, and burst length adjustment are handled
automatically. Thus, mismatched bus sizes are allowed. Any combination of 32-, 64-, and
128-bit masters can transact with any 32-, 64-, or 128-bit slave. All burst widths (from word
to quadword) are supported.

The crossbar consists of two identical pieces: an arbiter and switch for the MPLB and
another for the memory interface. If multiple masters request at the same cycle, the
crossbar arbitrates between the multiple masters and asserts an acknowledge to the
winning master. The arbiter then decides the order of execution and places each command
into the command queue. Crossbar arbitration is a two-step process that consists of a
request and master priority levels. Available arbitration algorithms are fixed priority, least
recently used, and round robin.

The output command queue contains commands that are waiting for the data phase to
begin. This queue saves the context for the command so that the correct master can be
connected when the data phase begins. There are two output command queues: one for
reads and one for writes, which allows for concurrent read and write transfers for full
utilization of the PLB read and write channels. See “Ordering Requirement of Transactions
in the Crossbar,” page 49 for further details on read and write ordering.

When a command reaches the front of the queue and the previous transfer is complete, the
data phase controller selects the correct master (via the muxes and demuxes) to connect to
and enables the transfer. If there are no commands in the output queue, the command
issuer instead initiates the data phase.

http://www.xilinx.com

36 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

At the end of the data transfer, the data phase controller removes the current command
from the queue and starts the data phase for the next command without dead cycles
between the data phases.

The primary function of the PLB interfaces is to adapt the crossbar transaction rate to the
transaction rates of the soft masters and slaves. There are three causes for the rate
mismatch:

• Clock frequency

In typical applications, the crossbar runs at a higher clock frequency than that of the
soft masters and slaves, resulting in a higher raw throughput for the crossbar. This is
always the case when comparing the crossbar with the MPLB or the MCI because the
crossbar contains two almost independent arbiters that separately drive the MPLB and
the MCI. The situation is more complex when comparing the crossbar and the SPLB, as
discussed below.

• Arbitration success

The arbitration process in the crossbar divides the available crossbar bandwidth
among the various active PLB masters that are directly connected to the crossbar. So an
SPLB that sends and receives data to and from the MPLB only gets a fraction of the
crossbar bandwidth if the processor and/or the other SPLB are also accessing the
MPLB. (It is a similar situation for an SPLB sending or receiving to or from the MCI.)
Because there are three PLB write masters (the instruction cache does not have a write
master) and four read masters connected to the crossbar with a fair arbitration scheme,
the SPLB gets, on average, at least one-third of the crossbar write bandwidth or the full
SPLB write bandwidth (whichever is less) and at least one-fourth of the average
crossbar read bandwidth or the full SPLB read bandwidth (whichever is less). If a
master does not request crossbar access, that time slot is available for another master to
use.

• Bus width conversion

The PLB interfaces and the crossbar are 128-bit devices, and the interfaces support
128-bit soft devices natively. In addition, the interfaces also support 32-bit and 64-bit
PLB devices at the expense of a reduced throughput. 32-bit and 64-bit soft masters and
slaves have throughputs of one quarter and one half, respectively, of that of a
corresponding 128-bit device.

The three rate mismatch factors combine dynamically together and can result in a
mismatched transaction rate between devices at any given instant in time. Rate adaptation,
which is needed to avoid possible data loss, is achieved through the built-in flow control
mechanism of the PLB protocol together with the use of FIFOs for command and data
buffering to absorb temporary differences in transaction rates.

Another major function of the PLB interfaces, as mentioned in the bus width conversion
bullet, is to convert transactions from 32-bit and 64-bit soft masters and slaves into 128-bit
format, and vice versa. The conversion process involves command modification, data
mirroring, steering, and packing(1). Packing of burst transfers is not an inherent
requirement for conversion but is done to improve the crossbar bandwidth efficiency, and
because the MCI can only handle packed data.

In addition, each SPLB also contains arbitration logic to allow the sharing of the crossbar
access with two 32-bit DMA controllers. Each SPLB and the two corresponding DMA
controllers share the same crossbar interface logic located in the SPLB.

1. Packing is done for burst transfers and line transfers. Single transfers are not packed.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 37
UG200 (v1.6) January 20, 2009

Hardware Description
R

By default, a simple round-robin priority scheme is used to arbitrate among the SPLB and
LocalLink/DMA channels with an initial ordering of SPLB0-DMA0-DMA1 and SPLB1-
DMA2-DMA3. The priority of each DMA channel can be increased by setting the DMA
priority bits in the SPLB Configuration registers as described in “Device Control Registers
(DCRs),” page 56. When more than one interface has the same priority for this local
arbitration, a round-robin scheme is used for the interfaces that have the same priority
with the same ordering as described earlier.

Note: If the LocalLink/DMA interfaces are used but the corresponding SPLB interface is not
connected, the clock pin of that SPLB interface must still be connected to a valid clock signal.

Hardware Interface
All interfaces at the boundary of the crossbar have 128-bit data buses, which simplifies the
logic required to be implemented within the embedded processor block. Accesses from
FPGA logic masters and slaves that do not have 128-bit data buses are converted to 128-bit
accesses internally. All accesses through the crossbar are fixed length bursts and cannot be
terminated except for bursts performed by the processor’s ICURD interface.

Slave Ports

Instruction Side (ICURD)

The processor uses its instruction-side read (ICURD) PLB interface to perform instruction
reads for the instruction cache unit (ICU). The instruction-side PLB interface should only
perform reads with eight-word cache line sizes.

During line reads, the address put out by the ICU is the required target word. Because the
ICU interface can only provide word addresses, the lower two bits are tied Low at the chip
level. For optimal performance, the target slave can provide either the target word first
(aligned to a quadword containing the target word) or the data sequentially. In any case,
the slave must use the Sl_rdWdAddr signal to indicate the word being transferred, which
is used by the processor to correctly align data in its cache-fill buffer.

The ICU interface supports up to three outstanding transactions.

Data-Side Write (DCUWR)

The processor uses the Data-Side Write PLB (DCUWR) interface to perform write transfers
with memory for the Data Cache Unit (DCU).

There are three types of transfers that occur via the DCUWR interface:

• Word transfers

• Four-word line transfers

• Eight-word line transfers

The address put on the PLB interface is the target byte address required by the DCU. For
line transfers, the processor puts its data in sequential address order rather than target
word first as done in data cache reads.

APU non-cacheable requests are performed with four-word line requests while all
cacheable requests occur as eight-word line requests. The address output by the DCUWR
interface is the target byte address of the data to be written.

http://www.xilinx.com

38 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Data-Side Read (DCURD)

The processor uses the Data-Side Read PLB (DCURD) interface to perform read transfers
by the data cache unit.

Three types of transfers occur via the DCURD:

• Word transfers

• Four-word line transfers

• Eight-word line transfers

The address put on the PLB interface is the target byte address required by the DCU.

APU non-cacheable requests are performed with four-word line requests while all
cacheable requests occur as eight-word line requests. The address put by the DCURD
interface is the target byte address of the data to be read. For optimal performance in line
reads, the slave must put out the target word first; however, in any case, it should indicate
which word it is providing on the Sl_rdWdAddr signal.

FPGA Logic to Crossbar SPLB Interfaces

The identical SPLB 0 and SPLB 1 interfaces allow masters on the FPGA logic to access the
slave buses on the crossbar via an FPGA logic arbiter. Although the FPGA logic masters are
allowed any size of transactions included in the PLB specification, the SPLB interfaces
convert some of these transactions to a subset of the PLB specification to optimize the
crossbar transfer rate. All transactions from the SPLB to the crossbar are 128 data bits wide.

The types of transfers to the crossbar that can originate from the SPLBs are:

• Single transfers

• Quadword line transfers

• Eight-word line transfers

• Quadword fixed length bursts from a minimum length of 2 to a maximum length of
16.

• Variable length bursts or early terminated bursts from masters connected to their PLB.

These variable length transactions are converted into a series of fixed length
transactions. The size of the fixed length transaction is configurable through the PLB
slave [0:1] configuration registers, CFG_PLBS0 and CFG_PLBS1.

Slave Port PLB Busy Signals

Generic PLB System

PLB masters receive a busy signal from the arbiter, which signifies that at least one of their
acknowledged transactions has not been completed by the slave. The slave asserts an
individual busy signal for each master attached to the arbiter.

• For a read, the slave asserts the busy signal one clock cycle after a command has been
acknowledged until the last rddack for that transfer.

• For a write, the slave asserts the busy signal one clock cycle after a command has been
acknowledged and past the last WrDack for that transfer. Write transaction
completion by the slave might not coincide with the completion of the data being
transferred to the slave. The slave can take additional cycles to complete the
transaction after all the data has been transferred from the master. This is common in

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 39
UG200 (v1.6) January 20, 2009

Hardware Description
R

situations where the slave has an internal queue to perform transfers to the physical
storage. The busy signal thus notifies the master whether the data has been
transferred to its final destination by the slave, which can prevent data coherency
problems in systems.

Embedded Processor Block

The embedded processor block in Virtex-5 FPGAs changes the definition of the Mbusy PLB
signal because of system architecture constraints. The Mbusy signal to an FPGA logic or
PLB master is asserted when its request is acknowledged. Deassertion of the busy signal
depends on the destination of the transaction:

• Destination MPLB

The busy signal is deasserted when the transaction has left the MPLB for the FPGA
logic. Thus the busy signal is deasserted when the data phase of the transaction has
completed to the FPGA logic slave. There is a delay from the last WrDack on the MPLB
to FPGA logic bus to the deassertion of the busy signal to the master of several
interconnect clock cycles. If the FPGA logic slave continues to assert its busy signal
past the end of the data phase of a write, that signal is not propagated back to the
originating master. If the busy signal to the master is required to mirror the busy signal
from the slave, then TAttribute [7] should be set along with the request. See “Sync
TAttribute,” page 50 for more details.

• Destination MCI

The busy signal is deasserted when the transaction leaves the crossbar for the MCI.
Both the crossbar and the MCI are internal to the processor block. Because the MCI
does not contain a busy signal, the concept of a FPGA logic slave being busy, as in the
MPLB case, does not exist for the MCI.

The FPGA logic PLB slaves are attached to the MPLB via a soft arbiter, and the MPLB is a
single PLB master to that arbiter. PLB arbiters assert a single busy signal to each master to
inform the master that at least one of its transactions is outstanding in a slave. The arbiter
thus sends one PLB_MBusy signal to the MPLB to notify it if any slaves are asserting their
busy signal for the MPLB. The MPLB transaction might have come from one of several
masters connected to the SPLB, the DMA, or the processor PLB interfaces. The MPLB
cannot demultiplex the busy signal from the arbiter to the individual masters because the
identity of the master that originated the transaction was lost when the data phase
completed.

Figure 3-1 shows the busy signals in the FPGA logic and processor block. The busy signal
from the FPGA logic is of little use to the embedded processor block and ignores it under
normal transaction request. The PLB_MBusy signal sourced from the processor block to
FPGA logic masters is based on the transaction leaving the processor block (Destination
MPLB) or the transaction leaving the crossbar for the MCI (Destination MCI).

http://www.xilinx.com

40 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Master Ports

MPLB

When the crossbar receives a request bound for the MPLB, it places the command in the
command FIFO pending the start of the data phase.

Figure 3-2 shows the flow control exerted by the MPLB over the crossbar. If the command
queue signal from the MPLB is asserted, the MPLB does not accept PLB address phases
until at least one outstanding data phase is completed. The crossbar blocks its addrAck to
the request that occurs when the MPLB command FIFO is full.

Figure 3-1: Busy Signals in FPGA Logic and Embedded Processor Block

CrossbarPLB
Interface

PLB_MBusy

PLB_MBusy

SI_MBusy[0:3]

Destination MCI: Busy signal
to the Master is deasserted

when the transaction data
phase completes at this

interface.

Destination MPLB: Busy signal
to the Master is deasserted when

the transaction data phase
completes at this interface.

SI_MBusy
[0:4]

PLB_MBusy

PLB_MBusy

PLB_MBusy

SPLB 1

SPLB 0

Virtex-5 FXT FPGA
Embedded Processor Block

MCI

MPLB Soft
Arbiter

FPGA Logic
Slave

Memory
Controller

Physical
Memory

Soft
Arbiter

FPGA Logic
Master

FPGA Logic

Soft
Arbiter

FPGA Logic
Master

SI_MBusy[0:3]
PLB_MBusy

[0:3]

PLB_MBusy

PLB_MBusy
SI_MBusy

[0:7]

The single busy signal sent by the Soft
Arbiter to the MPLB is ignored by the
processor block during non sync attribute
transactions.

The Soft Memory
Controller does not
source any busy
signals back to
the MCI.

UG200_c3_01_010708

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 41
UG200 (v1.6) January 20, 2009

Hardware Description
R

MCI

The memory interface is a fast, compact, and convenient way of connecting memory to the
processor block. The memory interface is designed to be similar to a simple FIFO interface
rather than the more complicated PLB interface. The interface consists of an address bus,
two data buses (one for each direction), and a few control signals. All transactions to the
FPGA logic have a constant length, greatly simplifying the design of the soft memory
controller. Every transaction requires at minimum an address and a signal to indicate if it
is a read or a write (MIMCREADNOTWRITE). If the transaction is a write, write data is
presented on the write bus (MIMCWRITEDATA). If the transaction is a read, the MCI
block expects the data along with a valid signal (MCMIREADDATAVALID) at some future
point in time on the read bus (MCMIREADDATA). When a transaction begins, the MCI
does not terminate it. The MCI block can turn off the byte enables so the writes become
useless.

Although the physical data buses are 128 bits wide, the user can optionally downsize the
bus. This option allows the portion of the memory controller in FPGA logic to not have to
implement large muxes when the real memory is smaller then 128 bits. When the user
selects a 32-bit bus and the MCI has 256 bits of data to transmit, the MCI sends eight 32-bit
back-to-back words to the FPGA logic on bits 0 to 31 of the MIMCWRITEDATA bus. Not
only does this save area in the FPGA logic, it also allows for higher speeds. This muxing is
also implemented on the read path, so that the FPGA logic does not have to form 128-bit
words for the MCI.

In addition to FPGA logic-side variable widths, FPGA logic burst lengths are also variable.
Every time the burst length is reached, a new address is generated to send out to the FPGA
logic. For instance, assume the starting address is 0, a burst of four 128-bit words (64 bytes)
is to be sent to the FPGA logic portion of the memory controller, the MCI is set to 128 bits

Figure 3-2: MPLB Flow Control

1 2 3 4 5 6

Mn_Request

Mn_size[0:3]

Mn_RNW

Mn_BE[0:15]

PLB_MnAddrAck

cfb_xbar_qfull

Slave Bus

PLB_PAValid

PLB_SAValid

S1_rdComp

S1_addrAck

UG200_c3_02_071307

Clock

‘H0

http://www.xilinx.com

42 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

wide, and the burst length is 2. The transaction on the MCI is (address 0, write 0-15), (write
16-31), (address 32, write 32-47), and (write 48-63).

Variable burst lengths allow different memory controllers with different requirements to
be attached to the MCI, while keeping the logic in the memory controller to a minimum.
For example, one memory device might support bursts of 8, while another simpler
memory device might support single word transactions (burst length equal to 1).

The MCI block takes the address directly from the crossbar and sends it to the FPGA logic,
adjusting the address when required for bursts. The MCI block has no concept of what
memory is actually connected up to it. Therefore, if a user writes to addresses 0x900 and
the memory connected only has addresses from 0x000 to 0x7FF, the memory at address
0x100 is overwritten. The MCI block assumes that the user of the system knows about this
issue.

As noted in “FPGA Logic to Crossbar SPLB Interfaces,” page 38, the MCI block does not
accept indeterminate bursts. Instead, the MCI block relies on the PLB interface to break up
the transactions into known fixed sized bursts. Because the processor does not create this
type of transaction, this functionality was moved to the perimeter of the system, which
also allowed higher bus utilization rates inside of the crossbar.

See Chapter 5, “Memory Controller Interface,” for more details on this interface.

Disabling the MCI

The MCI can be disabled via a configuration bit. If the MCI block is disabled, any
transaction directed to the MCI from the processor PLB interfaces causes the time-out
signals from the crossbar to the PLB interface to be asserted. The SPLB blocks access to the
MCI if it is disabled, and hence SPLB transactions need not be blocked.

Interrupts
The crossbar is the central location where the distributed PLB interrupts are collected. The
crossbar sees the input interrupts as either level signals (which it does not latch) or edges
(which it has to latch internally). The level interrupt signals are latched in the originating
block. The crossbar contains the DCR interface logic to read the interrupts and clear them.
The crossbar also asserts a global interrupt signal, PPCEICINTERCONNECTIRQ, when
any non-masked interrupt is asserted.

The interrupts are cleared by writing a one to the interrupt bit of the register via DCR
access. If the crossbar internally latches that interrupt, the write to the bit clears the
interrupt bit. If the interrupt is latched in another block, the crossbar sends an interrupt
clear signal to that block to instruct the block to reset it.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 43
UG200 (v1.6) January 20, 2009

Functional Description
R

Functional Description

Arbitration
The crossbar separately arbitrates for the two slave buses (via the MCI and MPLB ports)
between the five master PLB buses (via the SPLB 0, SPLB 1, ICURD, DCUWR, and DCURD
ports) and grants slave bus access to the winning master. Transactions can be initiated on
the two slave buses simultaneously. Which bus wins arbitration depends on:

• Priority

♦ Request priority

♦ Master priority

• Lock status of the slave bus

• Transaction ordering requirement

• Abort status of master requests

• State of the crossbar command queues

• Pipelining turned off or on

• MCI enabled or disabled

Priorities

If multiple master requests access the same slave bus simultaneously, the crossbar uses two
levels of priority arbitration to determine the order of master accesses on the slave bus.

• Request Priority (Level 1 arbitration)

The priority bits (Mn_priority [0:1]) sent out by the masters on the PLB along with the
request are the first priorities taken into consideration. If access order can be resolved
using those priority bits, then no further arbitration takes place. When the PLB
transactions are destined for the MCI, this first level of arbitration can be enabled or
disabled by a bit value in bit 24 of DCR MI_CONTROL. See Table 5-1, page 135 for
more information.

• Master Priority (Level 2 arbitration)

If the request priorities of two or more masters are the same, the crossbar implements
a second level of priority checking using master priorities, which is set up by the FPGA
designer via the DCRs. The master priorities are distinct values. Thus the priorities are
never the same between two masters.

Refer to “0x23: Crossbar for PLB Master Arbitration Configuration Register
(ARB_XBC), R/W,” page 61 for further details.

Request Priority Level

The five PLB master buses requesting accesses through the crossbar specify the priority of
each request through the request priority bus, Mn_priority[0:1]. In this two-bit bus, 2’b11
is the highest priority and 2’b00 is the lowest priority in a fixed priority system. For the
SPLBs, the request priority bus value is set by the master that initiated the SPLB request to
the crossbar. For the three processor PLB interfaces, the priority bits are determined by the
value of the priority attributes on the embedded processor.

On simultaneous accesses to the same slave bus, the crossbar grants access to the master
with the highest request priority.

http://www.xilinx.com

44 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Master Priority Level

If two or more requesting masters have the same request priority, the crossbar uses a
master priority level to break the tie. Users set an arbitration scheme and each master’s
initial priority via a Device Control Register (DCR). The crossbar contains one DCR per
slave bus, which stores the master priority information in the crossbar. Each master can be
assigned a priority using a three-bit priority field. Valid values are from 3’b000 (lowest
priority) to 3’b100 (highest priority) for the five masters. Each master should have a distinct
priority from the permissible values. Unpredictable results occur when using priorities from
3’b101 to 3’b111 or priorities not distinctly different.

Users choose one of three arbitration schemes:

• Least Recently Used (LRU)

• Round Robin (RR)

• Fixed

The crossbar also maintains an internal copy of the priority values that can change from the
initial set value after each access. For all arbitration schemes, the crossbar allows the
highest priority master to access the slave bus. The priority value used for the arbitration is
the internal value.

Each slave bus has an arbitration register, the MPLB (ARB_XBC) and the MCI (ARB_XBM),
containing the priorities for each master. These registers get their default values from
attributes on the processor block. These registers can be read and written to via DCR
operations.

Least Recently Used Arbitration

In the LRU arbitration scheme (see Figure 3-3), the master with the highest internal priority
is granted access to the slave bus. Internal master priorities are reassessed after each slave
bus access even if arbitration was based on request priority. The crossbar maintains a
queue with initial entries set up by the DCR arbitration register. When a master is granted
access to the slave bus, it is removed and placed at the back of the queue. All masters lower
in internal priority to the one granted access are moved up by one position. This priority
scheme gives fair access for masters to the slave bus.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 45
UG200 (v1.6) January 20, 2009

Functional Description
R

Round-Robin Arbitration

In the round-robin arbitration scheme (see Figure 3-4), the master with the highest internal
priority is granted access to the slave bus. Internal master priorities are reassessed after
each slave bus access. The crossbar maintains a circular structure with five nodes, one for
each master attached to the crossbar. The masters are initially assigned priorities based on
the DCR arbitration register set up by the user. When a master gets access to the slave bus,
the master priorities are rotated such that the master granted access is now the lowest
priority master (4’h0). This priority scheme gives fair access for masters to the slave bus.
In the unlikely event that the MPLB interface’s read address pipelining feature (DCR 0x44
bit 26) must be disabled, which can cause a severe degradation in performance, avoid
using the round-robin arbitration scheme because a traffic starvation issue can result.

Figure 3-3: LRU Arbitration

Master 1
Priority 0 (lowest)

Priority 1

Priority 2

Priority 3

Priority 4 (highest)

Least Recently
Used Queue

Master 2

Master 0

Master 4

Master 3

Master 0
Priority 0 (lowest)

Priority 1

Priority 2

Master 0 requests and
is granted access

Priority 3

Priority 4 (highest)

Least Recently
Used Queue

Master 1

Master 2

Master 4

Master 3

UG200_c3_03_071307

http://www.xilinx.com

46 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Fixed Priority

In the fixed priority scheme, the initial priorities set by the user remain unchanged during
crossbar operation. The crossbar allows the highest priority master to access the slave bus.
The arbitration scheme can cause starvation of lower priority masters, if higher priority
masters continually request access to the same slave bus for prolonged periods of time.

Figure 3-4: Round-Robin Arbitration

Priority 2

Master 0

Priority 3

Priority 0Priority 1

Priority 4
Master 1

Master 2Master 3

Master 4

Priority 4

Master 0

Master 3 requests
and is granted access

UG200_c3_04_071307

Priority 2

Priority 3Priority 0

Priority 1
Master 1

Master 2Master 3

Master 4

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 47
UG200 (v1.6) January 20, 2009

Functional Description
R

DCR Arbitration Registers

The DCR arbitration registers consist of five three-bit priority fields (one for each master
attached to the crossbar) and a two-bit arbitration mode field. The priority fields set up the
initial master priority of the masters. Although the internal priorities can change during
slave accesses depending on the arbitration mode (selected by the mode field), the priority
values set in the DCRs do not change during crossbar operation. When a DCR arbitration
register is read, it returns the original written or tied values, not the internal priorities used
for arbitration.

Locked Transfers

Masters typically use locked transfers to guarantee an atomic sequence of transactions on
the bus. The crossbar guarantees that the atomic sequence of operations requested by a
master connected to one of the SPLB ports is preserved on the destination bus (MPLB).

The master asserts Mn_busLock with the request signal, which is sampled by the crossbar
in the same cycle that the Sl_addrAck signal is asserted on the slave bus connected to the
MPLB port. If both read and write buses are idle, the crossbar locks the slave bus for the
requesting master. If there are outstanding transactions on the slave bus, the crossbar holds
off assertion of the PLB_PAValid signal for the locked transfer until the slave bus is free.
The lock extends to both the read and write sections of the slave bus. The locking master
maintains its lock by asserting Mn_busLock until required. The request signal does need
not be continually asserted during the lock period. It is only asserted when a transfer is
required.

The crossbar gets the Mn_busLock signal from the SPLB 0 or the SPLB 1. The processor
PLB interfaces do not implement the Mn_busLock signal. If the locking master is the
highest priority requesting master, the crossbar grants exclusive access to the locking
master until the Mn_busLock signal is released. If requests are pending on the slave bus
when a winning lock request is made, the crossbar ignores all other master requests until
the lock request is granted by the crossbar and released by the master. This behavior
prevents deadlock conditions where higher priority masters get access to the slave bus
while the crossbar holds off the PLB_PAValid of the locking master request during
completion of pending transactions.

If the locking master releases Mn_busLock for one clock cycle, the crossbar no longer locks
the slave bus for that master but arbitrates in the normal manner on the next clock cycle.
When the Mn_busLock signal is released, the crossbar continues to block all master
requests until the pending transfers to that master are completed.

http://www.xilinx.com

48 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Figure 3-5 shows the waveforms for a locked transfer operation. The cycles are defined
below:

• In cycle 0, both the master and slave buses are in idle state.

• Master 0 requests a non-locked single read transfer in clock cycle 2 and is granted
access to the slave bus.

• In clock cycle 4, Master 0 requests a locked single read transfer, and Master 1 requests a
non-locked single read transfer. Because the request priority of Master 0 is higher than
Master 1, Master 0 wins the arbitration. However, the pending transfer from cycle 2
blocks the assertion of PLB_PAValid for the locked Master 0 request until the transfer
completes in cycle 6.

• When Sl_rdComp is asserted in cycle 6, the crossbar asserts PLB_PAValid and
PLB_BusLock. The slave bus is now locked for exclusive access by Master 0, and the
Master 1 request is ignored.

• In cycle 8, Master 0 requests with a priority of 0 (lower priority than Master 1) and
gets access to the slave bus because it has exclusive access to the bus.

• When M0_busLock is released in cycle 9, the crossbar waits for all pending
transactions on the slave bus to complete, which takes place in cycle 10. The crossbar
then arbitrates in the normal manner and grants slave bus access to Master 1.

Figure 3-5: Locked Transfer Waveforms

1 2 3 4 5 6 7 8 9 10 11 12

UG200_c3_05_071307

Clock

Master 0

M0_request

M0_RNW

M0_busLock

M0_priority[0:1]

PLB masterID[0:2]

PLB_M0AddrAck

Master 1

M1_request

M1_RNW

M1_busLock

M1_priority[0:1]

PLB_M1AddrAck

PLB_BusLock

PLB_PAValid

Slave Bus

SI_addrAck

SI_rdDAck

SI_rdComp

00

000 000 000 001

11

10

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 49
UG200 (v1.6) January 20, 2009

Functional Description
R

Ordering Requirement of Transactions in the Crossbar

From the master’s perspective, the PLB protocol expects the data phase of transfers in the
same direction (read or write) to occur in the order they were originally issued. This
operation is essential because the individual data phases do not contain any transfer
identification, and the requesting master assumes that the occurring data phase is for the
oldest pending transfer. Because the data phase for transfers in different directions occurs
on separate buses, ordering between reads and writes is not required. In a single slave bus
PLB system, the arbiter need not be concerned with this ordering requirement, because the
arbiter simply forwards the transfer request to the slave responsible for ordering the data
phases.

The more complex crossbar has two slave buses, which make the system susceptible to
order mismatch even if the PLB slaves conform to the ordering requirement. If a master
issues two consecutive requests (one to the MPLB and one to the MCI) in the same
direction (either both reads or both writes), the crossbar must hold off sending the second
request to the slave until the first transaction completes. A situation might arise where the
slave command queue in the crossbar is full for the first transfer and empty for the other
transfer. In this situation, if ordering is not maintained by the crossbar, the slave of the
second request might start its data phase earlier than the slave of the first request. This
master wrongly assumes the incoming data is for the first request, creating a data
mismatch for the requesting master.

The crossbar implements data phase ordering as follows:

• If a master request is granted to either slave bus, a request of the same direction to the
other slave bus is blocked from arbitration consideration until the previous request is
completed.

• Requests to the same slave bus are not blocked if there are pending requests in the
same direction. In this case, ordering is maintained in the command FIFO and then by
the slave.

• Transactions from the same master in the opposite direction of the pending transfer
are not blocked from being issued to the other slave bus.

• While a master is blocked from arbitration consideration due to the ordering
requirement, the crossbar arbitrates normally without the blocked master and grants
access to the highest priority master.

The two arbiters within the crossbar use seven signals to communicate with each other:

• Busy signal for the ICURD interface of the embedded processor

• Busy signal for the DCUWR interface of the embedded processor

• Busy signal for the DCURD interface of the embedded processor

• Read busy signal for the SPLB 0 interface

• Write busy signal for the SPLB 0 interface

• Read busy signal for the SPLB 1 interface

• Write busy signal for the SPLB 1 interface

These busy signals notify the other arbiter about the master and direction of any pending
transfers. One arbiter can then block arbitration of transfers from any master with pending
transfers in the same direction on the other arbiter.

http://www.xilinx.com

50 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Sync TAttribute

A master might require notification when a particular write transaction is complete not just
on the bus but also on the output of the module that is connected to the bus (for example,
on the physical memory connected to a memory controller module). In generic PLB, the
slave notifies the master of this by asserting its busy signal for that master. The slave can
continue to assert its busy signal for a transaction past when its data phase has completed
on the PLB. Figure 3-6 shows this situation where the busy signal sourced from the MPLB
to the crossbar is based on transaction completion at the FPGA logic interface. In the
embedded processor block, this generic PLB requirement is not met because with the
completion of the data phase, the crossbar might end the connection and connect up a new
master and slave. The Sync TAttribute feature facilitates the generic notification
requirement without using the busy signal mechanism.

The Sync TAttribute feature is important in at least one scenario, where there is a device on
the MPLB whose interrupt register bit is to be cleared. The embedded processor writes to
the device’s interrupt register to clear the interrupt. When the busy signal for that
transaction goes Low, the embedded processor re-enables the interrupt. Without the
TAttribute function, the clearing of the interrupt could be posted within the embedded
processor block and might not have completed through to the target slave. In this scenario,
if the processor re-enables the interrupt before the posted write has gone through, the
embedded processor is wrongly interrupted for the second time.

If a master requires that the busy signal sourced to it mirrors (with a delay in deassertion)
that busy signal coming from its target slave, the master should request the TAttribute [7]
bit be set in the transaction, making this a Sync TAttribute transaction.

On this sync transaction request from a master winning arbitration:

• The crossbar blocks subsequent requests from all five master buses until the sync
transaction and all transactions preceding it in the MPLB FIFO complete. This
condition ensures that the busy signal from the FPGA logic slave to the master is
deasserted for the sync transaction completion only because no other transaction can
be pipelined behind it.

Figure 3-6: Nonsync TAttribute Situation

Crossbar
PLB

Interface

Busy

Busy

Request

Busy
Busy

Busy

Busy

Busy

SPLB 1

SPLB 0

MCI

MPLB
Soft

Arbiter
FPGA Logic

Slave

Memory
Controller

Physical
Memory

Request

Request

Request

Request

Busy

UG200_c3_06_071307

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 51
UG200 (v1.6) January 20, 2009

Functional Description
R

• The blocking takes place only after the master requesting the sync transaction has
won arbitration to the MPLB slave bus.

• The busy signal to the master requesting a Sync TAttribute transaction is asserted
until the slave destination deasserts its busy signal. Thus the FPGA logic busy signal
is propagated through to the crossbar during a sync transaction.

Figure 3-7 shows the situation implementing a Sync TAttribute bit. When the Sync
TAttribute (bit 7) of a request winning arbitration is set, the crossbar blocks all subsequent
requests. The MCI and MPLB now propagate the FPGA logic busy signal all the way
through the crossbar to the respective masters.

The master requesting the sync transaction can either be on the SPLB or can be one of the
processor PLB interfaces. The processor can set the Sync TAttribute bit by setting it in the
translation lookaside buffer (TLB) entry for the page of memory where the data is located.
All transactions to that page (data loads/stores) are issued by the processor PLB master
interface with the Sync TAttribute bit asserted. The Sync TAttribute bit for that page is set
in software using user-defined storage attribute bit 3 (U3) via the tlbwe instruction. For
FPGA logic PLB masters sitting on the SPLB interface, the master can set the attribute
while making a request to the SPLB through the soft arbiter. The SPLB buffers the
command in an internal FIFO and propagates the Sync TAttribute bits to the crossbar.

Address Mapping
The crossbar accepts requests from five PLB master buses and funnels them to either the
MPLB slave bus or the MCI slave bus based on an address map programmed by the user.
Masters on the PLB have access to a 36-bit address bus consisting of a 4-bit upper address
bus, UABus, and a 32-bit lower address bus. (The 4-bit upper address bus is defined to be
zero within the EDK tools and IP.) The 36 address bits cover a 64 GB address range. The
32-bit lower address bus covers a 4 GB address range.

The address map is programmed by:

1. A 32-bit template selection register (TMPL_SEL_REG)

2. Four 32-bit address template registers (TMPLx_XBAR_MAP)

Figure 3-7: Sync TAttribute Situation

Crossbar
PLB

Interface

Busy

Busy

Request

Busy Busy

Busy

Busy

Busy

SPLB 1

SPLB 0

MCI

MPLB
Soft

Arbiter
FPGA Logic

Slave

Memory
Controller

Physical
Memory

Request

Request

Request

Request

Busy

UG200_c3_07_071307

http://www.xilinx.com

52 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

These registers, which are DCR programmable, get their default values from attribute pins
on the processor block.

The TMPL_SEL_REG register is a 32-bit register that concatenates 16 2-bit values. When it
receives a request, the crossbar examines the four upper address bits, UABus [28:31], and
indexes into the TMPL_SEL_REG register to obtain a two-bit value. The two bits determine
which of the four address template registers to used for the request (2’b00 =
TMPL0_XBAR_MAP, ..., 2’b11 = TMPL3_XBAR_MAP).

EDK sets TMPL_SEL_REG so that only the TMPL0_* registers are used to define crossbar
address mapping and SPLB address decoding for the supported 4 GB address space. This
is the only supported register configuration.

The four address template registers (TMPLx_XBAR_MAP) are 32 bits wide, where each bit
represents 1/32 of a 4 GB address space (128 MB). The crossbar uses the most-significant
five bits of the lower address bus (Abus[0:4]) to index into the selected address template
register to obtain a single bit value. If the bit in the address template register is set, a
request to that 128 MB address space is directed to the MCI slave bus. If it is cleared, the
request is directed to the MPLB slave bus.

Example Configuration

Assume the four address template registers have the following values:

TMPL_SEL_REG = 32’h3FFF_FFFF

TMPL0_XBAR_MAP = 32’h0000_000F

TMPL1_XBAR_MAP = 32’h0000_0000

TMPL2_XBAR_MAP = 32’h0000_0000

TMPL3_XBAR_MAP = 32’h0000_0000

1. If the request address is 36’h0_E923_3245:

First an address template register needs to be selected. Because the four upper address
bits are 4’h0, two bits are used starting at bit position 0. In the current configuration,
the bits are 2’b00. Therefore TMPL0_XBAR_MAP is used to decode the remaining
address bits.

The five most-significant address bits are used to index into the TMPL0_XBAR_MAP
register. Here the five bits are 5'b11101 or 5'd29. TMPL0_XBAR_MAP[29] is 1’b1
(set). Therefore this address is destined for the MCI.

2. If the request address = 36’h0_ABCD_9872:

Again, TMPL0_XBAR_MAP is used to decode the lower address bus bits.

The five most-significant address bits are used to index into the TMPL0_XBAR_MAP
register. Here the next lower five bits are 5’b10101 or 5’d21.
TMPL0_XBAR_MAP[21] is 1’b0 (cleared). Therefore this address is destined for the
MPLB.

Figure 3-8 shows the Address Template register, which divides the 4 GB address space into
128 MB regions. If the bit corresponding to a 128 MB region is set, that request is forwarded
to the MCI; otherwise, it is sent to the MPLB.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 53
UG200 (v1.6) January 20, 2009

Functional Description
R

The crossbar implements the address mapping for the processor PLB interfaces. For
requests originating from the SPLBs, the SPLBs predecode the requests. The SPLBs provide
this information to the crossbar via the MPLBnMCI signal. Thus the crossbar does not have
to decode the address again, which improves timing because the address-mapping logic
falls on the critical path.

Pipelining

Command Queues

The PLB protocol defines two phases of a transaction, the address phase and data phase,
which occur independently on separate buses. When a request is acknowledged by a slave,
the slave commits to provide the data during the data phase of the transaction. A delay
might occur before the data phase is started by the slave. Multiple data phases can also be
pipelined by the slaves in the system. To keep track of the outstanding data phases, the
crossbar maintains two command queues for each arbiter, one for reads and the other for
writes. The crossbar uses the information stored in the command queues to direct the slave
data phase responses to the appropriate master and to determine if a particular transaction
has completed.

The read and write command queues are each five deep and hence up to five read and five
write data phases can be outstanding to any slave bus.

When a master requests a transaction, the crossbar arbitrates between it and other
requesting masters. A winner is ascertained within the same clock cycle, the request is put
on the slave address bus, and the byte enable (BE) and size transfer qualifiers are pushed
into the crossbar command FIFO.

When a data phase completes, the command FIFO is popped and used to redirect the slave
signals to the correct masters.

Miscellaneous Notes

Conversion of Quadword Line Transfers to Single Transfers

Any quadword transfer requested from the crossbar is converted to a single transfer at the
slave port. Because the internal crossbar switch data buses are always 128 bits wide, single
and quadword line transfers are equivalent.

Figure 3-8: Address Template Register

0x
00

00
00

00
—

0x
07

F
F

F
F

F
F

0x
08

00
00

00
—

0x
0F

F
F

F
F

F
F

0x
10

00
00

00
—

0x
17

F
F

F
F

F
F

0x
18

00
00

00
—

0x
1F

F
F

F
F

F
F

0x
20

00
00

00
—

0x
27

F
F

F
F

F
F

0x
28

00
00

00
—

0x
2F

F
F

F
F

F
F

0x
30

00
00

00
—

0x
37

F
F

F
F

F
F

0x
38

00
00

00
—

0x
3F

F
F

F
F

F
F

0x
40

00
00

00
—

0x
47

F
F

F
F

F
F

0x
48

00
00

00
—

0x
4F

F
F

F
F

F
F

0x
50

00
00

00
—

0x
57

F
F

F
F

F
F

0x
58

00
00

00
—

0x
5F

F
F

F
F

F
F

0x
60

00
00

00
—

0x
67

F
F

F
F

F
F

0x
68

00
00

00
—

0x
6F

F
F

F
F

F
F

0x
70

00
00

00
—

0x
77

F
F

F
F

F
F

0x
78

00
00

00
—

0x
7F

F
F

F
F

F
F

0x
80

00
00

00
—

0x
87

F
F

F
F

F
F

0x
88

00
00

00
—

0x
8F

F
F

F
F

F
F

0x
90

00
00

00
—

0x
97

F
F

F
F

F
F

0x
98

00
00

00
—

0x
9F

F
F

F
F

F
F

0x
A

00
00

00
0—

0x
A

7F
F

F
F

F
F

0x
A

80
00

00
0—

0x
A

F
F

F
F

F
F

F
0x

B
00

00
00

0—
0x

B
7F

F
F

F
F

F
0x

B
80

00
00

0—
0x

B
F

F
F

F
F

F
F

0x
C

00
00

00
0—

0x
C

7F
F

F
F

F
F

0x
C

80
00

00
0—

0x
C

F
F

F
F

F
F

F
0x

D
00

00
00

0—
0x

D
7F

F
F

F
F

F
0x

D
80

00
00

0—
0x

D
F

F
F

F
F

F
F

0x
E

00
00

00
0—

0x
E

7F
F

F
F

F
F

0x
E

80
00

00
0—

0x
E

F
F

F
F

F
F

F
0x

F
00

00
00

0—
0x

F
7F

F
F

F
F

F
0x

F
80

00
00

0—
0x

F
F

F
F

F
F

F
F

UG200_c3_08_071307

0 7 15 23 31

http://www.xilinx.com

54 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Miscellaneous Signals

PPCCPMINTERCONNECTBUSY

The PPCCPMINTERCONNECTBUSY output from the processor block is asserted when
there are any transactions in flight within the processor block interconnect. The MPLB, MCI,
DMA, SPLB, and DCR interface blocks generate independent busy signals that are ORed
together to create PPCCPMINTERCONNECTBUSY.

Transactions in flight are defined as:

• SPLB

♦ Acknowledged request from the FPGA logic master to the SPLB that has not
completed its data phase

♦ Posted writes present within the SPLB

♦ A pending transaction between the SPLB and crossbar

• MPLB

♦ Acknowledged request from the MPLB to a FPGA logic slave whose data phase
has not been completed

♦ Posted writes present within the MPLB

♦ A pending transaction between the crossbar and MPLB

• MCI

♦ Posted writes present within the MCI

♦ A pending transaction between the crossbar and MCI

• DMA

♦ A pending transaction on the RX local link

♦ A pending transaction on the TX local link

♦ A pending transaction between the DMA and the SPLB/crossbar

♦ The RX descriptor chain is not complete

♦ The TX descriptor chain is not complete

• DCR

♦ A pending transaction on the DCR bus

Two scenarios where the PPCCPMINTERCONNECTBUSY signal can be used are:

• Sleep Control Logic

In a typical system, the clock control module puts the system into sleep mode by
gating the clock, when all the system’s masters have asserted their sleep request
signals. However, there might still be posted writes present within the processor block
that need to be flushed out to the slaves before the system is put to sleep. The clock
control module thus looks at the PPCCPMINTERCONNECTBUSY signal in addition
to the sleep request from the masters to gate the clock to the system. When the
PPCCPMINTERCONNECTBUSY signal is deasserted, the clock control module
knows it is safe to gate the clock without inducing any undefined behavior.

• Dynamic Reconfiguration of the Processor Block

The configuration registers of the interconnect blocks can be written to by DCR
transactions without resetting the processor block. This can only be done when there
are no transactions in flight within the processor block, else the behavior is undefined.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 55
UG200 (v1.6) January 20, 2009

Usage Notes and Limitations
R

The DCR master who performs the reconfiguration can sample the
PPCCPMINTERCONNECTBUSY signal to determine if it is safe to reconfigure the
processor block. If the PPCCPMINTERCONNECTBUSY signal is deasserted, the
master can write to the configuration registers via DCR transactions to change
parameters like crossbar priorities. This signal can also be used to safely change clock
ratios interfacing to or within the processor block.

Usage Notes and Limitations

Crossbar Limitations for PCI and PCI Express Designs
A crossbar is defined to allow transactions between ports that cannot be monitored by
devices on other ports. This can potentially lead to issues with ordering and forward
progress that can in some cases cause livelock or deadlock. As described below, both PCI®
and PCI Express designs require a specific system configuration to avoid these issues.

See the “PLB Interconnection Techniques,” page 124 for more details.

http://www.xilinx.com

56 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

Device Control Registers (DCRs)

Overview of the DCR Map
The crossbar includes a number of configuration bits that are accessible through the DCR
interface. The embedded processor or the external DCR master can read or modify the
crossbar configuration from the default value by issuing DCR read or DCR write
commands.

After a DCR write transaction is requested, the crossbar performs the internal register
write and asserts its acknowledge signal after a three-cycle delay. The crossbar similarly
puts out the requested read data and asserts the acknowledge signal after a three-cycle
delay. The acknowledge signal is deasserted three clock cycles after the read or write
request signal is deasserted.

Detailed DCR Descriptions

DCRs for the PLB Interfaces and Crossbar (0x20 – 0x5F)

A block of 64 DCR locations (0x20 to 0x5F) is allocated for use by the crossbar, two PLB
slaves (SPLB 0 and SPLB 1), the PLB master (MPLB), and the Address Map configuration
registers. Four separate DCR lists are shown in Table 3-1 through Table 3-4.

All the interrupt status bits of the PLB interfaces and the crossbar are consolidated in the
Interrupt Status register at 0x20. Registers with a tie-off value can be set to specified
default values via the corresponding attribute on the embedded processor block in Virtex-5
FPGAs.

Table 3-1: List of DCRs for the Crossbar

Address Mnemonic Description Type

Global Configuration and Status

0x20 IST Interrupt Status Register Clear on Write to bit
and Read Only

0x21 IMASK Interrupt Mask Register R/W

0x22 - Reserved -

Crossbar for PLB Master Configuration

0x23 ARB_XBC Arbitration Configuration Register R/W

Crossbar for PLB Master Status

0x24 FIFOST_XBC FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for PLB Master Hardware Debug

0x25 SM_ST_XBC State Machine States Register Read Only

0x26 MISC_XBC Miscellaneous Control and Status R/W, Write Only

0x27 - Reserved -

Crossbar for MCI Configuration

0x28 ARB_XBM Arbitration Configuration Register R/W

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 57
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

Crossbar for MCI Status

0x29 FIFOST_XBM FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for MCI Hardware Debug

0x2A - Reserved -

0x2B MISC_XBM Miscellaneous Control and Status R/W, Write Only

0x2C - Reserved -

Address Map Configuration

0x2D TMPL0_XBAR_MAP Template Register 0 for Crossbar R/W

0x2E TMPL1_XBAR_MAP Template Register 1 for Crossbar R/W

0x2F TMPL2_XBAR_MAP Template Register 2 for Crossbar R/W

0x30 TMPL3_XBAR_MAP Template Register 3 for Crossbar R/W

0x31 TMPL_SEL_REG Template Selection Register R/W

0x32 - Reserved -

0x33 - Reserved -

Table 3-1: List of DCRs for the Crossbar (Continued)

Address Mnemonic Description Type

Table 3-2: List of DCRs for PLB Slave 0 (SPLB 0)

Address Mnemonic Description Type

Configuration

0x34 CFG_PLBS0 Configuration Register R/W

0x35 - Reserved -

 Status

0x36 SEAR_U_PLBS0 Slave Error Address Register, upper 4 bits Clear on Write to 0x38

0x37 SEAR_L_PLBS0 Slave Error Address Register, lower 32 bits Clear on Write to 0x38

0x38 SESR_PLBS0 Slave Error Status Register Clear on Write

0x39 MISC_ST_PLBS0 Miscellaneous Status Register Clear on Write to bit

0x3A PLBERR_ST_PLBS0 PLB Error Status Clear on Write to bit

 Hardware Debug

0x3B SM_ST_PLBS0 State Machine States Register Read Only

0x3C MISC_PLBS0 Miscellaneous Control and Status R/W, WO, RO

0x3D CMD_SNIFF_PLBS0 Command Sniffer R/W

0x3E CMD_SNIFFA_PLBS0 Command Sniffer Address R/W

0x3F - Reserved -

http://www.xilinx.com

58 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

 Address Map

0x40 TMPL0_PLBS0_MAP Template Register 0 R/W

0x41 TMPL1_PLBS0_MAP Template Register 1 R/W

0x42 TMPL2_PLBS0_MAP Template Register 2 R/W

0x43 TMPL3_PLBS0_MAP Template Register 3 R/W

Table 3-2: List of DCRs for PLB Slave 0 (SPLB 0) (Continued)

Address Mnemonic Description Type

Table 3-3: List of DCRs for the PLB Slave 1 (SPLB 1)

Address Mnemonic Description Type

Configuration

0x44 CFG_PLBS1 Configuration Register R/W

0x45 - Reserved -

 Status

0x46 SEAR_U_PLBS1 Slave Error Address Register, upper 4 bits Clear on Write to 0x48

0x47 SEAR_L_PLBS1 Slave Error Address Register, lower 32 bits Clear on Write to 0x48

0x48 SESR_PLBS1 Slave Error Status Register Clear on Write

0x49 MISC_ST_PLBS1 Miscellaneous Status Register Clear on Write to bit

0x4A PLBERR_ST_PLBS1 PLB Error Status Clear on Write to bit

 Hardware Debug

0x4B SM_ST_PLBS1 State Machine States Register Read Only

0x4C MISC_PLBS1 Miscellaneous Control and Status R/W, WO, RO

0x4D CMD_SNIFF_PLBS1 Command Sniffer R/W

0x4E CMD_SNIFFA_PLBS1 Command Sniffer Address R/W

0x4F - Reserved -

Address Map

0x50 TMPL0_PLBS1_MAP Template Register 0 R/W

0x51 TMPL1_PLBS1_MAP Template Register 1 R/W

0x52 TMPL2_PLBS1_MAP Template Register 2 R/W

0x53 TMPL3_PLBS1_MAP Template Register 3 R/W

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 59
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

DCRs for the Crossbar (0x20 to 0x33)

0x20: Interrupt Status Register (IST), Clear on Writes, Read Only

This register contains all the interrupt status bits of the two PLB slave interfaces, PLB
master interface, and the crossbar (see Table 3-5). All register bits are cleared on writes,
except those that are marked as read only (RO). Writing a 1 to a clear-on-write bit clears it.
The read-only bits are cleared by writing to their corresponding source DCRs. For
example, bit 7 is cleared by writing 0s to the PLBS 0 FIFO Error Status register.

Note: Even if a particular interrupt is masked, these status bits are still set if the error condition is
detected.

Table 3-4: List of DCRs for the PLB Master (MPLB)

Address Mnemonic Description Type

Configuration

0x54 CFG_PLBM Configuration Register R/W

0x55 - Reserved -

Status

0x56 FSEAR_U_PLBM
FPGA Logic Slave Error Address Register, upper 4
bits

Clear on Write to 0x58

0x57 FSEAR_L_PLBM
FPGA Logic Slave Error Address Register, lower 32
bits

Clear on Write to 0x58

0x58 FSESR_PLBM FPGA Logic Slave Error Status Register Clear on Write

0x59 MISC_ST_PLBM Miscellaneous Status Clear on Write to bit

0x5A PLBERR_ST_PLBM PLB Error Status Clear on Write to bit

Hardware Debug

0x5B SM_ST_PLBM State Machine States Register Read Only

0x5C MISC_PLBM Miscellaneous Control and Status R/W, Write Only

0x5D CMD_SNIFF_PLBM Command Sniffer R/W

0x5E CMD_SNIFFA_PLBM Command Sniffer Address R/W

0x5F - Reserved -

Table 3-5: Bit Definitions for the IST Register

Bits Field Type Default Description

0:2 Reserved - 000 Reserved

3 INT_CFG_ERR_S0 RO 0
Configuration or command error, PLBS0. See register 0x39 for
further information.

4 INT_MIRQ_S0 RO 0 PLB MIRQ error, PLBS0

5 INT_MRDERR_S0 Clr on Wr 0
Read transaction error, PLBS0. See registers 0x36 through 0x38
for further information.

6 INT_MWRERR_S0 Clr on Wr 0
Write transaction error, PLBS0. See registers 0x36 through 0x38
for further information.

http://www.xilinx.com

60 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

7 INT_FIFO_ERR_S0 RO 0
FIFO error interrupt, PLBS0. See register 0x39 for further
information.

8:10 Reserved - 000 Reserved

11 INT_CFG_ERR_S1 RO 0
Configuration or command error, PLBS1. See register 0x49 for
further information.

12 INT_MIRQ_S1 RO 0 PLB MIRQ error, PLBS1

13 INT_MRDERR_S1 Clr on Wr 0
Read transaction error, PLBS1. See registers 0x46 through 0x48
for further information.

14 INT_MWRERR_S1 Clr on Wr 0
Write transaction error, PLBS1. See registers 0x46 through 0x48
for further information.

15 INT_FIFO_ERR_S1 RO 0
FIFO error interrupt, PLBS1. See register 0x49 for further
information.

16 Reserved - 0 Reserved

17 INT_CFG_ERR_M RO 0
Configuration error, PLBM. See register 0x59 for further
information.

18 INT_MIRQ_M RO 0 PLB MIRQ error, PLBM

19 INT_MRDERR_M Clr on Wr 0
Read transaction error, PLBM. See registers 0x56 through 0x58
for further information.

20 INT_MWRERR_M Clr on Wr 0
Write transaction error, PLBM. See registers 0x56 through 0x58
for further information.

21 INT_ARB_TOUT_M Clr on Wr 0 PLB Time-out error, PLBM

22 Reserved - 0 Reserved

23 Reserved - 0 Reserved

24 INT_FIFO_ERR_M RO 0
FIFO error interrupt, PLBM. See register 0x59 for further
information.

25 INT_FIFO_ERR_XM RO 0
FIFO error, Crossbar for PLBM. See register 0x58 for further
information.

26 INT_FIFO_ERR_MCI RO 0
FIFO error, Crossbar for MCI. See register 0x5D for further
information.

27:31 Reserved - 0 Reserved

Table 3-5: Bit Definitions for the IST Register (Continued)

Bits Field Type Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 61
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x21: Interrupt Mask Register (IMASK), R/W

This register contains the interrupt mask information (see Table 3-6). Clearing a bit to 0
masks the interrupt generation from the corresponding interrupting source in register
0x20.

0x23: Crossbar for PLB Master Arbitration Configuration Register (ARB_XBC),
R/W

This register configures crossbar arbitration priority and mode operations (see Table 3-7).
This register is initialized by embedded processor block attribute PPCM_ARBCONFIG.
Arbitration priority values apply to fixed and round-robin arbitration only, with 4
corresponding to the highest priority and 0 to the lowest priority. Values between 5 and 7
are reserved and should not be used due to unpredictable behavior. The five device

Table 3-6: Bit Definitions for the IMASK Register

Bits Field Default Description

0:2 Reserved 111 Reserved

3 M_INT_CFG_ERR_S0 1 Interrupt mask for configuration or command error, PLBS0

4 M_INT_MIRQ_S0 1 Interrupt mask for general error, PLBS0

5 M_INT_MRDERR_S0 1 Interrupt mask for read transaction error, PLBS0

6 M_INT_MWRERR_S0 1 Interrupt mask for write transaction error, PLBS0

7 M_INT_FIFO_ERR_S0 1 Interrupt mask for FIFO error, PLBS0

8:10 Reserved 111 Reserved

11 M_INT_CFG_ERR_S1 1 Interrupt mask for configuration or command error, PLBS1

12 M_INT_MIRQ_S1 1 Interrupt mask for general error, PLBS1

13 M_INT_MRDERR_S1 1 Interrupt mask for read transaction error, PLBS1

14 M_INT_MWRERR_S1 1 Interrupt mask for write transaction error, PLBS1

15 M_INT_FIFO_ERR_S1 1 Interrupt mask for FIFO error interrupt, PLBS1

16 Reserved 1 Reserved

17 M_INT_MPLB_ERR_M 1 Interrupt mask for configuration error, PLBM

18 M_INT_MIRQ_M 1 Interrupt mask for general error, PLBM

19 M_INT_MRDERR_M 1 Interrupt mask for read transaction error, PLBM

20 M_INT_MWRERR_M 1 Interrupt mask for write transaction error, PLBM

21 M_INT_ARB_TOUT_M 1 Interrupt mask for PLB time-out error, PLBM

22 Reserved 1 Reserved

23 Reserved 1 Reserved

24 M_INT_FIFO_ERR_M 1 Interrupt mask for FIFO error interrupt, PLBM

25 M_INT_FIFO_ERR_XM 1 Interrupt mask for FIFO error, Crossbar for PLBM

26 M_INT_FIFO_ERR_MCI 1 Interrupt mask for FIFO error, Crossbar for MCI

27:31 Reserved 5`b1 Reserved

http://www.xilinx.com

62 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

priority values must be mutually exclusive so that no two or more devices can have the
same priority, otherwise there are unpredictable results.

0x24: Crossbar for PLB Master FIFO Overflow and Underflow Status Register
(FIFOST_XBC), Clear on Writes

This register indicates the FIFO overflow and underflow status for the PLB master (see
Table 3-8). Individual register bits are cleared by writing 1s to them. Bit 31 of the interrupt
register is set if any of the FIFO overflow or underflow bit is set. None of these bits should
ever be set under normal operating conditions.

Table 3-7: Bit Definitions for the ARB_XBC Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0 Sync TAttribute (bit 7) enable, if set

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU)
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead

to unpredictable behavior)

Table 3-8: Bit Definitions for the FIFOST_XBC Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Indicates a write command queue overflow, when set

29 FIFO_UF_RCMDQ 0
Indicates a write command queue underflow, when
set

30 FIFO_OF_WCMDQ 0 Indicates a read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Indicates a read command queue underflow, when set

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 63
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x26: Crossbar for PLB Master Miscellaneous Control and Status Register
(MISC_PLBM), R/W or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see
Table 3-9). Read values for write-only bits are always 0s.

0x28: Crossbar for MCI Arbitration Configuration Register (ARB_XBM), R/W

This register configures crossbar arbitration priority and mode operations (see Table 3-10).
This register is initialized by embedded processor block attribute MI_ARBCONFIG.
Arbitration priority values apply to fixed and round-robin arbitration only with 4
corresponding to the highest priority and 0 to the lowest priority. Values between 5 and 7
are reserved and should not be used due to unpredictable behavior. The five device
priority values must be mutually exclusive so that no two or more devices can have the
same priority, otherwise unpredictable results could occur.

Table 3-9: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Read Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Write Command Queue

Table 3-10: Bit Definitions for the ARB_XBM Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28:29 Reserved 0 Reserved

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU)
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead

to unpredictable behavior)

http://www.xilinx.com

64 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x29: Crossbar for MCI FIFO Overflow and Underflow Status Register
(FIFOST_XBM), Clear on Writes

This register indicates the FIFO overflow and underflow status for the MCI (see
Table 3-11). Individual register bits are cleared by writing 1s to them. Bit 31 of the interrupt
register is set if the FIFO overflow or underflow bit is set. None of the bits should ever be
set under normal operating conditions.

0x2B: Crossbar for MCI Miscellaneous Control and Status Register (MISC_XBM),
R/W or Write Only

This register contains miscellaneous control and status bits for the MCI (see Table 3-12).
Read values for write-only bits are always 0s.

0x2D to 0x30: Crossbar Template Registers, R/W

There are four 32-bit template registers for the crossbar (see Table 3-13). Selection of one of
the four registers for address mapping is done through the Template Selection Register.
Each bit of a 32-bit register corresponds to 128 MByte address space for a total of 4 GB
addressing. Traffic is routed to the MCI if the address is within the 128 MB address range
that has the template bit set; otherwise the traffic is routed to the PLB Master. These
registers are initialized by embedded processor block attributes
XBAR_ADDRMAP_TMPL0 through XBAR_ADDRMAP_TMPL3.

Table 3-11: Bit Definitions for the FIFOST_XBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Write command queue overflow, when set

29 FIFO_UF_RCMDQ 0 Write command queue underflow, when set

30 FIFO_OF_WCMDQ 0 Read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Read command queue underflow, when set

Table 3-12: Bit Definitions for the MISC_XBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Read
Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Write
Command Queue

Table 3-13: Crossbar Template Registers

Address Mnemonic Default Description

0x2D TMPL0_XBAR_MAP 32’hFFFF_0000 Template Register 0 for Crossbar

0x2E TMPL1_XBAR_MAP 32’h0000_0000 Template Register 1 for Crossbar

0x2F TMPL2_XBAR_MAP 32’h0000_0000 Template Register 2 for Crossbar

0x30 TMPL3_XBAR_MAP 32’h0000_0000 Template Register 3 for Crossbar

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 65
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x31: Template Selection Register (TMPL_SEL_REG), R/W

This register is the template selection register for specifying the address mapping template
(see Table 3-14). There are 16 x 2-bit entries in this register corresponding to a 16 x 4-GB
address space. Each two-bit field identifies which of the four TMPL*_XBAR_MAP
registers are used to map crossbar addresses, which of the four TMPL*_PLBS0_MAP
registers are used to enable address decoding on SPLB 0, and which of the four
TMPL*_PLBS1_MAP registers are used to enable address decoding on SPLB 1. By default,
all of these address template registers are configured so that template 0 controls all
crossbar mapping and SPLB interface decoding for the lower 4 GB address space. Because
EDK supports only the lower 4 GB space, there is normally no reason for users to use
templates 1 through 3.

DCRs for PLB Slave 0, SPLB 0 (0x34 to 0x43)

0x34: PLB Slave 0 Configuration Register (CFG_PLBS0), R/W

This register configures PLB Slave 0 operation (see Table 3-15). This register is initialized
by embedded processor block attribute PPCS0_CONTROL.

Table 3-14: Bit Definitions for the TMPL_SEL_REG Register

Bits Field Default Description

0:31 SEL 32’h3FFF_FFFF 16 2-bit values for template register selection

Table 3-15: Bit Definitions for the CFG_PLBS0 Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x36, 0x37, and 0x38)
are locked.

1 Reserved 0 Reserved

2 DMA1_EN 0
• 0: Disable DMA1
• 1: Enable DMA1

3 DMA0_EN 0
• 0: Disable DMA0
• 1: Enable DMA0

4:5 DMA0_PRI 00

DMA0 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA1_PRI 00

DMA1 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

http://www.xilinx.com

66 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 3-15: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 67
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x36: PLB Slave 0 Error Address Register (SEAR_U_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 3-16). The content is valid if bit
0 of register 0x38 is set. A failed transaction corresponds to a command address mismatch
or an illegal command. This register is also used by the command sniffer (see registers
0x3D and 0x3E).

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically when bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting

• 0: No write posting (early data acknowledge)
• 1: Enables write posting

Bit 27 is cleared when this bit is 0. Only single transactions are supported
when write posting is disabled. The interrupt status flag (bit 3 of Crossbar
register 0x20) is set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0 Log ABUS address mismatch error, when set (see bit 2 in register 0x39)

31 CMD_CHK_DBL 0 Disable command (size) check, when set (see bits 0 and 1 in register 0x39)

Table 3-15: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

68 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x37: PLB Slave 0 Error Address Register (SEAR_L_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the lower 32-bit
address of 36-bit address of a failed transaction (see Table 3-17). The content is valid if bit 0
of register 0x38 is set. A failed transaction corresponds to a command address mismatch
or an illegal command. This register is also used by the command sniffer (see registers
0x3D and 0x3E).

0x38: PLB Slave 0 Error Status Register (SESR_PLBS0), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 3-18). A
failed transaction corresponds to a command address mismatch or an illegal command.
The slave interface only supports the following commands:

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only
single transfers are supported, any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x3D and 0x3E).

The content is valid when bit 0 is set. See also registers 0x36 and 0x37. This register is
cleared by writing to it. When bit 0 of 0x34 is set, this register is only updated when bit 0
becomes 0. When bit 0 of 0x34 is not set, this register is updated every time an error or sniff
event is detected.

Table 3-16: Bit Definitions for the SEAR_U_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-17: Bit Definitions for the SEAR_L_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-18: Bit Definitions for the SESR_PLBS0 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is
supported.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 69
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x39: PLB Slave 0 Miscellaneous Status Register (MISC_ST_PLBS0), Clear on
Writes

This register contains miscellaneous status bits for PLB Slave 0 (see Table 3-19). Individual
register bits are cleared by writing 1s to those bits that need to be cleared. Bit 3 of the
Interrupt Status register is set if the configuration error bit, the illegal command bit, or the
address mismatch error bit is set. Bit 7 of the Interrupt Status register is set if any FIFO
overflow or underflow bit is set. None of these bits should ever be set under normal
operating conditions.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-18: Bit Definitions for the SESR_PLBS0 Register (Continued)

Bits Field Default Description

Table 3-19: Bit Definitions for the MISC_ST_PLBS0 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write
posting is configured (see register 0x34) but a line or a burst transfer is
detected.

1 ILLEGAL_CMD 0
Illegal command detected. The supported commands include: size =
4’h0, 4’h1, 4’h2, 4’h3, 4’hA, 4’hB, or 4’hC. Qualified by bit 31 of
register 0x34.

2 ADDR_ERR 0 Address mismatch error. Qualified by bit 30 of register 0x34.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

http://www.xilinx.com

70 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x3A: PLB Slave 0 PLB Error Status Register (PLBERR_ST_PLBS0), Clear on
Writes

This register contains MIRQ status bits for PLB Slave 0 (see Table 3-20). Individual register
bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB MIRQ
status bits, which can be set due to either the propagation of the slave MIRQ status or
conversion of slave MwrErr into MIRQ because of write posting. Refer to the PLB
Architecture Specification [Ref 4] for more information on the MIRQ signal.

0x3B: PLB Slave 0 State Machine States Register (SM_ST_PLBS0), Read Only

This register indicates the states of the PLB Slave 0 state machine (see Table 3-21). This
register is reserved for internal use.

0x3C: PLB Slave 0 Miscellaneous Control and Status Register (MISC_PLBS0),
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 0 (see Table 3-22).
Write-only bits always read as 0s.

Table 3-20: Bit Definitions for the PLBERR_ST_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

29 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

30 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

31 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

Table 3-21: Bit Definitions for the SM_ST_PLBS0 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-22: Bit Definitions for the MISC_PLBS0 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS0 is in 64-bit mode
• 1: PLBS0 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 71
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x3D: PLB Slave 0 Command Sniffer Register (CMD_SNIFF_PLBS0), R/W

This register contains the description of a command (the address is specified in 0x3E) that
is to be monitored (see Table 3-23). The result is placed in registers 0x38 through 0x3A.
This register is used for debugging purposes.

0x3E: PLB Slave 0 Command Sniffer Address Register (CMD_SNIFFA_PLBS0),
R/W

This register, used in conjunction with register 0x3D, contains the address for command
sniffing (see Table 3-24).

Table 3-23: Bit Definitions for the CMD_SNIFF_PLBS0 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’b0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-24: Bit Definitions for the CMD_SNIFFA_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

72 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x40 to 0x43: PLB Slave 0 Template Registers, R/W

Table 3-25 lists the set of four 32-bit template registers for PLB Slave 0. Selection of one of
four registers for address mapping is done through the Template Selection Register. Each
bit of a 32-bit register corresponds to a 128 MB address space for a 4 GB addressing. Set a
bit to 1 to enable the corresponding 128 MB address space. These registers are initialized by
embedded processor block attributes PPCS0_ADDRMAP_TMPL0 through
PPCS0_ADDRMAP_TMPL3.

DCRs for PLB Slave 1, SPLB 1 (0x44 to 0x53)

0x44: PLB Slave 1 Configuration Register (CFG_PLBS1), R/W

This register configures PLB Slave 1 operation (see Table 3-26). This register is initialized
by embedded processor block attribute PPCS1_CONTROL.

Table 3-25: PLB Slave 0 Template Registers

Address Mnemonic Default Description

0x40 TMPL0_PLBS0_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 0

0x41 TMPL1_PLBS0_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 0

0x42 TMPL2_PLBS0_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 0

0x43 TMPL3_PLBS0_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 0

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x46, 0x47, and 0x48)
are locked.

1 Reserved 0 Reserved

2 DMA3_EN 0
• 0: Disable DMA3
• 1: Enable DMA3

3 DMA2_EN 0
• 0: Disable DMA2
• 1: Enable DMA2

4:5 DMA2_PRI 00

DMA2 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA3_PRI 00

DMA3 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 73
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description

http://www.xilinx.com

74 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x46: PLB Slave 1 Error Address Register (SEAR_U_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 3-27). The content is valid if
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address
mismatch or an illegal command. This register is also used by the command sniffer (see
registers 0x4D and 0x4E).

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfer.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically if bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 27 is cleared if this bit is 0. Only single transactions are supported if write
posting is disabled. Interrupt status flag (bit 11 of Crossbar register 0x20) is
set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0 Log ABUS address mismatch error, if set (see bit 2, register 0x49)

31 CMD_CHK_DBL 0 Disable command (size) check, if set (see bits 0 and 1, register 0x49)

Table 3-26: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 75
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x47: PLB Slave 1 Error Address Register (SEAR_L_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the lower 32-bit
address of the 36-bit address of a failed transaction (see Table 3-28). This content is valid if
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address
mismatch or an illegal command. This register is also used by the command sniffer (see
registers 0x4D and 0x4E).

0x48: PLB Slave 1 Error Status Register (SESR_PLBS1), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 3-29). A
failed transaction corresponds to a command address mismatch or an illegal command.
The slave interface only supports the following commands:

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only
single transfers are supported, and any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x4D and 0x4E).

The content is valid if bit 0 is set. See also registers 0x46 and 0x47. This register is cleared
by writing to it. If bit 0 of register 0x44 is set, this register is only updated when bit 0
becomes 0. If bit 0 of register 0x44 is not set, this register is updated every time an error or
sniff event is detected.

Table 3-27: Bit Definitions for the SEAR_U_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-28: Bit Definitions for the SEAR_L_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-29: Bit Definitions for the SESR_PLBS1 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is
supported.

http://www.xilinx.com

76 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x49: PLB Slave 1 Miscellaneous Status Register (MISC_ST_PLBS1), Clear on
Writes

This register contains miscellaneous status bits for PLB Slave 1 (see Table 3-30). Individual
register bits are cleared by writing 1s to those bits that need to be cleared. Bit 11 of the
Interrupt Status register is set if the configuration error bit, the illegal command bit, or the
address mismatch error bit is set. Bit 15 of the Interrupt Status register is set if any FIFO
overflow or underflow bit is set. None of these bits should ever be set under normal
operating conditions.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-30: Bit Definitions for the MISC_ST_PLBS1 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0

When this bit is set, a write posting configuration
error occurred. No write posting is configured (see
register 0x44) but a line or a burst transfer is
detected.

1 ILLEGAL_CMD 0

Illegal command detected. The supported
commands include: size = 4’h0, 4’h1, 4’h2, 4’h3,
4’hA, 4’hB, or 4’hC. Qualified by bit 31 of register
0x44.

2 ADDR_ERR 0
Address mismatch error. Qualified by bit 30 of
register 0x44.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0
When this bit is set, a Read Data Queue overflow
occurred

19 FIFO_UF_RDAT 0
When this bit is set, a Read Data Queue underflow
occurred

20 FIFO_OF_WDAT 0
When this bit is set, a Write Data Queue overflow
occurred

21 FIFO_UF_WDAT 0
When this bit is set, a Write Data Queue underflow
occurred

22 FIFO_OF_SRDQ 0
When this bit is set, a Slave Read Queue overflow
occurred

23 FIFO_UF_SRDQ 0
When this bit is set, a Slave Read Queue underflow
occurred

24 FIFO_OF_SWRQ 0
When this bit is set, a Slave Write Queue overflow
occurred

Table 3-29: Bit Definitions for the SESR_PLBS1 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 77
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x4A: PLB Slave 1 PLB Error Status Register (PLBERR_ST_PLBS1), Clear on
Writes

This register contains the MIRQ status bits for PLB Slave 1 (see Table 3-31). Individual
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status
or conversion of slave MwrErr into MIRQ because of write posting.

0x4B: PLB Slave 1 State Machine States Register (SM_ST_PLBS1), Read Only

This register indicates the states of the state machine for PLB Slave 1 (see Table 3-32). This
register is reserved for internal use.

25 FIFO_UF_SWRQ 0
When this bit is set, a Slave Write Queue underflow
occurred

26 FIFO_OF_MRDQ 0
When this bit is set, a Master Read Queue overflow
occurred

27 FIFO_UF_MRDQ 0
When this bit is set, a Master Read Queue underflow
occurred

28 FIFO_OF_MWRQ 0
When this bit is set, a Master Write Queue overflow
occurred

29 FIFO_UF_MWRQ 0
When this bit is set, a Master Write Queue underflow
occurred

30 FIFO_OF_INCMD 0
When this bit is set, an Input Command Queue
overflow occurred

31 FIFO_UF_INCMD 0
When this bit is set, an Input Command Queue
underflow occurred

Table 3-31: Bit Definitions for the PLBERR_ST_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 3-32: Bit Definitions for the SM_ST_PLBS1 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-30: Bit Definitions for the MISC_ST_PLBS1 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

78 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x4C: PLB Slave 1 Miscellaneous Control and Status Register (MISC_PLBS1),
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 1 (see Table 3-33).
Write-only bits always read as 0s.

0x4D: PLB Slave 1 Command Sniffer Register (CMD_SNIFF_PLBS1), R/W

This register contains the description of a command (whose address is specified in register
0x4E) that is to be monitored (see Table 3-34). The results are placed in registers 0x48
through 0x4A. This register is used for debugging purposes.

Table 3-33: Bit Definitions for the MISC_PLBS1 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS1 is in 64-bit mode
• 1: PLBS1 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only
Write a 1 to this bit to reset the
Read Data Queue

26 FIFO_WDAT_RST 0 Write Only
Write a 1 to this bit to reset the
Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only
Write a 1 to this bit to reset the
Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only
Write a 1 to this bit to reset the
Master Write Queue

31 FIFO_INCMD_RST 0 Write Only
Write a 1 to this bit to reset the
Input Command Queue

Table 3-34: Bit Definitions for the CMD_SNIFF_PLBS1 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture disabled
• 1: Command command enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 79
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x4E: PLB Slave 1 Command Sniffer Address (CMD_SNIFFA_PLBS1), R/W

This register, used in conjunction with register 0x4D, contains the address (lower 32 bits)
for command sniffing (see Table 3-35).

0x50 to 0x53: PLB Slave 1 Template Registers, R/W

Table 3-36 lists the set of four 32-bit template registers for PLB Slave 1. Selection of one of
four registers for address mapping is done through the Template Selection Register. Each
bit of a 32-bit register corresponds to 128 MB address space for a total of 4 GB addressing.
Set a bit to 1 to enable the corresponding 128 MB address space. These registers are
initialized by embedded processor block attributes PPCS1_ADDRMAP_TMPL0 through
PPCS1_ADDRMAP_TMPL3.

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0

Enable master ID match, if set

• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-35: Bit Definitions for the CMD_SNIFFA_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32-bit of a 36-bit address

Table 3-36: PLB Slave 1 Template Registers

Address Mnemonic Default Description

0x50 TMPL0_PLBS1_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 1

0x51 TMPL1_PLBS1_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 1

0x52 TMPL2_PLBS1_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 1

0x53 TMPL3_PLBS1_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 1

Table 3-34: Bit Definitions for the CMD_SNIFF_PLBS1 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

80 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

DCRs for PLB Master, MPLB (0x54 to 0x5F)

0x54: PLB Master Configuration Register (CFG_PLBM), R/W

This register configures PLB Master operation (see Table 3-37). This register is initialized
by embedded processor block attribute PPCM_CONTROL.

Table 3-37: Bit Definitions for the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x56, 0x57, and
0x58) are locked.

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved (can lead to unexpected behavior, if set to 1).

26 SL_ETERM_MODE 0
When this bit is set, slave early burst termination is supported. Bits 28
and 29 are cleared automatically when this bit is set. This mode
prevents R/W command re-ordering.

27 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30 is
0 to prevent posted write data.

30 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported
if write posting is disabled. Interrupt status flag (bit 17 of Crossbar
register 0x20) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 81
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x56: FPGA Logic Slave Error Address Register (FSEAR_U_PLBM), Clear on
Writes

This register is cleared by writing to register 0x58. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 3-38). The content is valid if bit
0 of register 0x58 is set. A failed transaction corresponds to one of the following
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x57: FPGA Logic Slave Error Address Register (FSEAR_L_PLBM), Clear on
Writes

This register is cleared by writing to register 0x58. This register captures the lower 32-bit
address of a 36-bit address of a failed transaction (see Table 3-39). The content is valid if
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x58: FPGA Logic Slave Error Status Register (FSESR_PLBM), Clear on Writes

This register is cleared by writing to it. This register captures the transaction qualifiers of a
failed transaction (see Table 3-40). A failed transaction corresponds to one of the following
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr.

This register is also used by the command sniffer (see registers 0x5D – 0x5E).

The content is valid if bit 0 is set. See also registers 0x56 and 0x57. If bit 0 of register 0x54
is set, this register is only updated when bit 0 becomes 0. If bit 0 of register 0x54 is not set,
the register is updated every time an error or sniff event is detected.

Table 3-38: Bit Definitions for the FSEAR_U_PLBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 3-39: Bit Definitions for the FSEAR_L_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 3-40: Bit Definitions for the FSESR_PLBM Register

Bits Field Default Description

0 VLD 0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 0 M_lockErr to the PLB slave

2 PLBS_DMA 0
• 1: Command from PLB slave 0 or 1
• 0: Command from a DMA engine. Value is only valid if

MID is 3 or 4.

http://www.xilinx.com

82 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x59: PLB Master Miscellaneous Status Register (MISC_ST_PLBM), Clear on
Writes

This register contains miscellaneous status bits for the PLB master (see Table 3-41).
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 17
of the Interrupt Status register is set if either or both of the configuration error bits are set.
Bit 24 of the Interrupt Status register is set if any FIFO overflow or underflow bit is set.
None of these bits should ever be set under normal operating conditions.

3:5 MID 3’b0

Master ID.

• 000: ICUR
• 001: DCUW
• 010: DCUR
• 011: PLBS0
• 100: PLBS1

6:7 SSIZE 2’b0 Slave size (00, 01, or 10). 11 indicates address time-out.

8:10 TYPE 3’b0 PLB Type. Only 000 for memory transfers is supported.

11 RNW 0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 3-40: Bit Definitions for the FSESR_PLBM Register (Continued)

Bits Field Default Description

Table 3-41: Bit Definitions for the MISC_ST_PLBM Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write
posting is configured (see register 0x54) but a line or a burst transfer is
detected.

1 ETERM_CFG_ERR 0
When this bit is set, a slave early burst termination configuration error
occurred. Early termination is not configured (see register 0x54), but
early termination is detected.

2:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 83
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x5A: PLB Master PLB Error Status Register (PLBERR_ST_PLBM), Read Only or
Clear on Writes

This register contains MIRQ status bits for the PLB master (see Table 3-42). Bits 19:31 are
PLB MIRQ status bits that can be set due to either the propagation of the slave MIRQ status
or conversion of slave MwrErr into MIRQ because of write posting.

• If the slave PLB MIRQ signal, which is latched at the slave, is set, all MIRQ bits in the
register are set. They are read only, so they are cleared when the PLB MIRQ is cleared.

• If the slave PLB MwrErr, which is a pulse, is set and write posting is enabled, one of
the MIRQ bits is set. In this case, the register bit is cleared by writing a 1 to the bit.

Bits 19 and 20 correspond to MIRQ errors for writes that originated from the DMA engines
in SPLB0/1.

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 3-41: Bit Definitions for the MISC_ST_PLBM Register (Continued)

Bits Field Default Description

Table 3-42: Bit Definitions for the PLBERR_ST_PLBM Register

Bits Field Default Description

0:18 Reserved 0 Reserved

19 PLBS0_DMA_MIRQ 0 PLB Slave 0, DMA MIRQ

20 PLBS1_DMA_MIRQ 0 PLB Slave 1, DMA MIRQ

21 C440_MIRQ_ICUR 0 Processor ICUR MIRQ

22 C440_MIRQ_DCUW 0 Processor DCUW MIRQ

23 C440_MIRQ_DCUR 0 Processor DCUR MIRQ

24 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

25 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

26 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

27 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

http://www.xilinx.com

84 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

0x5B: PLB Master State Machine States Register (SM_ST_PLBM), Read Only

This register indicates the states of the state machine for the PLB Master (see Table 3-43).
This register is reserved.

0x5C: PLB Master Miscellaneous Control and Status Register (MISC_PLBM), R/W
or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see
Table 3-44). Write-only bits always read as 0s.

0x5D: PLB Master Command Sniffer Register (CMD_SNIFF_PLBM), R/W

This register contains the description of a command (whose address is specified in register
0x5E) that is to be monitored (see Table 3-45). The results are placed in registers 0x58
through 0x5A. This register is used for debugging purposes.

Table 3-43: Bit Definitions for the SM_ST_PLBM Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 3-44: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0 Reserved 0 Write Only Reserved

1:2 FLUSH_MODE 00 R/W

Flush mode select

• 00: Automatic addrAck time-out flush
• 01 - 10: Reserved
• 11: No flush

3 Reserved 0 R/W Reserved

4:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

Table 3-45: Bit Definitions for the CMD_SNIFF_PLBM Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 85
UG200 (v1.6) January 20, 2009

Device Control Registers (DCRs)
R

0x5E: PLB Master Command Sniffer Address (CMD_SNIFFA_PLBM), R/W

This register, used in conjunction with register 0x5D, contains the ABUS address (lower 32
bits) for command sniffing (see Table 3-46).

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 SPLBNDMA_EN 0
• 0: Disable SPLBndma match
• 1: Enable SPLBndma match

29 SPLB_MID_EN 0
• 0: Disable SPLB_MID match
• 1: Enable SPLB_MID match

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 3-45: Bit Definitions for the CMD_SNIFF_PLBM Register (Continued)

Bits Field Default Description

Table 3-46: Bit Definitions for the CMD_SNIFFA_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

86 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 3: Crossbar
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 87
UG200 (v1.6) January 20, 2009

R

Chapter 4

PLB Interface

MPLB Interface
The primary purpose of the crossbar MPLB interface is to provide access from the
processor to PLB-based memory (if any) and non-memory peripherals. The MPLB also
allows DMA access from processor block LocalLink interfaces to PLB-based memory (if
any). The MPLB also allows access from PLB-based masters outside the embedded
processor block in Virtex-5 FXT FPGAs, connected via one of the SPLB interfaces, to PLB-
based memories and non-memory peripherals, which are also to be shared with the
processor. See “PLB Interconnection Techniques,” page 124.

The crossbar MPLB interface is a 128-bit wide master on the PLB. The PLB to which it is
connected can be populated by slaves with any mixture of data widths and functional
capabilities. However, care should be taken that burst and cache-line transfer requests are
not directed at slave peripherals that do not support burst or cache-line transfers. The
MPLB interface does not automatically translate burst or cache-line transfers into single-
unit transfers to satisfy the limitations of such slaves. Therefore, all pages in the processor’s
MMU that contain addresses of such slaves should be designated as cache-inhibited.

Transaction Types
The MPLB can request the following transaction types allowed under the PLB Architecture
Specification [Ref 4].

• Single Unit

The MPLB can produce single-unit transfers of unaligned data from 1 to 16 bytes.
These can be requested by the processor’s data load/store unit when accessing cache-
inhibited spaces, or can originate from PLB masters connected to the SPLB. They also
can be automatically generated at the head and/or tail of burst transfers, originating at
the crossbar SPLB or DMA (LocalLink) interfaces, that begin and/or end on unaligned
addresses. All single-unit transfers of any size that can be issued by the MPLB interface
are compatible with all slaves of any size and capability range.

• Bursts

The MPLB can produce fixed length bursts of 2 to 16 quadwords. The actual number of
data beats used to transfer the entire burst depends on the size of the targeted slave (up
to 32 beats for 64-bit slaves, and up to 64 beats for 32-bit slaves). Burst transfers
typically originate at the crossbar’s SPLB or DMA interfaces. (The processor’s
instruction fetch and data load/store units never request burst-type transfers.) The
crossbar can be configured to limit the maximum size, in quadwords, of all burst
transfers through the crossbar to be 16, 8 (default), 4, or 2. Any burst request received
by the crossbar that exceeds the configured limit is broken into multiple bursts of up to
the maximum size. Bursts produced by the MPLB interface are compatible with all

http://www.xilinx.com

88 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

slaves that support burst transfers, provided that any data FIFO in the slave required
to buffer read or write data is large enough to handle the maximum burst length that
the crossbar is configured to produce.

• Cache Lines

The MPLB can produce transfers of aligned 8-word (32-byte) cache lines. Typically,
only the processor requests cache-line transfers. The processor instruction fetch unit
requests only 8-word cache-line transfers. The processor data load/store unit can
request either 8-word (typically) or 4-word cache-line transfers. Cache-line requests
received by the crossbar SPLB interface are also propagated through the crossbar. The
targeted slave must return cache-line reads in an aligned sequential order. Cache-line
reads can be returned beginning with either the first word of the cache line or the
quadword containing the target word, and must always proceed sequentially through
the remainder of the cache line, incrementing according to the size of the data units
being transferred, as shown in Table 4-1. Cache-line writes are always aligned to the
beginning of the cache line. All cache-line transfers produced by the MPLB interface
are compatible with all slaves that support cache-line transfers.

The MPLB converts 4-word cache lines into single transfers, so that the MPLB does not
send out 4-word cache line commands to PLB slaves. Furthermore, the MPLB
automatically adjusts the cache-line read address to a quadword boundary.

In the example in Table 4-1, the processor requests an 8-word cache-line read from a
64-bit slave on the MPLB interface. The least-significant five bits of the physical
address requested by the processor (Abus[27:31]) are “11100”, meaning that the target
word is the seventh word of the cache line. The embedded processor block crossbar
always adjusts the target address so that it is quadword aligned. Therefore, in the
transaction requested on the MPLB interface, Abus[27:31] = “10000”. The target word
originally requested by the processor is shaded in the table.

Table 4-1: Allowable Cache-Line Read Data Ordering on the MPLB

Data Beat
Doubleword Returned by Slave (Least-Significant Five Address Bits)

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Alternative 1: Cache-Line Aligned

1 00000 00001 00010 00011 00100 00101 00110 00111

2 01000 01001 01010 01011 01100 01101 01110 01111

3 10000 10001 10010 10011 10100 10101 10110 10111

4 11000 11001 11010 11011 11100 11101 11110 11111

Alternative 2: Target Word First

1 10000 10001 10010 10011 10100 10101 10110 10111

2 11000 11001 11010 11011 11100 11101 11110 11111

3 00000 00001 00010 00011 00100 00101 00110 00111

4 01000 01001 01010 01011 01100 01101 01110 01111

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 89
UG200 (v1.6) January 20, 2009

MPLB Interface
R

MPLB Interface Features
The MPLB can operate at an integer 1:N clock ratio with respect to the crossbar
interconnect clock (CPMINTERCONNECTCLK), where 1 ≤N ≤16.

The MPLB never prematurely terminates a burst. If the originating PLB master
prematurely terminates a burst (the processor never generates burst type transfers), the
command translation process in the SPLB converts that to a fixed-length burst or a single
or a mix of fixed-length bursts and single transfers.

When a soft PLB slave does not respond to an MPLB transfer request, the soft arbiter sends
the time-out signal to the MPLB, causing the command to be flushed. For a time-out write
command, the MPLB flushes the command and the associated write data, and a write error
signal or MIRQ propagates back to the originating master. For a time-out read command,
the MPLB flushes the command and generates dummy read data back to the originating
master with the read error signal asserted.

For all transactions targeting narrower slaves (32- or 64-bit native data width), the MPLB
performs the required data steering to accept (read) or present (write) data in the byte lanes
expected by the slave. For single-unit transfers targeting narrower slaves in which the
number of enabled byte lanes exceeds the native width of the slave (as indicated by
PLB_MSsize), the MPLB automatically generates the required conversion cycles (issues
subsequent bus requests) to complete the originally requested transfer.

The MPLB fully supports address pipelining. If acknowledged, the MPLB continues to
issue up to four read requests and four write requests onto the PLB, as queued up by the
crossbar. The MPLB interface can be configured to disable address pipelining.

The MPLB supports overlapped read and write transfers. In other words, a read request
that is acknowledged while a prior write data transfer is in progress can result in read data
being transferred over the bus concurrently with write data and vice-versa.

The MPLB supports a Sync control signal, which is specific to the crossbar. The Sync signal
is mapped to the PLB signal TAttribute[7], which is set by the processor when Storage
Attribute “U3” is set in the TLB for the page addressed by the transfer. When asserted by
any master targeting the MPLB (and provided the MPLB is configured to enable the Sync
feature), the Sync signal causes the crossbar to block subsequent MPLB transfers until the
target slave deasserts its MBusy signal back to the MPLB master. Also, the crossbar
propagates the slave's MBusy signal back to the originating master until deasserted by the
slave. This allows masters to ensure that the transaction (such as a posted write) is actually
completed by the slave before issuing subsequent transfers. Without the Sync signal,
MBusy is normally deasserted to the originating master as soon as the transfer completes
on the MPLB.

http://www.xilinx.com

90 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

MPLB Interface Signals
Table 4-2 summarizes the MPLB Interface signals in alphabetical order.

Table 4-2: MPLB Interface Signals

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

CPMPPCMPLBCLK PLB_Clk I 1

This clock synchronizes the MPLB interface
to the connected PLB arbiter. The MPLB
can operate at an integer 1:N clock ratio
with respect to the crossbar interconnect
clock (CPMINTERCONNECTCLK),
where 1 ≤N ≤16.

PLBPPCMADDRACK PLB_MAddrAck I 0

The slave asserts this signal to indicate that
it has acknowledged the address and will
latch the address and all transfer qualifiers
at the end of the current clock cycle.

PLBPPCMMBUSY PLB_MBusy I 0

The slave asserts this signal to indicate that
the slave is busy performing a read or a
write transfer or has a read or write
transfer pending that was initiated by the
MPLB interface. This signal is propagated
back to the originating master until the
slave deasserts it (if the Sync signal was
asserted at the time of the request) or until
the current transfer completes (if Sync
was not asserted; see M_TAttribute[7]).

PLBPPCMMIRQ PLB_MIRQ I 0

The slave asserts this signal to indicate that
it encountered an event that it has deemed
important to the master. MIRQ is generally
used to indicate an error condition that is
not associated with a read or write transfer
currently in progress. Propagated back to
the originating master, if known; otherwise
broadcast to all PLB masters connected to
the crossbar (including the processor).

PLBPPCMMRDERR PLB_MRdErr I 0

The slave asserts this signal to indicate that
it encountered an error during a read
transfer that was initiated by this master,
typically a transfer still in progress.
Propagated back to the originating master.

PLBPPCMMWRERR PLB_MWrErr I 0

The slave drives this input to indicate that it
encountered an error during a write transfer
that was initiated by this master, typically a
transfer still in progress. Propagated back to
the originating master if the transfer is still
in progress (not posted); otherwise MIRQ is
sent back to the master.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 91
UG200 (v1.6) January 20, 2009

MPLB Interface
R

PLBPPCMRDBTERM PLB_MRdBTerm I 0

The slave asserts this signal to indicate to a
master that the current burst read transfer in
progress is to be terminated following the
next read data beat.

PLBPPCMRDDACK PLB_MRdDAck I 0

The slave asserts this signal during a read
transfer to indicate that the data on the
Sl_rdDBus bus is valid and must be latched
at the end of the current clock cycle.

PLBPPCMRDDBUS[0:127] PLB_MRdDBus [0:127] I x 128-bit data bus used to transfer data from a
slave to a master during a PLB read transfer.

PLBPPCMRDPENDPRI[0:1] PLB_rdPendPri[0:1] I x

Not used by the embedded processor block
in Virtex-5 FPGAs. The PLB arbiter drives
these signals, which are valid when the
PLB_rdPendReq signal is asserted. These
signals indicate the highest priority of any
active read request input from all masters
attached to the PLB or a pipelined read
transfer that has been acknowledged and is
pending.

PLBPPCMRDPENDREQ PLB_rdPendReq I 0

Not used by the embedded processor block
in Virtex-5 FPGAs. The PLB arbiter asserts
this signal to indicate that a master has a
read request pending on the PLB or a
secondary read transfer has been
acknowledged and is pending.

PLBPPCMRDWDADDR[0:3] PLB_MRdWdAddr[0:3] I 0

The slave drives this bus to indicate the
relative word address within the cache line
of the first word of the data unit currently
being transferred as part of a requested
cache-line read transfer. Slaves are required
to respond to line reads by returning data in
an aligned sequential order. Cache-line
reads may be returned beginning either
with the first word of the cache line or the
data unit (word, doubleword or quadword
aligned, depending on the slave’s native
data width) containing the target word.
These reads must always proceed
sequentially through the remainder of the
cache line, incrementing according to the
size of the data units being transferred.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

92 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PLBPPCMREARBITRATE PLB_MRearbitrate I 0

The slave asserts this signal to indicate that
it cannot perform the currently requested
transfer at this time, and it requires the
master to temporarily deassert its request
and the PLB arbiter to re-arbitrate the bus.
The crossbar MPLB master always
subsequently re-requests the same
command. It does not issue queued
commands out of sequence.

PLBPPCMREQPRI[0:1] PLB_reqPri[0:1] I x

Not used by the embedded processor block
in Virtex-5 FPGAs. The PLB arbiter drives
these signals, which are valid any time the
PLB_rdPendReq or PLB_wrPendReq
signals are asserted. These signals indicate
the priority of the current request that the
PLB arbiter has granted and is gating to the
slaves.

PLBPPCMSSIZE[0:1] PLB_MSSize[0:1] I 1

The slave asserts this signal to indicate its
native data width, which also indicates the
maximum size of the data unit that can be
transferred during each data beat on the
bus.

• 00: 32 bits
• 01: 64 bits
• 10: 128 bits
• 11: Illegal

PLBPPCMTIMEOUT PLB_MTimeout I 0

The PLB arbiter drives this signal to each
master. This signal is asserted in the 17th
clock cycle after the assertion of
PLB_PAValid, if no response is received
from any slave. The crossbar then sends
MIRQ back to the originating master.

PLBPPCMWRBTERM PLB_MWrBTerm I 0

The slave asserts this signal to indicate that
the current burst write transfer in progress
is to be terminated following the next write
data beat.

PLBPPCMWRDACK PLB_MWrDAck I 0

The slave asserts this signal during a write
transfer to indicate that the data currently
on the PLB_wrDBus bus is no longer
required by the slave (that is, the slave has
either already latched the data or will latch
the data at the end of the current clock
cycle).

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 93
UG200 (v1.6) January 20, 2009

MPLB Interface
R

PLBPPCMWRPENDPRI[0:1] PLB_wrPendPri[0:1] I x

Not used by the embedded processor block
in Virtex-5 FPGAs. The PLB arbiter drives
these signals, which are valid any time the
PLB_wrPendReq signal is asserted. These
signals indicate the highest priority of any
active write request input from all masters
attached to the PLB or a pipelined write
transfer that has been acknowledged and is
pending.

PLBPPCMWRPENDREQ PLB_wrPendReq I 0

Not used by the embedded processor block
in Virtex-5 FPGAs. The PLB arbiter asserts
this signal to indicate that a master has a
write request pending on the PLB or a
secondary write transfer has been
acknowledged and is pending.

PPCMPLBABORT M_abort O
The MPLB interface never asserts this
signal.

PPCMPLBABUS[0:31] M_ABus[0:31] O

32-bit starting address for the currently
requested transfer. This bus is valid while
M_request is active. For single-unit
transfers, this bus indicates the address of
the first enabled byte lane. For cache-line
reads, this bus indicates the target word that
should be returned first (optimally) when
reading the line containing the address.

PPCMPLBBE[0:15] M_BE[0:15] O

For single-unit transfers, these signals act as
byte enables to identify which bytes of the
target being addressed are to be read from
or written to. Each bit corresponds to a byte
lane on the read or write data bus. For burst
transfers, BE[0:3] indicates the number of
data units of the requested size to be read or
written, ranging from 0001 (2 units) to
1111 (16 units). It will never produce 0000
on BE[0:3] or a non-zero value on BE[4:15]
for a burst transfer. This bus is not used
during cache-line transfers (all zeros). This
bus is valid while M_request is active. Due
to command translation in the crossbar, the
M_BE outputs do not necessarily reflect the
PLB_BE signals received from the
originating master.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

94 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PPCMPLBBUSLOCK M_busLock O

The current master can use the busLock
signal to lock bus arbitration and force the
PLB arbiter to continue to grant the bus to
that master and ignore all other requests
that are pending. This signal is propagated
from the originating master.

PPCMPLBLOCKERR M_lockErr O

The master asserts this signal to indicate
whether or not the slave must lock the Slave
Error Address Register (SEAR) and the
Slave Error Status Register (SESR). This
signal is propagated from the originating
master.

PPCMPLBMSIZE[0:1] M_MSize[0:1] O

These signals output a constant value (10)
produced by the PPC440 wrapper to
indicate that the MPLB interface is a 128-bit
master.

PPCMPLBPRIORITY[0:1] M_priority[0:1] O

The master drives these signals to indicate
to the PLB arbiter the priority of the
master’s request. These signals are valid
while M_request is active.

PPCMPLBRDBURST M_rdBurst O

The master asserts this signal to indicate to
the PLB arbiter that a burst read transfer is
in progress. This signal is deasserted during
the last data beat of the burst, as determined
by the value of BE[0:3] at the time of the
request.

PPCMPLBREQUEST M_request O
The master asserts this signal to request a
data transfer across the PLB.

PPCMPLBRNW M_RNW O

This signal, which is driven by the master, is
used to indicate whether the request is for a
read (High) or a write (Low) transfer. This
signal is valid while M_request is active.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 95
UG200 (v1.6) January 20, 2009

MPLB Interface
R

PPCMPLBSIZE[0:3] M_size[0:3] O

This encoded value indicates the size and
type of the requested transfer. Values
produced by the MPLB are:

• 0000: Single-unit transfer of 1 to 16
bytes, as determined by BE[0:15]

• 0001: 4-word cache line
• 0010: 8-word cache line
• 0011: 16-word cache line (only if

requested on SPLB by non Xilinx master)
• 1100: burst of quadword data units

(number of data units to transfer
indicated by BE[0:3])

This signal is valid while M_request is
active. Due to command translation in the
crossbar, the M_size outputs do not
necessarily reflect the PLB_size signals
received from the originating master.

PPCMPLBTATTRIBUTE[0] M_TAttribute[0] O

Write Through (W) Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is valid while M_request
is active. This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[1] M_TAttribute[1] O

Caching Inhibited (I) Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is valid while M_request
is active. This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[2] M_TAttribute[2] O

Memory Coherent (M) Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is valid while M_request
is active. This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[3] M_TAttribute[3] O

Guarded (G) Storage Attribute, as defined
in the TLB when the processor is the master.
This signal is valid while M_request is
active. This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[4] M_TAttribute[4] O

U0 User-defined Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is valid while M_request
is active. This signal is propagated from the
originating master.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

96 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PPCMPLBTATTRIBUTE[5] M_TAttribute[5] O

U1 User-defined Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is optionally used to
indicate transient cache region usage. This
signal is valid while M_request is active.
This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[6] M_TAttribute[6] O

U2 User-defined Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is optionally used to
indicate whether write cache misses allocate
a cache line. This signal is valid while
M_request is active. This signal is
propagated from the originating master.

PPCMPLBTATTRIBUTE[7] M_TAttribute[7] O

U3 User-defined Storage Attribute, as
defined in the TLB when the processor is the
master. This signal is used by the crossbar as
a Sync control signal, when asserted by any
master targeting the MPLB, to block
subsequent MPLB transfers until the target
slave deasserts its MBusy signal for the
MPLB master. The crossbar then propagates
the slave's MBusy signal back to the
originating master until it is deasserted by
the slave. This allows masters to ensure that
the transaction (such as a posted write) is
actually completed by the slave before
issuing subsequent transfers. This signal is
valid while M_request is active. This signal
is propagated from the originating master.

PPCMPLBTATTRIBUTE[8] M_TAttribute[8] O

User-defined attribute. Not used by the
processor, but used in some systems to
indicate an Ordered Transfer requirement.
This signal is valid while M_request is
active. This signal is propagated from the
originating master.

PPCMPLBTATTRIBUTE[9:15] M_TAttribute[9:15] O

User-defined attributes (not used by the
processor). These signals are valid while
M_request is active. These signals are
propagated from the originating master.

PPCMPLBTYPE[0:2] M_type[0:2] O
Not used by the processor. This bus is
always driven to 000, indicating a memory
type transfer.

PPCMPLBUABUS[28:31] M_UABus[28:31] O

Upper 4 bits of the processor’s 36-bit
physical address, as specified by the
Extended Real Page Number in the TLB.
These 4 bits must always be set to 0000.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 97
UG200 (v1.6) January 20, 2009

MPLB Interface
R

MPLB Configuration
This section describes the two control registers in the embedded processor block in
Virtex-5 FPGAs that control MPLB interface operation. Refer to the PowerPC 440 Wrapper
Data Sheet [Ref 7] for a list of the parameters that control the default values of these
registers.

The PLB Master configuration register (CFG_PLBM) is located at DCR address 0x54
(within the 256-word DCR address block allocated to the embedded processor block).
Table 4-3 summarizes the bits in the CFG_PLBM register.

PPCMPLBWRBURST M_wrBurst O

The master asserts this signal to indicate to
the PLB arbiter that a burst write transfer is
in progress. This signal is deasserted during
the last data beat of the burst, as determined
by the value of BE[0:3] at the time of the
request.

PPCMPLBWRDBUS[0:127] M_wrDBus[0:127] O
128-bit bus used to transfer data from a
master to a slave during a PLB write
transfer.

Table 4-2: MPLB Interface Signals (Continued)

Port Name
Connects to PLB

Signal
Dir

Default
Value

Description

Table 4-3: Bits in the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
SESR and SEAR are locked in DCR offsets 0x56, 0x57, and 0x58
(only allows updating when no prior error condition is detected).

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved

26 SL_ETERM_MODE 0 This bit must always be cleared to 0.

27 LOCKXFER 1
Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30
is 0 to prevent posted write data.

http://www.xilinx.com

98 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

The PLB Master arbitration configuration register (ARB_XBC) is located at DCR address
0x23 (within the 256-word DCR address block allocated to the embedded processor
block). Table 4-4 summarizes the bits in the ARB_XBC register.

This register configures crossbar arbitration priority and mode operations. All 32 bits have
tie-off values. Arbitration priority values apply to fixed and round-robin arbitration only,
with 4 corresponding to the highest priority and 0 corresponding to the lowest priority.
Values between 5 and 7 are reserved and should not be used due to unpredictable
behavior. The five device priority values should be mutually exclusive so that no two or
more devices can have the same priority.

30 WPOST 1

Write Posting.

• 0: No write posting (early data acknowledgment)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported
if write posting is disabled. Interrupt status flag INT_CFG_ERR_M
(DCR 0x20, bit 17) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.

Table 4-3: Bits in the CFG_PLBM Register (Continued)

Bits Field Default Description

Table 4-4: Bit Descriptions for the ARB_XBC Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0
Sync signal (TAttribute[7]) enable, if set; when reset, TAttribute[7] is
ignored by the crossbar.

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU)
• 01: For round robin
• 10: For fixed priority
• 11: Reserved (should not be used due to unpredictable behavior)

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 99
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

SPLB Interfaces
The primary purpose of two crossbar SPLB interfaces is to allow PLB-based masters
outside the embedded processor block in Virtex-5 FPGAs to share access to the main
memory on the crossbar MCI. The crossbar is the primary means of establishing
multiported access to the main memory in PowerPC 440 based systems. The SPLB
interfaces also allow access to PLB-based memories and non-memory peripherals
connected to the crossbar MPLB interface, which are also to be shared with the processor.
However, users must exercise caution when connecting any type of bidirectional bridge-
like device, such as a PCI bridge, between separate buses connected to MPLB and SPLB to
avoid potential deadlock situations (see “PLB Interconnection Techniques,” page 124). By
default, XPS tools configure each SPLB address range to match only the crossbar MCI
address space. Users must explicitly configure the embedded processor block to include
the MPLB address spaces, if needed, in each SPLB address range.

The crossbar SPLB interface is a 128-bit wide slave on the PLB. The PLB to which it is
connected is also populated by one or more masters, which can be of any mixture of data
widths and functional capabilities. Due to the PLB interface limitations of the embedded
processor block, a maximum of four masters can be connected to each SPLB interface. The
SPLB can also be connected to the same PLB as the crossbar MPLB interface, as needed to
achieve system connectivity requirements.

Transaction Types
The SPLB supports all transaction types allowed under the PLB Architecture Specification
[Ref 4], which include:

• Single Unit

The SPLB can accept single-unit transfers of unaligned data from 1 to 16 bytes. All
single-unit transfers of any size that can be issued by all masters of any size and
capability range are compatible with the SPLB interface.

• Bursts

The SPLB can accept fixed length bursts of 2 to 16 data beats of aligned single words,
doublewords, or quadwords. The crossbar can be configured to limit the maximum
size, in quadwords, of all burst transfers propagated through the crossbar to be 16
(default), 8, 4, or 2. Any burst requests received by the SPLB that exceed this
configured limit are internally broken into multiple bursts of up to the maximum size.
All burst transfers that can be issued by all masters of any size are compatible with the
SPLB interface.

http://www.xilinx.com

100 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

• Cache Lines

The SPLB can accept transfers of aligned 4- or 8-word (16- or 32-byte) cache lines.
Cache-line reads are returned in the same order as received from the targeted slave,
beginning either with the first word of the cache line or the quadword containing the
target word, and always proceeds sequentially through the remainder of the cache
line. All cache-line transfers that can be issued by all masters of any size are compatible
with the SPLB interface.

Four-word cache-line requests on the SPLB always appear as single transfers on the
target master interface. The SPLB also automatically adjusts non-quadword aligned
cache-line starting read addresses to quadword aligned addresses.

SPLB Interface Features
The SPLB can operate at an integer 1:N clock ratio with respect to the crossbar interconnect
clock (CPMINTERCONNECTCLK), where 1 ≤N ≤16.

The SPLB never prematurely terminates a burst (by asserting rdBTerm/wrBTerm). If the
targeted slave resides on the crossbar MPLB space and that slave, connected to the MPLB
interface, prematurely terminates the burst, the MPLB interface continues to retry the
residual command until that slave has completed the request.

For all transactions requested by narrower masters (32- or 64-bit native data width), the
SPLB performs the required data steering to accept (write) or return (read) data in the byte
lanes expected by the master.

The SPLB interface immediately acknowledges (asserts AddrAck) in the cycle following
the sampling of the request signal from the master, when receiving requests that match its
memory map, before the crossbar repeats the same request on the targeted crossbar master
interface (MPLB or MCI).

By default, the SPLB interface immediately asserts WrDAck (in the same cycle as
AddrAck) in response to write requests, stores data received from the master in its write
data FIFO, and queues a posted write to the targeted crossbar master interface. Each SPLB
interface can be configured to prohibit posted writes. If the SPLB is unable to acknowledge
a request because of a command/data FIFO full condition, the SPLB asserts the rearbitrate
signal.

The SPLB fully supports address pipelining, up to four read commands and four write
commands. By default, the SPLB responds to the assertion of SAvalid from the PLB arbiter
by asserting AddrAck. Each SPLB interface can be configured to disable address
pipelining.

The SPLB supports overlapped read and write transfers. That is, a read request that is
received (signaled by PAValid) while a prior write data transfer is in progress is
immediately forwarded to the crossbar and can begin transferring data concurrently, and
vice-versa.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 101
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

SPLB Interface Signals
Table 4-5 summarizes the signals, in alphabetical order, of the SPLB 0 and SPLB 1
interfaces.

Table 4-5: SPLB Interface Signals

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

CPMPPCSnPLBCLK PLB_Clk I 1

This clock synchronizes the SPLB
interface to the connected PLB arbiter.
The SPLB can operate at an integer 1:N
clock ratio with respect to the crossbar
interconnect clock
(CPMINTERCONNECTCLK), where
1 ≤N ≤16.

 PLBPPCSnBE[0:15] PLB_BE[0:15] I x

For single-unit transfers, these signals act
as byte enables to identify which bytes of
the target being addressed are to be read
from or written to. Each bit corresponds
to a byte lane on the read or write data
bus. For burst transfers, BE[0:3] indicates
the number of data units of the requested
size to be read or written, ranging from
0001 = 2 units to 1111 = 16 units. This
bus is not used during cache-line
transfers.

 PLBPPCSnRNW PLB_RNW I x
The master drives this signal to indicate
whether the request is for a read (High) or
a write (Low) transfer.

PLBPPCSnABORT PLB_abort I 0
The purpose of this signal is to indicate
that the master no longer requires the
data transfer it is currently requesting.

PLBPPCSnABUS[0:31] PLB_ABus[0:31] I x

32-bit starting address for the currently
requested transfer. For single-unit
transfers, this bus indicates the address of
the first enabled byte lane. For cache-line
reads, this bus indicates the target word
that should be returned first (optimally)
when reading the line containing the
address.

PLBPPCSnBUSLOCK PLB_busLock I 0

The current master can use the busLock
signal to lock bus arbitration and force
the PLB arbiter to continue to grant the
bus to that master and ignore all other
pending requests.

PLBPPCSnLOCKERR PLB_lockErr I 0

The master asserts this signal to indicate
whether or not the slave must lock the
Slave Error Address Register (SEAR) and
the Slave Error Status Register (SESR).

http://www.xilinx.com

102 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PLBPPCSnMASTERID[0:1] PLB_masterID[0:1] I 00

These signals from the arbiter indicate the
master identification sequence number to
the slave. The SPLB interface supports a
maximum of four masters on the
connected PLB.

PLBPPCSnMSIZE[0:1] PLB_Msize[0:1] I 01

The master drives these signals to
indicate its native data width, which also
indicates the maximum size of the data
unit that can be transferred during each
data beat on the bus.

• 00: 32 bits
• 01: 64 bits
• 10: 128 bits
• 11: Illegal

PLBPPCSnPAVALID PLB_PAValid I 0
The arbiter asserts this signal to indicate
that there is a valid primary address and
transfer qualifiers on the PLB outputs.

PLBPPCSnRDBURST PLB_rdBurst I 0

The master asserts this signal to indicate
to the PLB arbiter that a burst read
transfer is in progress. This signal is
deasserted during the last data beat of the
burst, as determined by the value of
BE[0:3] at the time of the request.

PLBPPCSnRDPENDPRI[0:1] PLB_rdPendPri[0:1] I x

Not used by the embedded processor
block in Virtex-5 FPGAs. The arbiter uses
these signals to indicate the highest
priority of any active read request input
from all masters attached to the PLB or a
pipelined read transfer that has been
acknowledged and is pending.

PLBPPCSnRDPENDREQ PLB_rdPendReq I 0

Not used by the embedded processor
block in Virtex-5 FPGAs. The arbiter
drives this signal to indicate that a master
has a read request pending on the PLB or
a secondary read transfer has been
acknowledged and is pending

PLBPPCSnRDPRIM PLB_rdPrim I 0

The PLB arbiter asserts this signal to
indicate that a secondary read request
that has already been acknowledged by a
slave can now be considered a primary
read request.

PLBPPCSnREQPRI[0:1] PLB_reqPri[0:1] I x

Not used by the embedded processor
block in Virtex-5 FPGAs. The arbiter
drives this signal to indicate the priority
of the current request that the PLB arbiter
has granted and is gating to the slaves.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 103
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

PLBPPCSnSAVALID PLB_SAValid I 0

The PLB arbiter asserts this signal to
indicate to a PLB slave that there is a valid
secondary or pipelined address and
transfer qualifiers on the PLB outputs

PLBPPCSnSIZE[0:3] PLB_size[0:3] I 0

The encoded value of these signals
indicates the size and type of the
requested transfer. Supported values are:

• 0000: Single-unit transfer of 1 to 16
bytes, as determined by BE[0:15]

• 0001: 4-word cache line
• 0010: 8-word cache line
• 0011: 16-word cache line
• 1010: Burst of single-word data units
• 1011: Burst of doubleword data units
• 1100: Burst of quadword data units

(number of data units to transfer for all
bursts as indicated by BE[0:3]).

PLBPPCSnTATTRIBUTE[0] M_TAttribute[0] I 0
User-defined attribute. Used by the
processor as the Write Through (W)
Storage Attribute.

PLBPPCSnTATTRIBUTE[1] M_TAttribute[1] I 0
User-defined attribute. Used by the
processor as the Caching Inhibited (I)
Storage Attribute.

PLBPPCSnTATTRIBUTE[2] M_TAttribute[2] I 0
User-defined attribute. Used by the
processor as the Memory Coherent (M)
Storage Attribute.

PLBPPCSnTATTRIBUTE[3] M_TAttribute[3] I 0
User-defined attribute. Used by the
processor as the Guarded (G) Storage
Attribute.

PLBPPCSnTATTRIBUTE[4] M_TAttribute[4] I 0
User-defined attribute. Used by the
processor to indicate the U0 Storage
Attribute.

PLBPPCSnTATTRIBUTE[5] M_TAttribute[5] I 0
User-defined attribute. Used by the
processor to indicate the U1 Storage
Attribute.

PLBPPCSnTATTRIBUTE[6] M_TAttribute[6] I 0
User-defined attribute. Used by the
processor to indicate the U2 Storage
Attribute.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

104 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PLBPPCSnTATTRIBUTE[7] M_TAttribute[7] I 0

Used by the crossbar as a Sync control
signal when targeting the MPLB. Also
used by the processor to indicate the U3
Storage Attribute. The Sync signal, if
asserted at the time of the request, is used
to block subsequent MPLB transfers until
the target slave deasserts its MBusy
signal back to the MPLB master. The
crossbar then propagates the slave's
MBusy signal back to the originating
master on the SPLB interface until it is
deasserted by the slave. This allows the
originating masters to ensure that the
transaction (such as a posted write) is
completed by the slave before issuing
subsequent transfers.

PLBPPCSnTATTRIBUTE[8] M_TAttribute[8] I 0

User-defined attribute. Not used by the
embedded processor block in Virtex-5
FPGAs, but used in some systems to
indicate an Ordered Transfer
requirement. This signal is valid while
M_request is active.

PLBPPCSnTATTRIBUTE[9:15] M_TAttribute[9:15] I 0
User-defined attributes (not used by the
embedded processor block in Virtex-5
FPGAs).

PLBPPCSnTYPE[0:2] PLB_type[0:2] I 0

Not used by the embedded processor
block in Virtex-5 FPGAs. These signals
are always driven to 000, indicating a
memory type transfer.

PLBPPCSnUABUS[28:31] PLB_UABus[28:31] I x
Upper 4 bits of the embedded processor
block's 36-bit physical address. These 4
bits must always be set to 0000.

PLBPPCSnWRBURST PLB_wrBurst I 0

The master drives this signal to indicate
to the PLB arbiter that a burst write
transfer is in progress. This signal is
deasserted during the last data beat of the
burst, as determined by the value of
BE[0:3] at the time of the request.

PLBPPCSnWRDBUS[0:127] PLB_wrDBus[0:127] I x
128-bit bus used to transfer data between
a master and a slave during a PLB write
transfer.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 105
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

PLBPPCSnWRPENDPRI[0:1] PLB_wrPendPri[0:1] I x

Not used by the embedded processor
block in Virtex-5 FPGAs. The arbiter
drives these signals to indicate the
highest priority of any active write
request input from all masters attached to
the PLB or a pipelined write transfer that
has been acknowledged and is pending.

PLBPPCSnWRPENDREQ PLB_wrPendReq I 0

Not used by the embedded processor
block in Virtex-5 FPGAs. The arbiter
drives this signal to indicate that a master
has a write request pending on the PLB or
a secondary write transfer has been
acknowledged and is pending.

PLBPPCSnWRPRIM PLB_wrPrim I 0

The PLB arbiter asserts this signal to
indicate that a secondary or pipelined
write request might be considered a
primary write request in the clock cycle
that follows.

PPCSnPLBADDRACK Sl_addrAck O

This signal is asserted to indicate that the
slave has acknowledged the address and
will latch the address and all of the
transfer qualifiers at the end of the
current clock cycle.

PPCSnPLBMBUSY[0:3] Sl_MBusy[0:3] O

These signals indicate to each connected
master (according to the value of
PLB_masterID[0:1]) that the SPLB
interface is either busy performing a read
or a write transfer, or has a read or write
transfer pending for that master. The
SPLB interface supports a maximum of
four masters on the connected PLB.
When the current transfer targets the
MPLB interface, MBusy is propagated
back from the targeted slave until it is
deasserted by the slave (if the Sync signal
was asserted at the time of the request) or
until the current transfer completes on
the MPLB (if Sync was not asserted, see
M_TAttribute[7]).

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

106 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PPCSnPLBMIRQ[0:3] Sl_MIRQ[0:3] O

These signals indicate to each connected
master (according to the value of
PLB_masterID[0:1]) that the SPLB
interface has encountered an event which
it has deemed important to the master.
MIRQ is generally used to indicate an
error condition not associated with a read
or write transfer currently in progress, for
example, a write error or time-out during
a posted write to the targeted slave.
MIRQ is propagated back from the
targeted slave to the originating master, if
known. Otherwise it is broadcast to all
PLB masters connected to the crossbar
(including the processor). The SPLB
interface supports a maximum of four
masters on the connected PLB.

PPCSnPLBMRDERR[0:3] Sl_MRdErr[0:3] O

These signals indicate to each connected
master (according to the value of
PLB_masterID[0:1]) that the SPLB
interface has encountered an error during
a read transfer that was initiated by this
master, typically a transfer that is still in
progress. When the current transfer
targets the MPLB interface, MRdErr is
propagated back from the targeted slave.
The SPLB interface supports a maximum
of four masters on the connected PLB.

PPCSnPLBMWRERR[0:3] Sl_MWrErr[0:3] O

These signals indicate to each connected
master (according to the value of
PLB_masterID[0:1]) that the SPLB
interface has encountered an error during
a write transfer that was initiated by this
master, typically a transfer that is still in
progress. When the current transfer
targets the MPLB interface, MWrErr is
propagated back from the targeted slave
if the transfer is still in progress (not
posted). The SPLB interface supports a
maximum of four masters on the
connected PLB.

PPCSnPLBRDBTERM Sl_rdBTerm O

This signal indicates to a master that the
current burst read transfer in progress is
to be terminated following the next read
data beat. This signal is normally asserted
only during the second-to-last beat of a
fixed-length read burst, as determined by
the value of BE[0:3] at the time of the
request.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 107
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

PPCSnPLBRDCOMP Sl_rdComp O

This signal indicates to the PLB arbiter
that the read transfer is either complete or
will be complete by the end of the next
clock cycle.

PPCSnPLBRDDACK Sl_rdDAck O

This signal indicates that the data on the
Sl_rdDBus bus is valid and must be
latched at the end of the current clock
cycle.

PPCSnPLBRDDBUS[0:127] Sl_rdDBus[0:127] O
128-bit data bus used to transfer data
from a slave and to a master during a PLB
read transfer.

PPCSnPLBRDWDADDR[0:3] Sl_rdWdAddr[0:3] O

These signals indicate the relative word
address within the cache line of the first
word of the data unit currently being
transferred as part of a requested cache-
line read transfer. Cache-line reads are
returned in the same order as received
from the targeted slave, beginning either
with the first word of the cache line or the
data unit (word, doubleword, or
quadword aligned, depending on the
targeted slave’s data width) containing
the target word, and always proceeds
sequentially through the remainder of the
cache line, incrementing according to the
size of the data units being transferred.

PPCSnPLBREARBITRATE Sl_rearbitrate O

This signal is asserted to indicate that the
slave cannot perform the currently
requested transfer and requires the PLB
arbiter to re-arbitrate the bus.

PPCSnPLBSSIZE[0:1] Sl_SSize[0:1] O
These signals are driven to 10 to indicate
that the SPLB interface is a 128-bit slave.

PPCSnPLBWAIT Sl_wait O

The SPLB interface never asserts this
signal. This signal is used by other PLB
slaves to indicate to the arbiter that the
slave has recognized the PLB address as a
valid address, but cannot latch the
address and all the transfer qualifiers at
the end of the current clock cycle.

PPCSnPLBWRBTERM Sl_wrBTerm O

This signal indicates to a master that the
current burst write transfer in progress is
to be terminated following the next write
data beat. This signal is normally asserted
only during the second-to-last beat of a
fixed-length write burst, as determined
by the value of BE[0:3] at the time of the
request.

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

http://www.xilinx.com

108 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

SPLB Configuration
One control register in the embedded processor block in Virtex-5 FPGAs controls the
operation of each of the SPLB interfaces. The PLB Slave configuration register for SPLB 0
(CFG_PLBS0) is located at DCR address 0x34. The configuration register for SPLB 1
(CFG_PLBS1) is located at DCR address 0x44 (within the 256-word DCR address block
allocated to the embedded processor block), with default values as shown in Table 4-6.
Each of these registers also contain the master enable bits for two of the four DMA
controllers in the embedded processor block, which do not affect SPLB interface operation.
Refer to the PowerPC 440 Wrapper Data Sheet [Ref 7] for a list of the parameters that control
the default values of these registers.

PPCSnPLBWRCOMP Sl_wrComp O
This signal indicates to the arbiter the end
of the current write transfer.

PPCSnPLBWRDACK Sl_wrDAck O

This signal indicates that the data
currently on the PLB_wrDBus bus is no
longer required by the slave (write data is
being latched at the end of the current
clock cycle).

Table 4-5: SPLB Interface Signals (Continued)

Port Name (n = [0, 1])
Connects to PLB

Signal
Dir

Default
Value

Description

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers

Bits Field Default Description

0 LOCK_SESR 1

Lock SESR and SEAR if set (only allows updating when no prior error
condition has been detected).
For CFG_PLBS0, locks DCR 0x36, 0x37, and 0x38.
For CFG_PLBS1, locks DCR 0x46, 0x47, and 0x48.

1 Reserved 0 Reserved

2
DMA1_EN (PLBS0)

DMA3_EN (PLBS1)
0

DMA controller master enable 1.
For CFG_PLBS0: Enable DMA #1 controller.
For CFG_PLBS1: Enable DMA #3 controller.

3
DMA0_EN (PLBS0)

DMA2_EN (PLBS1)
0

DMA controller master enable 0.
For CFG_PLBS0: Enable DMA #0 controller.
For CFG_PLBS1: Enable DMA #2 controller.

4:5
DMA0_PRI (PLBS0)

DMA2_PRI (PLBS1)
00

DMA priority value 0.
For CFG_PLBS0: Priority of DMA #0 controller.
For CFG_PLBS1: Priority of DMA #2 controller.

6:7
DMA1_PRI (PLBS0)

DMA3_PRI (PLBS1)
00

DMA priority value 1.
For CFG_PLBS0: Priority of DMA #1 controller.
For CFG_PLBS1: Priority of DMA #3 controller.

8 Reserved 0 Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 109
UG200 (v1.6) January 20, 2009

SPLB Interfaces
R

9:11 THRMIB 011

Maximum burst threshold when reading from the memory interface.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Maximum burst threshold when reading from MPLB.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

16 Reserved 0 Reserved

17:19 THWMIB 011

Maximum burst threshold when writing to the memory interface.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers (Continued)

Bits Field Default Description

http://www.xilinx.com

110 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

In addition to the control register, each SPLB interface has a set of address template
registers (TMPL*_PLBS*_MAP at DCR addresses 0x40 - 0x4F and 0x50 - 0x5F) that
determine to which addresses the SPLB is to respond. The SPLB interface acknowledges
requests based on the settings of these registers rather than waiting for any response from
the targeted slave back through the crossbar. These template registers are normally set
automatically by the EDK software, based on the addresses assigned to slaves connected to
the crossbar. By default, EDK sets the template registers so that only the address range of
the memory connected to the crossbar MCI (if any) is accessible via the SPLB, to avoid

21:23 THWPLBM 011

Maximum burst threshold when writing to MPLB.

• 000: Threshold of 1, a burst is translated into single transfers.
• 001: Threshold of 2, a burst is translated into bursts of maximum length

2, if applicable.
• 010: Threshold of 4, a burst is translated into bursts of maximum length

4, if applicable.
• 011: Threshold of 8, a burst is translated into bursts of maximum length

8, if applicable.
• 100: Threshold of 16, a burst is translated into bursts of maximum

length 16, if applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 28.

28 WPOST 1

Write Posting.

• 0: No write posting (early data acknowledgment)
• 1: Write posting enabled

Bit 27 is cleared if this bit is 0. Only single transactions are supported if
write posting is disabled. The corresponding interrupt status flag (in the
Interrupt status register at DCR 0x20) is set if other types of transactions
are received: INT_CFG_ERR_S0 (bit 3) for SPLB 0, or INT_CFG_ERR_S1
(bit 11) for SPLB 1.

29 Reserved 1 Must be set to 1.

30 AERR_LOG 0
Log ABUS address mismatch error, if set, in the PLB slave miscellaneous
status register (bit 2 of DCR 0x39 or 0x49)

31 CMD_CHK_DBL 0
Disable command (size) check, if set, in the PLB slave miscellaneous status
register (bits 0 and 1 of DCR 0x39 or 0x49)

Table 4-6: Bit Descriptions for the CFG_PLBS0/1 Registers (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 111
UG200 (v1.6) January 20, 2009

Command Translation
R

potential deadlock situations (see “PLB Interconnection Techniques,” page 124). Users can
override this setting to include addresses of slaves connected to the MPLB interface.

Command Translation
All data traffic through the crossbar is packed into 128-bit quadword-aligned units.
However, each of the SPLB and MPLB interfaces may connect to masters and slaves that
have various native widths of 32, 64, or 128 bits. For each data transfer (command)
requested by one of the masters connected to the crossbar (processor, SPLB interface, DMA
controller), command translation may be required to handle any combination of the
following conditions:

1. A master connected to an SPLB interface has a native data width smaller than 128 bits
and requires byte-lane steering or extra cycles to pack data into 128-bit units.

2. The slave’s native data width (connected to MPLB or MCI) is smaller than 128 bits and
requires byte-lane steering or mirroring and/or extra cycles to unpack from 128 bits.

3. The length of a burst has to be adjusted for mismatched bus widths.

4. The maximum length of a burst has been exceeded and requires breaking into multiple
commands.

5. Misaligned burst transfer beginning or ending off of a quadword boundary requires a
single-unit transfer (up to three words) to be generated at the beginning and/or end of
the transfer.

Each of the crossbar master interfaces (MPLB and MCI) maintains a command queue that
can store several requests from the various crossbar sources (processor, SPLB, DMA)
awaiting access to the connected PLB or memory controller. Commands in each queue are
issued only in the order which they are queued.

The re-arbitrate signal asserted by a PLB slave only allows the arbiter of that PLB to grant
access to a different master requesting the bus. If the crossbar MPLB receives a re-arbitrate
signal while requesting the bus, it backs off temporarily, as required, but always resumes
with the request of the same command at the head of its command queue.

The crossbar’s command queues and internal data FIFOs allow it to adapt mismatched
transfer rates among its various slave and master interfaces. Transfer rate mismatch can
occur due to any combination of the following:

• Differing clock frequencies among the crossbar, the CPU and each of the SPLB, DMA,
MPLB, and MCI interfaces.

• Multiple sources (CPU, SPLB, DMA) arbitrating for the same master interface (MPLB
or MCI).

• Packing and unpacking data to interface to devices with native data widths less than
128 bits connected to the MPLB or SPLB.

• Additional arbitration latency introduced when long bursts are broken into multiple
shorter bursts.

• Inherent latency of gaining access to the PLB connected to the MPLB interface, and the
response times of the slaves on that bus or of the memory controller connected via the
MCI.

http://www.xilinx.com

112 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Crossbar Timing
Crossbar Latency

The SPLB performs a store-and-forward operation for write commands, accordingly the
latency depends on the type of transfer and the number of beats involved in the transfer.
The minimum latency for a write or a read command presented to the SPLB interface to
traverse the embedded block is six cycles. For read transactions, the embedded processor
block adds another two or three cycles of latency to the return data path. Figure 4-1 shows
a simplified timing model of the latencies for different types of transactions between SPLB
and MPLB interfaces. Table 4-7 defines the values of n and m used in Figure 4-1.

When a request is received on the SPLB0/SPLB1 interface from the connected PLB arbiter,
the interface responds by asserting AddrAck in the next cycle (otherwise it asserts the
re-arbitrate signal if its FIFO is full). Provided there is no arbitration contention in the
crossbar for the targeted master interface (MPLB or MCI), and provided there are no prior
unacknowledged requests queued at either the SPLB or the master interface, and provided

Figure 4-1: Simplified Crossbar Timing Model

Virtex-5 FXT FPGA
Embedded Processor Block

SPLB MPLB

Crossbar
Clock

MPLB
Clock

SPLB
Clock

PLB_PAvalid

Sl_addrAck, Sl_wrDAck

Sl_rdDAck, Sl_rdDBus

M_request, M_wrDBus
≥ 1

≥ 2

UG200_c4_01_011508

≥ 0

PLB_addrAck

PLB_wrDAck

PLB_rdDAck,
PLB_rdDBus

n

m

Crossbar

Table 4-7: Values of Symbols in Figure 4-1

Transfer Type n m

Write Single-unit 1

Write Line Line Length – 1

Write Burst Burst Length

Read Single-unit 1 0

Read Line 1 0

Read Burst 2 1

Notes:
1. Line Length and Burst Length refer to the actual number of data beats required to transfer that data

across the SPLB interface (before command translation by the crossbar), and therefore increases if the
natural data width of the originating master is reduced to 64 or 32 bits.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 113
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

the SPLB, crossbar, and master interface are running at the same clock frequency (1:1:1
clock ratio), a request is propagated from the SPLB onto the master interface after an
additional five or more cycles, as indicated in Table 4-7.

The actual completion of each transfer on the MPLB side depends on the availability and
response times of the connected PLB arbiter and target slave. Typically, the PLB arbiter
introduces a minimum of one cycle latency between M_request and the assertion of
PAvalid. PLB_addrAck can therefore be returned in one or more cycles, as is required. (The
MPLB interface should not be used in a manner that would allow PLB_addrAck to be
asserted during the same cycle as M_request.) For write transfers, PLB_wrDAck can be
asserted at the same time as PLB_addrAck, or later. According to PLB v4.6 protocol,
PLB_RdDAck must not be asserted prior to the second cycle following PLB_addrAck.

Transaction Waveforms
Figure 4-2 through Figure 4-12 show the waveforms for various transactions involving the
SPLB and MPLB interfaces. While all are shown as read or write transfers between a
master on the SPLB and a slave on the MPLB, the waveforms are representative of transfers
originating at any of the crossbar slave interfaces (SPLB, processor PLB, DMA) or targeting
either of the crossbar master interfaces (MPLB or MCI). In the following waveform figures,
a trace in the center of a bus signal signifies values that are undetermined (in the context of
the given transaction), not a high-impedance state.

Figure 4-2 shows a typical burst write transfer. Because the SPLB interface controller
buffers all data before forwarding the command through crossbar, the latency varies with
the length of the burst (number of data beats on the SPLB interface). In this case, a four unit
burst results in nine cycles of latency between the SPLB and MPLB interfaces. Best-case
waveforms are shown for response times of the connected PLB arbiter and target slave.

Figure 4-2: SPLB to MPLB 4-Quadword Burst Write Transaction

SPLB, MPLB,
Crossbar Clock

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB PLB_wrDBus
[0:127]

SPLB SI_addrAck

SPLB SI_wrDAck

Latency = Burst Length + 5 (All Burst Writes)

AQW

QW(A)

0 1 2 3 4 5 9 10 11 12 13 14

QW(A)

A

UG200_c4_02_122807

QW(A+16) QW(A+32) QW(A+48)

QW(A+16) QW(A+32) QW(A+48)

MPLB M_request

MPLB M_ABus

MPLB M_wrDBus
[0:127]

MPLB PLB_wrDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

http://www.xilinx.com

114 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-3 shows a typical burst read transfer. The latency to propagate burst read
commands to the MPLB is constant, seven cycles. Once the target slave responds, read data
traverses back to the SPLB interface in three cycles for all burst transfers.

Figure 4-3: SPLB to MPLB 4-Quadword Burst Read Transaction

SPLB, MPLB,
Crossbar Clock

0 1 2 7 8 9 10 11 12 13 14 15 16 17

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_rdDBus
[0:127]

SPLB SI_addrAck

SPLB SI_rdDAck

AQW

7 Cycle Latency
(All Burst Reads)

QW(A)

A

UG200_c4_03_011408

QW
(A+16)

MPLB M_request

MPLB M_ABus

MPLB M_rdDBus [0:127]

MPLB PLB_rdDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

QW
(A+32)

QW
(A+48)

QW(A) QW
(A+16)

QW
(A+32)

QW
(A+48)

3 Cycle
Latency

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 115
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-4 shows how the number of data beats in a write burst transfer are multiplied
when a slave smaller than 128 bits responds on the MPLB interface. The MPLB unpacks the
two quadwords into 8 single words and steers them onto the lower byte lanes of the write
data bus for the 32-bit slave. The write from the SPLB is posted, so the SPLB completes its
transaction as soon as the two quadwords are transferred, unaffected by the size of the
slave responding on the MPLB.

Figure 4-4: SPLB to MPLB 2-Quadword Burst Write by 128-Bit Master to 32-Bit Slave

SPLB, MPLB,
Crossbar Clock

0 1 2 3 7 8 9 10 11 12 13 14 15 16

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_wrDBus
[0:127]

SPLB SI_addrAck

SPLB SI_wrDAck

AQW

QW(A)

W(A)

A

UG200_c4_04_122807

QW
(A+16)

W(A+4) W(A+8) W(A+12)

MPLB M_request

MPLB M_ABus

MPLB M_wrDBus [0:31]
(Bits 32:127 Driven
But Not Sampled))

MPLB PLB_wrDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

W(A+16) W(A+20) W(A+24) W(A+28)

http://www.xilinx.com

116 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-5 shows how a burst read command from a 64-bit master is converted by the SPLB
interface into a 128-bit burst (half the number of data beats) when propagating through the
crossbar. The two quadwords returned from the MPLB are then unpacked by the SPLB
interface and steered onto the lower byte lanes of the read data bus for the 64-bit master.

Figure 4-5: SPLB to MPLB 4-Doubleword Burst Read by 64-Bit Master from 128-Bit Slave (Aligned)

SPLB, MPLB,
Crossbar Clock

0 1 2 7 8 9 10 11 12 13 14 15 16 17

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_rdDBus
[0:63]

SPLB SI_addrAck

SPLB SI_rdDAck

AQW

QW(A)

A

UG200_c4_05_011408

QW
(A+8)

MPLB M_request

MPLB M_ABus

MPLB M_rdDBus [0:127]

MPLB PLB_rdDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

QW
(A+16)

QW
(A+24)

QW(A) QW
(A+16)

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 117
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-6 shows the conversion of a single-unit write command by the 128-bit MPLB to a
32-bit slave. Single-unit write and read commands propagate to the SPLB in 6 cycles
(fixed). During the first write request by the MPLB, the entire quadword is presented on
the write data bus, since the MPLB interface does not yet know the size of the slave that
will respond. The 32-bit slave actually reads bytes 5 through 7, which are part of the single
word that the ABus is pointing to. At that time, the MPLB interface knows that it must
request additional write commands to transfer the remaining two single words to the 32-
bit slave. The ABus is incremented accordingly, but the MPLB still populates the write data
bus and byte enables so that all data is still presented at the proper locations for any size
slave.

Figure 4-6: SPLB to MPLB Single-Unit Write of Bytes 5-14 by 128-Bit Master to 32-Bit Slave

SPLB, MPLB,
Crossbar Clock

0 1 2 76 8 9 10 11 12 13 14

SPLB PLB_Abus

SPLB PLB_PAvalid

AQW+5

6 Cycle Latency
(All Single-unit Writes)

UG200_c4_06_123107

SPLB Sl_addrAck

SPLB Sl_wrDAck

SPLB PLB_BE [0:15] 07FE

SPLB PLB_wrDBus
[0:31]

XX,B5,B6,B7

SPLB PLB_wrDBus
[32:63]

XX,B5,B6,B7

SPLB PLB_wrDBus
[64:95]

B8,B9,B10,B11

SPLB PLB_wrDBus
[96:127] B12,B13,B14,XX

MPLB M_ABus

MPLB M_request

MPLB PLB_addrAck
(Best Case)

MPLB PLB_wrDAck
(Best Case)

A A+3 A+7

MPLB M_BE [0:15] 07FE 00FE 000E

MPLB M_wrDBus
[0:31] XX,B5,B6,B7 B8,B9,B10,B11 B12,B13,B14,XX

MPLB M_wrDBus
[32:63] XX,B5,B6,B7 B12,B13,B14,XX B12,B13,B14,XX

MPLB M_wrDBus
[64:95]

B8,B9,B10,B11 B8,B9,B10,B11 XX,XX,XX,XX

MPLB M_wrDBus
[96:127]

B12,B13,B14,XX B12,B13,B14,XX B12,B13,B14,XX

Conversion Cycles

http://www.xilinx.com

118 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-7 shows the conversion of a single-unit read command by the 128-bit MPLB to a
64-bit slave. Even though the original command received from the SPLB requested a
doubleword, the address is not aligned on a doubleword boundary. Consequently, the
MPLB needs to split the command into two single-unit reads. Before propagating the two
words received from the slave back across the crossbar, the MPLB packs them into a single
quadword unit, as is expected by the SPLB.

Figure 4-7: SPLB to MPLB Single-Unit Read of 2 Unaligned Words by 128-Bit Master from 64-Bit Slave

SPLB, MPLB,
Crossbar Clock

0 1 2 76 8 9 10 11 12 13 14

SPLB PLB_Abus

SPLB PLB_PAvalid

AQW+4

6 Cycle Latency
(All Single-unit Writes)

UG200_c4_07_123107

SPLB Sl_addrAck

SPLB Sl_rdDAck

SPLB PLB_BE [0:15] 0FF0

SPLB Sl_rdDBus
[0:127]

XX,W0,W1,XX

MPLB M_ABus

MPLB M_request

MPLB PLB_addrAck
(Best Case)

MPLB PLB_rdDAck
(Best Case)

A A+4

MPLB M_BE [0:15] 0FF0 00F0

MPLB M_rdDBus [0:63]
(Mirrored on Bits 64, 127) W1,XXXX,W0

Conversion
Cycle

2 Cycle
Latency

(After Packing)

15

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 119
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-8 shows a burst of six doubleword data units, where the beginning and ending of
the burst do not align on quadword boundaries. In the SPLB interface, the burst is
translated into a sequence of quadword-aligned commands. The unaligned start of the
burst is translated into a single-unit transfer of eight bytes (doubleword 0), followed by a
burst transfer of two aligned quadwords (doublewords 1 through 4). The sequence is then
completed using another single-unit transfer of 8 bytes (doubleword 5). Upon receiving
the three packets of data, the SPLB interface unpacks the data and presents a burst of six
doublewords on the read data bus, as originally requested.

Figure 4-8: SPLB to MPLB 6-Doubleword Unaligned Burst Read from 128-Bit Slave
(Requested by a 64-Bit Master)

SPLB, MPLB,
Crossbar Clock

0 1 2 7 8 9 10 11 12 13 14 15 16 17

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB SI_rdDBus

SPLB SI_addrAck

SPLB SI_rdDAck

AQW+8

6 Doubleword Burst Read

Single-unit Read,
Bytes 8-15

DW0 DW1 DW2 DW3 DW4 DW5

A

XX,DW0 DW1,
DW2

DW3,
DW4

DW5,XX

UG200_c4_08_011408

MPLB M_request

MPLB M_ABus

MPLB M_rdDBus [0:127]

MPLB PLB_rdDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

A+40A+8

18 19 20 21 22

2 Quadword
Burst Read

Single-unit Read, Bytes 0-7

00FFMPLB M_BE [0:15] FF001000

http://www.xilinx.com

120 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-9 shows back-to-back write burst requests. The second request (address B) is
made at the same time as the first data transfer completes. Consequently it is presented as
a primary request (PAvalid) by the arbiter. This timing is optimal in that it allows the write
data bus to continually transfer data. On the MPLB interface, the resulting sequence of
write requests typically leaves a 1-cycle bubble on the write data bus between each
successive command (assuming best-case arbiter/slave response).

If the second request (address B) is instead issued on the SPLB before the completion of the
first transfer, it would result in the pipelining of a secondary request. As the first data
transfer completes, the arbiter asserts PLB_wrPrim to inform the SPLB interface to begin
buffering the write data for the second transfer. However, the command latency and
waveforms presented on the MPLB interface typically remain the same as shown in
Figure 4-9.

Figure 4-9: SPLB to MPLB Back-to-Back 4-Quadword Burst Writes Between 128-Bit Devices

SPLB, MPLB,
Crossbar Clock

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB PLB_wrDBus
[0:127]

SPLB SI_addrAck

SPLB SI_wrDAck

AQW BQW

QWA0 QWA1 QWA2 QWA3 QWB0 QWB1 QWB2 QWB3

QWA0 QWA1 QWA2 QWA3 QWB0 QWB1 QWB2 QWB3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A

UG200_c4_09_123107

MPLB M_request

MPLB M_ABus

MPLB M_wrDBus
[0:127]

MPLB PLB_wrDAck
(Best Case)

MPLB PLB_addrAck
(Best Case)

B

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 121
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-10 shows back-to-back read burst requests, either from a master that supports
address pipelining or from two masters concurrently requesting the bus. After the first
request is acknowledged, the PLB arbiter asserts PLB_SAvalid. The SPLB interface always
acknowledges SAvalid (provided its command queue is not already full) and latches the
address and associated transfer qualifiers. Both the primary and secondary requests are
forwarded to the MPLB command queue. The MPLB interface typically asserts the request
for each subsequently queued command as the current read data transfer completes. This
typically leaves a 2-cycle bubble on the read data bus between each successive command
(assuming best-case arbiter/slave response).

Figure 4-10: SPLB to MPLB Pipelined 3-Quadword Burst Reads Between 128-Bit Devices
(Originating Master Supports Address Pipelining)

SPLB, MPLB,
Crossbar Clock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2120

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB PLB_rdDBus
[0:127]

SPLB SI_addrAck

SPLB SI_rdDAck

AQW

 UG200_c4_10_011408

MPLB M_request

MPLB M_ABus

MPLB M_rdDBus
[0:127]

MPLB PLB_rdDAck
(Best Case)

BQW

SPLB PLB_SAvalid

SPLB PLB_rdPrim

SPLB PLB_addrAck
(Best Case)

QWB0 QWB1 QWB2QWA0 QWA1 QWA2

QWA0 QWA1

A B

QWA2 QWB0 QWB1 QWB2

http://www.xilinx.com

122 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-11 shows the propagation of a burst write command coming from a PLB master
operating at a slower clock frequency. A 2-unit burst write takes a total of seven cycles of
latency to appear on the MPLB interface. As shown in Figure 4-1, the first 3 cycles (1 + n) of
pipelining occur within the SPLB interface controller, paced by the slower SPLB clock,
while the final two stages in the SPLB are synchronized to the faster crossbar clock. The
sixth and seventh cycles of latency occur within the crossbar and MPLB interface,
respectively, also at the higher clock frequency.

Figure 4-11: SPLB to MPLB 2-Quadword Burst Write with 1:2 Clock Ratio

MPLB, Crossbar Clock

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB PLB_wrDBus
[0:127]

SPLB SI_addrAck

SPLB SI_wrDAck

AQW

QW(A)

 UG200_c4_11_011408

QW(A+16)

MPLB M_request

MPLB M_ABus

MPLB M_wrDBus
[0:127]

QW(A) QW(A+16)

A

1 MPLB
Cycle

3 Cross-bar
Clock Cycles

3 SPLB Clock Cycles

MPLB PLB_wrDAck
(Best Case)

SPLB Clock

MPLB PLB_addrAck
(Best Case)

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 123
UG200 (v1.6) January 20, 2009

Crossbar Timing
R

Figure 4-12 shows the typical waveforms for a read burst originating on the SPLB that
targets the MPLB interface operating at a slower clock frequency. Read bursts have a total
latency of seven cycles. The first 6 cycles occur at the higher crossbar and SPLB clock
frequencies, while the seventh cycle is synchronized by the slower MPLB clock. The return
data path typically takes one cycle in the MPLB domain plus two cycles in the crossbar and
SPLB clock domains.

Figure 4-12: SPLB to MPLB 2-Quadword Burst Read with 2:1 Clock Ratio

MPLB Clock

SPLB PLB_Abus

SPLB PLB_PAvalid

SPLB PLB_rdDBus [0:127]

SPLB SI_addrAck

MPLB M_request

AQW

QW(A) QW(A+16)

3 SPLB
Clock Cycles

1 MPLB
Clock
Cycle

1 MPLB
Clock
Cycle

2 SPLB
Clock
Cycles

3 Crossbar
Clock Cycles

UG200_c4_12_001508

SPLB SI_rdDAck

MPLB M_ABus

MPLB PLB_rdDBus [0:127] QW(A) QW(A+16)

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MPLB PLB_rdDAck
(Best Case)

SPLB, Crossbar Clock

MPLB PLB_addrAck
(Best Case)

15 16 17 18 19 20

http://www.xilinx.com

124 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

PLB Interconnection Techniques
The crossbar in the embedded processor block provides a high-performance pathway to
allow memory and other peripherals to be shared between the processor and other masters
in the system. There are many ways that external masters, memories, and peripherals can
be connected to the crossbar. Overall system performance is generally improved by
moving away from the single shared-bus interconnect paradigm toward a network of
multiple independent buses that allow data to move around the system in parallel. This
section describes some of the basic PLB interconnection strategies.

Figure 4-13 depicts the simple shared-bus topology, similar to the way peripherals can be
connected to a PowerPC 405 processor in earlier Virtex architectures. In this example, the
“main memory” for the processor is attached to a memory controller on the PLB. The
performance of this topology might be sufficient, particularly if there are no other masters
in the system that need to share any of these memory or peripheral devices. Even so, access
to any high-latency peripherals by the data load/store unit might occasionally stall the
processor’s instruction fetch.

Figure 4-13: Simple Processor-Centric Shared Bus Design

CPU

IPLB

DWPLB

DRPLB

Crossbar

To External
Main Memory

Memory
Controller

Block RAM
Controller

Block RAM
Block

General-
Purpose I/O

UART

MPLB PLB

UG200_c4_13_011508

Virtex-5 FXT FPGA
Embedded Processor Block

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 125
UG200 (v1.6) January 20, 2009

PLB Interconnection Techniques
R

Figure 4-14 simply replaces the PLB-based memory controller with one connected to the
crossbar MCI. Overall latency to memory is slightly improved due to the elimination of
PLB arbitration cycles. Because the pathways to main memory and peripherals are now
independent, peripheral access can no longer interfere with instruction fetch.

Figure 4-14: Simple Processor-Centric Design Using Memory Controller Based
Main Memory

CPU

IPLB

DWPLB

DRPLB

Crossbar Memory
Controller

Block RAM
Controller

Block RAM
Block

General-
Purpose I/O

UART

MPLB

MCI

PLB

UG200_c4_14_011508

Virtex-5 FXT FPGA
Embedded Processor Block

http://www.xilinx.com

126 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Figure 4-15 shows how another master device in the system can access main memory,
peripherals, or both via the crossbar’s SPLB 0 or SPLB 1 interface. While access to either
MCI or MPLB interface is now arbitrated, access by each master to opposite interfaces can
be carried out in parallel. For example, the external master can read from main memory
while the processor accesses any of the peripherals via the MPLB. Also, because the
hardened crossbar can operate at higher frequency than the FPGA logic, accesses to main
memory by the various masters can be queued up in the crossbar to maximize memory
bandwidth.

Figure 4-15: Main Memory and Peripherals Shared Between Processor and
External Master

CPU

IPLB

DWPLB

DRPLB

SPLB0/1

Crossbar Memory
Controller

Block RAM
Controller

Block RAM
Block

External
Master

General-
Purpose I/O

UART

MPLB

MCI

PLB

UG200_c4_15_011508

Virtex-5 FXT FPGA
Embedded Processor Block

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 127
UG200 (v1.6) January 20, 2009

PLB Interconnection Techniques
R

One form of external master is a high-speed I/O device, such as an Ethernet controller. As
shown in Figure 4-16, rather than moving streams of data using PLB protocol, such devices
are often connected via LocalLink channels to hardened DMA controllers inside the
embedded processor block. As with the SPLB interfaces, the crossbar serves as the
pathway from these DMA engines to main memory, regardless of whether main memory is
connected on the MCI (as shown in Figure 4-16) or the MPLB interface (as in Figure 4-13).

Figure 4-16: Main Memory Shared Between Processor and DMA

Virtex-5 FXT FPGA
Embedded Processor Block

CPU

IPLB

DWPLB

DRPLB

DMA0/1/2/3
LocalLink

Crossbar Memory
Controller

Block RAM
Controller

Block RAM
Block

General-
Purpose I/O

UART

MPLB

MCI

PLB

UG200_c4_16_011408

High-Speed
I/O Device

DMA
Controller

http://www.xilinx.com

128 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

Another device that acts as both an external master and as a slave is a bridge to an external
bus, such as PCI or PCI Express bus. In Figure 4-17, remote masters can access local main
memory on the MCI via the crossbar SPLB 0/SPLB 1 interface. Also, the local processor
can access remote slaves via the MPLB, which connects to a slave interface on the external
bridge. There may also be a DMA connection to the external bridge (not shown) to
accelerate locally initiated streaming transfers.

If a remote master also needed to access any of the local peripherals (or PLB-based
memory) connected to the MPLB interface, the crossbar can provide a pathway from
SPLB 0/SPLB 1 to MPLB. However, because outbound traffic from the processor to remote
slaves occurs over the MPLB and because the MPLB uses an independent PLB/arbiter than
SPLB 0/SPLB 1, it is possible for such a topology to become deadlocked. For example, if
the processor is granted the MPLB to access a remote slave at about the same time as a
remote master requests access to the crossbar, the outbound request might be held at the
external bridge until the inbound traffic completes. But if the inbound request is for access
to a peripheral on the MPLB, the crossbar does not allow that transaction to proceed until
the pending request from the processor completes, thus leading to deadlock.

Figure 4-17: External Bridge with Remote Access to Main Memory and
Processor Access to Remote Peripherals

CPU

IPLB

DWPLB

DRPLB

SPLB0/1

Crossbar Memory
Controller

External
Bridge

Slave
Peripherals

MPLB

MCI

PLB

External
Bus To Remote

Masters and
Slaves

UG200_c4_17_011408

Virtex-5 FXT FPGA
Embedded Processor Block

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 129
UG200 (v1.6) January 20, 2009

PLB Interconnection Techniques
R

One simple solution to avoid potential deadlock, in the case of an external bridge, is shown
in Figure 4-18. Here, the same PLB is used to carry both inbound and outbound traffic, and
it connects to both the MPLB and SPLB 0/SPLB 1 interfaces of the crossbar. The data traffic
patterns are the same as in Figure 4-17, except that all inbound and outbound requests
must first arbitrate for the same PLB before commencing, thus avoiding the risk of
deadlock. However, sharing the same PLB between the processor and the external bridge
master might reduce the overall throughput of the system.

Figure 4-18: External Bridge with Remote Access to Main Memory and
Locally Shared Peripherals

CPU

IPLB

DWPLB

DRPLB

SPLB0/1

Crossbar Memory
Controller

External
Bridge

Slave
Peripherals

MPLB

MCI

PLB

UG200_c4_18_011508

Virtex-5 FXT FPGA
Embedded Processor Block

http://www.xilinx.com

130 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 4: PLB Interface
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 131
UG200 (v1.6) January 20, 2009

R

Chapter 5

Memory Controller Interface

The Memory Controller Interface (MCI) block provides a bridge between the high-speed
crossbar and a soft memory controller implemented in FPGA logic. The MCI provides a
simple protocol that allows the soft memory controller to run much faster because it does
not need to implement the more complex and more general PLB protocol. Figure 5-1 shows
a soft memory controller interfacing to a physical memory outside the Virtex-5 FPGA on
one side and the MCI of the embedded processor block on the other side. This architecture
allows soft memory controllers to be designed for various types of external memories such
as DDR2, QDR, and so on, without building a soft PLB interface.

Overview
In most processor-based systems, the overall performance is highly dependent on the
latency and bandwidth between the processor and memory. Large memories are typically
shared by the processor and other peripherals, making memory access a bottleneck. To
resolve this issue, the embedded processor block in Virtex-5 FXT FPGAs contains a high-
speed memory interface connected to the crossbar to allow the processor and other high-
speed peripherals to share the memory efficiently. Figure 5-1, page 131 depicts the
topology of the interconnection in the processor block including the Memory Interface
block.

This interface improves the performance of external memory accesses, while preserving
the flexibility to use various memory types. Therefore, the physical layer of the memory
controller for different types of memory, such as DDR, QDR, and SRAM, is implemented as

Figure 5-1: Memory Controller Interface

Virtex-5 FXT FPGA
Embedded Processor Block

FPGA Logic

Processor

IPLBAPU
Control

FCM
Interface

PLB Master

PLB Master

PLB Slave
Interface

PLB Slave
Interface

PLB Slave

Memory
Controller
Interface Soft

Memory
Controller

External
Memory

DCR Interface

CPM/
Control DCR

C
ro

ss
ba

r

DRPLB

DWPLB

UG200_c5_01_010708

http://www.xilinx.com

132 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

soft logic, while the interface to the crossbar is hardened. This allows the crossbar to run at
a higher frequency.

As explained in Chapter 2, “Embedded Processor Block Overview,” the crossbar
eliminates blocking of transactions to the memory controller while other master/slave
transactions are in process. Furthermore, the MCI block can support split transactions by
allowing multiple transactions to be pipelined to the memory controller at once.

The notable features of this interface are as follows:

• All transactions to the FPGA logic are in constant burst lengths set by the user
through a control register (possible burst lengths are 1, 2, 4, and 8)

• Addresses to the FPGA logic are automatically incremented to accommodate for the
constant burst length feature

• The width of all transactions to the FPGA logic on the MCI is defined in a user-
programmable register (128, 64, and 32 bits)

• All control registers are accessible by the processor through DCR instructions or
defined by the bitstream

• The MCI can operate at a clock ratio of 1:N (where N is an integer in the range [1:16])
with respect to the crossbar interconnect clock (CPMINTERCONNECTCLK)

• With a higher latency, the MCI can operate at a clock ratio of 2:3 with respect to the
crossbar interconnect clock (CPMINTERCONNECTCLK)

Interface Features
The memory interface is a fast, compact, and convenient way of connecting memory to the
embedded processor block in Virtex-5 FXT FPGAs. The MCI is designed to be similar to a
simple FIFO interface rather than the more complicated PLB interface. The interface
consists of an address bus, two data buses (one for each direction), and some control
signals. All transactions to the FPGA logic are constant length, greatly simplifying the
design of the soft memory controller. Every transaction requires at minimum an address,
an address valid signal, and a signal (MIMCREADNOTWRITE) that indicates if the
transaction is a read or a write. The MIMCADDRESSVALID signal is asserted for exactly
one clock cycle for each transaction to the soft memory controller. The MCI can generate
back-to-back reads and writes, and can switch from a read transaction to a write
transaction on the next cycle. However, the MCI has an autohold feature that allows the
next transaction to be delayed for a certain number of cycles under certain conditions as
described in Table 5-1, page 135.

For write transactions, write data is presented on the write bus (MIMCWRITEDATA)
WDD cycles after the MIMCADDRESSVALID signal is asserted. WDD is a user-
configurable parameter whose allowed values range from 0 through 10. For burst
transactions, only the first address is presented to the soft memory controller, and the soft
memory controller is responsible for incrementing the address appropriately for the rest of
the data beats in the burst transaction. The burst length and burst width values are set
using control registers as shown in Table 5-1, and are not part of the interface signal set
described in Table 5-2, page 137.

For read transactions, the MCI block expects the data and a valid MCMIREADDATAVALID
signal at some point in time on the read data bus (MCMIREADDATA). The MCI does not
terminate transactions that have started. The MCI block can use the byte enable signals
(MIMCBYTEEANBLE[0:15]) to make the writes byte-selectable. Refer to “Signal
Descriptions,” page 137 for detailed descriptions of the input and output ports that
constitute this interface.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 133
UG200 (v1.6) January 20, 2009

Interface Features
R

Although the physical data buses are 128 bits wide, the user can optionally downsize the
bus by setting the BURSTWIDTH parameter described in Table 5-1. This option allows the
soft memory controller to save some area when the memory data width is less than 128
bits. For example, the user selects a 32-bit bus and the MCI has 256 bits of data to transmit,
it sends out eight 32-bit back-to-back words to the fabric on MIMCWRITEDATA[0:31]. If
the soft memory controller had to implement the muxes that selected different 32-bit
portions of the 256-bit data, the soft memory controller would have been larger and slower.
This muxing is also implemented on the read path of the MCI block, so that the soft
memory controller does not have to form 128-bit words.

The soft memory controller is expected to support a single transaction type, in terms of
burst length, as determined by the BURSTLENGTH parameter described in Table 5-1. The
MCI converts internal PLB transactions of various burst lengths and widths into a
corresponding number of the single transaction type supported by the soft memory
controller. Every time the burst length is reached, a new address is generated to send to the
FPGA logic. For example, assume the starting address is 0, a burst of four 128-bit words (64
bytes) is to be sent to the soft memory controller, and the MCI is configured to be 128 bits
wide with a burst length of 2. The transactions on the MCI are (address 0, write 0-15),
(write 16-31), (address 32, write 32-47), and (write 48-63).

The configurable BURSTLENGTH parameter allows different memory controllers with
different requirements to be attached to the MCI, while keeping the logic in the soft
memory controller to a minimum. For example, one memory device might only support
burst lengths of 8, while another simpler memory device might only support single-word
transactions (burst lengths of 1).

The MCI block takes the address directly from the crossbar and sends it to the FPGA logic,
adjusting the address when required for bursts. The MCI block does not know what
memory is connected to it. Therefore, if the connected memory ranges from 0x000
through 0x7FF, when a user writes to address 0x900, the memory at address 0x100 is
overwritten. The MCI block assumes that the user is aware of this issue.

To simplify the row and bank detect logic even further, the MCI block produces two bits
that tell the soft memory controller if the bank and row have changed from the previous
burst. These signals are based on a mask that covers the upper 32 bits of the 36-bit address
range. These signals reduce the need for slow and expensive comparison operations in the
soft memory controller.

A by-product of having the bank and row conflict signals is that the MCI block knows
when the soft memory controller might have to stall due to a bank or a row change. When
the memory controller has to close one page and open another one, it cannot accept
another transaction. In such cases, the memory controller just asserts the hold-off signal
(MCMIADDRREADYTOACCEPT) to the MCI block, which stops delivering new
addresses until the MCMIADDRREADYTOACCEPT signal is deasserted. Due to the time
delay between the memory controller issuing the MCMIADDRREADYTOACCEPT signal
and the MCI block reacting to it, an extra address or two might be released to the memory
controller, causing it to overflow, unless the MCI block can predict this behavior and hold
off on sending additional addresses and data. The MCI block can detect this change and
internally assert the hold-off signal. Because the MCI block does not know how long to
auto-assert the hold-off signal, it only asserts the hold-off signal long enough for the
memory controller’s MCMIADDRREADYTOACCEPT signal to start working. In other
words, even though the MCI block internally asserts a hold-off signal, it relies on the
memory controller to extend this signal sufficiently for the system to function.

Four events might cause the auto hold-off to occur: change of bank, change of row, change
of direction from read to write or write to read, or an ECC non-complete transaction. A
control register defines which of these events or combination of these events actually

http://www.xilinx.com

134 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

causes an auto hold-off. In addition, the control register defines how many cycles are
inserted after a conflict occurs. Refer to “Control and Configuration,” page 135 for details
on how to set the control registers.

The QDR support mode allows overlapping reads and writes. In this mode, a write
address with its data can be sent on the MCI immediately followed by a read address in the
next cycle. Assuming that the MCI block was set for a burst length of 4, in non-QDR mode,
the MCI block must wait until after the fourth cycle of the write to start a read transaction.
However, in the QDR mode, certain features of the MCI block are disallowed. All conflict
enable bits in the DCR should be turned off. QDR does not recognize conflicting banks, so
this is no longer necessary. More details are provided in the following sections.

Another mode of operation is the Read Modify Write mode. If an agent writes to an ECC
protected memory but does not write the entire protected word, the (FPGA logic based)
memory controller must first read the original word, modify certain bytes with the new
write data, recalculate the ECC, and finally write the new ECC protected word to physical
memory. This process requires many cycles. Therefore, without this feature built into the
memory controller, the following procedure has to be used. The MCI block issues a write.
The memory controller detects if all byte enables are true. If not, the hold-off signals must
be asserted to the MCI block and the Read-Modify-Write sequence must be started.

By the time the stall signal gets to the MCI block, the block might have issued multiple
writes to the memory controller, thus overflowing its pipeline. When this feature is
enabled, whenever the byte selects are not fully enabled, the MCI block institutes an auto-
hold sequence, which gives the memory controller time to assert its own address-not-
ready signal. Refer to “Control and Configuration,” page 135 for programming
information and “Timing Diagrams,” page 137 for example timing diagrams. All the write
data for this transaction is released to the soft memory controller before the MCI block
looks at the address-not-ready signal. In other words, the MCI block finishes this
transaction before deciding if it should send out the next transaction.

The PLB read data error signal (MCMIREADDATAERR), provided with the read data and
data valid signals, can be asserted by the memory controller to tell the requesting master
that something is wrong with the data, such as a parity error or an uncorrectable ECC error.

When the soft memory controller asserts MCMIREADDATAERR, the error is passed along
with the PLB read data back to the PLB master. If the PLB master is connected to one of the
SPLB interfaces or if the read transaction originates from one of the DMA controllers, the
error also sets a flag in the interrupt status register (IST, DCR 0x20) and can lead to an
interrupt, if enabled. If the PLB master is the PowerPC 440 embedded processor, the read
error causes a machine check exception when that data is used by the PowerPC 440
embedded processor (for data reads) or the instruction is executed by the processor (for
instruction reads).

Crossbar Transactions
The MCI block interfaces with the crossbar on one side and with the soft memory
controller on the other side. Each side has its own clock domain, and synchronizers allow
data to cross the clock boundaries.

The MCI block receives transactions from the crossbar, which receives these transactions
from a number of different devices (see Figure 2-1, page 29). These transactions can
originate from either the processor (three distinct PLB masters) or from the soft FPGA logic
(two masters). Memory transactions can also originate from any of the four DMA
controllers built into the embedded processor block in Virtex-5 FXT FPGAs. The MCI block
relies on the PLB interfaces on the crossbar inputs to simplify certain transactions, such as
indeterminate bursts.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 135
UG200 (v1.6) January 20, 2009

Control and Configuration
R

Control and Configuration
Three registers, accessible through the DCR interface, are provided to allow control and
configuration of the MCI block. The default value of these registers can be set using the
configuration attributes on the processor block.

MI_ROWCONFLICT_MASK [0:31] Register
This register contains the mask used to detect row conflicts from one transaction to
another. This register is at DCR address 0x11. The 32 bits in this register correspond to the
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position
identifies that bit as a row address bit. For example, if bits 8:20 are set to 1, the
MIMCROWCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS
change between the previous instruction sent to the soft memory controller and this
instruction. The default value of this register is 0.

MI_BANKCONFLICT_MASK [0:31] Register
This register contains the mask used to detect bank conflicts from one transaction to
another. This register is at DCR address 0x12. The 32 bits in this register correspond to the
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position
identifies that bit as a bank address bit. For example, if bits 4:7 are set to 1, the
MIMCBANKCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS
change between the previous instruction sent to the soft memory controller and this
instruction. The default value of this register is 0.

MI_CONTROL [0:31] Register
This control register is at DCR address 0x10. Table 5-1 describes the meaning of each bit in
the register.

Table 5-1: Bit Descriptions for the MI_CONTROL Register

Bit Name
Default
Values

Description

[0] enable 0

• 1: The MCI is enabled. The PLB and DMA masters can access the
soft memory controller through the crossbar.

• 0: The MCI is disabled, and any attempt to access the MCI
through the crossbar will fail.

[1] Rowconflictholdenable 0

If there is a change between the row from the current address and
the past address, setting this bit causes the MCI block to wait
Autoholdduration number of cycles before starting up the next
instruction.

[2] Bankconflictholdenable 0

If there is a change between the bank from the current address and
the past address, setting this bit causes the MCI block to wait
Autoholdduration number of cycles before starting up the next
instruction.

[3] Directionconflictholdenable 0

If there is a change of direction between the current address and the
past address (from reads to writes and writes to reads), setting this
bit causes the MCI block to wait Autoholdduration number of
cycles before starting up the next instruction.

http://www.xilinx.com

136 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

[4:5] Autoholdduration 00

This field tells the MCI block how long to hold off when there is a
triggering event causing an autohold.

• 00: 2 cycles
• 01: 3 cycles
• 10: 4 cycles
• 11: 5 cycles

[6] 2:3 Clock Ratio mode 0

Clock ratio mode:

• 0: Integer ratio of the MCI clock to the embedded processor
block interconnect clock (CPMINTERCONNECTCLK)

• 1: Fractional ratio of the MCI clock to the embedded processor
block interconnect clock (CPMINTERCONNECTCLK) (3/2)

[7] overlaprdwr 0

If this bit is set, a read transaction does not always block the next
write transaction from going out. If this bit is not set, after every
read or write, the amount of time for that burst will transpire before
the next transaction is issued. This bit should be enabled for QDR.

[8:9] Burstwidth 00

Data per clock cycle:

• 00: Burst width = 128
• 01: Burst width = 64
• 10: Reserved
• 11: Burst width = 32

[10:11] Burstlength 00

Burst length:

• 00: Burst length = 1
• 01: Burst length = 2
• 10: Burst length = 4
• 11: Burst length = 8

[12:15] Write Data Delay (WDD) 0000
Values 0 through 10 are valid delays in terms of clock cycles. Values
11 through 15 are reserved.

16 RMW 0

When this bit is set, if all the byte enables for a write are not enabled
for this transaction, the MCI waits for a number of cycles
determined by Autoholdduration before starting the next
transaction.

[17:23] Reserved 0000000 These bits are reserved

24 PLB Priority Enable 1

• 0: First level arbitration is disabled for the PLB masters trying to
access the MCI through the crossbar.

• 1: First level arbitration is enabled among the PLB masters trying
to access the MCI through the crossbar

See “Arbitration” in Chapter 3 for more information.

[25:27] Reserved 000 These bits are reserved

[28] Pipelined Read Enable 1

• 0: The crossbar does not accept a new read command until the
current read command completes.

• 1: The crossbar accepts read commands destined for the MCI
while the current read operation is still in progress.

Table 5-1: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name
Default
Values

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 137
UG200 (v1.6) January 20, 2009

Signal Descriptions
R

Signal Descriptions
Table 5-2 describes the MCI signals.

Timing Diagrams
The diagrams in this section show how this interface is used and the relationship between
the signals. The diagrams show actual MCI signals, but PLB signal names can apply to any
one of the PLB connections to the crossbar that can drive the MCI. Actual signal latencies
across the crossbar are not shown. The conventions for bus values are as follows:

[29] Pipelined Write Enable 1

• 0: The crossbar does not accept a new write command until the
current write command completes.

• 1: The crossbar accepts write commands destined for the MCI
while the current write operation is still in progress.

[30] Reserved 1 Reserved

[31] Reserved 1 Reserved

Table 5-1: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name
Default
Values

Description

Table 5-2: Memory Controller Interface Signals

Signal Dir Description

MIMCREADNOTWRITE O
Transaction type:

• 0: Write
• 1: Read

MIMCADDRESS[0:35] O Byte address

MIMCADDRESSVALID O This signal is the valid bit associated with MIMCADDRESS.

MIMCWRITEDATA[0:127] O Write data

MIMCWRITEDATAVALID O This signal indicates if the data on MIMCWRITEDATA is valid.

MIMCBYTEENABLE[0:15] O
This bus determines which bytes of MIMCWRITEDATA are to be written to
the RAM.

MIMCBANKCONFLICT O
The soft memory controller uses this signal to determine if this address is in the
same bank as the previous instruction.

MIMCROWCONFLICT O The soft memory controller uses this signal to determine if this address is in the
same row as the previous instruction.

CPMMCCLK I MCI clock

MCMIREADDATA[0:127] I Read data

MCMIREADDATAVALID I
The soft memory controller asserts this signal to let the Memory Controller
Interface block know that the data presented on MCMIREADDATA is valid.

MCMIREADDATAERR I
The soft memory controller asserts this signal to indicate something is wrong
with the read data, possibly a parity or ECC error that was detected by the
memory controller.

MCMIADDRREADYTOACCEPT I
Whenever the soft memory controller is ready to accept another complete
transaction from the MCI, it asserts this signal.

http://www.xilinx.com

138 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

• A = address

• WR= write data

• RD = read data

The first digit after the letter represents the cycle transaction from the PLB. The first digit is
followed by a period. The last set of digits represents blocks of data. For instance, if the PLB
is transmitting two 128-bit quantities, it sends out WRX.0 and WRX.1.

Figure 5-2 shows major activity for a write request through all the major blocks of the hard
interconnection. The operation starts at the processor, goes through the crossbar, the
memory interface, the memory controller, and the actual memory (DDR). When the
transaction leaves the MCI, the number of cycles depends on the type of memory.
Therefore line breaks are used to indicate the variable cycle times.

Figure 5-3 shows the key activities for a read request through all major blocks of the hard
interconnection. The request starts at the processor, goes through the crossbar, the memory
interface, the memory controller, the actual memory (DDR), and then back through those
blocks. When the transaction leaves the MCI, the number of cycles depends on the type of
memory. Therefore line breaks are used to represent the variable cycle times.

Figure 5-2: System-Level Timing Diagram: Write

CPMMCCLK

PPC_PLB_addr

PPC_PLB_wrdata

PPC_PLB_Req

MIMCADDRESS

MIMCWRITEDATA

Fpga_dramAddress

Fpga_dramData

A0

UG200_c5_02_061407

WR0

A0

WR0

A0

0.0 0.1

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 139
UG200 (v1.6) January 20, 2009

Timing Diagrams
R

Figure 5-4 shows a PLB burst sent through the MCI block. The address and data come out
to the memory controller just as they arrived at the PLB interface.

Figure 5-5 shows how a burst transfer from the PLB can get split into two separate
transactions on the memory interface. The first line of data (A1 and WR1.1) is sent out
without many changes. In the second burst to the memory controller, the MCI block creates
a new address (A1.1) to go with the second set of data (WR1.2). Address A1.1 is
incremented as appropriate.

Figure 5-3: System-Level Timing Diagram: Read

CPMMCCLK

PPC_PLB_addr

PPC_PLB_Req

MIMCADDRESS

Fpga_dramAddress

dram_fpgaData

MCMIREADDATA

PPC_PLBRdData

A0

UG200_c5_03_061407

A0

A0

RD0

0.0 0.1

RD0

Figure 5-4: Burst Transfer 1 (Memory Controller Interface = 128 Bits, Burst = 2, PLB = Cache Line)

CPMMCCLK

PLB_addr[0:35]

PLB_wrdata[0:127]

A1

UG200_c5_04_110308

WR1.1 WR1.2

MIMCADDRESS

MIMCWRITEDATA[0:127]

MCMIADDRREADYTOACCEPT

WR1.1 WR1.2

MIMCWRITEDATAVALID

A1

MIMCADDRESSVALID

MIMCREADNOTWRITE

PLB_size[0:3] Valid

http://www.xilinx.com

140 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

Figure 5-5: Burst Transfer 2 (Memory Controller Interface = 128 Bits, Burst = 1, PLB = Cache Line)

CPMMCCLK

PLB_addr[0:35]

PLB_wrdata[0:127]

A1

UG200_c5_05_110308

WR1.1 WR1.2

MIMCADDRESS

MIMCWRITEDATA[0:127]

MCMIADDRREADYTOACCEPT

WR1.1 WR1.2

A1.0 A1.1

PLB_size[0:3] Valid

MIMCADDRESSVALID

MIMCWRITEDATAVALID

MIMCREADNOTWRITE

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 141
UG200 (v1.6) January 20, 2009

Timing Diagrams
R

Figure 5-6 shows how the data can get broken into smaller blocks on the MCI. The PLB
sends the cache line in two 128-bit beats. Beat 1 has blocks 0 and 1 while Beat 2 has blocks
2 and 3, where each block is 64 bits. When the address comes out of the FIFO, the control
logic determines that not only does it have to create two separate bursts out of the original
PLB transaction, but each of the new transactions has to have its data broken into smaller
blocks. As can been seen on MIMCWRITEDATA, each 64-bit quantity comes out in its own
cycle. This is helpful if the memory controller is connected 32-bit DDR DRAM.

Figure 5-7 shows the same basic data translation as Figure 5-6, except when the MCI is
ready to send the data to the soft memory controller, the soft memory controller has not
asserted MCMIADDRREADYTOACCEPT. The MCI waits for
MCMIADDRREADYTOACCEPT to go High before starting the transaction. When the
signal goes High, the MCI starts sending the new data to the soft memory controller three
cycles later. Because the MCI is in 64 x 2 mode, only bits [0:63] of the data bus and bits [0:7]
of the byte enable should be looked at; the rest of the bits are undefined.

Figure 5-6: Data Translation (Memory Controller Interface = 64 Bits, Burst = 2, PLB = Cache Line)

CPMMCCLK

PLB_Addr[0:35]

PLB_RdData[0:127]

A1

UG200_c5_06_110308

WR1.01 WR1.23

MIMCADDRESS

MIMCWRITEDATA[0:63]

MCMIADDRREADYTOACCEPT

WR1.0 WR1.1 WR1.2 WR1.3

A1.0 A1.1

PLB_Size[0:3] Valid

MIMCWRITEDATAVALID

MIMCADDRESSVALID

MIMCREADNOTWRITE

http://www.xilinx.com

142 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

Figure 5-8 shows two transactions coming from the PLB. The first transaction is two beats
of 128 bits of write data, and the second transaction is one beat of 128 bits of data. Because
MCI parameters are set as Burstlength = 4 and Burstwidth = 32 (4 x 32), a new address is
required for every 128 bits of data. The first PLB transaction is broken up to 2 bursts of
4 beats, each beat being 32 bits (2 x 4 x 32 = 256 bits of data). Addresses A1.0 and A1.1 are
from the PLB address A1. The second transaction from the PLB is only 128 bits, so only one
address is generated on the MCI.

Figure 5-7: Memory Controller Not Ready to Accept

CPMMCCLK

PLB_Addr

PLB_WrData[0:127]

A1

UG200_c5_13_111708

W01 W23

MIMCWRITEDATA[0:63] W0 W1 W2 W3

MIMCBYTEENABLE[0:7] FF FF FF FF

mi_wrdata_a1 W0 W1 W2 W3

MIMCADDRESS A1.0 A1.1

mi_addr_a1 A1.0 A1.1

MIMCWRITEDATAVALID

MIMCADDRESSVALID

MIMCREADNOTWRITE

MCMIADDRREADYTOACCEPT

Figure 5-8: Burst Length Set to 4x32

CPMMCCLK

PLB_Addr

PLB_WrData[0:127]

UG200_c5_14_111708

A1 A2

W1.0
123

W1.4
567

W2.0
123

MIMCWRITEDATA[0:31] W1.4 W1.5 W1.6 W1.7 W2.0 W2.1 W2.2 W2.3W1.0 W1.1 W1.2 W1.3

MIMCBYTEENABLE[0:3] F F F F F F F FF F F F

MIMCADDRESS A2.0A1.0 A1.1

MIMCWRITEDATAVALID

MIMCADDRESSVALID

MIMCREADNOTWRITE

MCMIADDRREADYTOACCEPT

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 143
UG200 (v1.6) January 20, 2009

Timing Diagrams
R

Figure 5-9 shows two transactions coming from the PLB. The first one is 2 beats of 128 bits
of write data, and the second one is 1 beat of 128 bits of data. The first PLB transaction is
matched in size and length to the MI, so it goes out exactly as it came in (2 x 128). The
second transaction is only 128 bits wide, so it has to have 128 bits of data padded (all MI
transactions are 2 x 128). In this case in cycle 8, the write data is still valid, however, the
byte enables are set to zero to make sure the data is not actually written into any real
memory.

Figure 5-10 shows the QDR operation. The PLB pushes a write, a read, and another write to
the MCI block. Assuming that none of these transactions overlap in address space, the MCI
block splits them up into two transactions each (the MCI block transactions are 2 x 64,
while the PLB transactions are 2 x 128). Just after the first burst of the first write goes out,
a read can occur before the next burst from that first transaction (R1.0 is between W1.0 and
W1.2). The data is eventually returned to the MCI block as if this is not a QDR transaction.

Figure 5-9: Burst Length Set to 2x128

CPMMCCLK

PLB_Addr

PLB_WrData[0:127]

UG200_c5_15_111708

A1 A2

W1.
0123

W1.
0123

W1.
4567

W1.
4567

W2.
0123

W2.
0123

MIMCWRITEDATA[0:127] -- --

MIMCBYTEENABLE[0:15] FFFF FFFF FFFF 0000

MIMCADDRESS A1.0 A2.0

MIMCWRITEDATAVALID

MIMCADDRESSVALID

MIMCREADNOTWRITE

MCMIADDRREADYTOACCEPT

Figure 5-10: QDR Mode (Memory Controller Interface Block Transactions = 2 x 64)

CPMMCCLK

PLB_addr[0:35]

PLB_wrdata[0:127]

PLB_rnw

W1

UG200_c5_08_061407

R1 W1

WR1.01 WR1.12 WR2.01 WR2.12

MIMCADDRESS

MIMCWRITEDATA[0:63] WR1.0 WR1.1 WR1.2 WR1.3 WR2.0 WR2.1 WR2.2 WR2.3

W2.0R1.2W1.2R1.0W1.0 W2.2

PLB_size[0:3] 2x128 2x128 2x128

http://www.xilinx.com

144 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

In Figure 5-11:

• Autoholdduration = 2’b10 (4 cycles)

• WDD = 2

• Burst length = 2

Figure 5-11 shows when the MCMIADDRREADYTOACCEPT signal can be toggled in
relation to the MIMCADDRESSVALID signal.

In cycle 2, a normal, nonconflicted transaction occurs. Because WDD is set to 2, the data
associated with that address occurs in cycles 4 and 5. (The burst length is set to 2, so there
are two beats of data.) In cycle 4, an address is released that has a conflict. Due to the
conflict, an autohold is asserted, lasting four cycles.

Because the conflict signal is asserted, the memory controller chooses to lower the
MCMIADDREADYTOACCEPT signal two cycles later (cycle 6). The MCI block waits for
the memory controller to release the signal before sending transactions again.

Transaction 3 occurs in cycle 14. There is also a conflict signal, however, the memory
controller chooses not to toggle the MCMIADDREADYTOACCEPT signal. Therefore, the
interface presents its next address six cycles later (four cycles for autohold off plus two
cycles for the burst length).

In cycle 20, transaction 4 begins. Because it is not a conflict, its data is presented two cycles
after the addressvalid is shown. Remember that WDD equals 2.

Figure 5-11: Autohold and MCMIADDRREADYTOACCEPT

MIMCADDRESSVALID

MIMCWRITEDATAVALID

MIMCBANKCONFLICT or
MIMCROWCONFLICT

MCMIADDRREADYTOACCEPT

0 1

1

1 2 3 4

2 3 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

UG200_c5_09_061407

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 145
UG200 (v1.6) January 20, 2009

Timing Diagrams
R

In Figure 5-12:

• Autoholdduration = 2’b00 (two cycles)

• WDD = 2

• Burst length = 2

Figure 5-12 shows how the autoholdduration value can be set to zero. If the soft memory
controller has a combinational path from the conflict bits to the
MCMIADDREADYTOACCEPT signal, in theory the memory controller could react
instantaneously to the assertion of the conflict. This operation is not recommended in real
systems due to timing issues; however, it provides insight on how the autoholdduration
value affects the next transaction.

Transaction 1 starts in cycle 2, the same as Figure 5-6.

Transaction 2 starts the same in cycle 4; however, the memory controller deasserts the
MCMIADDREADYTOACCEPT signal in the same cycle. Because autoholdduration is set
to 00, the ready_window is shown much closer to the addressvalid signal. Because of the
earlier start, the MCMIADDREADYTOACCEPT signal can be deasserted earlier, and the
next transaction can begin in cycle 13. (The length of the MCMIADDREADYTOACCEPT
signal being deasserted in Figure 5-7 is five cycles while in Figure 5-6 it is four cycles.)

The space between cycles 3 and 4 is now only four cycles (autoholdduration is set to 0,
which means two cycles of delay plus the two cycles of burst length).

Transaction 4 is identical, except that it starts earlier.

In Figure 5-13, Autoholdduration = 2 internal cycles (0 external cycles). Figure 5-13 shows
a system that is expecting a combinatorial path between conflict and
MCMIADDRREADYTOACCEPT; however, the MCMIADDRREADYTOACCEPT signal
goes Low in the cycle after the conflict (see time slice 4-5).

Figure 5-12: Small Autohold

MIMCADDRESSVALID

MIMCWRITEDATAVALID

MIMCBANKCONFLICT or
MIMCROWCONFLICT

MCMIADDRREADYTOACCEPT

0 1

1

1 2 3 4

2 3 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

UG200_c5_10_061407

Figure 5-13: Missed Ready to Accept

MIMCADDRESSVALID

MIMCWRITEDATAVALID

MIMCBANKCONFLICT or
MIMCROWCONFLICT

MCMIADDRREADYTOACCEPT

0 1

1

1 2 3 4

2 3

3

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

UG200_c5_11_061407

http://www.xilinx.com

146 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 5: Memory Controller Interface
R

In Figure 5-14:

• Autoholdduration = 2’b10

• WDD = 2

• Burst length = 2

• Burst width = 32 bits

Figure 5-14 shows what happens when the RMW bit is enabled in the control register. The
data width is only 32 bits, so only 4 bits of the byte enable are used. An “F” means that all
bytes are being written, and the “4” in cycle 6 shows that only one byte is being written.

In cycle 2, a normal transaction is issued, whose data phase is complete at the end of cycle
5.

In cycle 4, a transaction begins, but the first beat only has one byte being written. Therefore
autohold is turned on. Two cycles after the last byte enable for that transaction is shown,
the memory controller drives the MCMIADDRREADYTOACCEPT signal Low, which the
MCI block uses to stop giving new transactions. After the memory controller releases the
MCMIADDRREADYTOACCEPT signal, the MCI block starts up new transactions, as
indicated in cycle 13.

Board Layout Considerations
FPGAs afford a great deal of pinout flexibility; however, to maximize the performance of
the PowerPC 440 processor to external DDR2 RAM, specific pin assignments must be used.
To plan for migration between devices/packages, use these recommended pin
assignments with Virtex-5 LXT or SXT devices in the same package. The recommended
pinouts are available as UCFs in the data directory of the memory controllers that support
the PowerPC 440 processors.

Figure 5-14: RMW Enabled

MIMCADDRESSVALID

MIMCWRITEDATAVALID

MIMCBYTEENABLE[0:15]

MCMIADDRREADYTOACCEPT

0 1

1

1 2 3 3

2

F FF F F4

3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

UG200_c5_12_061407

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 147
UG200 (v1.6) January 20, 2009

R

Chapter 6

Reset, Clock, and Power Management
Interfaces

Overview
This chapter describes the reset, clock, and power management interfaces to the embedded
processor block in Virtex-5 FPGAs. These interfaces feature simplified signal timing and
behavior for the user. The embedded processor block internally performs clock, reset, and
control signal conditioning and synchronization to meet the needs of the processor and the
subsystem within the embedded processor block. Logic inside the embedded processor
block also helps ensure the block is properly reset upon FPGA configuration, and that
unused logic is placed in a stable state.

Reset, Clock, and Power Management Interface
Table 6-1 describes the signals in the reset, clock, and power management interface of the
embedded processor block.

Table 6-1: Processor Block Reset, Clock, and Power Management Interface Signals

Signal Name Direction
Default
Value

Clock Function

C440RSTCHIPRESETREQ Output - CPMC440CLK
Indicates the processor is requesting
a reset for itself and the processor
block.

C440RSTCORERESETREQ Output - CPMC440CLK
Indicates the processor is requesting
a reset for just itself.

C440RSTSYSTEMRESETREQ Output - CPMC440CLK
Indicates the processor is requesting
a reset for the system.

CPMC440CLK Input 1 Main processor clock.

CPMC440CLKEN Input 1

Clock enable for the processor. A
value of 1 specifies an active clock to
the processor. A value of 0 disables
the clock. Disabling the clock reduces
dynamic power consumption.

CPMC440CORECLOCKINACTIVE Input 0 Static

When asserted, this signal indicates
that the clock to the processor is
disabled. This signal is sent by an
external CPM to the processor to
allow a debugger to read the status of
the clock.

http://www.xilinx.com

148 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 6: Reset, Clock, and Power Management Interfaces
R

CPMC440TIMERCLOCK Input 1
Async (Sampled by CPU

clock)

Controls the frequency of the
processor timers (Time Base,
Watchdog, FIT, and DEC). The
frequency of this clock must be less
than or equal to half the frequency of
CPMC440CLK.

CPMINTERCONNECTCLK Input 1

Main Embedded Processor Block
clock for the processor block
interconnect (crossbar). This clock is
used for the processor PLB interfaces
and the processor interconnect
(crossbar).

CPMINTERCONNECTCLKEN Input 1 Async

Clock enable for the embedded
processor block interconnect and the
processor interfaces. A value of 1
specifies an active clock to the PLB
interface. A value of 0 disables the
clock. Disabling the clock reduces
dynamic power consumption.

CPMINTERCONNECTCLKNTO1 Input 1 Static

Specifies whether the clock ratio
between the processor and the
interconnect within the embedded
processor block is an N:1 integer or a
fractional multiple. A value of 1
indicates the clock ratio is an N:1
integer. A value of 0 indicates a
fractional clock ratio of (2N+1)/2.

PPCCPMINTERCONNECTBUSY Output - CPMINTERCONNECTCLK

This status signal indicates if any
PLB, DMA, or memory controller
transactions are active inside the
embedded processor block. A 1
indicates transactions are active in
the embedded processor block while
a 0 indicates no transactions are
active. This signal can determine
when to reset the embedded
processor block or put it in a low
power state (disabled clock).

RSTC440RESETCHIP Input 0 Async
Resets the entire embedded
processor block including the
processor core.

RSTC440RESETCORE Input 0 Async
Resets the processor core and the
APU.

RSTC440RESETSYSTEM Input 0 Async
Resets the entire embedded
processor block including the
processor core.

Table 6-1: Processor Block Reset, Clock, and Power Management Interface Signals (Continued)

Signal Name Direction
Default
Value

Clock Function

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 149
UG200 (v1.6) January 20, 2009

Clock and Reset During Configuration and Reconfiguration
R

Clock and Reset During Configuration and Reconfiguration
During FPGA configuration, the embedded processor block in Virtex-5 FPGAs is clocked
with an internal FPGA configuration clock and is automatically reset so that it can be ready
for operation after configuration. The user need only ensure that the
CPMINTERCONNECTCLK clock signal is glitch-free.

During a Static Reconfiguration or Grestore event, the embedded processor block repeats
the reset and startup sequence. During an active reconfiguration, the embedded processor
block is not automatically reset, but can be reset by the user using the
RSTC440RESETCHIP, RSTC440RESETCORE, or RSTC440RESETSYSTEM control signals.

System-Level Considerations
The embedded processor block in Virtex-5 FPGAs internally buffers, conditions, and
synchronizes clock, reset, and power management signals for the user to simplify timing
and behavior. However, some system level considerations must be made.

The RSTC440RESETCHIP, RSTC440RESETCORE, and RSTC440RESETSYSTEM control
signals can be asserted asynchronously to the embedded processor block. The user only
needs to ensure that the reset pulse width is sufficient to be detected by the embedded
processor block. The CPMINTERCONNECTCLK signal must be stable and running before
the reset signals are deasserted. The embedded processor block internally resynchronizes
the reset signals, and holds them for the proper number of clock cycles. It takes eight
CPMINTERCONNECTCLK clock cycles for the reset signal to propagate through the
entire embedded processor block. During this delay, some of the interfaces will continue to
be active for up to eight CPMINTERCONNECTCLK clock cycles after the reset signal is
detected.

The processor core records the specific reset signal (one of three signals possible) that was
last used to reset the processor core. This record is stored in the DBSR register. However,
the reset signals provided by the user are first synchronized and extended for the required
number of clock cycles by additional logic in the embedded processor block. This logic
always releases the core reset signal last, regardless of how the user reset inputs are
sequenced. As a result, the processor core always records the core reset signal as the last
reset.

The CPMC440TIMERCLOCK signal is used when the CCR1[TCS] bit is set to 1. This signal
can be an asynchronous clock signal because it is internally synchronized to the processor
clock. The frequency of this clock must not be greater than half the frequency of
CPMC440CLK to ensure that CPMC440TIMERCLOCK can be sampled properly.

Clocking inside the processor block can be disabled to place it in sleep mode to reduce
power consumption. The CPMC440CLKEN and CPMINTERCONNECTCLKEN signals
can be used to enable or disable the clocks in the processor and embedded processor block
interconnect, respectively. The PPCCPMINTERCONNECTBUSY signal indicates if there
are any active PLB transactions inside the embedded processor block and can be used to
ensure conditions are safe to enter sleep mode.

The clock frequency ratio between processor clock and interconnect clock can be N:1 or
(2N+1)/2, where N is an integer greater than 0. Example ratios are 1:1, 2:1, 3:1 or 3:2. The
CPMINTERCONNECTCLKNTO1 signal must be statically set to one for ratios of N:1, and
to zero for ratios of (2N+1)/2. The latency of transactions between the core and
interconnect is improved for integer clock ratios.

http://www.xilinx.com

150 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 6: Reset, Clock, and Power Management Interfaces
R

Because the processor and crossbar clocks are likely to be running at higher speeds than
the fabric clocks, it is highly recommended that the C440RSTxxxRESETREQ signals be
synchronized to the clock domain in which they will be consumed.

Clock Insertion Delays and PLL Usage
All clocks used by the embedded processor block must be positive-edge aligned. The only
exceptions are local link clocks that do not need a fixed frequency or phase relationship
with the other clocks, and the DCR clock when the DCR is operated in asynchronous
mode.

The embedded processor block uses its own clock trees to distribute its internal clocks,
CPMC440CLK, and CPMINTERCONNECTCLK. As a result, there is a delay between the
clock edges presented at the edge of the embedded processor block and the clock edges at
the internal flip-flops. The DESKEW_ADJUST attribute in the Virtex-5 FPGA PLL blocks
can be set on each clock output to delay the output by an amount that matches the clock
insertion delay within the embedded processor block. Clocks connected to the embedded
processor block and to the buses and peripherals connected to the block should be
generated from a PLL block with the appropriate setting for the DESKEW_ADJUST
attribute:

• NONE for no delay used for CPMC440CLK and CPMINTERCONNECTCLK.

• PPC for a delay equal to the clock insertion delay within the embedded processor
block used for all other clocks (such as the PLB clocks that are synchronous to
CPMINTERCONNECTCLK).

The allowed frequency ratios for these clocks with respect to CPMINTERCONNECTCLK
are shown Table 6-2.

Table 6-2: Interface Clock Frequency Ratios

Clock Signal
Allowed Frequency Ratios With Respect to

CPMINTERCONNECTCLK

CPMMCCLK 2:3, OR 1:N, where N is any integer in the range [1:16]

CPMPPCMPLBCLK 1:N, where N is any integer in the range [1:16]

CPMPPCS0PLBCLK 1:N, where N is any integer in the range [1:16]

CPMPPCS1PLBCLK 1:N, where N is any integer in the range [1:16]

CPMDCRCLK 1:N, where N is any integer in the range [1:16]

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 151
UG200 (v1.6) January 20, 2009

R

Chapter 7

Device Control Register Bus

Introduction
The embedded processor block in Virtex-5 FPGAs, which is a CoreConnect based system-
on-a-chip, uses the Device Control Register (DCR) bus for device configuration, and
control and status accesses. This chapter provides an overview of the DCR arrangement
used in the processor block. Refer to the CoreConnect Bus Architecture Product Brief [Ref 2]
and Device Control Register Bus 3.5 Architecture Specifications [Ref 3] for more information.

Figure 7-1 shows a block diagram of the connections of various DCR blocks within the
embedded processor block. This chapter focuses on the DCR controller. Information
pertaining to individual DCR masters and slaves can be found in the design specifications
associated with the blocks.

Figure 7-1 shows the logical connectivity between the controller and the masters and
slaves. There are 2 DCR masters and 11 DCR slaves. Of these, one master and one slave are
external to the embedded processor block.

Figure 7-1: Embedded Processor Block DCR Arrangement (with Address Offsets)

UG200_c7_01_010708

DCR
Controller

0x00 – 0x02

Virtex-5 FXT FPGA
Embedded Processor Block DCR Slave 0

(APU Controller)
0x04 – 0x05

DCR Slave 1
(Memory Interface)

0x10 – 0x13

DCR Master 0
(Processor)

DCR Master 1
(External)

DCR Slave 10
(External)

All Addresses Outside
the Embedded
Processor Block

DCR Range

DCR Slave 2
(Crossbar)

0x20 – 0x33

DCR Slave 3, 4
(PLB Slave Interface)

0x34 – 0x53

DCR Slave 5
(PLB Master Interface)

0x54 – 0x5F

DCR Slave 6, 7, 8, 9
(DMA Engine)
0x80 – 0xDF

http://www.xilinx.com

152 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

A mixed daisy-chain and distributed-OR DCR bus topology (see [Ref 3]) is used within the
embedded processor block. In the daisy-chain scheme, data buses are daisy-chained
together. In the distributed-OR scheme, the slave data outputs are logically ORed together
to form the final output sent to the DCR master. All slave transfer acknowledge signals are
ORed together and sent to the DCR master.

The main features of the DCR controller in the embedded processor block in Virtex-5 FXT
FPGAs are:

• A mixed daisy-chain and distributed-OR DCR bus topology

• Support for dual DCR masters with round-robin arbitration

• Integrated bus lock capability to allow atomic DCR operation

• Support for indirect addressing

• 10-bit DCR address in direct addressing mode

• 12-bit DCR address in indirect addressing mode

• 32-bit data bus

• Support for the time-out wait feature

• DCR access time-out detection

• Selectable synchronous or asynchronous interface with external DCR devices

Design and Implementation
The DCR controller is situated between the masters and slaves. Commands from the
masters are sent through the DCR controller to the DCR slaves, and responses from the
slaves are sent to the masters via the DCR controller. The tasks for which the controller is
responsible are described in the following subsections.

Partial Address Decoding
The DCR controller carries out partial DCR address decoding to determine to which DCR
slave a DCR read/write command is intended. Table 7-1 shows the DCR address map.

The DCR controller supports both direct and indirect addressing modes. In the direct
addressing mode, which has a 10-bit address space of 1024 locations, the DCR controller
occupies 256 address locations with a starting address that can be configured by two-bit
tie-off pins, TIEDCRBASEADDR[0:1], to 0x000, 0x100, 0x200, or 0x300. In the indirect
addressing mode (see “Indirect Addressing,” page 153), which has an expanded 12-bit
DCR address space of 4096 locations, the DCR address space is identical to that in the
direct addressing mode and is always located inside the first 1024 locations.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 153
UG200 (v1.6) January 20, 2009

Design and Implementation
R

Indirect Addressing
The indirect addressing mode allows the DCR slave address to be defined by the content of
DCR 0x00 rather than over the DCR address bus. Indirect addressing is carried out
through two dedicated DCR locations at offsets 0x00 and 0x01 (as shown in Table 7-1).
Both locations are accessible through direct addressing only, and they are the only two
DCR locations of the entire DCR address space that cannot be accessed through indirect
addressing. Indirect read or write access to either of the two locations results in a DCR
time-out (bit 31 of 0x02 is set).

The steps to do indirect addressing are:

1. Through direct addressing, write a 12-bit target DCR address to 0x00. If configured
(see “Register 0x02: Control, Configuration, and Status Register,” page 161), this step
triggers an auto bus lock action to reserve the bus for indirect access.

2. Through direct addressing, read or write to offset 0x01 as if reading or writing to the
target DCR address. This step releases the auto bus lock, if any.

Table 7-1: DCR Map with Address Offsets

Block Address Offset and Range

Indirect Mode Address Register 0x00

Indirect Mode Access Register 0x01

DCR Controller Status and Control Register 0x02

Reserved 0x03

Auxiliary Processor Unit (APU) Controller 0x04 – 0x05

Reserved 0x06 – 0x0F

Memory Interface 0x10 – 0x12

Reserved 0x13 – 0x1F

Crossbar 0x20 – 0x33

PLB Slave 0 (PLBS0) 0x34 – 0x43

PLB Slave 1 (PLBS1) 0x44 – 0x53

PLB Master (PLBM) 0x54 – 0x5F

Reserved 0x60 – 0x7F

DMA Engine 0 (DMAC0) 0x80 – 0x90

Reserved 0x91 – 0x97

DMA Engine 1 (DMAC1) 0x98 – 0xA8

Reserved 0xA9 – 0xAF

DMA Engine 2 (DMAC2) 0xB0 – 0xC0

Reserved 0xC1 – 0xC7

DMA Engine 3 (DMAC3) 0xC8 – 0xD8

Reserved 0xD9 – 0xDF

Reserved 0xE0 – 0xFF

http://www.xilinx.com

154 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

The second step does not need to occur right after the first step. When the target address is
written to 0x00, it stays there until overwritten by another value. The 12-bit DCR address
consists of a 2-bit DCR UABUS address and a 10-bit DCR ABUS address (see “DCR
Controller Registers,” page 160). All 256 DCRs in the embedded processor block in Virtex-5
FPGAs are located within the first 1024 locations for both direct and indirect addressing.
Figure 7-2 shows an example of direct and indirect addressing. Register 0x00 is assumed
to contain 12’h059 at the beginning. If the ABUS address is 0x01, address 12’h059 is
used (indirect addressing); otherwise the 10-bit ABUS address, preceded by a 2-bit value of
00 is used instead (direct addressing).

Dual DCR Master Arbitration
If either the processor’s DCR master or the external DCR master is active, the active master
has all the available DCR bandwidth. If both masters are active, only one master can gain
access to the DCR slave at a time. Arbitration is based on a Work Conserving Round Robin
(WCRR) strategy, where a master who has just accessed a DCR slave has a lower priority
for another access unless the other master does not have a pending slave access request.
With this arbitration scheme, each master can receive around 50% or more of the available
DCR bandwidth if the bus is not locked (see “Bus Lock”) by either master. Figure 7-3
shows a simplified arbitration diagram.

Figure 7-2: Direct and Indirect Addressing Examples

UG200_c7_02_043007

Partial
Address
Decoder

{2’b0, DCR ABUS[0:9]}

No

12’h059

Embedded
Block

Address =
0x01

?

Register 0x00

DCR ABUS[0:9]

DCR Slave
Selection

Embedded
Block

Address =
0x01

?

(A) Direct Addressing

Partial
Address
Decoder

12’h059

Yes

12’h059Register 0x00

DCR ABUS[0:9]

DCR Slave
Selection

(B) Indirect Addressing

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 155
UG200 (v1.6) January 20, 2009

Design and Implementation
R

Bus Lock

A consequence of having two active DCR masters is that both masters might attempt to
access the same DCR location right after one another, creating a data incoherence situation.
The DCR controller provides a bus locking mechanism to help to prevent this situation
from happening. When the bus is locked, the locking master has exclusive access to the
DCR slaves, and the other master must wait until the locking master releases the lock. It is,
therefore, important that the locking master does not hold on to the DCR bus for too long
a time to adversely affect the other master. The DCR controller has two types of bus locks:
normal and auto.

Normal Bus Lock

The master that wants to lock the bus writes a 1 to a particular bit in register 0x02 (see
“Register 0x02: Control, Configuration, and Status Register,” page 161). If the processor
DCR master wants to lock the bus, it writes a 1 to bit 0 of register 0x02. If the external
master wants to lock the bus, it writes a 1 to bit 2. If the bus is already locked by a master,
a lock request by the other master might not be successful, depending on whether the lock
requesting master supports time-out waits(1) (see “Time-out Wait,” page 157 for more
details) and how long the first master holds the lock.

If the lock-requesting master supports time-out waits, it acquires the lock as soon as the
locking master releases the lock. However, if the lock-requesting master does not support
time-out waits, and the locking master holds the lock for a sufficiently long time, a DCR
time-out for the lock-requesting master might occur, resulting in an unsuccessful lock (the
lock bit is not set in this case). It is important for an external master that does not support
time-out waits to read back register 0x02 to confirm a successful lock.

Auto Bus Lock

When a master writes to register 0x00 to update an indirect address, the DCR bus, by
default, is automatically locked for that master until it reads from or writes to 0x01 to
release the lock. This auto-lock feature, which can be disabled by clearing bit 4 of register
0x02, reduces the number of DCR operations required for an atomic indirect access
operation. It is important that the master accesses register 0x01 after writing to 0x00 to
release the lock, otherwise the bus remains locked and the other master cannot access the
bus. The auto bus lock status can be read from register 0x02. Bit 1, if set, indicates an auto
bus lock is active for the processor, and bit 3 serves the same function for the external
master. Bits 1 and 3 are read only.

Figure 7-3: Dual DCR Master Arbitration

DCR Master
(Processor)

WCRR Arbitration

DCR Controller

DCR Slave

UG200_c7_03_071207

DCR Master
(External)

1. When there is a master that does not support time-out waits with another master that might lock the bus, the
first master must lock the bus for reliable operation, unless it is certain that the second master will not lock the
bus for an extended period of time, leading to a time-out in the first master.

http://www.xilinx.com

156 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

Because only one master can lock the bus at a time, for register 0x02, bit 0, bit 1, or both can
be set, or bit 2, bit 3, or both can be set. Both bits 0/1 and bits 2/3 cannot be set.

While the bus is locked by a master, the other master can read but cannot modify the
content of register 0x02 (see Figure 7-4). Both DCR accesses (by the locking master and the
read of register 0x02 by the other master) share the same available bus bandwidth.

Round-Robin Arbitration

The round-robin arbitration with the bus lock feature is based on a four-state finite state
machine as shown in Figure 7-4.

The arbiter operates in the following manner:

• The arbiter is in the idle state when there is no DCR access.

• The arbiter goes into the c440 state if the current state is idle AND there is a processor
DCR request that is either the only request OR the preferred request (if the external
master is also requesting)

• When the processor access is done, the arbiter does one of the following:

♦ Goes to the idle state

♦ Remains in the c440 state if there is a bus lock condition,

♦ Goes to the xm state if there is an external master request, or

♦ Goes to the 0x02_rd state if there is a bus lock condition AND the external master
wants to read register 0x02.

• If the arbiter is in the 0x02_rd state, it returns to the locking master state after the DCR
access.

Similar state transitions occur for the external master, with xm replacing c440, and vice-
versa, in the above bullets.

Figure 7-4: A 4-State Arbitration State Diagram with Simplified Branches

idle

xm c440

0x02_rd

idle

c440_done

c440_lock &
xm 0x02_rd

xm_done

xm_lock &
c440 0x02_rd

c440_lockxm_lock

read_done

xm_req

xm_req

c440_req

c440_req

UG200_c7_04_032207

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 157
UG200 (v1.6) January 20, 2009

Design and Implementation
R

Time-out Wait
The time-out wait signal in a DCR bus is used to inhibit the time-out counter in a master
from counting. The DCR controller propagates the time-out wait signal from the external
DCR slave to one of the two DCR masters. The embedded processor block’s DCR slaves do
not generate time-out wait signals, and so no propagation is necessary.

When the DCR bus is locked by a master, the time-out wait signal to the other master is set
to temporarily inhibit the time-out wait count in that master. This restraint prevents the
bus lock period from being counted as part of the wait time for the other master. It is
possible that the external DCR master does not support time-out waits. Figure 7-5 shows
the time-out wait arrangement in the DCR controller.

Input and Output Interfaces
The interface signals with the external DCR master and slave are shown in Table 7-2 and
Table 7-3.

Figure 7-5: Time-out Wait Arrangement

Processor
DCR

Master

External
DCR

Master

External
DCR
Slave

External Master Lock

DCR Controller

0

Processor Lock

timeoutwait

timeoutwait

timeoutwait

master select

external slave select

request

request

UG200_c7_05_032207

Table 7-2: DCR Controller’s Slave Port Signals (Connected to the External Master)

Signal Name Direction Description

DCRPPCDSREAD I Master DCR read command

DCRPPDCSWRITE I Master DCR write command

DCRPPCDSABUS[0:9] I Master DCR address bus

DCRPPCDSDBUSOUT[0:31] I Master DCR data bus out

PPCDSDCRACK O Slave DCR acknowledge

PPCDSDCRDBUSIN[0:31] O Slave DCR bus in (for the master)

PPCDSDCRTIMEOUTWAIT O Slave DCR time-out wait indicator

http://www.xilinx.com

158 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

Table 7-4 defines the input clocks for the DCR controller.

Interface Timings

The DCR bus is a positive-edge synchronous bus. The controller supports both
synchronous as well as asynchronous external DCR devices.

In the synchronous interface mode, the external DCR clock frequency has to be an integer
fraction (between 1 and 1/16) of the interconnection clock frequency
(CPMINTERCONNECTCLK), and the DCR clock has to be edge-synchronous to that clock.
Clock insertion delays must be taken into account when using a PLL to generate the DCR
clock, and the DCR clock output of the PLL must have its DESKEW_ADJUST attribute set
to PPC.

In the asynchronous interface mode, the DCR clock does not have to be synchronous to any
clock ratio. The asynchronous interface approach results in an increase in latency and a
drop in throughput.

The master and slave interfaces can be configured independently to operate either
synchronously or asynchronously. The interface modes after reset are defined by two
attribute bits that are defined in the following way:

• PPCDS_ASYNCMODE (external master interface):

♦ 0: Synchronous mode

♦ 1: Asynchronous mode

• PPCDM_ASYNCMODE (external slave interface):

♦ 0: Synchronous mode

♦ 1: Asynchronous mode

Table 7-3: DCR Controller’s Master Port Signals (Connected to the External Slave)

Signal Name Direction Description

PPCDMDCRREAD O Master DCR read command

PPCDMDCRWRITE O Master DCR write command

PPCDMDCRUABUS[20:21] O Master DCR upper address bus

PPCDMDCRABUS[0:9] O Master DCR address bus

PPCDMDCRDBUSOUT[0:31] O Master DCR data bus out, 0 when idle

DCRPPCDMACK I Slave DCR acknowledge

DCRPPCDMDBUSIN[0:31] I Slave DCR bus in (for the master)

DCRPPCDMTIMEOUTWAIT I Slave DCR time-out wait indicator

Table 7-4: DCR Controller's Input Clocks

Signal Name Direction Description

CPMINTERCONNECTCLK I
Embedded processor block interconnect
clock

CPMDCRCLK I
DCR clock, optional, needed for
synchronous interface only

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 159
UG200 (v1.6) January 20, 2009

Design and Implementation
R

If either or both interfaces are to operate synchronously, an edge-synchronous DCR clock
must be applied to the embedded processor block. If both master and slave operate
asynchronously, no DCR clock is required (the unused DCR clock pin has to be tied to 1).
There is only one DCR clock input to the embedded processor block, and both the external
DCR master and slave are expected to reference to the same DCR clock in the synchronous
mode.

Asynchronous Mode

In asynchronous mode, synchronization of the interface signals is needed where the read
and write command signals from a master are synchronized (for example, through double
flip-flopping) by the slave who receives them, as shown in Figure 7-6. The acknowledge
and the time-out wait signals from the slave are synchronized by the master who receives
them. The address bus and the data bus signals are synchronized through the DCR
protocol. The signals from a sender should be glitch-free.

Interface Timing Diagram

The general timing requirements follow that of the DCR bus architecture specifications.
Figure 7-7 shows a typical timing diagram (clocks not shown), which is applicable to both
synchronous and asynchronous modes (see [Ref 3] for more information).

Figure 7-6: Synchronization for the Asynchronous Interface Mode

Local Clock 1

read

write

Master

Local Clock 2

Slave

UG200_c7_06_051807

abus

dbusout

dbusin

synchronizer

synchronizer

synchronizer

synchronizer

abus

dbusout

dbusin

acknowledge

timeoutwait

http://www.xilinx.com

160 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

In Figure 7-7, the slave asserts the acknowledge signal when a write operation is complete
or when read data has been placed on the bus. As a result the slave should sample the write
data at point α, and the master should sample the read data at point β. The dbusin buses
from internal slaves are driven to 0 when not active. The DCR controller drives bypass data
(dbusin is the same as dbusout) onto the dbusin bus for both the external and internal
masters when not active.

DCR Controller Registers
There are three registers in the DCR controller. These registers are needed for indirect
addressing, arbitration, and interface mode select.

Register 0x00: Indirect Address Register

This register contains the address used in indirect addressing. The indirect address is
formed by a 2-bit upper address bus (UABUS[20:21]) value and a 10-bit address bus
(ABUS[0:9]) value. This register, shown in Figure 7-8, is both readable and writable. All
unused bits in the register return 0s when read.

Register 0x01: Indirect Access Register

This location is used as a proxy to indirectly access the DCR slaves. When location 0x01 is
accessed, the DCR controller replaces the DCR address (0x01) with the content of register
0x00 for address decoding. The DCR master reads or writes to the 12-bit address stored in
register 0x00. This location is both readable and writable.

Figure 7-7: DCR Timing Diagram

read/write

acknowledge

abus

dbusout

dbusin

address address

write data

idle data read data idle data idle dataread data

write data

UG200_c7_07_051807

α β

0 19 20 21 22 31

Reserved UABUS[20:21] ABUS[0:9]

Figure 7-8: Register 0x00

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 161
UG200 (v1.6) January 20, 2009

Design and Implementation
R

Register 0x02: Control, Configuration, and Status Register

Register 0x02, shown in Figure 7-9, handles control, configuration, and status. Table 7-5
describes the fields within the register.

0 1 2 3 4 5 6 7 8 29 30 31

c440
lock

c440
alock

xm
lock

xm
alock

auto-
lock

xm
asyn

xs
asyn

xm
towait

Reserved
c440
time
out

xm
time
out

Figure 7-9: Register 0x02

Table 7-5: Bit Descriptions for Register 0x02

Bit Name Dir
Default
Value

Description

0 c440 lock R/W 0
Processor bus lock bit. Can be written to and read by the processor DCR master.
The external master can also read this bit.

1 c440 alock RO 0 Processor auto bus lock bit.

2 xm lock R/W 0
External master bus lock bit. Can be written to and read by the external DCR
master. The processor DCR master can also read this bit.

3 xm alock RO 0 External DCR master auto bus lock bit.

4 auto-lock R/W 1

Configures the auto-lock feature. The default value for this bit is 1 to enable the
auto-lock. This bit is cleared to disable the auto-lock function. This bit is
initialized by the embedded processor block attribute
DCR_AUTOLOCK_ENABLE.

5 xm asyn RO 0

Indicates the external DCR master interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute
PPCDM_ASYNCMODE.

6 xs asyn RO 0

Indicates the external DCR slave interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute
PPCDS_ASYNCMODE.

7 xm towait R/W 0

Configures the external DCR master time-out wait support. By default, this bit is
0, so that the external DCR master is assumed not to support time-out waits (the
signal is tied to 0), but this setting also works with a master that supports time-
out waits. This bit is set to 1 if the external master supports time-out waits,
allowing for better performance for the external master if the processor DCR
Master locks the bus.

8:29 Reserved - 0 Reserved.

http://www.xilinx.com

162 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 7: Device Control Register Bus
R

The DCR controller prevents more than one master from locking the bus, so writing to bit
0 or 2 might not lead to changes in those bit locations.

30
c440
timeout

Read/
Clear

0
Set if a processor DCR master access time-out occurs. This bit is cleared on writes.
If the bus is locked, only the locking master can clear it, and the other master can
read it but not clear it.

31
xm
timeout

Read/
Clear

0
Set if an external DCR master access time-out occurs. This bit is cleared on writes.
If the bus is locked, only the locking master can clear it, and the other master can
read it but not clear it.

Table 7-5: Bit Descriptions for Register 0x02 (Continued)

Bit Name Dir
Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 163
UG200 (v1.6) January 20, 2009

R

Chapter 8

Interrupt Controller Interface

Functional Description
The Interrupt Controller interface allows an external interrupt controller to send interrupts
to the processor. An interrupt output signal is generated whenever any of the devices
connected to the PLB interfaces of the crossbar raises an error or interrupt signal, as
described in Chapter 3, “Crossbar.”

Related Processor Behavior
The PowerPC embedded architecture defines two architected interrupts: external and
critical. Because critical interrupts have precedence over external interrupts, a critical interrupt
can interrupt the processing of an external interrupt. The interface provides dedicated input
signals for each of these interrupts. Table 8-1 shows how each of these interrupts is enabled
and lists the registers that the processor uses to save the machine state.

http://www.xilinx.com

164 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 8: Interrupt Controller Interface
R

On-Core Interrupt Sources
Table 8-2 shows the on-core sources of each type of interrupt.

Table 8-1: Architected Interrupts

Designation
Enabled

by

PC and
MSR

Saved in

Vector
Offset from

Description

External
Interrupt

MSR[EE]
SRR0,
SRR1

IVOR4

When external interrupts are enabled and no critical interrupt is
asserted, the processor:

• Completes the current instruction (except loads/stores, which
might be partially completed)

• Saves the next program counter (PC) and the current MSR in the
SRR0 and SRR1 registers, which are part of the PowerPC
architecture. More information can be found in the PPC440x5
CPU Core User's Manual [Ref 5].

• Disables external interrupts
• Resumes execution at the PC formed by IVPR and IVOR4. IVPR

and IVOR4 are part of the PowerPC embedded architecture.
More information can be found in the PPC440x5 CPU Core User's
Manual, [Ref 5].

Upon executing the rfi instruction, the processor re-enables
external interrupts, loads the PC and the MSR from their saved
locations, and resumes execution.

Critical
Interrupt

MSR[CE]
CSRR0,
CSRR1

IVOR0

When critical interrupts are enabled, the processor:

• Completes the current instruction (except loads/stores, which
might be partially completed)

• Saves the next PC and the current MSR in the CSRR0 and CSRR1
registers, which are identical to the SRR0 and SRR1 registers,
except they are in effect for critical interrupts only

• Disables all interrupts
• Resumes execution at the PC formed by IVPR and IVOR0

Upon executing the rfci instruction, the processor re-enables
interrupts, loads the PC and the MSR from their saved locations,
and resumes execution.

Table 8-2: On-Core Interrupt Sources

Interrupt Type Source Description

External Interrupt
FIT Fixed Interval Timer

DEC Decrement Timer

Critical Interrupt Watchdog timer expiration Second watchdog timer expiration

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 165
UG200 (v1.6) January 20, 2009

Interrupt Interface Signals
R

Interrupt Interface Signals
The Interrupt Controller interface consists of dedicated inputs for the external and critical
interrupts. Both inputs are active High and level sensitive (once asserted, the signal must
remain asserted until explicitly cleared by system software).

Each input includes a metastability flop, so its source need not meet any timing
requirements (it can be treated as a false path).

Table 8-3 lists the Interrupt Interface signals.

Usage Requirements
The requirements in this section must be met to correctly use the Interrupt Controller
interface.

The level-sensitive treatment of the inputs by the processor requires that an interrupt
signal, once asserted, remains asserted until explicitly cleared by system software. This
requirement implies that software-accessible register(s) must be available on the interrupt
controller for this purpose. It is critical that the processor’s transactions with these registers
complete atomically to avoid accidentally handling the same interrupt multiple times. For
example, if the write transaction to clear an interrupt was delayed by write posting, the ISR
might return before the IRQ line deasserts. This situation would cause the processor to be
immediately interrupted again even though the cause is the same interrupt event. The
effects of this situation range from reduced performance to data loss or failure, depending
upon the application (for example, IRQ handlers for peripherals with clear-on-read
registers could lose data). These problems can be avoided by using either the
Sync TAttribute described in Chapter 3, “Crossbar,” or the DCR interface for these
registers.

Table 8-3: Interrupt Controller Interface Signals

Signal Name Description

EICC440EXTIRQ External Interrupt input

EICC440CRITIRQ Critical Interrupt input

PPCEICINTERCONNECTIRQ

Interrupt request from the crossbar. Users can
connect this signal to one of the interrupt
input signals or to an interrupt controller that
combines interrupt signals from various
sources.

http://www.xilinx.com

166 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 8: Interrupt Controller Interface
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 167
UG200 (v1.6) January 20, 2009

R

Chapter 9

JTAG Interface

The JTAG interface, on the embedded processor block in Virtex-5 FXT FPGAs, provides the
ability for an external debug tool to gain control of the processor for debug purposes.
Through the JTAG interface and using the debug facilities designed into the processor core,
a debugger can single step the processor and interrogate internal processor states to
facilitate hardware and software debugging.

There are two recommended ways of connecting the JTAG interface on the embedded
processor block:

• Use the TAP controller inside the processor independently by connecting the JTAG
interface signals directly to the FPGA programmable I/Os.

• Daisy-chain the processor’s TAP controller with the FPGA’s TAP controller using the
JTAG_PPC Processor IP module supplied by Xilinx as part of the software and IP
products.

With one exception, the JTAG interface follows IEEE Standard 1149.1, which defines a test
access port (TAP) and Boundary-Scan architecture. In the standard, TRST is listed as an
optional signal but the JTGC440TRSTNEG signal is required in the embedded processor
block. The JTAG interface of the FPGA does not provide this optional TRST pin. The
JTGC440TRSTNEG signal must be wired to user I/O or internally tied High. When wiring
to user I/O, place an external 10 KΩ pull-up resistor on the trace. Refer to
“JTGC440TRSTNEG,” page 169 for details. Other than this exception, the JTAG interface
supports user-specific instructions, as allowed by the standard, which provide the ability
to gain control of the processor for debug.

JTAG Interface I/O Symbol
Figure 9-1 illustrates the inputs and outputs of the JTAG interface.

Figure 9-1: JTAG Interface Block Symbol

JTGC440TCK

JTGC440TDI

C440JTGTDOVirtex-5
FXT FPGA
Embedded
Processor

Block

C440JTGTDOEN

UG200_c9_01_010708

JTGC440TMS

JTGC440TRSTNEG

http://www.xilinx.com

168 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 9: JTAG Interface
R

JTAG Interface I/O Signal Descriptions
Table 9-1 describes the JTAG interface signals in alphabetical order.

Table 9-1: JTAG Interface I/O Signals

Signal
I/O

Type
If Unused Function

C440JTGTDO O No Connect

JTAG Test Data Out (TDO). JTAG serial data out port.

This signal transmits data from the processor’s TAP. Data from the
selected TAP shift register is shifted out on TDO.

This serial output from the test logic is fed from either the instruction
register or a test data register, depending on the sequence previously
applied at TMS. During shifting, data applied at TDI appears at TDO
after a number of TCK cycles determined by the length of the register
included in the serial path. The signal driven through TDO changes
state following the falling edge of TCK. When data is not being shifted
through the chip, TDO should be three-stated.

C440JTGTDOEN O No Connect
The processor’s driver enable signal for the JTAG TDO signal.

This signal is the driver-enable signal to the FPGA’s three-state driver
for the Test Data Out (TDO) signal.

JTGC440TCK I See IEEE 1149.1

JTAG Test Clock (TCK). The processor’s JTAG logic source clock.

TCK is the source clock for the processor’s TAP. This clock is
independent of the system clock(s) for the chip so that test operations
can be synchronized between the various chips on a printed wiring
board. Both the rising and falling edges of this clock are significant. The
rising edge is used to load signals applied at the TAP input pins (TMS)
and (TDI), while the falling edge is used to clock signals out through the
TAP TDO pin.

JTGC440TDI I High

JTAG Test Data In (TDI). JTAG serial data in port.

TDI is used to input serial data into the TAP. When the TAP enables the
use of the TDI signal, the TDI signal is sampled on the rising edge of
TCK, and this data is input to the selected TAP shift register.

Data applied at this serial input is fed into the instruction register or into
a test data register, depending on the sequence previously applied at
TMS. Typically, the signal applied at TDI is controlled to change state
following the falling edge of TCK, while the registers shift in the value
received on the rising edge. Like TMS, TDI should be equipped with a
pull-up resistor or otherwise designed such that, when it is not driven
from an external source, the test logic perceives a logic 1.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 169
UG200 (v1.6) January 20, 2009

JTAG Interface I/O Signal Descriptions
R

Connecting PPC440 JTAG Logic Directly to Programmable I/O
The simplest way to access the PPC440 JTAG logic is to wire the processor block’s JTAG
signals directly to programmable I/O. For devices with multiple PPC440 blocks, users may
wire each set of PPC440 JTAG signals directly to programmable I/O (Figure 9-2), chain the
processors together with programmable interconnect and wire the combined PPC440
JTAG chain to programmable I/O (Figure 9-3), or multiplex a single set of JTAG pins to
multiple embedded blocks (Figure 9-4).

Each of these connection styles requires additional I/O and a separate JTAG chain for the
PPC440 embedded block(s). The PPC440 embedded blocks must not be placed in the same
JTAG chain as the dedicated device JTAG pins because the chain will be broken by the
missing PPC440 JTAG logic prior to FPGA configuration.

The TRST signal, which is not implemented on any Xilinx devices, is available on the IBM
PPC440 embedded block. This signal may be wired to user I/O or internally tied High. If
wired to user I/O, an external 10 ΩW pull-up resistor should be placed on the trace.

JTGC440TMS I High

JTAG Test Mode Select (TMS). Determines the mode in which the TAP
operates.

TMS is sampled by the TAP on the rising edge of TCK. The TAP state
machine uses TMS to determine the mode in which the TAP operates.

The operation of the test logic is controlled by the sequence of 1s and 0s
applied at this input, with the signal value typically changing on the
falling edge of TCK. This signal sequence is fed to the TAP controller,
which samples the value at TMS on each rising edge of TCK. The TAP
controller uses this information to generate the clock and control signals
required by the other test logic blocks. On the chip, TMS should be
pulled High when it is not driven from an external source.

JTGC440TRSTNEG I High

TRST provides an asynchronous reset of the TAP controller. If this signal
is asserted to a logic 0, the TAP controller is asynchronously reset to the
Test-Logic-Reset controller state. This signal is negative active at the
processor boundary.

The designer can connect this signal to a TRST chip input pin. During
the power on reset (POR) sequence, the JTGC440TRSTNEG signal is
asserted (driven Low) internally. After that, separate control of the
processor’s JTAG logic reset and non-JTAG logic reset can be
accomplished. The system designer must carefully determine how to
make the JTAG reset logically responsive to the system and chip resets,
depending on the debug requirements and debug tool requirements.

Table 9-1: JTAG Interface I/O Signals (Continued)

Signal
I/O

Type
If Unused Function

http://www.xilinx.com

170 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 9: JTAG Interface
R

Figure 9-2: Correct Wiring of JTAG Chains with Individual PPC440 Connections
(Separate JTAG Chains)

PPC440

PPC440

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

TDI

TMS

TCK

TDI

TMS

TCK

TDI

TMS
TDO TDO

TDO

TCK

TRST

TDI

TMS

TCK

TRST

Virtex-5 FPGA

TDO

UG200_c9_02_051308

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 171
UG200 (v1.6) January 20, 2009

JTAG Interface I/O Signal Descriptions
R

Figure 9-3: Correct Wiring of JTAG Chains with Individual PPC440 JTAG
Connections (Internally Chained PPC440 Embedded Blocks)

PPC440

PPC440

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

TDI

TMS

TCK

TDI

TMS

TCK

TDI

TMS
TDO TDO

TDO

TCK

TRST

Virtex-5 FPGA

UG200_c9_03_051308

http://www.xilinx.com

172 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 9: JTAG Interface
R

Figure 9-4: Correct Wiring of JTAG Chain with Multiplexed PPC440 Connection

PPC440

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

PPC440

SEL

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

Virtex-5 FPGA

0
1

1

0
1

1

0
1

1

0
1

1

0
1

1
0

0
1

0
1

0
1

1

1

1

1

TDO

TDOTDO

TCK

TMS

TDI
TDI

SEL

TRST

TCK

TMS

TDI

TMS

TCK

UG200_c9_04_051308

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 173
UG200 (v1.6) January 20, 2009

JTAG Interface I/O Signal Descriptions
R

Connecting PPC440 JTAG Logic in Series with the Dedicated Device
JTAG Logic

An alternative to connecting the PPC440 JTAG logic directly to programmable I/O is to
wire it in series with the dedicated device JTAG logic. This is done by wiring the JTAG
signals on the PPC440 embedded block to a special design element called the JTAGPPC440
primitive in the user design. The Instruction Register length remains constant, regardless
of how the PPC440 embedded blocks are used and regardless of whether or not the device
is configured.

Prior to configuration, the most-significant IR bits are placed in a dummy register which is
either 4 or 8 bits in length, depending on the number of available PPC440 embedded blocks
in the device (4 bits for devices with one PPC440 and 8 bits for devices with two PPC440
blocks). This register is used as a placeholder only. After configuration, if the user connects
the PPC440 JTAG logic in series with the dedicated device JTAG logic, the most significant
IR bits are used by the PPC440 embedded blocks. Thus, the overall IR length remains the
same for the device at all times.

When the PPC440 JTAG logic is connected in series with the dedicated JTAG logic, the
C440JTGTDO signal of each embedded block is connected to the JTGC440TDI of the next.
The JTGC440TCK and JTGC440TMS signals are connected to each PPC440 embedded
block in parallel. The /TRST signal, which is not implemented on the device, is
implemented on the IBM PPC440 embedded block. When wiring the PPC440 JTAG logic in
series with the FPGA JTAG logic, this signal must be pulled High.

For more information, see the Virtex-5 FPGA user guides.

http://www.xilinx.com

174 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 9: JTAG Interface
R

Figure 9-5: PPC440 Core JTAG Logic Connected in Series with FPGA JTAG Logic Using the JTAGPPC440
Primitive

PPC440

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

PPC440

JTGC440TDI C440JTGTDO

JTGC440TMS

JTGC440TCK

JTGC440TRSTNEG

TDO
TDO

TCK

TMS

TDI
TDI

TMS

TCK

JTAGPPC440 Primitive

TDOPPC
TDIPPC

TMS

TCK

T
M

S

T
C

K

Virtex-5 FPGA

UG200_c9_05_051308

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 175
UG200 (v1.6) January 20, 2009

JTAG Interface I/O Signal Descriptions
R

When the PPC440 JTAG logic is connected in series with the dedicated device JTAG logic,
only one JTAG chain is required on the printed circuit board. All JTAG logic is accessed
through the dedicated JTAG pins with this connection style.

For devices with more than one PPC440 embedded block, users must connect the JTAG
logic for ALL of the PPC440 embedded blocks on the device when using this connection
style, even if some are not otherwise used. The JTAG signals are the only signals on unused
PPC440 embedded blocks that need to be connected. The PPC440 embedded block that
first sees TDI from the JTAGPPC440 primitive recognizes the first four most significant bits
in the Instruction Register; the next PPC440 embedded block sees the next four most
significant bits, and so on.

http://www.xilinx.com

176 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 9: JTAG Interface
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 177
UG200 (v1.6) January 20, 2009

R

Chapter 10

Debug Interface

The Debug interface inputs into the embedded processor block in Virtex-5 FXT FPGAs can
provide additional debug enhancements for the designer. The signals on this interface
provide information and control to an external debug tool. They also allow customer
debug logic to interrupt the normal processor flow through detection and reporting of an
off-core debug event.

Debug Interface I/O Symbol
Figure 10-1 illustrates the inputs and outputs of the Debug interface.

Figure 10-1: Debug Interface Block Symbol

DBGC440DEBUGHALT

DBGC440SYSTEMSTATUS[0:4]

C440DBGSYSTEMCONTROL[0:7]Virtex-5
FXT FPGA
Embedded
Processor

Block

UG200_c10_01_010708

DBGC440UNCONDDEBUGEVENT

http://www.xilinx.com

178 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 10: Debug Interface
R

Debug Interface I/O Signal Descriptions
Table 10-1 describes the Debug interface signals in alphabetical order.

Table 10-1: Debug Interface I/O Signals

Signal
I/O

Type
If Unused Function

C440DBGSYSTEMCONTROL[0:7] O No Connect Reserved by IBM. Leave this signal unconnected.

DBGC440DEBUGHALT I 0

This signal enables an external source to stop the
processor. It connects to a chip pin to allow an external
debugger, such as RISCWatch, to request that the
processor halt its instruction processing so that the
external debugger can control the processor. External
debuggers can also issue a stop command to the
processor via the JTAG interface. However, this stop
request is cleared when the processor is reset, requiring
the external debug tool to regain control while the
processor is fetching instructions. When using debugHalt
to stop the processor, a processor reset does NOT cause
the debugHalt control signal to reset, and the processor is
stopped at the reset vector.

Note: The debugHalt chip input on the RISCWatch
connector is negative active and needs to be inverted
(and synchronized to the processor clock) before being
brought into this positive active core input.

If the chip has clock control circuitry and the clocks to the
processor are turned off (either by external gating or
deassertion of CPMC440CLOCKEN, and
CPMC440CORECLOCKINACTIVE is driven High), the
debugHalt signal should be used by an external
debugger as a way to alert clock and power management
control logic to re-enable clocks to perform RISCWatch
debug activity. If clock control circuitry exists that can
prevent the core from getting clocks, and this circuitry
can be active during RISCWatch debug activity, the
debugHalt signal is required to re-enable clocks to the
processor.

When the debugHalt signal is deasserted (and no stop
request is active on the JTAG interface), the chip should
return to the sleep mode it was in before RISCWatch
asserts debugHalt, as long as no other condition that
would cause the chip to leave sleep mode prevents it
from doing so.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 179
UG200 (v1.6) January 20, 2009

Debug Interface I/O Signal Descriptions
R

DBGC440SYSTEMSTATUS[0:4] I 0 Reserved by IBM. Connect this signal to 0.

DBGC440UNCONDDEBUGEVENT I 0

Feeds the UDE bit of the DBSR and allows user debug
logic to interrupt normal CPU flow.

This input feeds the UDE (unconditional debug event) bit
of the DBSR (Debug Status Register). This input is useful
for designers who want their own debug logic external to
the processor. This capability allows the designer to:

• Cause a debug interrupt in internal debug mode
• Stop the processor in external debug mode
• Send a trigger event code on the processor’s trace bus

Table 10-1: Debug Interface I/O Signals (Continued)

Signal
I/O

Type
If Unused Function

http://www.xilinx.com

180 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 10: Debug Interface
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 181
UG200 (v1.6) January 20, 2009

R

Chapter 11

Trace Interface

The embedded processor block in Virtex-5 FXT FPGAs provides a trace interface that
enables the connection of an external trace tool and allows for user-extended trace
functions. Users can have full trace capability without adding FPGA logic, although
including some trace control logic can provide some benefits.

Trace Interface I/O Symbol
Figure 11-1 illustrates the inputs and outputs of the trace interface.

Figure 11-1: Trace Interface Block Symbol

TRCC440TRACEDISABLE

TRCC440TRIGGEREVENTIN

C440TRCBRANCHSTATUS[0:2]Virtex-5
FXT FPGA
Embedded
Processor

Block

UG200_c11_01_010708

C440TRCCYCLE

C440TRCEXECUTIONSTATUS[0:4]

C440TRCTRACESTATUS[0:6]

C440TRCTRIGGEREVENTOUT

C440TRCTRIGGEREVENTTYPE[0:13]

http://www.xilinx.com

182 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 11: Trace Interface
R

Trace Interface I/O Signal Descriptions
Table 11-1 defines the trace interface signals in alphabetical order.

Table 11-1: Trace Interface I/O Signals

Signal
I/O

Type
If Unused Function

C440TRCBRANCHSTATUS[0:2] O No Connect

Branch status bus for branch instructions
represented in the trace cycle (trcCycle). This signal
provides branch execution status used by the trace
tool in combination with other instruction status to
reconstruct the execution flow of a program.

C440TRCCYCLE O No Connect

This signal represents the trace cycle. It is used to
synchronize the trace period with the four CPU clock
cycles. To reduce the amount of chip I/O switching,
the core broadcasts new execution status, branch
status, and trace status every fourth core cycle.

The rising edge of the C440TRCCYCLE signal
corresponds with the new trace cycle. This signal is
not a clock signal. If it is to be used as a clock, the
designer must ensure proper timing of this signal.

C440TRCEXECUTIONSTATUS[0:4] O No Connect

Encoded execution status bus for the instructions
represented in the trcCycle. To reduce the amount of
chip I/O switching, the core broadcasts execution
status every fourth core cycle during each broadcast.
C440TRCCYCLE defines the cycle that trace data is
broadcast.

C440TRCTRACESTATUS[0:6] O No Connect

Encoded trace status bus. This signal provides
additional information to execution and branch
status required by a trace tool to reconstruct the
execution flow of a program.

C440TRCTRIGGEREVENTOUT O
Wrap to Trigger

Event In

CPU (debug) trigger event indication for trace logic.

Processor-defined debug events can be programmed
to create trigger events to external trace logic. This
signal is a summary of all processor-defined trigger
events. For a trigger event generated by this signal to
be in step with execution status for RISCTrace, this
signal must be combinatorially returned to the
processor on TRCC440TRIGGEREVENTIN within
the same clock cycle of the processor clock,
CPMC440CLK. In case this timing constraint is hard
to meet, a multi-cycle constraint (relaxing the period
to 4x the period of CPMC440CLK) can be used.

Assuming no special function is required, the
designer is required to tie this output to the
TRCC440TRIGGEREVENTIN pin. For more
information on debug events, refer to the PPC440x5
Core User Manual.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 183
UG200 (v1.6) January 20, 2009

Trace Interface I/O Signal Descriptions
R

C440TRCTRIGGEREVENTTYPE[0:13] O No Connect

Identifies the debug event that caused
C440TRCTRIGGEREVENTOUT to be asserted.
Processor-defined debug events can be programmed
to create trigger events to external trace logic.
Table 11-2 defines the processor-defined debug
events in this bus.

Designers use these signals to develop more
elaborate triggering schemes based on type or
sequence of processor-generated trigger events. For
a trigger event generated by these signals to be “in
step” with execution status for RISC Trace, this
signal must be combinatorially returned to the
processor on the TRCC440TRIGGEREVENTIN
input. For more information on debug events, refer
to the PPC440x5 Core User Manual.

Table 11-1: Trace Interface I/O Signals (Continued)

Signal
I/O

Type
If Unused Function

Table 11-2: Processor-Defined Debug Events

C440_trcTriggerEventType
Bit

Trigger Event Type

0
Instruction Address
Compare 1 (IAC1)

1
Instruction Address
Compare 2 (IAC2)

2
Instruction Address
Compare 3 (IAC3)

3
Instruction Address
Compare 4 (IAC4)

4
Data Address Compare 1
(DAC1RD)—Read

5
Data Address Compare 1
(DAC1WR)—Write

6
Data Address Compare 2
(DAC2RD)—Read

7
Data Address Compare 2
(DAC2WR)—Write

8 Trap Instruction (TRAP)

9 Interrupt (IRPT)

10 Unconditional (UDE)

11 Return (RET)

http://www.xilinx.com

184 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 11: Trace Interface
R

TRCC440TRACEDISABLE I 0

This signal is used only in special circumstances to
disable trace from outside the embedded processor
block. For normal operation, this signal should be
tied Low.

TRCC440TRIGGEREVENTIN I
Wrap to Trigger

Event Out

Trigger event input to trace logic. The processor uses
this input to generate trigger event codes in the trace
status bus, C440_traceStatus[0:3]. A trigger event
can be derived from processor trigger events, trigger
event types, or from any other external source. If this
signal is generated with on-chip combinational logic
using processor-generated trigger events, the trigger
event code on the trace status bus corresponds to the
current execution status being broadcast. The
RISCTrace tool can identify which instruction
caused the trigger event.

If the trigger event is generated from an external
source, the trigger event code on the trace status bus
corresponds to the execution status of the current
instruction.

If the trigger event is not generated from an external
source, the designer is required to connect the
C440TRCTRIGGEREVENTOUT pin to the
TRCC440TRIGGEREVENTIN pin.

Table 11-1: Trace Interface I/O Signals (Continued)

Signal
I/O

Type
If Unused Function

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 185
UG200 (v1.6) January 20, 2009

R

Section III: Controllers

Chapter 12, “Auxiliary Processor Unit Controller”

Chapter 13, “DMA Controller”

http://www.xilinx.com

186 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Controllers
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 187
UG200 (v1.6) January 20, 2009

R

Chapter 12

Auxiliary Processor Unit Controller

Overview
The native 440 instruction set can be extended with the Auxiliary Processor Unit (APU)
controller. Custom instructions are executed by an FPGA fabric coprocessor module
(FCM), also referred to as a coprocessor or auxiliary processor. This module enables a
much tighter integration between an application-specific function and the processor
pipeline than is possible using a bus peripheral.

The APU controller has two purposes:

• Performs clock domain synchronization between the fast processor clock and the slow
FCM interface clock

• Decodes certain FCM instructions and notifies the CPU of the CPU resources needed
by the instruction (for example, source data from the CPU’s general-purpose
registers)

A floating-point unit (FPU) is an example of an FCM candidate. For an FCM FPU, the APU
controller can decode all PowerPC floating-point instructions. The FCM interface is a
Xilinx adaptation of the native APU interface implemented on the IBM processor. The hard
core APU controller bridges the processor APU interface and the external FCM interface.
This chapter provides detailed information on the FCM interface and its features.

Feature Summary
The key characteristics and features of the APU controller and FCM are listed in this
section.

The APU controller:

• Can hold or stall the processor pipeline at various pipe stages

• Supports instructions that do and do not return data to the processor

• Can pipeline up to three instructions at a time, providing for low communication
overhead in the instruction issue to the APU controller

• Decodes all FPU instructions in the Book E specification except for the “extended”
FPU load/store instructions not supported by the processor

• Contains up to 16 user-defined instruction (UDI) configuration registers

The 16 UDIs can decode a full primary and extended opcode or can be configured to
only decode a shortened version of the extended opcode. This “wildcard” option
allows the FCM to use five bits of extended opcode as it chooses.

• Decodes FCM loads and stores with byte, halfword, word, doubleword, and
quadword sizes

http://www.xilinx.com

188 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

• Decodes Vector Multimedia Extension (VMX) instructions, which are a subset of FCM
loads and stores (these are also known as Altivec instructions)

• Sends FCM decoded information for user-defined, FPU, and load/store instructions
to ease the decoding responsibilities of the FCM

• Has separate 128-bit load and store buses

• Has only one instruction in play at a time with the FCM. If the FCM is pipelined, it can
execute multiple instructions at a time that do not return data to the processor.

• Sends a signal to the FCM notifying it of a second instruction that will be sent
immediately after the current FCM instruction is finished. This will allow the FCM to
do some amount of pipelining if desired and can increase instruction throughput.

The FCM:

• Can run at integer multiples (1:1 up to 16:1) of the processor clock period. The FCM
cannot run at a speed faster than the processor.

Interface Description
The APU controller is tightly coupled with the processor pipeline. It tracks each FCM
instruction through the processor pipeline to know when to expect certain signals. On the
other side, it has a simpler control and data interface with the FCM block, having only one
instruction in play at any given time. Figure 12-1 shows the control and data flow between
the APU controller and the processor. Figure 12-2 shows the data flow between the APU
controller and the FCM.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 189
UG200 (v1.6) January 20, 2009

Interface Description
R

Figure 12-1: Data Flow between the Processor and the APU Controller

LMQ (Load Miss Queue)

LMQ3

LMQ2

LMQ1

LWB JWB IWB

CRD JEXE2 IEXE2

AGEN

LRACC

DISS3

IFTH

Processor APU Controller
Instruction Fetch

(Not seen by APU)
Instruction 1

Instruction 0

Load Data [0:127]

Store Data [0:127]

Result Data to GPR/CR

Source Data from GPR

Control Signals
to/from Processor

Decode and Issue
(Mirrored in APU)

UG200_c12_01_040907

Control Decode Signals

Control Decode Signals

Address Alignment
Info for Id/st

PDCD0 PDCD1 Instruction 0 Instruction 1

Decode Instr0 Decode Instr1

Decode
Control and

Decode
Registers

Central Scrutinizer
(Keeps Track of up to

16 Instructions
in Processor Pipeline)

DISS2

DISS1

DISS0

ADISS3

ADISS2

ADISS1

ADISS0

IRACC

Central
Scrutinizer

JEXE1 IEXE1 Ra Source 0 12

LD/ST addr align 0 12

Result Data/CR Data 0 12

Store Buffer 0 12
Load Buffer 0 12

Rb Source 0 12

LMQ0

http://www.xilinx.com

190 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-2: Data Flow between APU Controller and FCM

APU Controller Fabric Coprocessor
Module (FCM)

UG200_c12_02_040907

Instruction 0 Instruction 1

Decode Instr0 Decode Instr1

Decode
Control and

Decode
Registers

Optional FCM
Decode

FCM Execution Unit

FCM Internal Registers

Central Scrutinizer
(Determines When FCM
Instruction Completes)

DISS3

DISS2

DISS1

DISS0

Wait Instruction
Information

FCM Instruction
Information

FCM Instruction
Information

Ra Source Data [0:31]

Rb Source Data [0:31]

Can/Cannot Update
Internal Registers

Result Data [0:31]

W

Result Data/CR Data 0 12

Store FCM Buffer 0 12

Load Wait Byte Address

Load FCM Byte Address

Load Wait Byte Address

Store Data [0:127]

Load Data [0:127]

Load Byte Address

Ra Wait Instruction
Ra Wait Instruction

Ra FCM Instruction

Rb Wait Instruction
Rb Wait Instruction

Rb FCM Instruction

Load Wait Buffer

Load FCM Buffer

Load Wait Buffer

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 191
UG200 (v1.6) January 20, 2009

Interface Description
R

Table 12-1 summarizes the signals between the APU controller and the FCM.

Table 12-1: APU to FCM Signal Descriptions

Interface Signal Direction Function

APUFCMDECFPUOP Output APU controller decoded FPU instruction.

APUFCMDECLDSTXFERSIZE[0:2] Output

This bus indicates the APU controller decoded load/store transfer
size.

• 100: Byte
• 010: Halfword
• 001: Word
• 011: Doubleword
• 111: Quadword

APUFCMDECLOAD Output
A High on this output indicates an APU controller decoded load
instruction.

APUFCMDECNONAUTON Output
This signal is asserted to indicate the presence of an APU controller
decoded instruction that is a non-autonomous instruction (this
includes Store instructions because stores return data to the CPU).

APUFCMDECSTORE Output
A High on this output indicates an APU controller decoded store
instruction.

APUFCMDECUDI[0:3] Output This bus specifies the decoded UDI register.

APUFCMDECUDIVALID Output This signal is asserted to indicate APUFCMDECUDI[0:3] is valid.

APUFCMENDIAN Output
This signal indicates the setting of the load/store endian attribute.

• 0: big endian
• 1: little endian

APUFCMFLUSH Output This signal is asserted to flush the FCM instruction.

APUFCMINSTRUCTION[0:31] Output This bus contains the instruction presented to the FCM.

APUFCMINSTRVALID Output
This signal is asserted to indicate the instruction on
APUFCMINSTRUCTION[0:31] is valid.

APUFCMLOADBYTEADDR[0:3] Output
This bus specifies at which of the 16 bytes the data begins for the load
transfer.

APUFCMLOADDATA[0:127] Output This 128-bit bus contains load data.

APUFCMLOADDVALID Output This signal is asserted to indicate APUFCMLOADDATA[0:127] is
valid.

APUFCMMSRFE0 Output
This signal indicates the value of MSR[FE0]. It is used for FPU
instructions only.

APUFCMMSRFE1 Output
This signal indicates the value of MSR[FE1]. It is used for FPU
instructions only.

APUFCMNEXTINSTRREADY Output

This signal is asserted to indicate the APU controller will send the next
autonomous instruction along with all data on the clock cycle after the
current FCM instruction is finished (when FCMAPUDONE is
asserted).

APUFCMOPERANDVALID Output This signal is asserted to indicate the instruction operands are valid.

APUFCMRADATA[0:31] Output This bus contains the instruction operand from GPR(Ra).

http://www.xilinx.com

192 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Instruction Decoding
The processor presents up to two instructions to the APU controller during the Pre-Decode
stage. The APU controller can decode up to two FCM instructions in the same cycle. It can
also decode all FPU instructions (except the “extended” load/store instructions) and up to
16 UDIs, FCM loads and stores, and VMX loads and stores. The APU controller decodes
the instructions to notify the processor what resources the instruction requires (for
example, if the instruction is a load, its transfer size, and any source data needed). The
APU controller also generates certain decode signals for the FCM to ease the FCM decode
logic.

With the exception of some FPU instructions, FCM instructions conform to the general
format shown in Figure 12-3.

APUFCMRBDATA[0:31] Output This bus contains the instruction operand from GPR(Rb).

APUFCMWRITEBACKOK Output
This signal is asserted to indicate it is safe for the FCM to commit
internal state changes.

FCMAPUCONFIRMINSTR Input
This signal is asserted to indicate the FCM does not cause an exception
for this instruction. This signal is used for non-autonomous
operations with late confirmation.

FCMAPUCR[0:3] Input
This bus contains the condition record bits for the CR field, specified
by the instruction.

FCMAPUDONE Input
This signal is asserted to indicate completion of the FCM instruction
in the APU controller.

FCMAPUEXCEPTION Input
This signal is asserted to indicate an FCM generated program
exception. The exception must be enabled by the processor to trap.

FCMAPUFPSCRFEX Input
This signal is asserted to indicate an FPU instruction generated an
exception. The level on this signal should reflect the value of the
FPSCR[FEX] bit in the FPU.

FCMAPURESULT[0:31] Input This bus contains the FCM execution result, which is passed to the
CPU through the APU controller.

FCMAPURESULTVALID Input
When this signal is asserted, values on FCMAPURESULT[0:31],
FCMAPUCR[0:3], or FCMAPUSTOREDATA[0:127] are valid.

FCMAPUSLEEPNOTREADY Input

This signal is asserted to indicate the FCM is still executing an
instruction. This signal determines when the CPU is allowed to enter
sleep mode. The APU Controller prevents the CPU from requesting
sleep mode while an instruction is inside the APU controller. The FCM
can use this signal to extend this time after an instruction has
completed in the APU, but this signal must not be tied High. If not
used, this signal must be tied Low.

FCMAPUSTOREDATA[0:127] Input This 128-bit bus contains separate store data.

Table 12-1: APU to FCM Signal Descriptions (Continued)

Interface Signal Direction Function

0 5 6 10 11 15 16 20 21 31

Primary Opcode RT RA RB Extended Opcode

Figure 12-3: FCM Instruction Format

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 193
UG200 (v1.6) January 20, 2009

Instruction Decoding
R

The processor uses both primary and extended opcodes to identify potential FCM
instructions. The opcodes are decoded by the APU controller to identify uniquely the
specific FCM instruction resource needs. Generally, the RA and RB fields specify operand
registers, and the RT field specifies the target register. UDIs can be configured to interpret
these bit fields differently. For example, the five-bit fields can be used for immediate
values. UDIs can also be configured to allow for five “wildcard” bits in the extended
opcode. When in wildcard mode, bits [21:25] of the instruction can be used in any way. For
example, the user can use these five bits as another FCM register (but not as a CPU register
value), a 5-bit immediate value, or to configure a group of instructions using only one UDI
register.

FPU Instructions
The APU controller can be enabled to decode for all the floating-point instructions (except
the “extended” load/store instructions) when an FPU is attached on the FCM interface.
Refer to the Book E: Enhanced PowerPC Architecture Specification [Ref 1] for detailed
information about the floating-point instructions. The APU controller can selectively
disable the following six groups of floating-point instructions:

• complex arithmetic

• conversion

• estimate/select

• FPSCR

• single-precision only

• double-precision only

Table 12-2 lists the instructions in these groups.

Table 12-2: Floating-Point Instructions by Group

Complex Arithmetic Group

fdiv fdiv. fdivs fdivs. fsqrt fsqrt.

fsqrts fsqrts.

Conversion Group

fcfid fctid fctidz fctiw fctiw. fctiwz

fctiwz. frsp frsp.

Estimate/Select Group

fres fres. frsqrte frsqrte. fsel fsel.

FPSCR Group

mcrfs mffs mffs. mtfsb0 mtfsb0. mtfsb1

mtfsb1. mtfsf mtfsf. mtfsfi mtfsfi.

Single-Precision Only Group

lfs lfsu lfsx lfsux stfs stfsu

stfsx stfsux fadds fadds. fsubs fsubs.

fdivs fdivs. fmuls fmuls. fsqrts fsqrts.

fmadds fmadds. fnmadds fnmadds. fmsubs fmsubs.

http://www.xilinx.com

194 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

The APU controller also provides decode signals to the FCM/FPU. These signals include
the following information:

• Whether the instruction is an FPU instruction

• Whether the instruction is a Load or Store instruction

• The size of the transfer (if the instruction is a Load or a Store)

• Whether the instruction is a non-autonomous instruction (includes store instructions)

FCM User-Defined Instructions
The user can configure up to 16 UDI registers to be decoded by the APU controller. The
UDIs conform to the standard FCM instruction format. The interpretation of the RA, RB,
and RT fields are up to the FCM. In other words, the FCM can use the separate five-bit
fields as the registers in the processor’s GPR, as immediate values, as internal FCM
registers, or for some other purpose. The specific primary and extended opcodes that UDIs
can use are shown in Table 12-3.

The user also can “wildcard” some of the extended opcode. When a wildcard is set for a
particular UDI, the extended opcode bits [21:25] can be used as the user wishes. Thus the
user can use these five bits as immediate values, an internal FCM register, or to define a
group of instructions that have the same extended opcode bits [26:31]. When using
“wildcard” mode for instructions, the user must follow these restrictions:

1. No other UDI can be configured with the same primary opcode and extended opcode
bits [26:31].

fnmsubs fnmsubs.

Double-Precision Only Group

lfd lfdu lfdx lfdux stfd stfdu

stfdx stfdux stfiwx fadd fadd. fsub

fsub. fdiv fdiv. fmul fmul. fsqrt

fsqrt. fmadd fmadd. fnmadd fnmadd. fmsub

fmsub. fnmsub fnmsub.

Table 12-2: Floating-Point Instructions by Group (Continued)

Table 12-3: Primary and Extended Opcodes

Primary Opcode [0:5] Extended Opcode [21:31] Description

0 (= 0b000000)
0b00000000000 Illegal

All except above
Available for UDIs that do not set the
CR bits

4 (= 0b000100)

0b------1--0- MAcc and Xilinx reserved

0b1----000110
Available for UDIs that do need to set
the CR bits

All except above
Available for UDIs that do not set the
CR bits

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 195
UG200 (v1.6) January 20, 2009

Instruction Decoding
R

2. All instructions in the same UDI group must use the same options. In other words, the
group must all be autonomous, must all use Ra source operand, must all be non-
autonomous with early confirm, and so on.

UDIs are configured using UDI Configuration registers, which can be accessed through the
DCR interface.

Any processor resources needed for the UDI are defined in the APU controller UDI
registers as well as in the APU Controller Configuration register. These two types of
registers are explained in detail in “APU Configuration,” page 203.

When a UDI is decoded by the APU controller, the FCM receives decoded information
along with the 32-bit instruction. The decode signals include the following information:

• Bit encoded UDI register number (4’h0 = UDI0, 4’h1 = UDI1, and so on)

• Valid bit for the UDI register number

• Whether the instruction is a non-autonomous instruction

FCM Load/Store Instructions
The APU has the ability to decode and issue FCM load and store instructions, which allow
the transfer of data between the processor’s memory system and the Fabric Coprocessor
Module (FCM). The processor handles the address calculation and also passes data
to/from the memory. An FCM load transfers data from a memory location to a destination
register in the FCM and vice-versa for an FCM store. An FCM load/store can be of size
byte, halfword, word, doubleword, or quadword. The FCM load/store can also be of type
Update or not. Update capable instructions update the base address register RA with the
calculated effective address. Figure 12-4 shows the format of the FCM load/store
instructions.

Primary Opcode [0:5] Extended Opcode [21:31]

0 1 1 1 1 1 U W0 L/S W1 W2 0 0 1 1 1 0

Figure 12-4: FCM Load/Store Instruction Format

Table 12-4: FCM Load/Store Instruction Encoding

Bit Description

U

Update Capability.

0: Not update capable

1: Update capable

W[0:2]

Size.

000: Byte

001: Halfword

010: Word

x11: Quadword

100 Doubleword

101: Invalid

110: Invalid

L/S

Load/Store.

0: Load

1: Store

http://www.xilinx.com

196 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

The APU controller also provides decode signals to the FCM for load/store instructions.
These signals contain the following information:

• Load instruction

• Store instruction

• Size of transfer

♦ 100 = byte

♦ 010 = halfword

♦ 001 = word

♦ 011 = doubleword

♦ 111 = quadword

• Non-autonomous instruction (in the case of a store)

Instruction Execution
There are two major classes of FCM instructions: storage (loads and stores) and non-
storage. The storage instructions are more rigidly defined and are tightly coupled with the
processor pipeline. The non-storage instructions have more flexibility as to their opcodes
and their function.

Storage Instructions (FCM Loads and Stores)
The FCM can execute loads and stores in bytes, halfwords, words, doublewords, and
quadwords. The processor executes the address calculation for any load or store and also
passes the data to/from memory. The processor also replaces the base address with the
effective address when executing any load or store with an update. Load instructions are
considered to be autonomous (they do not stall the processor pipeline until finished and do
not return data to the processor), and store instructions are considered to be non-
autonomous (they stall the processor pipeline until the store data is returned).

All load and store data must be contained within a quadword boundary. For example, a
quadword load must have an address aligned on the quadword boundary (byte 0 of the
128 bits), but a doubleword load can have a starting address at byte 0, 1, 2, 3, 4, 5, 6, 7, or 8.
For load data, the APU Controller sends the entire 128-bit bus along with the starting byte
address to the FCM. The FCM must look at the starting byte address to determine where in
the 128 bits the valid data resides. For stores, the data should be returned in the most
significant bits. For example, a store with a byte length should be on bits [0:7], a word on
bits [0:31], and so on. The APU Controller steers the data correctly to the processor.

The APU controller supports a 128-bit load bus and a 128-bit store bus, allowing for the
transfer of a full quadword in one FCM clock cycle. In Virtex-4 FX devices, this transfer
took four clock cycles over a 32-bit bus (see [Ref 8] for more information). The APU
controller accepts up to three loads or stores from the processor at a time, which allows the
APU controller, for example, to buffer a second and third quadword while it is sending the
first quadword to the FCM. The second quadword is then ready to send to the FCM
immediately following the first transfer and overlaps any overhead needed in receiving
the data of the second transfer from the processor. Figure 12-5 is a simple block diagram of
the load data flow in the APU controller.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 197
UG200 (v1.6) January 20, 2009

Instruction Execution
R

If the FCM load/store instruction is flushed from the processor pipeline, the APU
controller notifies the FCM by sending a Flush signal. The load/store instruction can be
flushed from the pipeline because of an address alignment exception, a TLB miss, an access
with an endian attribute not supported by the hardware, or if a previous instruction causes
the pipeline to flush. Similar to the Flush signal, the APU controller provides the
APUFCMWRITEBACKOK signal, which indicates when an FCM load instruction can no
longer be flushed and can safely update its internal registers. This signal is optional for
store instructions (this signal can cause a performance hit for stores).

The APUFCMNEXTINSTRREADY signal can be used to improve instruction throughput
for load instructions. This signal is asserted High when the next load instruction and all of
its data are ready to be sent to the FCM. A High on this signal means that as soon as the
APU controller receives an asserted FCMAPUDONE signal for the current instruction, the
next load instruction with all data is sent on the next FCM cycle. Because the FCM knows
when the next instruction will arrive, it can assert FCMAPUDONE High during that same
cycle. Thus the load instruction can be sent and completed in one FCM clock cycle.

Load Execution Details

Load instructions follow a specific sequence of signals on the FCM interface. This
description applies for both APU and FPU loads. The FCM receives the following signals
when the instruction is sent:

• APUFCMINSTRVALID = 1

• APUFCMDECFPUOP = 1 if FPU or 0 if APU

• APUFCMDECLOAD = 1

• APUFCMDECLDSTXFERSIZE[0:2] = 100 (byte), 010 (halfword), 001 (word), 011
(doubleword), or 111 (quadword)

• APUFCMINSTRUCTION[0:31] = the 32-bit instruction

During the same cycle, the instruction signals initially go High or at a later cycle the FCM
receives the following signals:

• APUFCMLOADDVALID = 1

• APUFCMLOADDATA[0:127] = load data bus

• APUFCMLOADBYTEADDR[0:3] = starting byte address of the data within the 16
bytes

• APUFCMENDIAN = 1 if little endian format or 0 if big endian format

Figure 12-5: APU Controller Load Data Flow

128-bit Wait Load Buffer

128-bit Wait Load Buffer

128-bit FCM Load Buffer FCM 128-bit Load Data

128-bit Load Data

UG200_c12_05_040907

http://www.xilinx.com

198 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

All of the above signals remain valid until the transaction is complete. The transaction is
complete when one of the following occurs:

• The FCM received a pulse of APUFCMWRITEBACKOK = 1 and then sends back
FCMAPUDONE = 1 during the same cycle or sometime after receiving either
APUFCMWRITEBACKOK or APUFCMLOADDVALID (whichever is later)

or

• If the instruction is flushed from the processor pipeline, it receives
APUFCMFLUSH = 1.

If the latter occurs the FCM should not return FCMAPUDONE = 1 for this instruction.

Store Execution Details

There are two main types of store instructions: stores using writebackok and stores that do
not need or want writebackok. Stores without writebackok often have better performance.
Both types can be used with either APU or FPU stores. To set the store to use writebackok, bit
16 of the APU Control Register bit must be set to 1. Both types of stores begin the same
way:

• APUFCMINSTRVALID = 1

• APUFCMDECFPUOP = 1 if FPU or 0 if APU

• APUFCMDECSTORE = 1

• APUFCMDECLDSTXFERSIZE[0:2] = 100 (byte), 010 (halfword), 001 (word), 011
(doubleword), or 111 (quadword)

• APUFCMINSTRUCTION[0:31] = the 32-bit instruction

• APUFCMDECNONAUTON = 1

For stores that do not need to wait for APUFCMWRITEBACKOK to be asserted (if no
resources in the FCM are updated based on the store completing):

• FCMAPURESULTVALID = 1, set High when the store data bus is valid

• FCMAPUSTOREDATA[0:127] = store data bus, data should be in the most-significant
bits of the bus (for example, a byte transfer at FCMAPUSTOREDATA[0:7] or a word
transfer at FCMAPUSTOREDATA[0:31])

• FCMAPUDONE = 1, set High in the same cycle or after FCMAPURESULTVALID

Note: If the store instruction is flushed before FCMAPUDONE is asserted, the APU Controller can
assert APUFCMFLUSH for a store that does not use writebackok. In this case, the FCM should not
assert FCMAPUDONE.

For stores that wait for APUFCMWRITEBACKOK (either resources in the FCM are
updated when the store completes, or the FCM could have a different endianess than the
memory and needs to wait for APUFCMENDIAN), the FCM must wait until the following
signals are received:

• APUFCMWRITEBACKOK = 1 (pulsed), if the store will complete

• APUFCMENDIAN = 1 (little endian) or 0 (big endian), and valid the same cycle as
APUFCMWRITEBACKOK

• APUFCMFLUSH = 1 if the store was flushed from the processor pipeline (the FCM
does not receive APUFCMWRITEBACKOK)

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 199
UG200 (v1.6) January 20, 2009

Instruction Execution
R

When the FCM receives an asserted APUFCMWRITEBACKOK, it can send the following
signals in the same or any later cycle:

• FCMAPURESULTVALID = 1, set High when the store data bus is valid

• FCMAPUSTOREDATA[0:127] = store data bus, data should be in the most-significant
bits of the bus (for example, a byte transfer at FCMAPUSTOREDATA[0:7] or a word
transfer at FCMAPUSTOREDATA[0:31])

• FCMAPUDONE = 1, set High the same cycle or after FCMAPURESULTVALID is
asserted

For more details on the signal timing, refer to “Timing Diagrams for the APU Controller,”
page 212.

Non-Storage Instructions
The APU controller supports three execution modes: autonomous, non-autonomous with
early confirmation, and non-autonomous with late confirmation.

• Autonomous Instructions

Instructions in the autonomous class do not stall the processor pipeline. They are
typically fire-and-forget type instructions that do not return any result data or
condition record bits to the processor. The FCM cannot generate an exception for this
class of instruction. The APU controller automatically confirms to the processor that
this instruction will not cause an exception, which allows the FCM to receive an
asserted APUFCMWRITEBACKOK signal (when the instruction can no longer be
flushed from the processor pipeline) as soon as possible. An example of an
autonomous instruction is an instruction that reads the contents of two general-
purpose registers (GPRs) without returning any data to the processor.

• Non-autonomous with Early Confirmation Instructions

Instructions in the non-autonomous class stall normal execution in the processor
pipeline until the FCM instruction is completed. These instructions can return result
data and/or status (condition record bits) to the processor. For Non-autonomous with
Early Confirmation instructions, the FCM cannot generate an exception. The APU
controller automatically confirms to the processor that this instruction will not cause
an exception, which allows the FCM to receive the APUFCMWRITEBACKOK signal
(when the instruction can no longer be flushed from the processor pipeline) as soon as
possible.

• Non-autonomous with Late Confirmation Instructions

Instructions in the non-autonomous class stall normal execution in the processor
pipeline until the FCM instruction is completed. These instructions can return result
data and/or status (condition record bits) to the processor. For Non-autonomous
instructions with Late Confirmation, the APU controller waits for the FCM to confirm
that this instruction does not cause an exception (FCMAPUCONFIRMINSTR), which
allows the FCM to throw a precise exception for the instruction, if necessary. It also
causes the APUFCMWRITEBACKOK signal to arrive somewhat later than in the case
of Early Confirmation. This instruction type has not been optimized for performance;
however, this instruction type does allow the FCM to generate its own precise
instruction exception.

There are no other instruction types that support FCM generated precise exceptions.
FPU instructions in the FPSCR group are always executed as Non-autonomous with
Late Confirmation instructions. Also, when MSR[FE0] or MSR[FE1] is set to 1, all non-

http://www.xilinx.com

200 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

storage FPU instructions execute as Non-autonomous with Late Confirmation
instructions.

Non-Storage Instruction Execution

Non-storage instructions can use source data from the GPR in the processor, send
result data to the GPR in the processor, and update Condition Record (CR) bits in the
processor. The APU controller does not allow the FCM to return Carry or Overflow
data to the processor.

For non-storage instructions that return data back to the processor (result data or CR
bits), FCMAPURESULTVALID must assert High at least one clock cycle before
FCMAPUDONE. However, for FPU/APU store instructions that also return the data
back to the processor, FCMAPURESULTVALID and FCMAPUDONE can assert High
in the same clock cycle.

To improve performance, the APU controller accepts up to three FCM instructions at a
time from the processor, allowing the APU controller, for example, to finish the first
FCM instruction at the same time it receives the source data for the second and third
FCM instructions. The second instruction then has all of its source data ready to send
once the first FCM instruction has finished and overlaps the overhead of starting the
second and third instructions in the processor pipeline.

If the FCM non-storage instruction is flushed from the processor pipeline, the APU
controller notifies the FCM by sending a Flush signal. The instruction can be flushed
from the pipeline because of an FCM generated exception or if a previous instruction
causes the pipeline to flush. Similar to the Flush signal, the APU controller provides a
signal indicating when an FCM non-storage instruction can no longer be flushed and
can safely update its internal registers (APUFCMWRITEBACKOK).

The APUFCMNEXTINSTRREADY signal can be used to improve instruction
throughput for autonomous instructions. This signal is driven High when the next
autonomous instruction and all of its data (if any) are ready to be sent to the FCM. A
High on this signal means that as soon as the APU controller receives an asserted
FCMAPUDONE signal for the current instruction, the next autonomous instruction
with all data is sent on the very next FCM cycle. Because the FCM knows when the
next instruction will arrive, it can drive FCMAPUDONE High during that same cycle,
allowing the autonomous instruction to be sent and completed in one FCM clock cycle.

Exceptions
There are three main scenarios when exceptions occur due to UDI or FPU instructions:

• Storage exceptions (in the case of UDI or FPU load/store instructions)

• Exceptions generated by the APU controller decoder (for example, when decoding is
disabled)

• FCM generated exceptions

Storage Exceptions
The processor generates storage exceptions for UDI and FPU load/store instructions
under certain circumstances because the processor handles the address calculation, TLB
access, and cache and/or memory access. The following exceptions might occur when
executing a UDI or FPU load/store instruction:

• Read Access Control Exception

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 201
UG200 (v1.6) January 20, 2009

Exceptions
R

While in user mode (MSR[PR] = 1), a load instruction attempts to access a location in
memory that is not enabled for read access in user mode. While in supervisor mode
(MSR[PR] = 0), a load instruction attempts to access a location in memory that is not
enabled for read access in supervisor mode.

• Write Access Control Exception

While in user mode (MSR[PR] = 1), a store instruction attempts to access a location in
memory that is not enabled for write access in user mode. While in supervisor mode
(MSR[PR] = 0), a store instruction attempts to access a location in memory that is not
enabled for write access in supervisor mode.

• Byte Ordering Exception

This exception, which is indicated by the Endian attribute bit, occurs when the
attached FCM does not support the current byte ordering of the memory. When a
load/store instruction is executed with TrapBE (APU Control register bit [21]) or
TrapLE (APU Control register bit [22]), this exception might occur.

• Data TLB Error Interrupt

This exception occurs when a load/store instruction attempts to access a virtual
address for which a valid TLB entry does not exist.

• Alignment Interrupt

This exception occurs when a load/store instruction references a data storage operand
that crosses a quadword boundary.

APU Controller Decode Exceptions
The APU controller can cause exceptions when the APU Control register has been
configured to disable certain instruction decoding. The following exceptions might occur
when executing a UDI or FPU instruction:

• Floating-Point Unavailable Interrupt

This exception occurs when an attempt is made to execute a floating-point instruction
that is recognized by the APU controller (FCM Enable = 1 and FPU Decode Disable =
0) and MSR[FP] = 0.

• Illegal Instruction Exception

This exception occurs when there is an attempt to execute the following:

♦ a UDI or FPU instruction and FCM Enable = 0

♦ an FPU instruction and FPU Decode Disable = 1

♦ a UDI instruction and UDI Decode Disable = 1

♦ an FCM Load/Store instruction and Load/Store Decode Disable = 1

• Unimplemented Operation Exception

This exception occurs when an attempt is made to execute the following:

♦ an instruction in the FPU Complex Arithmetic group and MSR[FP] = 1, FPU
Decode Disable = 0, and FPU complex arithmetic Disable = 1.

♦ an instruction in the FPU Convert group and MSR[FP] = 1, FPU Decode Disable =
0, and FPU convert. Disable = 1.

♦ an instruction in the FPU Estimate/Select group and MSR[FP] = 1, FPU Decode
Disable = 0, and FPU estimate/select Disable = 1.

http://www.xilinx.com

202 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

♦ an instruction in the FPU FPSCR group and MSR[FP] = 1, FPU Decode Disable =
0, and FPU FPSCR Disable = 1.

♦ an instruction in the FPU single-precision only group and MSR[FP] = 1, FPU
Decode Disable = 0, and FPU single-precision Disable = 1.

♦ an instruction in the FPU Double-precision only group and MSR[FP] = 1, FPU
Decode Disable = 0, and FPU double-precision Disable = 1.

• Privileged Instruction Exception

This exception occurs when MSR[PR] = 1 (user mode) and an attempt is made to
execute a UDI instruction that is privileged.

FCM Generated Exceptions
The FCM can also generate precise exceptions. To generate precise exceptions, the
instruction must be non-autonomous with late confirm. Because of this restriction, no
load/store instructions can cause a precise exception generated by the FCM. If the FCM
wishes to generate an exception for a different type of instruction, the FCM should
generate an external interrupt to the processor. The following exceptions can be generated
by the FCM:

• Floating-Point Enabled Exception

This exception occurs when the execution or attempted execution of a recognized
floating-point instruction causes FPSCR[FEX] to be set to 1. The floating-point
instruction must be executed as non-autonomous with late confirm. If MSR[FE0, FE1]
are non-zero, a precise Program Interrupt occurs. If MSR[FE0, FE1] are zeros, the
instruction completes normally. When MSR[FE0, FE1] become non-zero and
FPSCR[FEX] is still set to 1, a “delayed” or imprecise Program Interrupt occurs. When
MSR[FE0, FE1] is non-zero, all FPU instructions are forced to be of type non-
autonomous with late confirm to keep the FPU generated exceptions precise. When
MSR[FE0, FE1] is zero, only the FPSCR instructions are implemented as non-
autonomous with late confirmation to allow for imprecise interrupts.

• Auxiliary Processor Enabled Exception

This exception occurs during the attempted execution of a UDI of type non-
autonomous with late confirm. If the FCM drives FCMAPUEXCEPTION High instead
of asserting FCMAPUCONFIRMINSTR, the precise exception occurs.

FPU Generated Exception Execution Details
FPU generated exceptions must follow a strict sequence. As stated before, the instruction
must be a non-autonomous instruction with late confirm. FPU instructions can only
generate an exception when FPSCR[FEX] is set to 1. After the instruction has been sent to
the FPU the following sequence should occur:

• FCMAPUEXCEPTION = 1 (held, not pulsed)

• FCMAPUFPSCRFEX = 1 (held, not pulsed)

When the APU controller sees these signals, it responds with:

• APUFCMWRITEBACKOK =1 if the FPU exception was processed/accepted, 0 if not

• APUFCMFLUSH = 1 if a previous exception was received, 0 if the FPU exception is
accepted

The transaction is complete when either the FPU receives an asserted APUFCMFLUSH or
when the FPU returns FCMAPUDONE = 1 after receiving APUFCMWRITEBACKOK = 1.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 203
UG200 (v1.6) January 20, 2009

APU Configuration
R

If APUFCMFLUSH is asserted, the FPU must deassert FCMAPUEXCEPTION and
FCMAPUFPSCRFEX (FPSCR[FEX] must not be updated in the FPU because the
instruction was flushed). If APUFCMWRITEBACKOK is asserted, the FPU can deassert
FCMAPUEXCEPTION when sending FCMAPUDONE or leave it High to be cleared later
by software. If FCMAPUEXCEPTION is left High, any later non-autonomous instruction
with late confirm is seen as causing an exception. FCMAPUFPSCRFEX should remain
High until FPSCR[FEX] has been cleared by software.

APU Generated Exception Execution Details
APU generated exceptions follow a similar sequence to FPU exceptions but they are
simpler. Again, only non-autonomous instructions with late confirm can generate an
exception. After the FCM has received the instruction the following sequence occurs:

• FCMAPUEXCEPTION = 1 (held, not pulsed)

When the APU controller sees these signals, it responds with:

• APUFCMWRITEBACKOK = 1 if the APU exception was processed/accepted, 0 if not

• APUFCMFLUSH = 1 if a previous exception was received and 0 if the APU exception
is accepted

The transaction is complete when either the FCM receives an asserted APUFCMFLUSH or
when the FCM returns FCMAPUDONE = 1 after receiving APUFCMWRITEBACKOK = 1.
If an asserted APUFCMFLUSH is received, the FCM must deassert FCMAPUEXCEPTION.
If an asserted APUFCMWRITEBACKOK is received, the FCM can deassert
FCMAPUEXCEPTION when sending FCMAPUDONE or leave it High to be cleared later
by software. If FCMAPUEXCEPTION is left High, any later non-autonomous instruction
with late confirm is seen as causing an exception.

For more details on the signal timing, refer to “Timing Diagrams for the APU Controller,”
page 212.

APU Configuration

Enabling the APU Controller
The MSR register must be configured before the processor can use the APU controller.
Table 12-5 describes the APU controller-related bits in the MSR.

Table 12-5: APU Controller-Related MSR Bits

Bit(s) in MSR Description

18
FCM floating-point unit present

• 1: true
• 0: false

(20,23)

Floating-point exception mode (FE0,FE1):

• (0,0): Ignore floating-point exceptions
• (1,0): Imprecise recoverable mode
• (0,1): Imprecise non-recoverable mode
• (1,1): Precise mode

http://www.xilinx.com

204 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Configuration Registers
The APU controller is configured through a single 32-bit APU Configuration register and
16 32-bit UDI registers.

DCR Access to Configuration Registers

The APU and UDI configuration registers are accessed through the DCR interface. The 16
UDI registers share the same DCR address. Figure 12-6 shows the DCR access of UDI
registers.

A DCR read from or write to the UDI configuration register address uses a 4-bit read/write
pointer register in the APU controller to select which specific UDI configuration to read or
write. This pointer auto-increments after each DCR read or write operation. To load the
read/write pointer with a specific value, the user must perform a ghost write to the UDI
configuration DCR address. This write does not affect the contents of any UDI
configuration registers, only the read/write pointer.

A DCR read performed to the UDI configuration address after a ghost write returns the
contents of the desired UDI configuration register, and a DCR write writes to the desired
UDI configuration register.

Refer to Chapter 7, “Device Control Register Bus,” for more information on
programmatically accessing these configuration registers.

Figure 12-6: DCR Access of UDI Registers

Decoder

Address Read Write

Rd/Wr
Pointer

UDI 15

UDI 0

EN

EN

EN

EN[0:15] Select[0:15]

DataBusOut[0:31]

UG200_c12_06_050807

DataBusIn[0:31]

DataBusIn
[4 bits]

Control

+1

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 205
UG200 (v1.6) January 20, 2009

APU Configuration
R

APU Control Register

The APU Control register turns on or off various features in the APU controller. Figure 12-7
shows the bits in the APU Control register. Table 12-6 defines the bits within the register.

0 1 4 5 6 7

Reset
UDI/Control

Registers

LD/ST
Decode
Disable

UDI Decode
Disable

Force UDI
Non-Auton.

Late Confirm

8 9 10 11 12 13 14 15

FPU Decode
Disable

FPU Complex
Arith. Disable

FPU Convert
Disable

FPU
Estimate/

Select Disable

FPU Single
Precision
Disable

FPU Double
Precision
Disable

FPU FPSCR
Disable

Force FPU
Non-Auton.

Late Confirm

16 17 18 19 20 21 22 23

Store
WriteBack OK

Ld/St Priv.
Op

Force Align LE Trap BE Trap

24 30 31

FCM
Enable

Figure 12-7: APU Control Register

Table 12-6: Bit Descriptions for the APU Control Register

Bit Name
Default
Value

Description

0
Reset UDI/Control
Registers

-
When a 1 is written to this bit, all the UDI registers are reset to their default
values. The rest of the bits in the control register are also reset to their
default values. When read, this bit always returns a 0.

1:4 Reserved - Reserved

5 LD/ST Decode Disable 0
When set, this bit disables all FCM Load/Store decoding in the APU
controller. This does not affect FPU Load/Store instructions. An FCM
Load/Store in the program causes an illegal instruction exception.

6 UDI Decode Disable 0
When set, this bit disables all UDI decoding in the APU controller. This does
not affect FCM Load/Store or FPU instructions. A UDI instruction in the
program causes an illegal instruction exception.

7
Force UDI Non-
Autonomous, Late
Confirm

0
When set, this bit forces any non-storage UDI instruction to be executed as
a non-autonomous instruction with late confirm regardless of the type
indicated in the UDI register.

8 FPU Decode Disable 1
When set, this bit disables all FPU decoding in the APU controller. An FPU
instruction in the program causes an illegal instruction exception.

9
FPU Complex
Arithmetic Disable

0

When set, this bit disables decoding for all FPU divide and square root
instructions (fdiv, fdiv., fdivs, fdivs., fsqrt, fsqrt., fsqrts, fsqrts.). An FPU
complex arithmetic instruction in the program when FPU Decode is not
disabled causes an unimplemented instruction exception.

http://www.xilinx.com

206 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

10 FPU Convert Disable 0

When set, this bit disables decoding for all FPU convert instructions (fcfid,
fctid, fctidz, fctiw, fctiw., fctiwz, fctiwz., frsp, frsp.). An FPU convert
instruction in the program when FPU Decode is not disabled causes an
unimplemented instruction exception.

11
FPU Estimate/select
Disable

0

When set, this bit disables decoding for all FPU estimate instructions (fres,
fres., frsqrte, frsqrte., fsel, fsel.). An FPU estimate instruction in the program
when FPU Decode is not disabled causes an unimplemented instruction
exception.

12
FPU Single Precision
Disable

0

When set, this bit disables decoding for all FPU single-precision only
instructions (lfs, lfsu, lfsx, lfsux, stfs, stfsu, stfsx, stfsux, fadds, fadds., fsubs,
fsubs., fdivs, fdivs., fmuls, fmuls., fsqrts, fsqrts., fmadds, fmadds., fnmadds,
fnmadds., fmsubs, fmsubs., fnmsubs, fnmsubs.). A single-precision FPU
instruction in the program when FPU Decode is not disabled causes an
unimplemented instruction exception.

13
FPU Double Precision
Disable

0

When set, this bit disables decoding for all FPU double-precision only
instructions (lfd, lfdu, lfdx, lfdux, stfd, stfdu, stfdx, stfdux, stfiwx, fadd,
fadd., fsub, fsub., fdiv, fdiv., fmul, fmul., fsqrt, fsqrt., fmadd, fmadd.,
fnmadd, fnmadd., fmsub, fmsub., fnmsub, fnmsub.). If a double-precision
FPU instruction is encountered in the program and FPU Decode is not
disabled, an unimplemented instruction exception occurs.

14 FPU FPSCR Disable 0

When set, this bit disables decoding for all FPSCR FPU instructions (mcrfs,
mffs, mffs., mtfsb0, mtfsb0., mtfsb1, mtfsb1., mtfsf, mtfsf., mtfsfi, mtfsfi.).
An FPSCR instruction in the program when FPU Decode is not disabled
causes an unimplemented instruction exception.

15
Force FPU Non-
Autonomous, Late
Confirm

0
When set, this bit forces all non-storage FPU instructions to be executed as
non-autonomous instructions with late confirm.

16 Store WritebackOK 0

When this bit is set, the APU controller waits to send a WritebackOK signal
to the FCM for all store instructions (both APU and FPU stores). The
WritebackOK signal is sent after the store instruction passes the LWB stage
in the CPU pipe, which can cause a slight performance hit when executing
store instructions.

17 LD/ST Privilege 0 When this bit is set, any load or store UDI executes in privileged mode (this
does not affect FPU load/store instructions).

18:19 Reserved - Reserved

20 Force Align 0

When this bit is set, any load or store (both APU and FPU) forces alignment.
The address is forced to align on the natural boundary of the transfer (word
boundary for a word transfer, doubleword boundary for a doubleword
transfer, and so forth). This also prevents an alignment exception.

21 LE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the
Endian storage attribute is 1’b1 (little Endian).

22 BE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the
Endian storage attribute is 1’b0 (big Endian).

Table 12-6: Bit Descriptions for the APU Control Register (Continued)

Bit Name
Default
Value

Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 207
UG200 (v1.6) January 20, 2009

APU Configuration
R

User-Defined Instruction (UDI) Configuration Registers

For all UDIs, the user needs to configure the primary and extended opcodes along with
any necessary execution options. Figure 12-8 shows the UDI Configuration register bits.
Table 12-7 defines the bits in the UDI Configuration register.

23:30 Reserved - Reserved

31 FCM Enable 0
When this bit is set, the FCM interface is enabled and the APU controller
decodes instructions. When this bit is cleared, bits 5, 6, and 8 are
overridden. The APU controller does not decode any instructions.

Table 12-6: Bit Descriptions for the APU Control Register (Continued)

Bit Name
Default
Value

Description

0 1 7

Primary
Opcode

Extended Opcode [0:6]

8 11 12 13 14 15

Extended Opcode [7:10]
Privilege

Op
Ra Enable Rb Enable GPR Write

16 17 18 20 21 22 23

CR Enable CR Field [0:2] Register # [0:1]

24 25 26 27 28 29 30 31

Register # [2:3] Type Wildcard En

Figure 12-8: UDI Configuration Register

Table 12-7: Bit Descriptions for the UDI Configuration Register

Bit Name Description

0 Primary Opcode
• 0: 6’b000000 (opcode 0)
• 1: 6’b000100 (opcode 4)

1:11 Extended Opcode 11 bits of the full extended opcode

12 Privilege Op
When this bit is set, this instruction must execute in
privilege mode.

13 Ra Enable
When this bit is set, this instruction needs to read the Ra
source operand from the GPR.

14 Rb Enable
When this bit is set, this instruction needs to read the Rb
source operand from the GPR.

15 GPR Write
When this bit is set, this instruction writes a result to the
Rt register in the GPR.

http://www.xilinx.com

208 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Clocking
The FCM can be clocked at integer multiples of the processor clock. The clock ratio
between the processor and FCM can range from 1:1 up to 16:1. In other words, the FCM can
run at the same speed as the processor or slower. The two clocks must be rising-edge
aligned.

The APU controller uses the processor clock for the APU controller/processor interface as
well as its internal logic. All inputs and outputs on the APU controller/FCM interface are
synchronized using the FCM clock.

16 CR Enable
When this bit is set, this instruction returns Condition
Record (CR) bits to the CR field indicated in
CRField[0:2].

17 Reserved Reserved

18:20 CRField[0:2]
Indicates which field receives the condition record (if
the CR Enable bit in the instruction is set to 1).

21 Reserved Reserved

22:25 Register #

Indicates the register number (0 – 15). This value is only
used when setting the DCR read/write pointer
(Type = 2’b11), but can be viewed when reading the
UDI contents through a DCR read.

26:27 Type

 Indicates the operation type of the instruction:

• 00: Non-autonomous, early confirm
• 01: Non-autonomous, late confirm
• 10: Autonomous
• 11: Sets read/write pointer to value in Register #

field

28:29 Reserved Reserved

30 Wildcard

When this bit is set, bits [1:5] are not considered as the
extended opcode but can be anything. Instead only bits
[6:11] are checked. When this bit is cleared, the entire 11
bits of the extended opcode are checked.

31 En
This bit enables the UDI. It indicates that the opcode
and options written in the UDI are valid and should be
used during decode.

Table 12-7: Bit Descriptions for the UDI Configuration Register (Continued)

Bit Name Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 209
UG200 (v1.6) January 20, 2009

Processor Migration
R

Processor Migration
This section describes key points for customers migrating their APU hardware and
software IP from the 405 processor to the 440 processor.

New Features
To improve performance, the APU controller supports a 128-bit load bus and a 128-bit store
bus. The transfer of a full quadword can occur in one FCM clock cycle. Previously, this
transfer took four clock cycles.

A new signal, APUFCMNEXTINSTRREADY, helps to increase instruction throughput.
This signal is driven High when the next load instruction and all of its data are ready to be
sent to the FCM. A High on this signal means that as soon as FCMAPUDONE is asserted
for the current instruction, the APU controllers sends the next load instruction with all data
on the next FCM cycle. Because the FCM knows when the next instruction will arrive, it
can drive FCMAPUDONE High during that same cycle, which allows for the load
instruction to be sent and completed all in one FCM clock cycle.

New “wildcard” option for each of the 16 UDI registers.

The user must specify the CR enable option in the UDI register for any instruction that
returns CR status. Previously, this bit was not needed.

APU Controller now pipelines up to three instructions internally, making it possible to
achieve back-to-back instructions on the FCM interface.

APUFCMMSRFE0 and APUFCMMSRFE1 are new signals for use with the FPU. These
signals determine the precise/imprecise exception mode for floating-point instructions.

FPU exceptions have OS support automatically, and no special APU configuration is
needed.

FCMAPUFPSCRFEX is a new signal used for FPU generated exceptions. It reflects the
value of FPSCR[FEX].

The APU Controller now provides decoded information to the FCM that indicates if the
instruction is a load or a store, its transfer size, and if it is an FPU operation or a non-
autonomous instruction.

During an FCM transaction, the signals from the APU remain valid until the end of the
transaction. The only signals that are pulsed are APUFCMWRITEBACKOK and
APUFCMFLUSH.

The new FCMAPUCONFIRMINSTR signal is used for non-autonomous instructions with
late confirmation to indicate that the FCM will not generate an exception for that
instruction.

Dropped Features
UDIs no longer send Carry or Overflow information back to the processor. The embedded
processor does not support Carry or Overflow reporting for UDIs. However, UDIs can still
send their own Condition Record (CR) bits to any of eight CR fields and are defined by the
user.

Storage UDIs (loads and stores) no longer force big-Endian steering. The embedded
processor in Virtex-5 FPGAs does not support this feature. Instead the FCM needs to watch
the Endian bit of the hardware and take care of any byte swapping based on its own
Endian configuration.

http://www.xilinx.com

210 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

In the previous version of the APU controller, the FCM could decode and “steal” the
Integer Divide instruction from the processor and execute it in the FCM. This feature is not
supported by the embedded processor in Virtex-5 FPGAs.

FCM decoded instructions are no longer supported. Previously, the APU Controller passed
an unknown instruction to the FCM for the FCM to decode. This is no longer possible.
Only instructions decoded by the APU Controller are passed to the FCM.

Non-autonomous blocking instructions have been replaced with non-autonomous with
early confirmation instructions. This new class of instructions is similar to non-
autonomous blocking instructions; however, the APUFCMWRITEBACKOK signal can no
longer be received in a specific cycle.

Non-autonomous non-blocking instructions have been replaced with non-autonomous
with late confirmation instructions. This new class is similar to non-autonomous non-
blocking instructions; however, the APUFCMWRITEBACKOK signal is received before
FCMAPUDONE is asserted in response.

Interface Changes
This section describes the changes in the APU to FCM interface.

Table 12-8: FCM Interface Signals

FCM Interface Signal Direction Function

APUFCMDECFPUOP(1) Output APU controller decoded FPU instruction.

APUFCMDECLDSTXFERSIZE[0:2](1) Output

APU controller decoded load/store transfer size.

• 100: byte
• 010: halfword
• 001: word
• 011: doubleword
• 111: quadword

APUFCMDECLOAD(1) Output APU controller decoded load instruction.

APUFCMDECNONAUTON(1) Output
APU controller decoded instruction that is a non-autonomous
instruction. Store instructions are also included because stores
return data to the CPU.

APUFCMDECSTORE(1) Output APU controller decoded store instruction.

APUFCMDECUDI[0:3](2) Output Specifies the UDI register decoded.

APUFCMINSTRVALID(2) Output
Indicates if the instruction on APUFCMINSTRUCTION[0:31]
is valid. This signal now only applies to instructions decoded
by the APU controller.

APUFCMLOADBYTEADDR[0:3](2) Output Now specifies at which of the 16 bytes the data begins.

APUFCMLOADDATA[0:127](2) Output 128-bit load data bus. This bus is now wider.

APUFCMLOADDVALID(2) Output APUFCMLOADDATA[0:127] is valid.

APUFCMMSRFE0(1) Output
This signal indicates the value of MSR[FE0]. It is used for FPU
instructions only.

APUFCMMSRFE1(1) Output
This signal indicates the value of MSR[FE1]. It is used for FPU
instructions only.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 211
UG200 (v1.6) January 20, 2009

Processor Migration
R

Table 12-9 summarizes signals that were in the previous APU controller/FCM interface
but are no longer available.

APUFCMNEXTINSTRREADY(1) Output

This signal indicates the APU controller sends the next
instruction, along with all data, on the clock cycle after the
current FCM instruction is finished (when FCMAPUDONE is
received).

FCMAPUCONFIRMINSTR(1)

Input
Indicates the FCM does not cause an exception for this
instruction. This signal is used for non-autonomous with late
confirmation instructions.

FCMAPUFPSCRFEX(1)
Input

Indicates an FPU instruction generated an exception. This
should be the value of FPSCR[FEX] bit in the FPU.

FCMAPUSTOREDATA[0:127](1) Input 128-bit separate store data bus.

Notes:
1. This is a new signal or bus.
2. This signal has changed in bus size or function from the 405 version of the signal.

Table 12-8: FCM Interface Signals (Continued)

FCM Interface Signal Direction Function

Table 12-9: Unsupported Signals

Signal Function

FCMAPUDCDXEROVEN FCM decoded instruction that returns overflow.

FCMAPUDCDXERCAEN FCM decoded instruction that returns carry.

FCMAPUDCDFORCEBESTEERING FCM decoded load/store that forces big-Endian
steering.

FCMAPUXEROV Overflow result of FCM instruction.

FCMAPUXERCA Carry result of FCM instruction.

FCMAPUINSTRACK Valid instruction decoded in the FCM.

FCMAPUDECODEBUSY Allows FCM to do a multicycle instruction decode
before returning FCMPAUINSTRACK.

FCMAPUDCDGPRWRITE FCM decoded instruction writes back to GPR.

FCMAPUDCDRAEN FCM decoded instruction needs data from GPR(Ra).

FCMAPUDCDRBEN FCM decoded instruction needs data from GPR(Rb).

FCMAPUDCDPRIVOP
FCM decoded instruction executes in privileged
mode.

FCMAPUDCDFORCEALIGN
FCM decoded load/store instruction with forced
alignment.

FCMAPUDCDCREN
FCM decoded instruction sets condition record (CR)
bits.

FCMAPUEXECRFIELD[0:2]
FCM decoded instruction sets which CR field to
update.

FCMAPUDCDLOAD FCM decoded load instruction.

http://www.xilinx.com

212 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Timing Diagrams for the APU Controller
This section provides timing diagrams that show the maximum throughput of
instructions. The examples show waveforms for autonomous instructions, quadword
loads, non-autonomous instructions with early confirm, quadword stores, non-
autonomous instructions with late confirm, APU enabled exceptions (both accepted by
CPU and flushed), and FPU enabled exceptions (both accepted by CPU and flushed). For
each transaction, the instruction, decoded information, and any source or load data
remains valid until the APU controller receives an asserted FCMAPUDONE.
APUFCMWRITEBACKOK or APUFCMFLUSH are pulsed once for each instruction. All
signals coming from the FCM should be pulsed for one FCM clock signal unless stated
otherwise.

FCMAPUDCDSTORE FCM decoded store instruction.

FCMAPUDCDUPDATE FCM decoded load/store with update.

FCMAPUDCDLDSTBYTE FCM decoded load/store byte transfer.

FCMAPUDCDLDSTHW FCM decoded load/store halfword transfer.

FCMAPUDCDLDSTWD FCM decoded load/store word transfer.

FCMAPUDCDLDSTDW FCM decoded load/store doubleword transfer.

FCMAPUDCDLDSTQW FCM decoded load/store quadword transfer.

FCMAPUDCDTRAPLE
FCM decoded load/store that causes an alignment
exception if the Endian attribute is 1’b1.

FCMAPUDCDTRAPBE
FCM decoded load/store that causes an alignment
exception if the Endian attribute is 1’b0.

FCMAPUFPUOP FCM decoded FPU instruction.

FCMAPUEXEBLOCKINGMCO FCM decoded instruction of blocking class.

FCMAPUEXENONBLOCKINGMCO FCM decoded instruction of blocking class.

FCMAPULOADWAIT
FCM is not yet ready to receive next load data. This
signal is no longer necessary because data remains
valid until FCMAPUDONE is asserted.

APUFCMDECODED

Indicates the APU controller decoded the
instruction. Because there are now only APU
controller decoded instructions, this signal is not
necessary.

APUFCMXERCA Carry in for extended arithmetic.

Table 12-9: Unsupported Signals (Continued)

Signal Function

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 213
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-9 shows back-to-back autonomous instructions. To achieve the back-to-back
instructions on the FCM interface, the clock ratio must be 3:1 or larger. This timing diagram
assumes the FCM signals are flopped (the FCM cannot respond in the same clock cycle that
an instruction is sent). (Refer to Figure 12-10 for an example with an FCM that uses the
same cycle response logic.) If the FCM can respond using same cycle logic, the APU
controller can achieve back-to-back transactions at a 2:1 clock ratio. The first instruction is
sent to the FCM as soon as possible along with the UDI number that was decoded. The
operands along with APUFCMWRITEBACKOK are ready in the next cycle. The FCM can
then respond by asserting FCMAPUDONE on the next clock cycle. In the meantime,
because the APU controller can accept up to three instructions, the APU controller has
received the next autonomous instruction and its operands. Because the APU controller
has all pieces of the second UDI, it asserts APUFCMNEXTINSTRREADY High, so that the
cycle after FCMAPUDONE is asserted, the next instruction will be presented with its
associated data. The FCM then can assert FCMAPUDONE on the following clock cycle. At
this point, new instructions can be sent to the FCM every clock cycle.

Figure 12-9: Autonomous Back-to-Back Instructions (3:1 Clock Ratio or Higher)

CPMFCMCLK

UG200_c12_09_040907

Instr 1

UDI 1 UDI 2 UDI 3 UDI 4 UDI 5 UDI 6

Ra/b1 Ra/b2 Ra/b3 Ra/b4 Ra/b5 Ra/b6

Instr 2 Instr 3 Instr 4 Instr 5 Instr 6APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECUDI[0:3]

APUFCMDECUDIVALID

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMOPERANDVALID

APUFCMNEXTINSTRREADY

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPUDONE

FCMAPUSLEEPNOTREADY

http://www.xilinx.com

214 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-10 shows back-to-back autonomous instructions. To achieve the back-to-back
instructions on the FCM interface (assuming the FCM uses combinatorial logic), the clock
ratio must be 2:1 or larger. Figure 12-10 assumes the FCM signals are not flopped (the FCM
can respond in the same clock cycle an instruction is sent). In this diagram, the first
instruction is sent to the FCM as soon as possible along with the decoded UDI number. The
operands are ready in the next cycle along with APUFCMWRITEBACKOK. The FCM can
then respond with FCMAPUDONE on the same clock cycle. In the meantime, because the
APU Controller can accept up to three instructions, the APU Controller has received the
next Autonomous instruction along with its operands. At this point, new instructions can
be sent to the FCM every clock cycle.

Figure 12-10: Autonomous Back-to-Back Instructions (2:1 Clock Ratio or Higher,
Assumes Same Cycle Response)

CPMFCMCLK

UG200_c12_10_040907

Instr 1

UDI 1 UDI 2 UDI 3 UDI 4 UDI 5 UDI 6 UDI 7

Ra/b1 Ra/b2 Ra/b3 Ra/b4 Ra/b5 Ra/b6 Ra/b7

Instr 2 Instr 3 Instr 4 Instr 5 Instr 6 Instr 7APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECUDI[0:3]

APUFCMDECUDIVALID

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMOPERANDVALID

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPUDONE

FCMAPUSLEEPNOTREADY

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 215
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-11 shows back-to-back quadword loads. At clock ratios of 4:1 and larger, the
FCM can receive one quadword each cycle. At smaller clock frequencies, the FCM can
receive two quadwords every three cycles with more bubbles at a 1:1 clock ratio.
Figure 12-11 assumes the FCM signals are flopped. (Refer to Figure 12-12 for an example of
a quadword load that uses the same cycle response logic in the FCM.) If the FCM can
achieve same cycle response, back-to-back transfers are possible each FCM clock cycle at a
3:1 clock ratio. In this timing diagram, the instruction is sent immediately with
APUFCMDECLOAD and APUFCMDECLDSTXFERSIZE[0:2]. When the load data has
been sent by the processor, the APU controller passes the load data to the FCM with
APUFCMLOADADDR[0:3], which indicates the byte at which the data begins on the load
data bus. By this time, the second instruction and its associated data have been received.
When the FCM asserts FCMAPUDONE for instruction 1, the APU controller asserts
APUFCMNEXTINSTRREADY High to indicate it will send all the data for the second
instruction on the next cycle. The FCM can then assert FCMAPUDONE High for
instruction 2. This pattern continues for back-to-back quadword loads so that the FCM
receives one load every clock cycle.

Figure 12-11: Quadword Load Back-to-Back Instructions (4:1 Clock Ratio or
Higher)

CPMFCMCLK

UG200_c12_11_040907

Instr 1

QW QW QW QW QW

qword1 qword2 qword3 qword4 qword5

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5

Instr 2 Instr 3 Instr 4 Instr 5APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECLDSTXFERSIZE[0:2]

APUFCMDECLOAD

APUFCMLOADDATA[0:127]

APUFCMLOADADDR[0:3]

APUFCMLOADDVALID

APUFCMNEXTINSTRREADY

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPUDONE

FCMAPUSLEEPNOTREADY

http://www.xilinx.com

216 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-12 shows back-to-back quadword loads. At clock ratios of 3:1 and larger, the
FCM can receive one quadword each cycle. Figure 12-12 assumes the FCM signals are not
flopped. In this timing diagram, the instruction is sent immediately along with
APUFCMDECLOAD and APUFCMDECLDSTXFERSIZE[0:2]. Once the load data has
been sent by the processor, the APU Controller passes the load data to the FCM along with
APUFCMLOADADDR[0:3], which indicate the byte at which the data begins on the load
data bus. The FCM can then respond with FCMAPUDONE in the same cycle. This pattern
continues for back-to-back quadword loads so that the FCM can receive one every clock
cycle.

Figure 12-12: Quadword Load Back-to-Back Instructions (3:1 Clock Ratio or
Higher)

CPMFCMCLK

UG200_c12_12_040907

Instr 1

QW QW QW QW QW QW

qword1 qword2 qword3 qword4 qword6

Addr 1 Addr 2 Addr 3 Addr 4 Addr 6

Instr 2 Instr 3 Instr 4 Instr 6

qword5

Addr 5

Instr 5APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECLDSTXFERSIZE[0:2]

APUFCMDECLOAD

APUFCMLOADDATA[0:127]

APUFCMLOADADDR[0:3]

APUFCMLOADDVALID

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPUDONE

FCMAPUSLEEPNOTREADY

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 217
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-13 shows back-to-back non-autonomous instructions with early confirm. At
clock ratios of 3:1 or larger, the FCM can return a result every other clock cycle.
Figure 12-13 assumes the FCM signals are flopped. (Refer to Figure 12-14 for an example of
an FCM with combinatorial logic.) In Figure 12-13, the first instruction is sent to the FCM
as soon as possible along with the decoded UDI number and APUFCMDECNONAUTON,
which indicates the instruction type (non-autonomous). The operands are ready with
APUFCMWRITEBACKOK in the next cycle. The FCM can then respond with the result
data (FCMAPURESULT[0:31], FCMAPURESULTVALID) on the next clock cycle. In the
subsequent clock cycle, the FCMAPUDONE is asserted. The next instruction has all of its
source data, so both the instruction and data can be sent in the same cycle. The FCM then
returns its result in the following cycle, allowing for one FCM instruction every three clock
cycles.

Figure 12-13: Non-Autonomous Instructions with Early Confirm Back-to-Back (3:1
Clock Ratio or Higher)

CPMFCMCLK

UG200_c12_13_031208

Instr 1

UDI 1 UDI 2

Ra/b1

Data 1 Data 2

Ra/b2

Instr 2APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECUDI[0:3]

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMOPERANDVALID

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPURESULT[0:31]

FCMAPURESULTVALID

FCMAPUDONE

FCMAPUSLEEPNOTREADY

APUFCMDECUDIVALID

APUFCMDECNONAUTON

http://www.xilinx.com

218 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-14 shows back-to-back non-autonomous instructions with early confirm. At
clock ratios of 2:1 or larger, the FCM can return a result every other clock cycle.
Figure 12-14 assumes the FCM signals are not flopped. In this diagram, the first instruction
is sent to the FCM as soon as possible along with the decoded UDI number and
APUFCMDECNONAUTON, indicating that the instruction is of type Non-autonomous.
The operands are ready in the next cycle along with APUFCMWRITEBACKOK. The FCM
can then respond with the result data (FCMAPURESULT[0:31], FCMAPURESULTVALID)
in the same clock cycle. Because the next instruction has all of its source data, both the
instruction and data can be sent in the same cycle. The FCM then returns its result
immediately and in the next clock cycle asserts FCMAPUDONE, allowing for one FCM
instruction every two clock cycles.

Figure 12-14: Non-Autonomous Instructions with Early Confirm Back-to-Back (2:1
Clock Ratio or Higher)

CPMFCMCLK

UG200_c12_14_031208

Instr 1

UDI 1 UDI 2 UDI 3

Ra/b1

Data 1 Data 2 Data 3

Ra/b2 Ra/b3

Instr 2 Instr 3APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECUDI[0:3]

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMOPERANDVALID

APUFCMWRITEBACKOK

APUFCMFLUSH

FCMAPURESULT[0:31]

FCMAPURESULTVALID

FCMAPUDONE

FCMAPUSLEEPNOTREADY

APUFCMDECUDIVALID

APUFCMDECNONAUTON

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 219
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-15 shows back-to-back quadword stores. At clock ratios of 2:1 and larger, the
FCM can receive one quadword every other cycle. Figure 12-15 assumes the FCM signals
are flopped. The FCM signals must be combinatorial in order to send a quadword store
each clock cycle. (Refer to Figure 12-16 for an example of a combinatorial response from
the FCM.) In Figure 12-15, the instruction is sent immediately along with
APUFCMDECSTORE, APUFCMDECLDSTXFERSIZE[0:2], and
APUFCMDECNONAUTON. Any instruction that returns data or status to the CPU is
considered to be non-autonomous. A store acts as a non-autonomous instruction with
early confirm. Because the store in this example is without WritebackOK, the FCM can then
respond with FCMAPUSTOREDATA[0:127], FCMAPURESULTVALID, and
FCMAPUDONE on the next FCM clock. On the next cycle, the APU controller can send the
second store, allowing the FCM to send one quadword store every other clock cycle.

Figure 12-15: Quadword Store Back-to-Back Instructions without WritebackOK (2:1
Clock Ratio or Higher)

CPMFCMCLK

UG200_c12_15_040907

Instr 1

QW QW QW QW

qword1 qword2 qword3

Instr 2 Instr 3 Instr 4APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECSTORE

FCMAPUSTOREDATA[0:127]

FCMAPURESULTVALID

FCMAPUDONE

FCMAPUSLEEPNOTREADY

APUFCMDECLDSTXFERSIZE[0:2]

APUFCMDECNONAUTON

qword4

http://www.xilinx.com

220 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-16 shows back-to-back quadword stores. At clock ratios of 2:1 and larger, the
FCM can receive one quadword every clock cycle. Figure 12-16 assumes the FCM signals
are not flopped. The FCM signals must be combinatorial in order to send a quadword store
each clock cycle. In this timing diagram, the instruction is sent immediately along with
APUFCMDECSTORE, APUFCMDECLDSTXFERSIZE[0:2], and
APUFCMDECNONAUTON. Any instruction that returns data or status to the CPU is
considered to be Non-autonomous. A store instruction acts as a non-autonomous
instruction with early confirm. Because the store in this example is without WritebackOK,
the FCM can respond with FCMAPUSTOREDATA[0:127], FCMAPURESULTVALID, and
FCMAPUDONE on the same FCM clock. On the next cycle, the APU controller can send
the second store, allowing the FCM to send one quadword store every clock cycle.

Figure 12-16: Quadword Store Back-to-Back Instructions without WritebackOK (2:1
Clock Ratio or Higher) and with Same Cycle Response from FCM

CPMFCMCLK

UG200_c12_16_040907

Instr 1

QW QW QW

qword1 qword2 qword3

Instr 2 Instr 3APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMDECSTORE

FCMAPUSTOREDATA[0:127]

FCMAPURESULTVALID

FCMAPUDONE

FCMAPUSLEEPNOTREADY

APUFCMDECLDSTXFERSIZE[0:2]

APUFCMDECNONAUTON

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 221
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-17 shows back-to-back non-autonomous instructions with late confirm. At clock
ratios of 2:1 or larger, the FCM can return a result every six clock cycles. Figure 12-17
assumes the FCM signals are flopped. In Figure 12-17, the first instruction is sent to the
FCM as soon as possible along with the decoded UDI number and
APUFCMDECNONAUTON, which indicates the instruction type (non-autonomous). The
operands are ready in the next cycle, and at the same time the FCM asserts
FCMAPUCONFIRMINSTR, indicating that the instruction will not cause a precise
exception. When the APU controller has received FCMAPUCONFIRMINSTR, it asserts
APUFCMWRITEBACKOK as soon as possible. APUFCMWRITEBACKOK is asserted at
the earliest cycle in this example. The FCM can then respond with the result data
(FCMAPURESULT[0:31], FCMAPURESULTVALID) on the next clock cycle. The next
instruction has all of its source data, so it can send the instruction and data in the same
cycle. The FCM then confirms the instruction will not cause an exception.

Figure 12-17: Non-Autonomous Instructions with Late Confirm Back-to-Back (2:1
Clock Ratio or Higher)

UG200_c12_17_031208

Instr 1 Instr 2

UDI 1 UDI 2

Ra/b1

Data 1

Ra/b2

CPMFCMCLK

APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMWRITEBACKOK

FCMAPUDONE

APUFCMOPERANDVALID

FCMAPUSLEEPNOTREADY

APUFCMDECUDI[0:3]

APUFCMDECUDIVALID

APUFCMFLUSH

FCMAPURESULTVALID

FCMAPURESULT[0:31]

FCMAPUCONFIRMINSTR

APUFCMDECNONAUTON

http://www.xilinx.com

222 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-18 shows an APU exception (generated by the FCM). Figure 12-18 assumes the
FCM signals are flopped. The instruction must be non-autonomous with late confirm.
Instead of asserting FCMAPUCONFIRMINSTR after receiving the instruction, the FCM
holds FCMAPUEXCEPTION High. This signal can be driven anytime after the FCM has
received the instruction; it does not have to wait for operand data. In this case, the CPU
takes the APU enabled exception; no other interrupt has higher priority. The APU
controller asserts APUFCMWRITEBACKOK to let the FCM know the exception was
received. During that cycle or at a later cycle, the FCM must assert FCMAPUDONE to
complete the transaction. When FCMAPUDONE is asserted, the FCM can deassert
FCMAPUEXCEPTION or, if wanted, leave it High to be cleared by software. If the FCM
keeps FCMAPUEXCEPTION High, any later instructions of type non-autonomous with
late confirm are seen as causing an exception.

Figure 12-18: APU Enabled Exception that is Received by the CPU

UG200_c12_18_040907

Instr 1

UDI 1

Ra/b1

CPMFCMCLK

APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMWRITEBACKOK

FCMAPUDONE

APUFCMOPERANDVALID

FCMAPUSLEEPNOTREADY

APUFCMDECUDI[0:3]

APUFCMDECUDIVALID

APUFCMFLUSH

FCMAPUCONFIRMINSTR

APUFCMDECNONAUTON

FCMAPUEXCEPTION

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 223
UG200 (v1.6) January 20, 2009

Timing Diagrams for the APU Controller
R

Figure 12-19 shows an APU exception (generated by the FCM). Figure 12-19 assumes the
FCM signals are flopped. The instruction must be non-autonomous with late confirm.
Instead of asserting FCMAPUCONFIRMINSTR after receiving the instruction, the FCM
holds FCMAPUEXCEPTION High. This signal can be asserted anytime after the FCM has
received the instruction; it does not have to wait for operand data. In this case, the CPU
takes an earlier or higher priority interrupt and flushes the APU instruction that is trying to
generate an exception. The APU controller asserts APUFCMFLUSH to let the FCM know
the exception was flushed. When APUFCMFLUSH is asserted, the FCM must deassert
FCMAPUEXCEPTION. The FCM should not assert FCMAPUDONE.

Figure 12-19: APU Enabled Exception that is Flushed by the CPU

UG200_c12_19_040907

Instr 1

UDI 1

Ra/b1

CPMFCMCLK

APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMRADATA[0:31]/
APUFCMRBDATA[0:31]

APUFCMWRITEBACKOK

FCMAPUDONE

APUFCMOPERANDVALID

FCMAPUSLEEPNOTREADY

APUFCMDECUDI[0:3]

APUFCMDECUDIVALID

APUFCMFLUSH

FCMAPUCONFIRMINSTR

APUFCMDECNONAUTON

FCMAPUEXCEPTION

http://www.xilinx.com

224 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 12: Auxiliary Processor Unit Controller
R

Figure 12-20 shows an FPU exception (generated by the FCM). Figure 12-20 assumes the
FCM signals are flopped. The instruction must be non-autonomous with late confirm and
must set the FPSCR[FEX] bit. Instead of asserting FCMAPUCONFIRMINSTR after
receiving the instruction, the FCM holds FCMAPUEXCEPTION and FCMAPUFPSCRFEX
High. These signals can be asserted anytime after the FCM has received the instruction. In
this case, the CPU takes the FPU enabled exception; no other interrupt has higher priority.
The APU controller asserts APUFCMWRITEBACKOK to let the FCM know the exception
was received. During that cycle or at a later cycle, the FCM must assert FCMAPUDONE to
complete the transaction. When FCMAPUDONE is asserted, the FCM can deassert
FCMAPUEXCEPTION or, if wanted, this signal can remain High to be cleared by software.
If the FCM keeps FCMAPUEXCEPTION High, any later instructions of type non-
autonomous with late confirm are seen as causing an exception. FCMAPUFPSCRFEX must
remain High until cleared by software. For the CPU to recognize an FPU exception,
MSR[FE0,FE1] must be non-zero. Otherwise the exception is not seen by the CPU until
these bits become non-zero.

Figure 12-20: FPU Enabled Exception that is Received by the CPU

UG200_c12_20_040907

FPU Instr 1

CPMFCMCLK

APUFCMINSTRUCTION[0:31]

APUFCMINSTRVALID

APUFCMWRITEBACKOK

FCMAPUDONE

FCMAPUSLEEPNOTREADY

APUFCMDECFPUOP

APUFCMFLUSH

FCMAPUCONFIRMINSTR

APUFCMDECNONAUTON

FCMAPUEXCEPTION

FCMAPUFPSCRFEX

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 225
UG200 (v1.6) January 20, 2009

R

Chapter 13

DMA Controller

The DMA controller consists of four independent DMA engines that provide high-
performance direct memory access for streaming data. Peripherals can directly transfer
data to and from a memory controller connected to the processor block. Peripherals are
connected to the DMA engines through the LocalLink interface. The DMA engines can be
monitored and controlled through their Device Control Registers (DCRs).

DMA Controller Features
The key features of the DMA controller are listed below:

• Four complete full-duplex DMA engines

• Generic LocalLink interfaces stream data in and out of the engines

• Efficient command translation generates bursts from and to memory for payload
transfers

• 32-byte aligned bursts for DMA descriptor reads

• Efficient 16-byte aligned commands for DMA descriptor writes

• High-performance payload read pipelining to the target memory

• Non-blocking RX and TX operations with respect to the target memory

• Asynchronous LocalLink clock allows the user logic to run at any frequency relative
to the processor block

• DMA engines broadcast application-specific data across the LocalLink interfaces

• Separate DMA engine reset feature for locked-up engines

• Dynamic descriptor appending

• Interrupt coalescing mechanism

• Interrupt delay timer mechanism

• Simple software use model

http://www.xilinx.com

226 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

DMA Operation
Each DMA engine consists of two independent DMA channels, one for TX and the other
for RX, allowing full-duplex operation per engine. Figure 13-1 shows a high-level block
diagram of a single DMA engine.

The LocalLink protocol is used to transfer data packets from peripherals to memory, and
from memory to peripherals. A LocalLink packet consists of the packet header, the packet
payload, and the packet footer. The DMA TX engine collects data from one or more
contiguous regions of memory to create the payload for a data packet that it then transmits
over the TX LocalLink interface. The DMA RX engine receives a data packet from a
peripheral, and writes the payload to one or more memory locations as specified by the
control registers (descriptors).

Each DMA channel is controlled by separate descriptors, which are data structures set up
by the CPU before the DMA operations commence. Among other things, these descriptors
control how much data is to be transferred and the location of the data in system memory.
Descriptors can be chained together, allowing either a sequence of separate memory blocks
to be combined into a transmitted data packet or a received data packet to be broken up
and saved in a sequence of separate memory blocks.

The CPU sets up the DMA by first creating the sequence of descriptors in memory and
then writing the address of the first descriptor to the Current Descriptor Pointer DCR
register. Finally, the CPU starts the DMA operation by writing the address of the last
descriptor in the sequence to the Tail Descriptor Pointer DCR register.

This last write action triggers the DMA engine to fetch a new descriptor from the location
pointed to by the Current Descriptor Pointer register. In the case of a transmit channel, the
DMA engine starts fetching data from the memory locations indicated by the descriptor,
and starts the process of creating and sending a data packet. After transmitting all the data
indicated by the current descriptor, the DMA engine fetches the next descriptor, if any, and
continues to transmit data indicated by that descriptor.

In the case of a receive channel, the DMA engine waits for the data packet to be received
from the external peripheral, and starts copying the received data to the memory locations
indicated by the current descriptor. If more data is received, the next descriptor is fetched,
and the received data is copied to the corresponding memory locations. This process
continues until the end of the received payload.

Figure 13-1: High-Level Block Diagram of Single DMA Engine

To/From Crossbar
DMA to

Embedded
Processor Block

Interface

UG200_c13_01_051408

TX/RX
Arbiter

TX DMA
Channel

RX DMA
Channel

TX
LocalLink
Interface

To RX LocalLink
Device

From RX LocalLink
Device RX

LocalLink
Interface

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 227
UG200 (v1.6) January 20, 2009

DMA Operation
R

Descriptor Format
The descriptor consists of eight words as shown in Table 13-1.

The Next Descriptor Pointer field indicates from where in memory the next descriptor
should be fetched. This field must be eight-word aligned (the five least-significant bits
must be 0s). The Buffer Address field is a byte aligned address pointing to the payload
source/destination. The Buffer Length field is the length of the payload to transfer in bytes.
The Sts/Ctrl field is a single byte that contains status and control information for the DMA
channel. The Application Defined Data fields are for the explicit use of the application and
are broadcasted over the LocalLink interface at appropriate times.

For the TX channel, the application data is transmitted down the LocalLink interface
during the first descriptor that sets the Start of Packet (SOP) bit on the LocalLink interface.
For the RX channel, the application data is received from the LocalLink interface and
written back to the last DMA descriptor that was in progress when the LocalLink interface
encountered an End of Packet (EOP). Details of how descriptor information is transferred
to and from a LocalLink packet are provided in “DMA TX LocalLink Interface,” page 229
and “DMA RX LocalLink Interface,” page 231. See [Ref 6] for more information on the
LocalLink interface.

Table 13-1: Descriptor Format

Word# Byte Offset
Descriptor Field

MSB LSB

0 0x00 Next Descriptor Pointer

1 0x04 Buffer Address

2 0x08 Buffer Length

3 0x0C Sts/Ctrl Application-Defined Data

4 0x10 Application-Defined Data

5 0x14 Application-Defined Data

6 0x18 Application-Defined Data

7 0x1C Application-Defined Data

http://www.xilinx.com

228 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

The Sts/Ctrl byte format is shown in Table 13-2.

Table 13-2: Descriptor Status/Control Byte Format

Bit# Sts/Ctrl Field Field Type Description

0 (msb) DMA_ERROR Status The DMA sets this bit when an error is encountered. It is a copy of
the Error Interrupt bit status (see “Interrupt Mechanism,” page
234).

1 DMA_INT_ON_END Ctrl The CPU sets this bit to cause the DMA to generate an interrupt
event when the current descriptor has been completed.

2 DMA_STOP_ON_END Ctrl The CPU sets this bit to cause the DMA channel to halt when the
current descriptor has been completed. The DMA can be restarted
by rewriting to the Tail Descriptor Pointer register.
DMA_STOP_ON_END and DMA_INT_ON_END are
independent of each other. As such, the DMA can be made to do
any of four possible operations:

• Halt with an interrupt
• Halt without an interrupt
• Interrupt without halting
• Nothing at all

An alternate mechanism for halting the channel is when the
descriptor Tail Pointer equals the descriptor Current Pointer.

3 DMA_COMPLETED Status The DMA sets this bit to indicate that the current descriptor has
been completed (the payload is transferred).

• For the TX Channel:

Set when the Buffer Length decrements to zero.

• For the RX Channel:

Set when the Buffer Length decrements to zero or when EOP is
received on the RX LocalLink interface. The Buffer Length does
not specify how much data was transferred in this case.

4 DMA_START_OF_PACKET Status/Ctrl • TX Channel: (Ctrl)

The CPU sets this bit to instruct the LocalLink interface to
initiate a header for the packet.

• RX Channel: (Status)

When an SOP is asserted on the LocalLink RX interface, the
DMA sets this bit in the descriptor.

5 DMA_END_OF_PACKET Status/Ctrl • TX Channel: (Ctrl)

The CPU sets this bit to instruct the LocalLink interface to
initiate a footer for the packet.

• RX Channel: (Status)

When an EOP is asserted on the LocalLink RX interface, the
DMA sets this bit in the descriptor.

6 DMA_CHANNEL_BUSY Status The DMA sets this bit to indicate that the DMA Channel is busy.
No DMA registers should be written during this time (except for
the Descriptor Tail Pointer). Register reads are allowed at any time.

7 (lsb) Undefined N/A N/A

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 229
UG200 (v1.6) January 20, 2009

DMA TX LocalLink Interface
R

Using Descriptors to Describe a Packet
The descriptors can be used in two ways to describe a packet:

1. A single descriptor describes a packet in its entirety.

2. Multiple descriptors are chained together to describe a single packet.

For the first case, the SOP and EOP flags are both set in the same descriptor. For TX, these
are set by the CPU. For RX, they are set by the DMA when the LocalLink interface receives
them.

In the second case, multiple non-contiguous descriptors are chained together to form an
apparently contiguous data payload across the LocalLink interface.

DMA Legacy Mode
A legacy mode is supported for users who want to port legacy designs using older Virtex
devices. In this legacy mode, a write to the DCR Current Descriptor Pointer register
triggers a DMA operation, and the DCR Tail Descriptor Pointer register is not used. This
mode is enabled by writing a 0 to the TailPtrEn field of the control register. When this
legacy mode is enabled, the Tail == Current Pointer comparison is not used. Thus the
Dynamic Descriptor Appending Mechanism cannot be used in this legacy mode (see
“Dynamic Descriptor Appending,” page 237) because the Tail Descriptor Pointer is not
used. Contact your local Xilinx representative for more information on using this mode.

DMA TX LocalLink Interface
This interface is compatible with the Xilinx LocalLink Specification as outlined in [Ref 6]. It
is basically a synchronous, point-to-point connection that serves as a user interface to
Xilinx intellectual property (IP) designs.

This unidirectional interface sends data out of the LocalLink interface for consumption by
some external device, such as an EMAC. Full-duplex operation is achieved by using an RX
and TX LocalLink pair simultaneously. Figure 13-2 shows the high-level connection of the
TX LocalLink interface.

Data is sent out over the LocalLink interface as a packet, described by header, payload, and
footer components. The sof_n signal initiates the header of the packet. Between the time
this signal is asserted and the time the sop_n signal is asserted, the header of the packet is
transmitted. Between the sop_n signal assertion and the eop_n signal assertion, the
payload is transmitted. Finally, the information between eop_n and eof_n constitutes the

Figure 13-2: Block Diagram of TX LocalLink Interface

DMA
LocalLink

TX Interface

Datapath of
DMA Engine

External
Device

LocalLink
RX Interface

dst_rdy_n

src_rdy_n

data[0:31]

rem[0:3]

UG200_c13_02_101808

sof_n

eof_n

sop_n

eop_n

http://www.xilinx.com

230 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

footer. Information is deemed to be valid on the interface whenever src_rdy_n and
dst_rdy_n are asserted simultaneously. The TX agent (DMA) or the RX agent can become
Not-Ready at any time during transmission by deasserting src_rdy_n or dst_rdy_n.

For the DMA TX LocalLink interface, only two of the three packet components are used:
the header and the payload components. During the header portion of the transmission,
the control information in the first descriptor associated with a packet is transmitted over
the LocalLink interface. The payload portion transfers the actual data associated with the
first descriptor and possibly additional linked descriptors. When the payload completes,
as indicated by the assertion of eop_n, the packet is framed immediately by the assertion of
the eof_n signal. The eof_n signal is always asserted exactly one cycle after eop_n is
asserted. See Figure 13-3 and Figure 13-4 for more details.

Because the packet payload is specified in number of bytes and the first complete 32-bit
payload word is always sent coincident with sop_n, the last payload word might be
incomplete. That is, only some of the four bytes might be valid at the end of a packet. The
rem[0:3] signals are used as a mask and indicate which of the bytes in the last payload
word are valid. At all other times during the transmission, rem[0:3] is driven to a value of
4’b0000, indicating all bytes are valid. Table 13-3 shows an example of rem[0:3] for the
last word of a payload (indicated by the assertion of eop_n).

Because the footer is not relevant for TX, the single footer byte indicated in Table 13-3 is
ignored by the LocalLink receiving device, because it is not part of the payload.

Figure 13-3 shows how the data packet for transmission is assembled from the descriptor
information. Data is provided to the TX LocalLink module as it becomes available.
Whenever data is available to send, the TX LocalLink interface can potentially assert
src_rdy_n.

Table 13-3: TX LocalLink REM[0:3] Value During EOP_N

Rem[0:3] 0 0 0 1

Data Bus (MSB) [0:7] [8:15] [16:23] [24:31]

Payload Bytes Footer Bytes

Figure 13-3: Assembly of Transmit Data Packet

UG200_c13_07_111408

NXTDESC
PTR

CURBUF
ADDR

CURBUF
LENGTH

CURBUF
LENGTH

STS CTRL
APP0

APP1 APP2 APP3 APP4 PAYLOAD FOOTER

HEADER

CURDESC_PTR

SOP=1

Register

Descriptor

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

TX
DATA

TX
DATA

TX
DATA

EOP=1

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 231
UG200 (v1.6) January 20, 2009

DMA RX LocalLink Interface
R

Figure 13-4 shows a single frame from the DMA engine (source) to the FPGA logic
(destination). The header length is always eight words with Word 0 first. The payload size
is indicated in the header and can be variable. The End of Frame signal needs to be asserted
one cycle after the End of Payload signal because the footer component is not used. When
the End of Payload is asserted, the REM data indicates which bytes are valid for the last
word of the payload. Each asserted REM bit (active Low) represents a valid DATA byte.
REM[0] is associated with DATA[0:7], and REM[3] is associated with DATA[24:31]. Data is
sampled every cycle that DST_RDY and SRC_RDY are asserted.

DMA RX LocalLink Interface
This interface is essentially the “other end” of the interface described in “DMA TX
LocalLink Interface,” page 229. The DMA RX LocalLink interface is a unidirectional
interface, receiving data from the LocalLink interface sent by some external device, such as
an EMAC. Full-duplex operation is achieved by using an RX and TX LocalLink pair
simultaneously. Figure 13-5 shows the high-level connection of the RX LocalLink interface.

Figure 13-4: TX Timing

Header

4’b0000

Payload

REM

UG200_c13_08_111408

LL_CLK

LL_DST_RDY_N

LL_SRC_RDY_N

LL_SOF_N

LL_SOP_N

LL_DATA[0:31]

LL_REM[0:3]

LL_EOP_N

LL_EOF_N

Figure 13-5: Block Diagram of RX LocalLink Interface

DMA
LocalLink

RX Interface

Datapath of
DMA Engine

External
Device

LocalLink
TX Interface

dst_rdy_n

src_rdy_n

data[0:31]

rem[0:3]

UG200_c13_03_101808

sof_n

eof_n

sop_n

eop_n

http://www.xilinx.com

232 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

As before, data is received from the LocalLink interface as a packet, described by header,
payload, and footer components. The sof_n signal initiates the header of the packet.
Between the time this signal is asserted and the time the sop_n signal is asserted, the
header of the packet is received. Between the sop_n signal assertion and the eop_n signal
assertion, the payload is received. Finally, the information between eop_n and eof_n
constitutes the footer. Information is deemed to be valid on the interface whenever
src_rdy_n and dst_rdy_n are asserted simultaneously. The TX agent or the RX agent
(DMA) can become “Not-Ready” at any time during reception by deasserting src_rdy_n or
dst_rdy_n.

For the DMA RX LocalLink interface, only two of the three packet components are used:
the payload and the footer components. Any information received during the header
portion of the packet is ignored by the interface. It is therefore recommended that sop_n is
asserted exactly one cycle after sof_n has been asserted. That is, do not transmit garbage
header data because it is discarded.

The payload portion transfers the actual data associated with the DMA operation. When
the payload completes, as indicated by the assertion of eop_n, the footer portion
commences. As in the case of TX, the rem[0:3] signals indicate where the payload bytes end
and where the footer bytes begin. For RX, any footer bytes indicated by the rem[0:3] signals
are discarded. The following eight bytes of footer data are handled as shown in
Figure 13-6. Refer to “Descriptor Format,” page 227 for more details.

After these eight words are received, the packet should be framed immediately by the
assertion of the eof_n signal. This signal is required to always be asserted coincident with
the last of the eight footer words.

Figure 13-6 shows how the received data packet is copied to memory, based on the
descriptors, and how the descriptors are updated.

Whenever sop_n or eop_n is asserted by the peripheral that is transmitting data over this
LocalLink interface, the corresponding status bit is set in the corresponding
RX_STATUS_REG DCR, and is later updated to the current descriptor memory. Figure 13-7
shows a single frame from the FPGA logic (source/transmitter) to the DMA engine
(destination/receiver).

Figure 13-6: LocalLink Frame and the Descriptor Chain for an RX Operation

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC
PTR

CURBUF
ADDR

CURBUF
LENGTH

CURBUF
LENGTH

STS CTRL
APP0

APP1 APP2 APP3 APP4

FOOTER

Ignored

PAYLOADHEADER

RX
DATA

RX
DATA

RX
DATA

CURDESC_PTR

SOP=1

Register

EOP=1

UG200_c13_09_111408

Descriptor

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 233
UG200 (v1.6) January 20, 2009

Masking of Application Data Update
R

The footer length is always 8 words with Word 0 first. The payload size is indicated in the
footer and can be variable. The Start of Payload signal needs to be asserted one cycle after
the Start of Frame signal because the header component is not used. Just as for TX, when
the End of Payload is asserted, the REM data indicates which bytes are valid for the last
word of the payload.

Masking of Application Data Update
The MaskEnable mode can be enabled by setting a DCR bit called appMasken. When this
mode is active, the first three words of the footer's second quadword (words 4, 5, and 6) can
be selectively updated to memory by using a special encoding in the last corresponding
rem[0:3] signal values. The rem bits are active Low. A Low on a rem bit means update the
word. The following restrictions apply when using this mode:

1. The last word of the footer, Word 7, must always be updated to memory.

2. The written words must be contiguous. For example, Word 5 and Word 7 cannot be
updated without updating Word 6, too. Any value of rem[0:3] other than 4’b0000 is
illegal when this mode is enabled.

Table 13-4 provides further clarification.

Figure 13-7: Single Frame to DMA Engine

LL_CLK

LL_DST_RDY_N

LL_SRC_RDY_N

LL_SOF_N

LL_SOP_N

LL_DATA[0:31]

LL_REM[0:3]

LL_EOP_N

LL_EOF_N

4’b0000 4’b0000

FooterPayload

REM

UG200_c13_10_111408

Table 13-4: RX LocalLink REM[0:3] during Masking Application Data Mode

Footer Word # REM[0:3] Resultant Action/Comments

Word 0 0000
Must be 0000. The mask is not valid for this word. The word is always
updated to memory.

Word 1 0000
Must be 0000. The mask is not valid for this word. The word is always
updated to memory.

Word 2 0000
Must be 0000. The mask is not valid for this word. The word is always
updated to memory.

http://www.xilinx.com

234 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

DMA Addressing Limitation
The descriptor tables are configured as blocks of eight words, with the buffer address and
next descriptor pointers described by 32-bit fields. However, the processor block supports
36-bit addresses, and the DMA engine extends the 32-bit address to 36 bits by statically
setting the values of the four most significant bits of the address to 0.

Interrupt Mechanism
There are two interrupt pins (INT) per DMA engine, one for RX and one for TX. Eight
internal events can cause the INT pins to be asserted. These events are:

1. TX Delay Timer times out

2. RX Delay Timer times out

3. TX Interrupt Coalescing Counter reaches zero

4. RX Interrupt Coalescing Counter reaches zero

5. Maskable TX Error Condition

6. Maskable RX Error Condition

7. Non-Maskable TX Error Condition

8. Non-Maskable RX Error Condition

There are separate interrupt enable bits for the RX channel (RxIrqEn) and the TX channel
(TxIrqEn). Additionally, the RX and TX delay timers, the RX and TX coalescing counters,
and the RX and TX Error Irqs can be independently enabled or disabled by DCR control
fields. This way the interrupt sources of interest can be controlled precisely. The two non-
maskable interrupts do not have individual interrupt enable controls. Setting these bits
causes a non-recoverable serious system issue. The status of all the interrupt sources can
always be read in the interrupt register. The enable bits control whether or not that
particular interrupt source causes the interrupt pin to be asserted to the CPU or not
(excluding the non-maskable interrupts).

Figure 13-8 shows the higher level connection of the interrupt events to the interrupt
output pin.

Word 3 0000
Must be 0000. The mask is not valid for this word. The word is always
updated to memory.

Word 4 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 5 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 6 {M3,M2,M1,M0}
If ({M3,M2,M1,M0} = 4’b1111)), do not update this word to memory

If ({M3,M2,M1,M0} = 4’b0000)), update this word to memory

Word 7 0000
Must be 0000. The mask is not valid for this word. The word is always
updated to memory.

Table 13-4: RX LocalLink REM[0:3] during Masking Application Data Mode (Continued)

Footer Word # REM[0:3] Resultant Action/Comments

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 235
UG200 (v1.6) January 20, 2009

Interrupt Mechanism
R

When the CPU is interrupted, it reads the corresponding TX or RX DCR Interrupt register
to find out the source of the interrupt. The interrupt register has a separate interrupt bit for
each of the three interrupt sources, as shown in Figure 13-8. The interrupt can then be
cleared by writing a “1” to the corresponding field(s) in the DCR Interrupt register. This
does not apply to the non-maskable interrupts.

Maskable Error Interrupts
The Maskable Error interrupt bit is set if any of the following conditions are true:

1. The Delay Timer Interrupt Counter overflows (this event can be disabled).

2. The Coalescing Interrupt Counter overflows (this event can be disabled).

3. The Current Descriptor Pointer is written while the channel is busy.

No further action is taken by the DMA other than the setting of the Error bit.

Non-Maskable Error Interrupts
The Non-Maskable Error interrupt bit is set if any of the following conditions are true:

1. The Internal PLB subsystem issues a rdDataErr to the DMA.

2. The Internal PLB subsystem issues a wrDataErr to the DMA.

In both cases, the LocalLink interface is frozen immediately to prevent any data corruption
from occurring. The only way to recover from this situation is to reset the DMA engine
(either power down or software/hardware DMA reset).

Figure 13-8: DMA Engine Interrupt Scheme

RxCoalesceEn

RxCoalesceInt

RxDelayEn

RxDelayInt

RxErrorEn

RxErrorInt

TxCoalesceEn

TxCoalesceInt

TxDelayEn

TxDelayInt

TxErrorEn

TxErrorInt

RxCoalesceIrq

RxDelayIrq

RxErrIrq

TxCoalesceIrq

TxDelayIrq

TxErrIrq

RxIrqEn

Rx_non_maskable_irq

dma_rx_irq_pin

Tx_non_maskable_irq

UG200_c13_04_071307

dma_tx_irq_pin

TxIrqEn

http://www.xilinx.com

236 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

Delay Timer
Figure 13-9 shows the mechanism used for the TX Delay Timer interrupt generation.

The delay timer is needed because interrupt coalescing is used in the DMA. For example,
if the RX coalescing counter is set to 10, every 10 packets received will generate an
interrupt. But assume five packets are received on the Ethernet and then the channel goes
idle (no traffic). The CPU never processes the five packets because no interrupt is
generated, and this interrupt happens only when (or if) five more packets arrive. To avoid
this latency, a timer is needed that will fire when all of the following are true:

• a packet has been received

• some (software settable) time has elapsed

• no more packets are received during this time

The only purpose of this timer is to avoid large latencies in the received packet (which is
sitting in main memory by this time) from being processed by the CPU when there is non-
continuous traffic on the wire.

The Clock Divider module uses a 10-bit tie-off value (embedded processor block attribute
DMAn_TXIRQTIMER or DMAn_RXIRQTIMER) to determine how many LocalLink clock
cycles to count before generating a single clkDivideEn pulse. A typical LocalLink clock
speed of 200 MHz translates to a 5.12 µs clkDivideEn period. Therefore the 8-bit timer can
count up to a maximum of 256 * 5.12 = 1.3 ms, before generating an interrupt.

When the coalescing counter fires, the delay timer is automatically cleared.

Interrupt Coalescing Counter
The interrupt coalescing counter is an additional mechanism used for interrupt handing. It
relieves the CPU from having to service an interrupt at the end of every packet. Instead, a
preloadable number of interrupt events (up to 256) generates a single interrupt to the CPU.
Figure 13-10 shows the mechanism used for the TX coalescing counter interrupt
generation.

Figure 13-9: Delay Timer Interrupt Scheme

setTxTimeout

if (reset)
 clr
else
 if (!eop_n)
 set
 else if (!sop_n)
 clr
 else if (setTxCntEq0)
 clr
 else if (setTxTimeout)
 clr

!sop_n

setTxCntEq0

clr

din

ld

!timerActive

dmatxirqtimer[9:0]

reset

clr

8-bit Timer

2-bit Int Counter

Clk Divider

D Q

inc

TxIrqTimeoutReg[0:7]

DCR ack

setTxTimeout
=

UG200_c13_05_050707

timerActive

clkDivideEn

decr
DelayInt

incr

! = 0

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 237
UG200 (v1.6) January 20, 2009

Dynamic Descriptor Appending
R

On reset, the dmairqcoalesce.txirqcount[0:7] value is used to load the coalescing counter.
The CoalesceCounterValue field in the DCR TX Interrupt Register can be subsequently
programmed with any eight-bit value. On every eop or irq-on-end (selected by the
UseIntOnEnd field in the DCR), the counter decrements. When the coalescing counter
reaches 0, the DMA increments the four-bit int counter. Whenever the four-bit int counter
is non-zero, it generates an interrupt to the CPU (if the irq enable bit of the respective
channel is set). Whenever the interrupt is acknowledged (DCR write of 1), the four-bit int
counter is decremented. The contents of the CoalesceCounterValue field are reloaded
when the four-bit int counter is incremented.

The CPU also can force the counter to load the contents of the CoalesceCounterValue field
by writing to the ldIrqCnt field of the TX Channel Control register.

This approach is used because there are not enough unique DCR addresses to allow a DCR
write to a unique address for loading the TX and RX counters.

When the delay timer fires, the coalescing counter is automatically reloaded.

Dynamic Descriptor Appending
The DMA controller allows the CPU to allocate more work to the DMA channel
dynamically. Two DCRs are defined for this purpose per DMA channel: the Current
Descriptor Pointer and the Tail Descriptor Pointer. A typical software sequence to start a
DMA operation is:

1. Set up the descriptors in memory.

2. Write the Current Descriptor Pointer register with the first descriptor base address in
memory.

3. Write the Tail Descriptor Pointer register with the last descriptor base address.

Writing to the Tail Descriptor Pointer register triggers a start for the DMA channel. From
this time on, software should NOT write the Current Descriptor Pointer register unless it is
certain that the descriptor chain has stopped executing. The descriptor fetching and
executing continue until the StopOnEnd bit is encountered or until the Current Descriptor
Pointer register equals the Tail Descriptor Pointer register. At this point, the Descriptor
state machine of the channels returns to the IDLE state. The DMA checks if the Current

Figure 13-10: Coalescing Counter Interrupt Scheme

OR

setTxTimeout

ldIrqCnt

setTxCntEq0

eop_n

irq-on-end

UseIntOnEnd

ld

din

8-bit
Coalescing

Counter

4-bit Int
Counter

if (reset)
 ld dmairqcoalesce.txirqcount[0:7]

decr

decr

incr

DCR ack

setTxCntEq0
= 0

CoalesceInt
! = 0

TxIrqCountReg[0:7]

UG200_c13_06_071207

http://www.xilinx.com

238 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

Descriptor Pointer register equals the Tail Descriptor Pointer register after it has executed
the current descriptor. Software can restart operation by repeating the three steps above.

For software to add more descriptors dynamically to the existing chain, it simply writes a
new address to the Tail Descriptor Pointer register at any time during the DMA process. It
does NOT have to wait for the DMA channel to be IDLE to do this. Software can write the
Tail Descriptor Pointer even if the DMA is IDLE. In this case, the DMA continues to execute
from where it left off. See “Software/Device Driver Considerations” for more information.

DMA Engine Reset
The DMA controller provides the capability to reset a particular DMA engine (both RX and
TX channels simultaneously) whenever a lockup situation arises, typically over the
LocalLink interface. There are two separate mechanisms available for this purpose: a
hardware reset and a software reset.

Hardware Engine Reset Mechanism
With this interface, all inputs and outputs are synchronous to the LocalLink clock. This
scheme is useful if hardware needs to reset the engine directly. Two pins are added per
DMA engine: a rst_engine_req input and a rst_engine_ack output. When an engine reset is
required, the rst_engine_req pin is asserted for one cycle. The DMA engine immediately
asserts the rst_engine_ack output pin. This output can be used as an external logic reset. It
then proceeds to shut down operations and waits for all the pipelined commands to flush
through the processor block before deasserting the rst_engine_ack output pin. This
indicates that the engine reset operation is completed.

Software Engine Reset Mechanism
The DMA Control register contains a software reset bit. When a 1 is written to the SwReset
bit, it initiates the reset sequence for that particular engine. At the same time, the
DMALLRSTENGINEACK output pin is asserted, synchronous to the LocalLink clock. This
output can be used as an external logic reset. Software needs to now poll the SwReset bit
until it is sampled cleared, which indicates that the reset sequence has completed and the
pipeline is flushed. Simultaneously with the SwReset bit being cleared, the
DMALLRSTENGINEACK pin is automatically deasserted.

Whenever the DMA engine reset function is used, there is no guarantee that the current
descriptor completed correctly. The assumption should be that the descriptor did not
complete and it should be restarted again using the normal CPU technique for kicking off
a new DMA operation.

Software/Device Driver Considerations
Software applications use the DMA controller by first setting up a linked list of descriptors
in memory, and then writing the addresses of the head and tail of this list to
TX_CURDESC_PTR and TX_TAILDESC_PTR, respectively (or to RX_CURDESC_PTR and
RX_TAILDESC_PTR). This list of descriptors can correspond to one or more packets on the
LocalLink interface. As each descriptor is processed by the DMA controller, status bits are
updated in memory by the DMA controller, and the software application running on the
processor can read these bits to monitor the progress. When the DMA controller completes
processing of a descriptor, it sets the DMA_COMPLETED status bit in the descriptor to 1.
The software application then processes the data received for an RX transaction. Finally,

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 239
UG200 (v1.6) January 20, 2009

Software/Device Driver Considerations
R

the software application frees up the memory used by the descriptor. So a descriptor has
the following life cycle:

1. It is first created/allocated in memory.

2. Then it is pre-processed by the software application to set up data and control values,
and attached to the descriptor chain.

3. Then it is handed over to the DMA controller hardware.

4. Finally, it is post-processed and freed.

Software applications typically send and receive packets repeatedly over a period of time,
and the Dynamic Descriptor Appending mode (or Tail_pointer mode) allows the above
steps to be done much more efficiently by organizing the descriptors into a ring instead of
a simple chain, as shown in Figure 13-11.

Figure 13-11: Descriptor Organization (Ring)

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

SOP = 1

SOP = 1

SOP = 1

EOP = 1

EOP = 1EOP = 1

CURDESC_PTR
Register Value

SOP = 1 and EOP = 1
Descriptor Address =
TAILDESC_PTR

Packet 4

Packet 2

Packet 3

UG200_c13_11_111408

Packet 1

http://www.xilinx.com

240 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

The ring typically has more descriptors than needed for a single transaction on an RX or TX
channel. For the very first transaction, the software application writes both the
CURDESC_PTR and TAILDESC_PTR to the DMA controller. For subsequent transactions,
the software application simply writes the TAILDESC_PTR after setting up the next set of
descriptors. Figure 13-12 shows a snapshot of such a ring at some point in its operation.

Figure 13-12 shows a descriptor ring with some descriptors in each possible state. The
descriptors that are under the control of the DMA controller hardware are framed by
CURDESC_PTR and TAILDESC_PTR. CURDESC_PTR is set initially by the software
application, and thereafter updated by the DMA controller hardware to point to the
current descriptor that is being processed by the DMA controller hardware.

Descriptors 8 and 9 are in the pre-processing stage, indicating that the software application
has filled in the control and data values for these descriptors for the next transaction but
not handed them over to the DMA controller hardware yet. When the software application
is done with updating the descriptors for the next transaction, it simply updates the
TAILDESC_PTR to point to the last descriptor updated.

Descriptors 2, 3, and 4 are in the post-processing state, indicating that the DMA controller
hardware has finished processing them and has set their DMA_COMPLETED status bit to
1. The software application marks them as free, after doing whatever post-processing is
needed. This scheme improves the efficiency of the DMA transfer process in several ways:

• By allocating a separate descriptor ring for each DMA channel, the software
application ensures that descriptors are allocated and freed in the same order.

Figure 13-12: Descriptor Ring Snapshot

CUR_DESC_PTR

TAIL_DESC_PTR

UG200_c13_12_111408

Descriptor
6

Descriptor
5

Descriptor
3

Descriptor
2

Descriptor
4

Post-Processing
(2, 3, 4)

Free
(0, 1)

DMA HW Controlled
(5, 6, 7)Pre-processing

(8, 9)
Descriptor

7
Descriptor

8

Descriptor
9

Descriptor
0

Descriptor
1

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 241
UG200 (v1.6) January 20, 2009

Software/Device Driver Considerations
R

• Instead of making the operating system software handle the allocation and freeing of
memory for each transaction, the software application/driver uses a lightweight
allocation/free scheme that simply updates a few fields in pre-allocated descriptors.

• Instead of writing two hardware registers (CURDESC_PTR and TAILDESC_PTR) for
each transaction, the software application writes just one register (TAILDESC_PTR)
for all but the first transaction.

Specific additional considerations are:

• The CURDESC_PTR register as well as the NXTDESC_PTR field of the descriptor
must be eight-word aligned. The TAILDESC_PTR can have any byte alignment.

• To reliably allow appending descriptors, software must not modify the
STATUS/CONTROL field of any descriptor that it makes visible to the hardware.

• It is very difficult for software to manage descriptors in cacheable memory. As a result
of writing any byte in a descriptor in cacheable memory, the CPU might then write the
whole 32-byte descriptor, which could interfere with updates the hardware has done.

• The hardware can fetch the last descriptor that software makes available long before
using it. Thus the NXTDESC_PTR pointer in the descriptor to which the
TAILDESC_PTR points must point to what will be the next updated descriptor by
software because that pointer cannot be changed. The descriptor ring scheme
described earlier avoids this problem.

• For TX, it is not recommended to set a StopOnEnd bit in a descriptor without the EOP
bit being set (or without the CURDESC_PTR == TAILDESC_PTR comparison being
TRUE).

• Each DMA engine must operate in a 4 Gbyte segment of memory. It is software’s
responsibility to ensure that a DMA operation does not roll over into a new 4 Gbyte
segment. Refer to “DMA Addressing Limitation,” page 234 for details.

• If the CPU is interrupted due to a descriptor being completed (or if the CPU reads the
DMA engine status register), the CPU can process completed buffer descriptors by
following the descriptor chain from the last completed buffer descriptor (BD). Refer to
“Implementation Note” for this use mode.

• The descriptor buffer length field should never be programmed to a value of 0.

• There are two methods to stop the descriptor fetching process:

♦ If the descriptor status field, StopOnEnd, is set.

♦ If the CURDESC_PTR register equals the TAILDESC_PTR register and the current
descriptor has been completed.

♦ If either of these conditions is TRUE, the DMA channel stops the descriptor
fetching process. In this case, a subsequent write to the Tail Descriptor Pointer
register restarts the fetching process.

Implementation Note
For RX DMA, a descriptor update occurs after the payload is successfully received from
the LocalLink and written to memory. This update always consists of two separate single
quadword writes to memory. The first quadword write is essentially the descriptor
“status” byte, plus three bytes of user application data. The second quadword write is four
words of user application data. One of the fields in the status byte, the “completed” field,
indicates that a descriptor is completed by the DMA.

When software reads the updated “status” from memory, it is not sure if the second
quadword has been written to memory yet. Technically, the packet is completed when the

http://www.xilinx.com

242 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

second quadword is updated to memory, because it might contain information used by
software (for example, packet size).

In order to overcome this behavior, a word of the second descriptor quadword in memory
must now be pre-initialized to a unique pattern, for example, 32’hFFFF_FFFF. When the
second quadword is updated by the DMA, this pre-initialized word is now overwritten.
The application must ensure that the word is overwritten with a different pattern. The
driver now uses this fact to indicate if a packet has been completed or not.

Programming Interface and Registers
The register address map and register details presented in this section are identical for all
DMA engines.

DCR Address Map
Table 13-5 lists the address map for the DCRs.

Table 13-5: DCR Address Map

DCR Addresses Mnemonic Register Description Direction

0x80,0x98,0xB0,0xC8 TX_NXTDESC_PTR TX Next Descriptor Pointer RW(1)

0x81,0x99,0xB1,0xC9 TX_CURBUF_ADDR TX Current Buffer Address Register RW(1)

0x82,0x9A,0xB2,0xCA TX_CURBUF_LENGTH TX Current Buffer Length Register RW(1)

0x83,0x9B,0xB3,0xCB TX_CURDESC_PTR TX Current Descriptor Pointer RW

0x84,0x9C,0xB4,0xCC TX_TAILDESC_PTR TX Tail Descriptor Pointer RW

0x85,0x9D,0xB5,0xCD TX_CHANNEL_CTRL TX Channel Control Register RW

0x86,0x9E,0xB6,0xCE TX_IRQ_REG TX Interrupt Register RD-ACK

0x87,0x9F,0xB7,0xCF TX_STATUS_REG TX Status Register RW(1)

0x88,0xA0,0xB8,0xD0 RX_NXTDESC_PTR RX Next Descriptor Pointer RW(1)

0x89,0xA1,0xB9,0xD1 RX_CURBUF_ADDR RX Current Buffer Address Register RW(1)

0x8A,0xA2,0xBA,0xD2 RX_CURBUF_LENGTH RX Current Buffer Length Register RW(1)

0x8B,0xA3,0xBB,0xD3 RX_CURDESC_PTR RX Current Descriptor Pointer RW

0x8C,0xA4,0xBC,0xD4 RX_TAILDESC_PTR RX Tail Descriptor Pointer RW

0x8D,0xA5,0xBD,0xD5 RX_CHANNEL_CTRL RX Channel Control Register RW

0x8E,0xA6,0xBE,0xD6 RX_IRQ_REG RX Interrupt Register RD-ACK

0x8F,0xA7,0xBF,0xD7 RX_STATUS_REG RX Status Register RW(1)

0x90,0xA8,0xC0,0xD8 DMA_CONTROL_REG DMA Control Register RW

Notes:
1. These registers are loaded from the descriptors and updated dynamically by the DMA engine. As such, they should not be written

during normal operation. Writing them is made available for debug purposes only.
2. See also the DMA enable and DMA priority fields of the SPLB 0 and SPLB 1 configuration registers (CFG_PLBS0/1) Table 4-6,

page 108 in Chapter 4.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 243
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

DCR Descriptions
This section describes the fields within the DCRs in detail.

TX Next Descriptor Pointer

Figure 13-13 shows the TX Next Descriptor Pointer. Table 13-6 defines the bits in this
pointer.

TX Current Buffer Address Register

Figure 13-14 shows the TX Current Buffer Address register. Table 13-7 defines the bits in
this register.

TX Current Buffer Length Register

Figure 13-15 shows the TX Current Buffer Length register. Table 13-8 defines the bits in this
register.

0 31

Address

Figure 13-13: TX Next Descriptor Pointer

Table 13-6: Bit Description for TX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must
be eight-word aligned.

0 31

Address

Figure 13-14: TX Current Buffer Address

Table 13-7: Bit Description for TX Current Buffer Address

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes
dynamically when the DMA is operating. This address is a byte
address.

0 7 8 31

Reserved[0:7] Length

Figure 13-15: TX Current Buffer Length Register

Table 13-8: Bit Description for the TX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be transferred. This
field changes dynamically when the DMA is operating.

[0:7] Reserved

http://www.xilinx.com

244 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

TX Current Descriptor Pointer

Figure 13-16 shows the TX Current Descriptor Pointer register. Table 13-9 defines the bits
in this register.

TX Tail Descriptor Pointer

Figure 13-17 shows the TX Tail Descriptor Pointer register. Table 13-10 defines the bits in
this register.

TX Channel Control Register

Figure 13-18 shows the TX Channel Control register. Table 13-11 defines the bits in this
register. This register controls operation for the TX channel only. The default value of this
register is user configurable through the DMAn_TXCHANNELCTRL parameters on the
processor block instantiation in the user’s design.

0 31

Address

Figure 13-16: TX Current Descriptor Pointer

Table 13-9: Bit Descriptions for the TX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. Must be eight-
word aligned.

0 31

Address

Figure 13-17: TX Tail Descriptor Pointer

Table 13-10: Bit Descriptions for the TX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

These bits contain the address of the last descriptor to be fetched. When
this register is written to, it initiates a fetch from the address pointed to
by the TX Current Descriptor Pointer register. This register can be
updated dynamically, while the DMA channel is busy. The control
register field, TailPtrEn, must be set for this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] Reserved Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 13-18: TX Channel Control Register

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 245
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

TX Interrupt Register

This register contains the interrupt status bits for the TX channel as well as read-only status
for the TX coalescing and delay timer counters and timers. There are three regular
interrupt sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable
interrupts (NMI): PlbRdErr and PlbWrErr.

A regular interrupt can be acknowledged (and hence cleared if the corresponding counter
equals 0), by writing a “1” to the respective interrupt status bit in this register. The NMIs
can only be cleared by issuing a reset to the DMA (hard or soft).

Figure 13-19 shows the TX Interrupt register. Table 13-12 defines the bits in this register.

Table 13-11: Bit Descriptions for the TX Channel Control Register

Bit Name Description

[31] Coalescing Mechanism Interrupt Enable Enable (1) or disable (0) the Coalescing interrupt mechanism.

[30] Delay Timer Mechanism Interrupt Enable
Enable (1) or disable (0) the Delay Timer interrupt
mechanism.

[29] Error Detect Mechanism Interrupt Enable
Enable (1) or disable (0) the Error Detection interrupt
mechanism.

[25:28] Reserved Reserved

[24] Master Interrupt Enable

When set, this bit indicates that the DMA TX channel is
enabled to generate interrupts to the CPU. This is the master
enable for the TX channel. Individual interrupt sources can
be enabled or disabled separately.

[23] Load the Interrupt Coalescing Counter
Writing a 1 to this field forces the loading of the Interrupt
Coalescing counters from the DCR IrqCount[0:7] field. This
bit is self-clearing.

[22] Use the Interrupt-On-End Mechanism
• 1: Select the interrupt-on-end mechanism for interrupt

coalescing.
• 0: Select the eop mechanism for interrupt coalescing.

[21] Use 1-bit Interrupt Counters

When this bit is enabled, the four-bit Interrupt Coalescing
counter and two-bit Delay Timer counters are forced to be
one-bit only. For certain device driver applications, this is a
desirable use model.

[20] Reserved Reserved

[16:19] Msb Address These bits contain the statically assigned, most-significant
four bits of the DMA address. This field must be all zeros.

[8:15] Interrupt Coalescing Count Value

These bits contain the eight-bit value to be preloaded into the
TX interrupt coalescing counter. They are loaded into the
counter when a write to the TX LdIrqCnt field is performed
and subsequently reloaded whenever the Count reaches 0.

[0:7] Interrupt Delay Time-out Value

These bits hold the compare value for the TX interrupt delay
timer. The value in this field is compared to the TX Irq Delay
Timer output. When they are equal, a TX interrupt event is
generated.

http://www.xilinx.com

246 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16:17] CoalesceIrqCounter[0:3] DelayIrqCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 13-19: TX Interrupt Register

Table 13-12: Bit Descriptions for the TX Interrupt Register

Bit Name Default Description

[31]
Coalescing Counter

Interrupt
1’b0

When this bit is 1 the TX DMA channel has a pending interrupt
because of a TX Coalescing interrupt counter greater-than-0
condition. This bit is ORed with the two other TX interrupt bits
and ANDed with the TX Interrupt Enable bit to produce the TX
Irq pin. Even if the TxIrqEn bit is disabled, software can still
poll this bit. Acknowledging a TX interrupt due to a coalescing
counter condition is accomplished by writing a 1 to this bit.
This action decrements the TX Coalescing interrupt counter.

[30]
Delay Timer

Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt
because of a TX Delay Timer interrupt counter greater-than-0
condition. This bit is ORed with the two other TX interrupt bits
and ANDed with the TX Interrupt Enable bit to produce the TX
Irq pin. Even if the TxIrqEn bit is disabled, software can still
poll this bit. Acknowledging a TX interrupt due to a Delay
Timer counter condition is accomplished by writing a 1 to this
bit. This action decrements the TX Delay Timer interrupt
counter.

[29] Error Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt
because of a TX error that has occurred. This bit is ORed with
the two other TX interrupt bits and ANDed with the TX
Interrupt Enable bit to produce the TX Irq pin. Even if the
TxIrqEn bit is disabled, software can still poll this bit.
Acknowledging a TX interrupt due to an error is accomplished
by writing a 1 to this bit. This action clears this bit.

[28]
PLB Write Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error
from the PLB due to a PLB write operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error
from the PLB due to a PLB read operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 247
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

TX Status Register

Figure 13-20 shows the TX Status register. Table 13-13 defines the bits in this register. Even
though most of these fields are writable via DCR, this is purely for debug purposes. In
normal operation, this register should not be directly written.

[22:23] Delay Timer
Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the two-bit counter used to store the number of TX
Delay Timer interrupts that are outstanding.

[18:21]
Coalescing

Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the four-bit counter used to store the number of TX
coalescing counter interrupts that are outstanding.

[16:17] Reserved

[8:15]
Coalescing Counter

Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Coalescing Counter.

[0:7] Delay Timer Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Delay Timer.

Table 13-12: Bit Descriptions for the TX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop TXChannelBusy Reserved

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 13-20: TX Status Register

Table 13-13: Bit Descriptions for the TX Status Register

Bit Name Default Description

[31] Reserved

[30]
TX Channel

Busy
1’b0

When cleared to zero, this bit indicates that the channel has
completely flushed out all its queues and that the TX DMA has
no more work allocated to it.

[29]
DMA End of

Packet 1’b0

When set, this bit indicates that the current descriptor is the
final one of a packet. For TX, the CPU sets this bit in the
descriptor to indicate that this is the last descriptor of a packet
to be transmitted.

[28]
DMA Start of

Packet
1’b0

When set, this bit indicates that the current descriptor is the
start of a packet. For TX, the CPU sets this bit in the descriptor
to indicate that this is the first descriptor of a packet to be
transmitted.

http://www.xilinx.com

248 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

RX Next Descriptor Pointer

Figure 13-21 shows the RX Next Descriptor Pointer register. Table 13-14 defines the bits in
this register.

RX Current Buffer Address Register

Figure 13-22 shows the RX Current Buffer Address register. Table 13-15 defines the bits in
this register.

[27]
DMA

Completed
1’b0

When set, this bit indicates that the DMA has transferred all
data defined by the current descriptor. In the case of TX, the
DMA transfers data until the length field specified in the
descriptor is zero, and then sets this bit.

[26] DMA Stop On
End

1’b0

When this bit is set, the DMA is forced to halt operations when
the descriptor is completed. The CPU sets this bit in the status
field of the descriptor. This bit is then read into the DMA TX
Status register as each descriptor is processed. It is
recommended that this bit be set on the EOP descriptor only.

[25]
DMA Interrupt

on End
1’b0

When this bit is set, the DMA is forced to generate an interrupt
event when the descriptor is completed. The CPU sets this bit
in the status field of the descriptor. This bit is then read into the
DMA TX Status register as each descriptor is processed. A
typical use model would be to set this bit on the EOP
descriptor only. However, it might be set for intermediate
descriptors, too. Refer to the UseIntOnEnd field in the TX
Channel Control register for details on how to enable this
feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered a TX error. This bit
is a copy of the ErrorIrq bit in the TX Interrupt register.

[0:23] Reserved

Table 13-13: Bit Descriptions for the TX Status Register (Continued)

Bit Name Default Description

0 31

Address

Figure 13-21: RX Next Descriptor Pointer

Table 13-14: Bit Descriptions for the RX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must
be eight-word aligned.

0 31

Address

Figure 13-22: RX Current Buffer Address Register

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 249
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

RX Current Buffer Length Register

Figure 13-23 shows the RX Current Buffer Length register. Table 13-16 defines the bits in
this register.

RX Current Descriptor Pointer

Figure 13-24 shows the RX Current Descriptor Pointer register. Table 13-17 defines the bits
in this register.

RX Tail Descriptor Pointer

Figure 13-25 shows the RX Tail Descriptor Pointer register. Table 13-18 defines the bits in
this register.

Table 13-15: Bit Descriptions for the RX Current Buffer Address Register

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes
dynamically when the DMA is operating. This address is a
byte address.

0 7 8 31

Reserved[0:7] Length

Figure 13-23: RX Current Buffer Length Register

Table 13-16: Bit Descriptions for the RX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be
transferred. This field changes dynamically when the DMA is
operating.

[0:7] Reserved

0 31

Address

Figure 13-24: RX Current Descriptor Pointer

Table 13-17: Bit Descriptions for the RX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor.
Must be eight-word aligned.

0 31

Address

Figure 13-25: RX Tail Descriptor Pointer

http://www.xilinx.com

250 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

RX Channel Control Register

Figure 13-26 shows the RX Channel Control register. Table 13-19 defines the bits in this
register. This register controls operation for the RX channel only. The default value of this
register is user configurable through the DMAn_RXCHANNELCTRL parameters on the
processor block instantiation in the user’s design.

Table 13-18: Bit Descriptions for the RX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

Contains the address of the last descriptor to be fetched. When
this register is written to, it initiates a fetch from the address
pointed to by the RX Current Descriptor Pointer register. This
register can be updated dynamically, while the DMA channel
is busy. The control register field, TailPtrWrEn, must be set for
this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] AppMaskEn Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 13-26: RX Channel Control Register

Table 13-19: Bit Descriptions for the RX Channel Control Register

Bit Name Description

[31] Coalescing Mechanism Interrupt Enable Enable (1) or disable (0) the Coalescing interrupt mechanism.

[30] Delay Timer Mechanism Interrupt Enable
Enable (1) or disable (0) the Delay Timer interrupt
mechanism.

[29] Error Detect Mechanism Interrupt Enable
Enable (1) or disable (0) the Error Detection interrupt
mechanism.

[25:28] Reserved Reserved Bits.

[24] Master Interrupt Enable

When this bit is set, the DMA RX channel is enabled to
generate interrupts to the CPU. This is the master enable for
the RX channel. Individual interrupt sources can be enabled
or disabled separately.

[23] Load the Interrupt Coalescing Counter
Writing a 1 to this bit forces the loading of the Interrupt
Coalescing counters from the DCR IrqCount[0:7] field. This
bit is self-clearing.

[22] Use the Interrupt-On-End Mechanism
• 1: Select the interrupt-on-end mechanism for interrupt

coalescing.
• 0: Select the eop mechanism for interrupt coalescing.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 251
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

RX Interrupt Register

This register contains the interrupt status bits for the RX channel as well as the read-only
status for the RX coalescing and Delay timer counters. There are three regular interrupt
sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable interrupts
(NMI): PlbRdErr and PlbWrErr. A regular interrupt can be acknowledged (and hence
cleared if the corresponding counter equals 0) by writing a “1” to the respective interrupt
status bit in this register. The NMIs can only be cleared by issuing a reset to the DMA (hard
or soft).

Figure 13-27 shows the RX Interrupt register. Table 13-20 defines the bits in this register.

[21] Use 1-bit Interrupt Counters

When this bit is enabled, the four-bit Interrupt Coalescing
counter and two-bit Delay Timer counters are forced to be
one-bit only. For certain device driver applications, this is a
desirable use model.

[20] Application Data Mask Enable
This bit enables the Application Data Mask mode. Refer to
“Masking of Application Data Update,” page 233 for details
of operation.

[16:19] Msb Address
These bits contain the statically assigned, most-significant
four bits of the DMA address. This field must be all zeros.

[8:15] Interrupt Coalescing Count Value

These bits contain the eight-bit value to be preloaded into the
RX interrupt coalescing counter. This value is loaded into the
counter when a write to the RX LdIrqCnt field is performed
and subsequently reloaded whenever the Count reaches 0.

[0:7] Interrupt Delay Time-out Value

These bits hold the compare value for the RX interrupt delay
timer. The value in this register is compared to the RX Irq
Delay Timer output. When they are equal, an RX interrupt
event is generated.

Table 13-19: Bit Descriptions for the RX Channel Control Register (Continued)

Bit Name Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16] WrQEmpty CoalesceCounter[0:3] DelayCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 13-27: RX Interrupt Register

http://www.xilinx.com

252 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

Table 13-20: Bit Descriptions for the RX Interrupt Register

Bit Name Default Description

[31]
Coalescing

Counter Interrupt
1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX Coalescing interrupt counter greater-than-0
condition. This bit is ORed with the two other RX interrupt bits
and ANDed with the RX Interrupt Enable bit to produce the RX
Irq pin. Even if the RxIrqEn or IrqCoalesceEn bit is disabled,
software can still poll this bit. Acknowledging an RX interrupt
due to a coalescing counter condition is accomplished by
writing a 1 to this bit. This action decrements the RX Coalescing
interrupt counter.

[30] Delay Timer
Interrupt

1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX Delay Timer interrupt counter greater-than-0
condition. This bit is ORed with the two other RX interrupt bits
and ANDed with the RX Interrupt Enable bit to produce the RX
Irq pin. Even if the RxIrqEn or IrqDelayEn bit is disabled,
software can still poll this bit. Acknowledging an RX interrupt
due to a Delay Timer counter condition is accomplished by
writing a 1 to this bit. This action decrements the RX Delay
Timer interrupt counter.

[29] Error Interrupt 1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX error that has occurred. This bit is ORed with
the two other RX interrupt bits and ANDed with the RX
Interrupt Enable bit to produce the RX Irq pin. Even if the
RxIrqEn or IrqErrorEn bit is disabled, software can still poll this
bit. Acknowledging an RX interrupt due to an Error is
accomplished by writing a 1 to this bit. This action clears this
bit.

[28]
PLB Write Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error
from the PLB due to a PLB write operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error
from the PLB due to a PLB read operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23]
Delay Timer

Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the two-bit counter used to store the number of RX
Delay Timer interrupts that are outstanding.

[18:21] Coalescing
Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the four-bit counter used to store the number of RX
coalescing counter interrupts that are outstanding.

[17]
Write Command

Queue Empty
Status

This read-only field is useful for debug purposes. It indicates
whether the Write Command Queue is empty (1) or not (0). If
the DMA is paused, reading this field indicates that all the write
data associated with the pending commands has been flushed.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 253
UG200 (v1.6) January 20, 2009

Programming Interface and Registers
R

RX Status Register

Figure 13-28 shows the RX Status register. Table 13-21 defines the bits in this register. Even
though most of these fields are writable via DCR, this register is purely for debug
purposes. In normal operation, this register should not be directly written.

[16:] Reserved

[8:15]
Coalescing

Counter Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Coalescing Counter.

[0:7]
Delay Timer

Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Delay Timer.

Table 13-20: Bit Descriptions for the RX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop ChainBusy RXChanBusy

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 13-28: RX Status Register

Table 13-21: Bit Descriptions for the RX Status Register

Bit Name Default Description

[31] RX Channel Busy 1’b0
When this bit is cleared to zero, the channel has completely
flushed out all its queues AND the RX DMA has no more work
allocated to it.

[30]
DMA Descriptor

Chain Busy 1’b0

When this bit is set, the Descriptor Chain is still active/busy. This
means the DMA still has pending descriptors to process. When
this bit is cleared, it DOES NOT guarantee that all the queues
have been flushed out to memory; there might still be some
pending descriptor writes.

[29] DMA End of Packet 1’b0

When this bit is set, the current descriptor is the final one of a
packet. For RX, when an EOP is received by the LocalLink
interface, the DMA sets this bit in the descriptor to inform the
CPU that the current descriptor is the last of a received packet.

[28]
DMA Start of

Packet
1’b0

When this bit is set, the current descriptor is the start of a packet.
For RX, when an SOP is received by the LocalLink interface, the
DMA sets this bit in the descriptor to inform the CPU that the
current descriptor is the first of a received packet.

http://www.xilinx.com

254 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

DMA Control Register

Figure 13-29 shows the DMA Control register. Table 13-22 defines the bits in this register.
This register contains control fields that affect both the RX and TX channels. The default
value of bit 31 is 0. The default value of bits 26:29 is determined by bits 2:5 of the
DMAn_CONTROL attribute on the processor block instantiation in the user’s design.

[27] DMA Completed 1’b0

When this bit is set, the DMA has transferred all data defined by
the current descriptor. For RX, the DMA transfers data until the
length field specified in the descriptor is zero OR when it receives
an EOP indication from the LocalLink interface. At that point, the
DMA sets this bit.

[26] DMA Stop On End 1’b0

When this bit is set, the DMA is forced to halt operations when
the descriptor is completed. The CPU sets this bit in the status
field of the descriptor. This bit is then read into the DMA RX
Status register as each descriptor is processed. It is recommended
that this bit be set, corresponding to an EOP descriptor only.

[25]
DMA Interrupt on

End 1’b0

When this bit is set, the DMA is forced to generate an interrupt
event when the descriptor is completed. The CPU sets this bit in
the status field of the descriptor. This bit is then read into the
DMA RX Status register as each descriptor is processed. A typical
use model is to set this bit on the EOP descriptor only. However,
it can be set for intermediate descriptors, too. Refer to the
UseIntOnEnd field in the RX Channel Control register for details
of how to enable this feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered an RX error. This bit is
a copy of the ErrorIrq bit in the RX Interrupt register.

[0:23] Reserved

Table 13-21: Bit Descriptions for the RX Status Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Reserved[24:25] PlbErrDisable OverFlowErrDisable[0:1] TailPtrEn Reserved SwReset

0 23

Reserved[0:23]

Figure 13-29: DMA Control Register

Table 13-22: Bit Descriptions for the DMA Control Register

Bit Name Description

[31] Software Reset

Writing a 1 to this bit forces the DMA engine (both RX and TX channels) to shut
down and reset itself. Because the DMALLRSTENGINEACK output is asserted
when this bit is a 1, it can be used to reset a remote LocalLink device while the
DMA engine is resetting itself. After setting this bit, software must poll it until
the bit is cleared by the DMA, which indicates that the reset process is done and
the pipeline has been flushed.

[30] Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 255
UG200 (v1.6) January 20, 2009

Physical Interface
R

Physical Interface
Each DMA engine has the following interfaces:

• LocalLink interface

• Miscellaneous

[29] Tail Pointer Enable

When this bit is set, the Tail Pointer mechanism is enabled. In this mode, writing
to the tail pointer initiates a DMA transaction and the comparison (tail pointer
== current pointer) ends descriptor execution. When cleared, the legacy mode of
writing to the current pointer to initiate a transfer is supported. Refer to “DMA
Legacy Mode,” page 229 for details.

[27:28] Overflow Counter
Error Interrupt Disable

When this bit is set, the error interrupt is disabled when either the two-bit Delay
Timer counter or the four-bit Coalescing counter overflows. Bit [27] is used for
the RX channel, and Bit [28] is used for the TX channel.

[26] PLB Error Disable

When this bit is set, error checking is disabled due to reads/writes to and from
the crossbar PLB. If one of these errors occurs, the DMA reacts as follows:

• PLB Error Disable = 1’b1:

The DMA ignores the error and continues as usual.

• PLB Error Disable = 1’b0:
♦ Read Data Error. The DMA logs a plb_rd_error NMI bit in the appropriate

interrupt register (RX or TX). The LocalLink interface is frozen
immediately.

♦ Write Data Error. The DMA logs a plb_wr_error NMI bit in both RX and
TX interrupt registers. The LocalLink interfaces is frozen immediately.

[0:25] Reserved

Table 13-22: Bit Descriptions for the DMA Control Register (Continued)

Bit Name Description

Table 13-23: DMA Controller Signals

Signal Name Dir Description

LocalLink Interface

DMALLTXD[0:31] Out
This 32-bit bus contains the TX data. It is valid when DMALLTXSRCRDYN
and LLDMATXDSTRDYN are asserted.

DMALLTXREM[0:3] Out
The TX remainder bus is used as the data mask for the last word of the
header, the payload, or the footer.

DMALLTXSOFN Out This active-Low signal is asserted to indicate the TX start of frame.

DMALLTXEOFN Out This active-Low signal is asserted to indicate the TX end of frame.

DMALLTXSOPN Out This active-Low signal is asserted to indicate the TX start of payload.

DMALLTXEOPN Out This active-Low signal is asserted to indicate the TX end of payload.

DMALLTXSRCRDYN Out
This active-Low signal is asserted to indicate the TX source is ready and the
DMA has valid data on outputs.

DMALLRXDSTRDYN Out
This active-Low signal is asserted to indicate the RX destination is ready
and the DMA is ready to receive data.

http://www.xilinx.com

256 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 13: DMA Controller
R

DMALLRSTENGINEACK Out

This active-High signal is asserted to acknowledge a DMA engine reset. It
is asserted as soon as the SwReset bit is written or the
DMALLRSTENGINEREQ signal is asserted. This signal is deasserted when
the DMA has completed its internal reset sequence. This pin can be used to
reset external devices.

LLDMARSTENGINEREQ In
This active-High signal is asserted to request a DMA engine reset. This
signal should be asserted for one cycle only when a reset is required. The
reset is completed when the DMALLRSTENGINEACK signal is Low.

LLDMATXDSTRDYN In
This active-Low signal is asserted to indicate the TX connecting device is
ready to receive data.

LLDMARXD[0:31] In
This 32-bit bus contains RX data. It is valid when DMALLRXSRCRDY and
LLDMARXDSTRDY are asserted.

LLDMARXREM[0:3] In
The RX remainder bus is used as the data mask for the last word of the
header, the payload, or the footer.

LLDMARXSOFN In This active-Low signal is asserted to indicate the RX start of frame.

LLDMARXEOFN In This active-Low signal is asserted to indicate the RX end of frame.

LLDMARXSOPN In This active-Low signal is asserted to indicate the RX start of payload.

LLDMARXEOPN In This active-Low signal is asserted to indicate the RX end of payload.

LLDMARXSRCRDYN In
This active-Low signal is asserted to indicate the RX connecting device has
valid data on the RX LocalLink outputs.

CPMDMALLCLK In This input provides the clock for the LocalLink interface and DMA.

Miscellaneous Signals

DMATXIRQ Out This output is the DMA engine TX interrupt to the processor.

DMARXIRQ Out This output is the DMA engine RX interrupt to the processor.

Table 13-23: DMA Controller Signals (Continued)

Signal Name Dir Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 257
UG200 (v1.6) January 20, 2009

R

Section IV: Programming Considerations

Chapter 14, “DCR Programming Considerations”

Chapter 15, “APU Programming”

Chapter 16, “Additional Programming Considerations”

http://www.xilinx.com

258 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Programming Considerations
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 259
UG200 (v1.6) January 20, 2009

R

Chapter 14

DCR Programming Considerations

Overview of the Device Control Registers (DCRs) Map
DCR registers are CPU accessible registers for device configuration, control, and statuses.
The Processor Block DCR map is shown in Table 14-1. The map contains a block of 256
locations that is relocatable with the starting address defined by a two-bit tie-off value,
TIEDCRBASEADDR[0:1](1).

1. In this document, bold upper case names are software names.

Table 14-1: Processor Block DCR Map

Block Sub-Block Address Offset and Range

DCR Controller
DCR Controller 0x00 – 0x02

Reserved 0x03

APU Controller
Auxiliary Processor Unit (APU) Controller 0x04 – 0x05

Reserved 0x06 – 0x0F

MCI
Memory Controller Interface (MCI) 0x10 – 0x12

Reserved 0x13 – 0x1F

PLB Interfaces +
Crossbar

Crossbar 0x20 – 0x33

PLB Slave 0 (PLBS0) 0x34 – 0x43

PLB Slave 1 (PLBS1) 0x44 – 0x53

PLB Master (PLBM) 0x54 – 0x5F

Reserved 0x60 – 0x7F

DMA Engines

DMA Engine 0 (DMAC0) 0x80 – 0x90

Reserved 0x91 – 0x97

DMA Engine 1 (DMAC1) 0x98 – 0xA8

Reserved 0xA9 – 0xAF

DMA Engine 2 (DMAC2) 0xB0 – 0xC0

Reserved 0xC1 – 0xC7

DMA Engine 3 (DMAC3) 0xC8 – 0xD8

Reserved 0xD9 – 0xDF

Reserved 0xE0 – 0xFF

http://www.xilinx.com

260 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Detailed Descriptions
The register map can be divided into five sections corresponding to the five main
functional blocks (excluding the processor) within the embedded processor block in
Virtex-5 FXT FPGAs:

• DCR controller

• Auxiliary Processing Unit (APU) Controller

• Memory Controller Interface (MCI)

• PLB Interfaces and Crossbar

• DMA Engines

Detailed descriptions of the DCR registers are provided in the following sections. The
same information is also available from individual design specifications.

DCR Controller (0x00 – 0x02)
There are three registers in the DCR controller. These registers are needed for indirect
addressing, arbitration, and interface mode select.

Register 0x00: Indirect Address Register

This register contains the address used in indirect addressing. The indirect address is
formed by a 2-bit upper address bus (UABUS[20:21]) value and a 10-bit address bus
(ABUS[0:9]) value. This register, shown in Figure 14-1, is both readable and writable. All
unused bits in the register return 0s when read.

Register 0x01: Indirect Access Register

This location is used as a proxy to indirectly access the DCR slaves. When location 0x01 is
accessed, the DCR controller replaces the DCR address (0x01) with the content of register
0x00 for address decoding. The DCR master reads or writes to the 12-bit address stored in
register 0x00. This location is both readable and writable.

Register 0x02: Control, Configuration, and Status Register

Register 0x02, shown in Figure 14-2, handles control, configuration, and status. Table 14-2
describes the fields within the register.

0 19 20 21 22 31

Reserved UABUS[20:21] ABUS[0:9]

Figure 14-1: Register 0x00

0 1 2 3 4 5 6 7 8 29 30 31

c440
lock

c440
alock

xm
lock

xm
alock

auto-
lock

xm
asyn

xs
asyn

xm
towait

Reserved
c440
time
out

xm
time
out

Figure 14-2: Register 0x02

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 261
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

The DCR controller prevents more than one master from locking the bus, so writing to bit
0 or 2 might not lead to changes in those bit locations. All unused bits in this register return
0s when read.

Table 14-2: Bit Descriptions for Register 0x02

Bit Name Dir Default Description

0 c440 lock R/W 0
Processor bus lock bit. Can be written to and read by the processor DCR master.
The external master can also read this bit.

1 c440 alock RO 0 Processor auto bus lock bit.

2 xm lock R/W 0
External master bus lock bit. Can be written to and read by the external DCR
master. The processor DCR master can also read this bit.

3 xm alock RO 0 External DCR master auto bus lock bit.

4 auto-lock R/W 1

Configures the auto-lock feature. The default value for this bit is 1 to enable the
auto-lock. This bit is cleared to disable the auto-lock function. This bit is
initialized by the embedded processor block attribute
DCR_AUTOLOCK_ENABLE.

5 xm asyn RO 0

Indicates the external DCR master interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute
PPCDM_ASYNCMODE.

6 xs asyn RO 0

Indicates the external DCR slave interface asynchronous mode.

• 0: Synchronous mode
• 1: Asynchronous mode

This bit is initialized by the embedded processor block attribute
PPCDS_ASYNCMODE.

7 xm towait R/W 0

Configures the external DCR master time-out wait support. By default, this bit is
0, so that the external DCR master is assumed not to support time-out waits (the
signal is tied to 0), but this setting also works with a master that supports time-
out waits. This bit is set to 1 if the external master supports time-out waits,
allowing for better performance for the external master if the processor DCR
Master locks the bus.

8:29 Reserved - 0 Reserved.

30
c440
timeout

Read/
Clear 0

Set if a processor DCR master access time-out occurs. This bit is cleared on writes.
If the bus is locked, only the locking master can clear it, and the other master can
read it but not clear it.

31
xm
timeout

Read/
Clear

0
Set if an external DCR master access time-out occurs. This bit is cleared on writes.
If the bus is locked, only the locking master can clear it, and the other master can
read it but not clear it.

http://www.xilinx.com

262 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

APU Controller (0x04 – 0x05)

Register 0x04: User-Defined Instruction (UDI) Configuration Registers

For all UDIs that are not loads or stores, the user needs to configure the primary and
extended opcodes along with any necessary execution options. Figure 14-3 shows the UDI
Configuration register bits. Table 14-3 defines the bits in the UDI Configuration register.
The UDI configuration registers are initialized by embedded processor block attributes
APU_UDI0 through APU_UDI15.

0 1 7

Primary
Opcode

Extended Opcode [0:6]

8 11 12 13 14 15

Extended Opcode [7:10]
Privilege

Op
Ra Enable Rb Enable GPR Write

16 17 18 20 21 22 23

CR Enable CR Field [0:2] Register # [0:1]

24 25 26 27 28 29 30 31

Register # [2:3] Type Wildcard En

Figure 14-3: UDI Configuration Register

Table 14-3: Bit Descriptions for the UDI Configuration Register

Bit Name Description

0 Primary Opcode
• 0: 6’b000000 (opcode 0)
• 1: 6’b000100 (opcode 4)

1:11 Extended Opcode 11 bits of the full extended opcode

12 Privilege Op When this bit is set, this instruction must execute in
privilege mode.

13 Ra Enable When this bit is set, this instruction needs to read the Ra
source operand from the GPR.

14 Rb Enable
When this bit is set, this instruction needs to read the Rb
source operand from the GPR.

15 GPR Write
When this bit is set, this instruction writes a result to the
Rt register in the GPR.

16 CR Enable
When this bit is set, this instruction returns Condition
Record (CR) bits to the CR field indicated in
CRField[0:2].

17 Reserved Reserved

18:20 CRField[0:2]
Indicates which field receives the condition record (if
the CR Enable bit in the instruction is set to 1).

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 263
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x05: APU Control Register

The APU Control register turns on or off various features in the APU controller. Figure 14-4
shows the bits in the APU Control register. Table 14-4 defines the bits within the register.
The APU control register is initialized by embedded processor block attribute
APU_CONTROL.

21 Reserved Reserved

22:25 Register #

Indicates the register number (0 – 15). This value is only
used when setting the DCR read/write pointer
(Type = 2’b11), but can be viewed when reading the
UDI contents through a DCR read.

26:27 Type

 Indicates the operation type of the instruction:

• 00: Non-autonomous, early confirm
• 01: Non-autonomous, late confirm
• 10: Autonomous
• 11: Sets read/write pointer to value in Register #

field

28:29 Reserved Reserved

30 Wildcard

When this bit is set, bits [1:5] are not considered as the
extended opcode but can be anything. Instead only bits
[6:11] are checked. When this bit is cleared, the entire
11 bits of the extended opcode are checked.

31 En
This bit enables the UDI. It indicates that the opcode
and options written in the UDI are valid and should be
used during decode.

Table 14-3: Bit Descriptions for the UDI Configuration Register (Continued)

Bit Name Description

0 1 4 5 6 7

Reset
UDI/Control

Registers

LD/ST
Decode
Disable

UDI Decode
Disable

Force UDI
Non-Auton.

Late Confirm

8 9 10 11 12 13 14 15

FPU Decode
Disable

FPU Complex
Arith. Disable

FPU Convert
Disable

FPU
Estimate/

Select Disable

FPU Single
Precision
Disable

FPU Double
Precision
Disable

FPU FPSCR
Disable

Force FPU
Non-Auton.

Late Confirm

16 17 18 19 20 21 22 23

Store
WriteBack OK

Ld/St Priv.
Op

Force Align LE Trap BE Trap

24 30 31

FCM
Enable

Figure 14-4: APU Control Register

http://www.xilinx.com

264 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Table 14-4: Bit Descriptions for the APU Control Register

Bit Name Default Description

0
Reset UDI/Control
Registers

-
When a 1 is written to this bit, all the UDI registers are reset to their default
values. The rest of the bits in the control register are also reset to their
default values. When read, this bit always returns a 0.

1:4 Reserved - Reserved

5 LD/ST Decode Disable 0
When set, this bit disables all FCM Load/Store decoding in the APU
controller. This does not affect FPU Load/Store instructions. An FCM
Load/Store in the program causes an illegal instruction exception.

6 UDI Decode Disable 0
When set, this bit disables all UDI decoding in the APU controller. This does
not affect FCM Load/Store or FPU instructions. A UDI instruction in the
program causes an illegal instruction exception.

7
Force UDI Non-
Autonomous, Late
Confirm

0
When set, this bit forces any non-storage UDI instruction to be executed as
a non-autonomous instruction with late confirm regardless of the type
indicated in the UDI register.

8 FPU Decode Disable 1
When set, this bit disables all FPU decoding in the APU controller. An FPU
instruction in the program causes an illegal instruction exception.

9
FPU Complex
Arithmetic Disable

0

When set, this bit disables decoding for all FPU divide and square root
instructions (fdiv, fdiv., fdivs, fdivs., fsqrt, fsqrt., fsqrts, fsqrts.). An FPU
complex arithmetic instruction in the program when FPU Decode is not
disabled causes an unimplemented instruction exception.

10 FPU Convert Disable 0

When set, this bit disables decoding for all FPU convert instructions (fcfid,
fctid, fctidz, fctiw, fctiw., fctiwz, fctiwz., frsp, frsp.). An FPU convert
instruction in the program when FPU Decode is not disabled causes an
unimplemented instruction exception.

11 FPU Estimate/select
Disable

0

When set, this bit disables decoding for all FPU estimate instructions (fres,
fres., frsqrte, frsqrte., fsel, fsel.). An FPU estimate instruction in the program
when FPU Decode is not disabled causes an unimplemented instruction
exception.

12 FPU Single Precision
Disable

0

When set, this bit disables decoding for all FPU single-precision only
instructions (lfs, lfsu, lfsx, lfsux, stfs, stfsu, stfsx, stfsux, fadds, fadds., fsubs,
fsubs., fdivs, fdivs., fmuls, fmuls., fsqrts, fsqrts., fmadds, fmadds., fnmadds,
fnmadds., fmsubs, fmsubs., fnmsubs, fnmsubs.). A single-precision FPU
instruction in the program when FPU Decode is not disabled causes an
unimplemented instruction exception.

13
FPU Double Precision
Disable

0

When set, this bit disables decoding for all FPU double-precision only
instructions (lfd, lfdu, lfdx, lfdux, stfd, stfdu, stfdx, stfdux, stfiwx, fadd,
fadd., fsub, fsub., fdiv, fdiv., fmul, fmul., fsqrt, fsqrt., fmadd, fmadd.,
fnmadd, fnmadd., fmsub, fmsub., fnmsub, fnmsub.). If a double-precision
FPU instruction is encountered in the program and FPU Decode is not
disabled, an unimplemented instruction exception occurs.

14 FPU FPSCR Disable 0

When set, this bit disables decoding for all FPSCR FPU instructions (mcrfs,
mffs, mffs., mtfsb0, mtfsb0., mtfsb1, mtfsb1., mtfsf, mtfsf., mtfsfi, mtfsfi.).
An FPSCR instruction in the program when FPU Decode is not disabled
causes an unimplemented instruction exception.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 265
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Memory Controller Interface (0x10 – 0x12)

Register 0x10 – MI_CONTROL [0:31]

This register is initialized by embedded processor block attribute MI_CONTROL.

15
Force FPU Non-
Autonomous, Late
Confirm

0 When set, this bit forces all non-storage FPU instructions to be executed as
non-autonomous instructions with late confirm.

16 Store WritebackOK 0

When this bit is set, the APU controller waits to send a WritebackOK signal
to the FCM for all store instructions (both APU and FPU stores). The
WritebackOK signal is sent after the store instruction passes the LWB stage
in the CPU pipe, which can cause a slight performance hit when executing
store instructions.

17 LD/ST Privilege 0
When this bit is set, any load or store UDI executes in privileged mode (this
does not affect FPU load/store instructions).

18:19 Reserved - Reserved

20 Force Align 0

When this bit is set, any load or store (both APU and FPU) forces alignment.
The address is forced to align on the natural boundary of the transfer (word
boundary for a word transfer, doubleword boundary for a doubleword
transfer, and so forth). This also prevents an alignment exception.

21 LE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the
Endian storage attribute is 1’b1 (little Endian).

22 BE Trap 0
When this bit is set, any load or store (both APU and FPU) traps when the
Endian storage attribute is 1’b0 (big Endian).

23:30 Reserved - Reserved

31 FCM Enable 0
When this bit is set, the FCM interface is enabled and the APU controller
decodes instructions. When this bit is cleared, bits 5, 6, and 8 are
overridden. The APU controller does not decode any instructions.

Table 14-4: Bit Descriptions for the APU Control Register (Continued)

Bit Name Default Description

Table 14-5: Bit Descriptions for the MI_CONTROL Register

Bit Name Default Description

[0] enable 0

• 1: The MCI is enabled, and PLB and DMA masters can access
the soft memory controller through the crossbar.

• 0: The MCI is disabled, and any attempt to access the MCI
through the crossbar will fail.

[1] Rowconflictholdenable 0

If there is a change between the row from the current address and
the past address, setting this bit causes the MCI block to wait
Autoholdduration number of cycles before starting up the next
instruction, assuming the MCMIADDRREADYTOACCEPT
signal is asserted.

http://www.xilinx.com

266 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

[2] Bankconflictholdenable 0

If there is a change between the bank from the current address
and the past address, setting this bit causes the MCI block to wait
Autoholdduration number of cycles before starting up the next
instruction, assuming the MCMIADDRREADYTOACCEPT
signal is asserted.

[3] Directionconflictholdenable 0

If there is a change of direction between the current address and
the past address (from reads to writes and writes to reads),
setting this bit causes the MCI block to wait Autoholdduration
number of cycles before starting up the next instruction,
assuming the MCMIADDRREADYTOACCEPT signal is
asserted.

[4:5] Autoholdduration 00

This field tells the MCI block how long to hold off, while waiting
for the memory controller’s MCMIADDRREADYTOACCEPT
signal to become asserted, assuming there was a triggering event
causing an autohold.

• 00: 2 cycles
• 01: 3 cycles
• 10: 4 cycles
• 11: 5 cycles

[6] 2:3 Clock Ratio mode 0

Clock ratio mode:

• 0: Integer ratio of the MCI clock to the embedded processor
block interconnect clock (CPMINTERCONNECTCLK)

• 1: Fractional ratio of the MCI clock to the embedded processor
block interconnect clock (CPMINTERCONNECTCLK) (3/2)

[7] overlaprdwr 0

In DDR mode, after every read or write, the equivalent amount
of time of the burst is inserted before requesting the next
transaction. In QDR mode, the reads and writes are separate
transactions. In this mode, a read transaction does not block the
next write transaction from going out.

[8:9] Burstwidth 00

Data per clock cycle:

• 00: Burst width = 128
• 01: Burst width = 64
• 10: Reserved
• 11: Burst width = 32

[10:11] Burstlength 00

Burst length:

• 00: Burst length = 1
• 01: Burst length = 2
• 10: Burst length = 4
• 11: Burst length = 8

[12:15] Write Data Delay (WDD) 0000
Values 0 through 10 are defined. Values 11 through 15 are
reserved.

16 RMW 0
Allows the MCI block to always autohold if all the byte enables
for a write are not turned on for that transaction.

[17:23] Reserved 0000000 These bits are reserved

Table 14-5: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 267
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x11: MI_ROWCONFLICT_MASK [0:31]

This register contains the mask used to detect row conflicts from one transaction to
another. This register is at DCR address 0x11. The 32 bits in this register correspond to the
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position
identifies that bit as a row address bit. For example, if bits 8:20 are set to 1, the
MIMCROWCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS
change between the previous instruction sent to the soft memory controller and this
instruction. The default value of this register is 0.

Register 0x12: MI_BANKCONFLICT_MASK [0:31]

This register contains the mask used to detect bank conflicts from one transaction to
another. This register is at DCR address 0x12. The 32 bits in this register correspond to the
higher order 32 bits of the 36-bit address generated by the MCI. A 1 in any bit position
identifies that bit as a bank address bit. For example, if bits 4:7 are set to 1, the
MIMCBANKCONFLICT signal is set to 1 if the corresponding bits of MIMCADDRESS
change between the previous instruction sent to the soft memory controller and this
instruction. The default value of this register is 0.

DCRs for the PLB Interfaces and Crossbar (0x20 – 0x5F)
A block of 64 DCR locations (0x20 to 0x5F) is allocated for use by the crossbar, two PLB
slaves (PLBS0 and PLBS1), the PLB Master (MPLB), and the Address Map configuration
registers. Four separate DCR lists are shown in Table 14-6 through Table 14-9.

All the interrupt status bits of the PLB interfaces and the crossbar are consolidated in the
Interrupt Status register at 0x20.

There are 54 registers defined in Table 14-6 to Table 14-9. Twenty registers (including 13 for
address mapping) use tie-off values (embedded processor block attributes) rather than

24 PLB Priority Enable 1

• 0: First level arbitration is disabled for the PLB Masters trying
to access the MCI through the crossbar.

• 1: First level arbitration is enabled among the PLB Masters
trying to access the MCI through the crossbar

See “Arbitration” in Chapter 3 for more information.

[25:27] Reserved 000 These bits are reserved

[28] Pipelined Read Enable 1

• 0: The crossbar does not accept a new read command until the
current read command completes.

• 1: The crossbar accepts read commands destined for the MCI
while the current read operation is still in progress.

[29] Pipelined Write Enable 1

• 0: The crossbar does not accept a new write command until
the current write command completes.

• 1: The crossbar accepts write commands destined for the MCI
while the current write operation is still in progress.

[30] Reserved 1 Reserved

[31] Reserved 1 Reserved

Table 14-5: Bit Descriptions for the MI_CONTROL Register (Continued)

Bit Name Default Description

http://www.xilinx.com

268 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

hardware-defined default values after reset. The tie-offs allow user control over the
register default values.

Table 14-6: List of DCRs for the Crossbar

Address Mnemonic Description Type

Global Configuration and Status

0x20 IST Interrupt Status Register
Clear on Write to bit
and Read Only

0x21 IMASK Interrupt Mask Register R/W

0x22 - Reserved -

Crossbar for PLB Master Configuration

0x23 ARB_XBC Arbitration Configuration Register R/W

Crossbar for PLB Master Status

0x24 FIFOST_XBC FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for PLB Master Hardware Debug

0x25 - Reserved -

0x26 MISC_XBC Miscellaneous Control and Status R/W, Write Only

0x27 - Reserved -

Crossbar for MCI Configuration

0x28 ARB_XBM Arbitration Configuration Register R/W

Crossbar for MCI Status

0x29 FIFOST_XBM FIFO Overflow and Underflow Status Clear on Write to bit

Crossbar for MCI Hardware Debug

0x2A SM_ST_XBM State Machine States Register Read Only

0x2B MISC_XBM Miscellaneous Control and Status R/W, Write Only

0x2C - Reserved -

Address Map Configuration

0x2D TMPL0_XBAR_MAP Template Register 0 for Crossbar R/W

0x2E TMPL1_XBAR_MAP Template Register 1 for Crossbar R/W

0x2F TMPL2_XBAR_MAP Template Register 2 for Crossbar R/W

0x30 TMPL3_XBAR_MAP Template Register 3 for Crossbar R/W

0x31 TMPL_SEL_REG Template Selection Register R/W

0x32 - Reserved -

0x33 - Reserved -

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 269
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Table 14-7: List of DCRs for PLB Slave 0 (SPLB 0)

Address Mnemonic Description Type

Configuration

0x34 CFG_PLBS0 Configuration Register R/W

0x35 - Reserved -

 Status

0x36 SEAR_U_PLBS0 Slave Error Address Register, upper 4 bits Clear on Write to 0x38

0x37 SEAR_L_PLBS0 Slave Error Address Register, lower 32 bits Clear on Write to 0x38

0x38 SESR_PLBS0 Slave Error Status Register Clear on Write

0x39 MISC_ST_PLBS0 Miscellaneous Status Register Clear on Write to bit

0x3A PLBERR_ST_PLBS0 PLB Error Status Clear on Write to bit

 Hardware Debug

0x3B SM_ST_PLBS0 State Machine States Register Read Only

0x3C MISC_PLBS0 Miscellaneous Control and Status R/W, WO, RO

0x3D CMD_SNIFF_PLBS0 Command Sniffer R/W

0x3E CMD_SNIFFA_PLBS0 Command Sniffer Address R/W

0x3F - Reserved -

 Address Map

0x40 TMPL0_PLBS0_MAP Template Register 0 R/W

0x41 TMPL1_PLBS0_MAP Template Register 1 R/W

0x42 TMPL2_PLBS0_MAP Template Register 2 R/W

0x43 TMPL3_PLBS0_MAP Template Register 3 R/W

Table 14-8: List of DCRs for the PLB Slave 1 (SPLB 1)

Address Mnemonic Description Type

Configuration

0x44 CFG_PLBS1 Configuration Register R/W

0x45 - Reserved -

 Status

0x46 SEAR_U_PLBS1 Slave Error Address Register, upper 4 bits Clear on Write to 0x48

0x47 SEAR_L_PLBS1 Slave Error Address Register, lower 32 bits Clear on Write to 0x48

0x48 SESR_PLBS1 Slave Error Status Register Clear on Write

0x49 MISC_ST_PLBS1 Miscellaneous Status Register Clear on Write to bit

0x4A PLBERR_ST_PLBS1 PLB Error Status Clear on Write to bit

http://www.xilinx.com

270 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

 Hardware Debug

0x4B SM_ST_PLBS1 State Machine States Register Read Only

0x4C MISC_PLBS1 Miscellaneous Control and Status R/W, WO, RO

0x4D CMD_SNIFF_PLBS1 Command Sniffer R/W

0x4E CMD_SNIFFA_PLBS1 Command Sniffer Address R/W

0x4F - Reserved -

Address Map

0x50 TMPL0_PLBS1_MAP Template Register 0 R/W

0x51 TMPL1_PLBS1_MAP Template Register 1 R/W

0x52 TMPL2_PLBS1_MAP Template Register 2 R/W

0x53 TMPL3_PLBS1_MAP Template Register 3 R/W

Table 14-8: List of DCRs for the PLB Slave 1 (SPLB 1) (Continued)

Address Mnemonic Description Type

Table 14-9: List of DCRs for the PLB Master (MPLB)

Address Mnemonic Description Type

Configuration

0x54 CFG_PLBM Configuration Register R/W

0x55 - Reserved -

Status

0x56 FSEAR_U_PLBM
FPGA Logic Slave Error Address Register, upper 4
bits

Clear on Write to 0x58

0x57 FSEAR_L_PLBM
FPGA Logic Slave Error Address Register, lower 32
bits

Clear on Write to 0x58

0x58 FSESR_PLBM FPGA Logic Slave Error Status Register Clear on Write

0x59 MISC_ST_PLBM Miscellaneous Status Clear on Write to bit

0x5A PLBERR_ST_PLBM PLB Error Status Clear on Write to bit

Hardware Debug

0x5B SM_ST_PLBM State Machine States Register Read Only

0x5C MISC_PLBM Miscellaneous Control and Status R/W, Write Only

0x5D CMD_SNIFF_PLBM Command Sniffer R/W

0x5E CMD_SNIFFA_PLBM Command Sniffer Address R/W

0x5F - Reserved -

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 271
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Registers 0x20 to 0x33: DCRs for the Crossbar

0x20: Interrupt Status Register (IST), Clear on Writes, Read Only

This register contains all the interrupt status bits of the two PLB slave interfaces, PLB
Master interface, and the crossbar (see Table 14-10). All register bits are cleared on writes,
except those that are marked as read only (RO). Writing a 1 to a clear-on-write bit clears it.
The read-only bits are cleared by writing to their corresponding source DCRs. For
example, bit 7 is cleared by writing 0s to the PLBS0 FIFO Error Status register.

Note: Even if a particular interrupt is masked, these status bits are still set if the error condition is
detected.

Table 14-10: Bit Definitions for the IST Register

Bits Field Type Default Description

0:2 Reserved - 000 Reserved

3 INT_CFG_ERR_S0 RO 0
Configuration or command error, PLBS0. See register 0x39 for
further information.

4 INT_MIRQ_S0 RO 0 PLB MIRQ error, PLBS0

5 INT_MRDERR_S0 Clr on Wr 0
Read transaction error, PLBS0. See registers 0x36 through 0x38
for further information.

6 INT_MWRERR_S0 Clr on Wr 0
Write transaction error, PLBS0. See registers 0x36 through 0x38
for further information.

7 INT_FIFO_ERR_S0 RO 0
FIFO error interrupt, PLBS0. See register 0x39 for further
information.

8:10 Reserved - 000 Reserved

11 INT_CFG_ERR_S1 RO 0
Configuration or command error, PLBS1. See register 0x49 for
further information.

12 INT_MIRQ_S1 RO 0 PLB MIRQ error, PLBS1

13 INT_MRDERR_S1 Clr on Wr 0
Read transaction error, PLBS1. See registers 0x46 through 0x48
for further information.

14 INT_MWRERR_S1 Clr on Wr 0
Write transaction error, PLBS1. See registers 0x46 through 0x48
for further information.

15 INT_FIFO_ERR_S1 RO 0
FIFO error interrupt, PLBS1. See register 0x49 for further
information.

16 Reserved - 0 Reserved

17 INT_CFG_ERR_M RO 0
Configuration error, PLBM. See register 0x59 for further
information.

18 INT_MIRQ_M RO 0 PLB MIRQ error, PLBM

19 INT_MRDERR_M Clr on Wr 0
Read transaction error, PLBM. See registers 0x56 through 0x58
for further information.

20 INT_MWRERR_M Clr on Wr 0
Write transaction error, PLBM. See registers 0x56 through 0x58
for further information.

21 INT_ARB_TOUT_M Clr on Wr 0 PLB Time-out error, PLBM

22 Reserved - 0 Reserved

http://www.xilinx.com

272 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x21: Interrupt Mask Register (IMASK), R/W

This register contains the interrupt mask information (see Table 14-11). Clearing a bit to 0
masks the interrupt generation from the corresponding interrupting source in register
0x20. This register is initialized by embedded processor block attribute
INTERCONNECT_IMASK.

23 Reserved - 0 Reserved

24 INT_FIFO_ERR_M RO 0
FIFO error interrupt, PLBM. See register 0x59 for further
information.

25 INT_FIFO_ERR_XM RO 0
FIFO error, Crossbar for PLBM. See register 0x58 for further
information.

26 INT_FIFO_ERR_MCI RO 0
FIFO error, Crossbar for MCI. See register 0x5D for further
information.

27:31 Reserved - 0 Reserved

Table 14-10: Bit Definitions for the IST Register (Continued)

Bits Field Type Default Description

Table 14-11: Bit Definitions for the IMASK Register

Bits Field Default Description

0:2 Reserved 111 Reserved

3 M_INT_CFG_ERR_S0 1 Interrupt mask for configuration or command error, PLBS0

4 M_INT_MIRQ_S0 1 Interrupt mask for general error, PLBS0

5 M_INT_MRDERR_S0 1 Interrupt mask for read transaction error, PLBS0

6 M_INT_MWRERR_S0 1 Interrupt mask for write transaction error, PLBS0

7 M_INT_FIFO_ERR_S0 1 Interrupt mask for FIFO error, PLBS0

8:10 Reserved 111 Reserved

11 M_INT_CFG_ERR_S1 1 Interrupt mask for configuration or command error, PLBS1

12 M_INT_MIRQ_S1 1 Interrupt mask for general error, PLBS1

13 M_INT_MRDERR_S1 1 Interrupt mask for read transaction error, PLBS1

14 M_INT_MWRERR_S1 1 Interrupt mask for write transaction error, PLBS1

15 M_INT_FIFO_ERR_S1 1 Interrupt mask for FIFO error interrupt, PLBS1

16 Reserved 1 Reserved

17 M_INT_MPLB_ERR_M 1 Interrupt mask for configuration error, PLBM

18 M_INT_MIRQ_M 1 Interrupt mask for general error, PLBM

19 M_INT_MRDERR_M 1 Interrupt mask for read transaction error, PLBM

20 M_INT_MWRERR_M 1 Interrupt mask for write transaction error, PLBM

21 M_INT_ARB_TOUT_M 1 Interrupt mask for PLB time-out error, PLBM

22 Reserved 1 Reserved

23 Reserved 1 Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 273
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x23: Crossbar for PLB Master Arbitration Configuration Register (ARB_XBC),
R/W

This register configures crossbar arbitration priority and mode operations (see
Table 14-12). This register is initialized by embedded processor block attribute
PPCM_ARBCONFIG. Arbitration priority values apply to fixed and round-robin
arbitration only, with 4 corresponding to the highest priority and 0 to the lowest priority.
Values between 5 and 7 are reserved and should not be used due to unpredictable
behavior. The five device priority values must be mutually exclusive so that no two or
more devices can have the same priority, otherwise there are unpredictable results.

24 M_INT_FIFO_ERR_M 1 Interrupt mask for FIFO error interrupt, PLBM

25 M_INT_FIFO_ERR_XM 1 Interrupt mask for FIFO error, Crossbar for PLBM

26 M_INT_FIFO_ERR_MCI 1 Interrupt mask for FIFO error, Crossbar for MCI

27:31 Reserved 5`b1 Reserved

Table 14-11: Bit Definitions for the IMASK Register (Continued)

Bits Field Default Description

Table 14-12: Bit Definitions for the ARB_XBC Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28 Reserved 0 Reserved

29 SYNCTATTR 0 Sync TAttribute (bit 7) enable, if set

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU)
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead

to unpredictable behavior)

http://www.xilinx.com

274 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x24: Crossbar for PLB Master FIFO Overflow and Underflow Status Register
(FIFOST_XBC), Clear on Writes

This register indicates the FIFO overflow and underflow status for the PLB Master (see
Table 14-13). Individual register bits are cleared by writing 1s to them. Bit 31 of the
interrupt register is set if any of the FIFO overflow or underflow bit is set. None of these
bits should ever be set under normal operating conditions.

0x26: Crossbar for PLB Master Miscellaneous Control and Status Register
(MISC_PLBM), R/W or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see
Table 14-14). Read values for write-only bits are always 0s.

0x28: Crossbar for MCI Arbitration Configuration Register (ARB_XBM), R/W

This register configures crossbar arbitration priority and mode operations (see
Table 14-15). This register is initialized by embedded processor block attribute
MI_ARBCONFIG. Arbitration priority values apply to fixed and round-robin arbitration
only with 4 corresponding to the highest priority and 0 to the lowest priority. Values
between 5 and 7 are reserved and should not be used due to unpredictable behavior. The
five device priority values must be mutually exclusive so that no two or more devices can
have the same priority, otherwise unpredictable results could occur.

Table 14-13: Bit Definitions for the FIFOST_XBC Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Indicates a write command queue overflow, when set

29 FIFO_UF_RCMDQ 0
Indicates a write command queue underflow, when
set

30 FIFO_OF_WCMDQ 0 Indicates a read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Indicates a read command queue underflow, when set

Table 14-14: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only Write a 1 to this bit to reset the
Read Command Queue

31 FIFO_WCMDQ_RST 0 Write Only Write a 1 to this bit to reset the
Write Command Queue

Table 14-15: Bit Definitions for the ARB_XBM Register

Bits Field Default Description

0:8 Reserved 0 Reserved

9:11 440ICUR 100 Instruction Read Priority

12 Reserved 0 Reserved

13:15 440DCUW 011 Data Write Priority

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 275
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x29: Crossbar for MCI FIFO Overflow and Underflow Status Register
(FIFOST_XBM), Clear on Writes

This register indicates the FIFO overflow and underflow status for the MCI (see
Table 14-16). Individual register bits are cleared by writing 1s to them. Bit 31 of the
interrupt register is set if the FIFO overflow or underflow bit is set. None of the bits should
ever be set under normal operating conditions.

16 Reserved 0 Reserved

17:19 440DCUR 010 Data Read Priority

20 Reserved 0 Reserved

21:23 PLBS1 000 PLB Slave 1 Priority

24 Reserved 0 Reserved

25:27 PLBS0 001 PLB Slave 0 Priority

28:29 Reserved 0 Reserved

30:31 MODE 00

Arbitration Mode.

• 00: For Least Recently Used (LRU)
• 01: For round-robin
• 10: For fixed priority
• 11: Reserved (should not be used, may lead

to unpredictable behavior)

Table 14-16: Bit Definitions for the FIFOST_XBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 FIFO_OF_RCMDQ 0 Write command queue overflow, when set

29 FIFO_UF_RCMDQ 0 Write command queue underflow, when set

30 FIFO_OF_WCMDQ 0 Read command queue overflow, when set

31 FIFO_UF_WCMDQ 0 Read command queue underflow, when set

Table 14-15: Bit Definitions for the ARB_XBM Register (Continued)

Bits Field Default Description

http://www.xilinx.com

276 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x2B: Crossbar for MCI Miscellaneous Control and Status Register (MISC_XBM),
R/W or Write Only

This register contains miscellaneous control and status bits for the MCI (see Table 14-17).
Read values for write-only bits are always 0s.

0x2D to 0x30: Crossbar Template Registers, R/W

There are four 32-bit template registers for the crossbar (see Table 14-18). Selection of one of
the four registers for address mapping is done through the Template Selection Register.
Each bit of a 32-bit register corresponds to 128 MByte address space for a total of 4 GB
addressing. Traffic is routed to the MCI if the address is within the 128 MB address range
that has the template bit set; otherwise the traffic is routed to the PLB Master. These
registers are initialized by embedded processor block attributes
XBAR_ADDRMAP_TMPL0 through XBAR_ADDRMAP_TMPL3.

0x31: Template Selection Register (TMPL_SEL_REG), R/W

This register is the template selection register for specifying the address mapping template
(see Table 14-19). There are 16 x 2-bit entries in this register corresponding to a 16 x 4-GB
address space. Each two-bit field identifies which of the four TMPL*_XBAR_MAP
registers are used to map crossbar addresses, which of the four TMPL*_PLBS0_MAP
registers are used to enable address decoding on SPLB0, and which of the four
TMPL*_PLBS1_MAP registers are used to enable address decoding on SPLB1. By default,
all of these address template registers are configured so that template 0 controls all
crossbar mapping and SPLB interface decoding for the lower 4 GB address space. Because
EDK supports only the lower 4 GB space, there is normally no reason for users to use
templates 1 through 3. This register is initialized by embedded processor block attribute
INTERCONNECT_TMPL_SEL.

Table 14-17: Bit Definitions for the MISC_XBM Register

Bits Field Default Type Description

0:29 Reserved 0 - Reserved

30 FIFO_RCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Read
Command Queue

31 FIFO_WCMDQ_RST 0 Write Only
Write a 1 to this bit to reset the Write
Command Queue

Table 14-18: Crossbar Template Registers

Address Mnemonic Default Description

0x2D TMPL0_XBAR_MAP 32’hFFFF_0000 Template Register 0 for Crossbar

0x2E TMPL1_XBAR_MAP 32’h0000_0000 Template Register 1 for Crossbar

0x2F TMPL2_XBAR_MAP 32’h0000_0000 Template Register 2 for Crossbar

0x30 TMPL3_XBAR_MAP 32’h0000_0000 Template Register 3 for Crossbar

Table 14-19: Bit Definitions for the TMPL_SEL_REG Register

Bits Field Default Description

0:31 SEL 32’h3FFF_FFFF 16 2-bit values for template register selection

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 277
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

DCRs for PLB Slave 0, SPLB 0 (0x34 to 0x43)

0x34: PLB Slave 0 Configuration Register (CFG_PLBS0), R/W

This register configures PLB Slave 0 operation (see Table 14-20). This register is initialized
by embedded processor block attribute PPCS0_CONTROL.

Table 14-20: Bit Definitions for the CFG_PLBS0 Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x36, 0x37, and 0x38)
are locked.

1 Reserved 0 Reserved

2 DMA1_EN 0
• 0: Disable DMA1
• 1: Enable DMA1

3 DMA0_EN 0
• 0: Disable DMA0
• 1: Enable DMA0

4:5 DMA0_PRI 00

DMA0 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA1_PRI 00

DMA1 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

http://www.xilinx.com

278 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

20 Reserved 0 Reserved

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst is turned into burst-of-16 transfers, if

applicable.
• 101 to 111: Reserved values that can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfers

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically when bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting

• 0: No write posting (early data acknowledge)
• 1: Enables write posting

Bit 27 is cleared when this bit is 0. Only single transactions are supported
when write posting is disabled. The interrupt status flag (bit 3 of Crossbar
register 0x20) is set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

Table 14-20: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 279
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x36: PLB Slave 0 Error Address Register (SEAR_U_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 14-21). The content is valid if
bit 0 of register 0x38 is set. A failed transaction corresponds to a command address
mismatch or an illegal command. This register is also used by the command sniffer (see
registers 0x3D and 0x3E).

0x37: PLB Slave 0 Error Address Register (SEAR_L_PLBS0), Clear on Writes

This register is cleared by writing to register 0x38. This register captures the lower 32-bit
address of 36-bit address of a failed transaction (see Table 14-22). The content is valid if bit
0 of register 0x38 is set. A failed transaction corresponds to a command address mismatch
or an illegal command. This register is also used by the command sniffer (see registers
0x3D and 0x3E).

0x38: PLB Slave 0 Error Status Register (SESR_PLBS0), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 14-23). A
failed transaction corresponds to a command address mismatch or an illegal command.
The slave interface only supports the following commands:

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only
single transfers are supported, any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x3D and 0x3E).

The content is valid when bit 0 is set. See also registers 0x36 and 0x37. This register is
cleared by writing to it. When bit 0 of 0x34 is set, this register is only updated when bit 0
becomes 0. When bit 0 of 0x34 is not set, this register is updated every time an error or sniff
event is detected.

30 AERR_LOG 0 Log ABUS address mismatch error, when set (see bit 2 in register 0x39)

31 CMD_CHK_DBL 0 Disable command (size) check, when set (see bits 0 and 1 in register 0x39)

Table 14-20: Bit Definitions for the CFG_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-21: Bit Definitions for the SEAR_U_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-22: Bit Definitions for the SEAR_L_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

280 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x39: PLB Slave 0 Miscellaneous Status Register (MISC_ST_PLBS0), Clear on
Writes

This register contains miscellaneous status bits for PLB Slave 0 (see Table 14-24).
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 3
of the Interrupt Status register is set if the configuration error bit, the illegal command bit,
or the address mismatch error bit is set. Bit 7 of the Interrupt Status register is set if any
FIFO overflow or underflow bit is set. None of these bits should ever be set under normal
operating conditions.

Table 14-23: Bit Definitions for the SESR_PLBS0 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is
supported.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-24: Bit Definitions for the MISC_ST_PLBS0 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write
posting is configured (see register 0x34) but a line or a burst transfer is
detected.

1 ILLEGAL_CMD 0
Illegal command detected. The supported commands include: size =
4’h0, 4’h1, 4’h2, 4’h3, 4’hA, 4’hB, or 4’hC. Qualified by bit 31 of
register 0x34.

2 ADDR_ERR 0 Address mismatch error. Qualified by bit 30 of register 0x34.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 281
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x3A: PLB Slave 0 PLB Error Status Register (PLBERR_ST_PLBS0), Clear on
Writes

This register contains MIRQ status bits for PLB Slave 0 (see Table 14-25). Individual
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status
or conversion of slave MwrErr into MIRQ because of write posting. Refer to the PLB
Architecture Specification [Ref 4] for more information on the MIRQ signal.

0x3B: PLB Slave 0 State Machine States Register (SM_ST_PLBS0), Read Only

This register indicates the states of the PLB Slave 0 state machine (see Table 14-26). This
register is reserved for internal use.

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 14-24: Bit Definitions for the MISC_ST_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-25: Bit Definitions for the PLBERR_ST_PLBS0 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

29 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

30 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

31 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

Table 14-26: Bit Definitions for the SM_ST_PLBS0 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

http://www.xilinx.com

282 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x3C: PLB Slave 0 Miscellaneous Control and Status Register (MISC_PLBS0),
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 0 (see
Table 14-27). Write-only bits always read as 0s.

0x3D: PLB Slave 0 Command Sniffer Register (CMD_SNIFF_PLBS0), R/W

This register contains the description of a command (the address is specified in 0x3E) that
is to be monitored (see Table 14-28). The result is placed in registers 0x38 through 0x3A.
This register is used for debugging purposes.

Table 14-27: Bit Definitions for the MISC_PLBS0 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS0 is in 64-bit mode
• 1: PLBS0 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

Table 14-28: Bit Definitions for the CMD_SNIFF_PLBS0 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’b0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 283
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x3E: PLB Slave 0 Command Sniffer Address Register (CMD_SNIFFA_PLBS0),
R/W

This register, used in conjunction with register 0x3D, contains the address for command
sniffing (see Table 14-29).

0x40 to 0x43: PLB Slave 0 Template Registers, R/W

Table 14-30 lists the set of four 32-bit template registers for PLB Slave 0. Selection of one of
four registers for address mapping is done through the Template Selection Register. Each
bit of a 32-bit register corresponds to a 128 MB address space for a 4 GB addressing. Set a
bit to 1 to enable the corresponding 128 MB address space. These registers are initialized by
embedded processor block attributes PPCS0_ADDRMAP_TMPL0 through
PPCS0_ADDRMAP_TMPL3.

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-28: Bit Definitions for the CMD_SNIFF_PLBS0 Register (Continued)

Bits Field Default Description

Table 14-29: Bit Definitions for the CMD_SNIFFA_PLBS0 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

Table 14-30: PLB Slave 0 Template Registers

Address Mnemonic Default Description

0x40 TMPL0_PLBS0_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 0

0x41 TMPL1_PLBS0_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 0

0x42 TMPL2_PLBS0_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 0

0x43 TMPL3_PLBS0_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 0

http://www.xilinx.com

284 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

DCRs for PLB Slave 1, SPLB 1 (0x44 to 0x53)

0x44: PLB Slave 1 Configuration Register (CFG_PLBS1), R/W

This register configures PLB Slave 1 operation (see Table 14-31). This register is initialized
by embedded processor block attribute PPCS1_CONTROL.

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x46, 0x47, and 0x48)
are locked.

1 Reserved 0 Reserved

2 DMA3_EN 0
• 0: Disable DMA3
• 1: Enable DMA3

3 DMA2_EN 0
• 0: Disable DMA2
• 1: Enable DMA2

4:5 DMA2_PRI 00

DMA2 priority

• 00: Lowest priority
• 11: Highest priority

6:7 DMA3_PRI 00

DMA3 priority

• 00: Lowest priority
• 11: Highest priority

8 Reserved 0 Reserved

9:11 THRMCI 011

Command translation for a read MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

12 Reserved 0 Reserved

13:15 THRPLBM 011

Command translation for a read PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 285
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

16 Reserved 0 Reserved

17:19 THWMCI 011

Command translation for a write MCI threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

20 Reserved 0 Reserved

21:23 THWPLBM 011

Command translation for a write PLB Master threshold of 8.

• 000: Threshold of 1, a burst is turned into single transfers.
• 001: Threshold of 2, a burst is turned into burst-of-2 transfers, if

applicable.
• 010: Threshold of 4, a burst is turned into burst-of-4 transfers, if

applicable.
• 011: Threshold of 8, a burst is turned into burst-of-8 transfers, if

applicable.
• 100: Threshold of 16, a burst of turned into burst-of-16 transfers, if

applicable.
• 101 to 111 are reserved values and can cause unpredictable behaviors.

24 Reserved 0 Reserved

25 LOCKXFER 1

Lock Transfer.

• 0: Disables lock transfers
• 1: Enables lock transfers

26 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

27 WPIPE 0

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Cleared automatically if bit 28 is 0 to prevent posted write data.

28 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 27 is cleared if this bit is 0. Only single transactions are supported if write
posting is disabled. Interrupt status flag (bit 11 of Crossbar register 0x20) is
set if other types of transactions are received.

29 Reserved 1 Must be set to 1.

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description

http://www.xilinx.com

286 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x46: PLB Slave 1 Error Address Register (SEAR_U_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 14-32). The content is valid if
bit 0 of register 0x48 is set. A failed transaction corresponds to a command address
mismatch or an illegal command. This register is also used by the command sniffer (see
registers 0x4D and 0x4E).

0x47: PLB Slave 1 Error Address Register (SEAR_L_PLBS1), Clear on Writes

This register is cleared by writing to register 0x48. This register captures the lower 32-bit
address of the 36-bit address of a failed transaction (see Table 14-33). This content is valid
if bit 0 of register 0x48 is set. A failed transaction corresponds to a command address
mismatch or an illegal command. This register is also used by the command sniffer (see
registers 0x4D and 0x4E).

0x48: PLB Slave 1 Error Status Register (SESR_PLBS1), Clear on Writes

This register captures the transaction qualifiers of a failed transaction (see Table 14-34). A
failed transaction corresponds to a command address mismatch or an illegal command.
The slave interface only supports the following commands:

• Single transfers

• 4, 8, and 16-word line transfers

• 32-bit, 64-bit, and 128-bit burst transfers

All other commands are considered illegal. Furthermore, if write posting is disabled, only
single transfers are supported, and any other types of transfers are considered illegal.

This register is also used by the command sniffer (see registers 0x4D and 0x4E).

The content is valid if bit 0 is set. See also registers 0x46 and 0x47. This register is cleared
by writing to it. If bit 0 of register 0x44 is set, this register is only updated when bit 0
becomes 0. If bit 0 of register 0x44 is not set, this register is updated every time an error or
sniff event is detected.

30 AERR_LOG 0 Log ABUS address mismatch error, if set (see bit 2, register 0x49)

31 CMD_CHK_DBL 0 Disable command (size) check, if set (see bits 0 and 1, register 0x49)

Table 14-31: Bit Definitions for the CFG_PLBS1 Registers (Continued)

Bits Field Default Description

Table 14-32: Bit Definitions for the SEAR_U_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-33: Bit Definitions for the SEAR_L_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 287
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x49: PLB Slave 1 Miscellaneous Status Register (MISC_ST_PLBS1), Clear on
Writes

This register contains miscellaneous status bits for PLB Slave 1 (see Table 14-35).
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 11
of the Interrupt Status register is set if the configuration error bit, the illegal command bit,
or the address mismatch error bit is set. Bit 15 of the Interrupt Status register is set if any
FIFO overflow or underflow bit is set. None of these bits should ever be set under normal
operating conditions.

Table 14-34: Bit Definitions for the SESR_PLBS1 Register

Bits Field Default Description

0 VLD 1’b0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 1’b0 M_lockErr from the PLB Master

2:3 Reserved 2’b0 Reserved

4:5 MID 2’b0 Master ID

6:7 MSIZE 2’b0 Master Size

8:10 TYPE 3’b0
PLB Type. Only 000 for memory transfers is
supported.

11 RNW 1’b0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-35: Bit Definitions for the MISC_ST_PLBS1 Register

Bits Field Default Description

0 WPOST_CFG_ERR 0

When this bit is set, a write posting configuration
error occurred. No write posting is configured (see
register 0x44) but a line or a burst transfer is
detected.

1 ILLEGAL_CMD 0

Illegal command detected. The supported
commands include: size = 4’h0, 4’h1, 4’h2, 4’h3,
4’hA, 4’hB, or 4’hC. Qualified by bit 31 of register
0x44.

2 ADDR_ERR 0
Address mismatch error. Qualified by bit 30 of
register 0x44.

3:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0
When this bit is set, a Read Data Queue overflow
occurred

19 FIFO_UF_RDAT 0
When this bit is set, a Read Data Queue underflow
occurred

http://www.xilinx.com

288 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x4A: PLB Slave 1 PLB Error Status Register (PLBERR_ST_PLBS1), Clear on
Writes

This register contains the MIRQ status bits for PLB Slave 1 (see Table 14-36). Individual
register bits are cleared by writing 1s to those bits that need to be cleared. Bits 28:31 are PLB
MIRQ status bits, which can be set due to either the propagation of the slave MIRQ status
or conversion of slave MwrErr into MIRQ because of write posting.

20 FIFO_OF_WDAT 0
When this bit is set, a Write Data Queue overflow
occurred

21 FIFO_UF_WDAT 0
When this bit is set, a Write Data Queue underflow
occurred

22 FIFO_OF_SRDQ 0
When this bit is set, a Slave Read Queue overflow
occurred

23 FIFO_UF_SRDQ 0
When this bit is set, a Slave Read Queue underflow
occurred

24 FIFO_OF_SWRQ 0
When this bit is set, a Slave Write Queue overflow
occurred

25 FIFO_UF_SWRQ 0
When this bit is set, a Slave Write Queue underflow
occurred

26 FIFO_OF_MRDQ 0
When this bit is set, a Master Read Queue overflow
occurred

27 FIFO_UF_MRDQ 0
When this bit is set, a Master Read Queue underflow
occurred

28 FIFO_OF_MWRQ 0
When this bit is set, a Master Write Queue overflow
occurred

29 FIFO_UF_MWRQ 0
When this bit is set, a Master Write Queue underflow
occurred

30 FIFO_OF_INCMD 0
When this bit is set, an Input Command Queue
overflow occurred

31 FIFO_UF_INCMD 0
When this bit is set, an Input Command Queue
underflow occurred

Table 14-36: Bit Definitions for the PLBERR_ST_PLBS1 Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 14-35: Bit Definitions for the MISC_ST_PLBS1 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 289
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x4B: PLB Slave 1 State Machine States Register (SM_ST_PLBS1), Read Only

This register indicates the states of the state machine for PLB Slave 1 (see Table 14-37). This
register is reserved for internal use.

0x4C: PLB Slave 1 Miscellaneous Control and Status Register (MISC_PLBS1),
R/W, Write Only, or Read Only

This register contains miscellaneous control and status bits for PLB Slave 1 (see
Table 14-38). Write-only bits always read as 0s.

0x4D: PLB Slave 1 Command Sniffer Register (CMD_SNIFF_PLBS1), R/W

This register contains the description of a command (whose address is specified in register
0x4E) that is to be monitored (see Table 14-39). The results are placed in registers 0x48
through 0x4A. This register is used for debugging purposes.

Table 14-37: Bit Definitions for the SM_ST_PLBS1 Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 14-38: Bit Definitions for the MISC_PLBS1 Register

Bits Field Default Type Description

0 MODE_128N64 1 Read Only
• 0: PLBS1 is in 64-bit mode
• 1: PLBS1 is in 128-bit mode

1:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only
Write a 1 to this bit to reset the
Read Data Queue

26 FIFO_WDAT_RST 0 Write Only
Write a 1 to this bit to reset the
Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only
Write a 1 to this bit to reset the
Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only
Write a 1 to this bit to reset the
Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only
Write a 1 to this bit to reset the
Master Write Queue

31 FIFO_INCMD_RST 0 Write Only
Write a 1 to this bit to reset the
Input Command Queue

Table 14-39: Bit Definitions for the CMD_SNIFF_PLBS1 Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture disabled
• 1: Command command enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

http://www.xilinx.com

290 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x4E: PLB Slave 1 Command Sniffer Address (CMD_SNIFFA_PLBS1), R/W

This register, used in conjunction with register 0x4D, contains the address (lower 32 bits)
for command sniffing (see Table 14-40).

0x50 to 0x53: PLB Slave 1 Template Registers, R/W

Table 14-41 lists the set of four 32-bit template registers for PLB Slave 1. Selection of one of
four registers for address mapping is done through the Template Selection Register. Each
bit of a 32-bit register corresponds to 128 MB address space for a total of 4 GB addressing.
Set a bit to 1 to enable the corresponding 128 MB address space. These registers are
initialized by embedded processor block attributes PPCS1_ADDRMAP_TMPL0 through
PPCS1_ADDRMAP_TMPL3.

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0

Enable master ID match, if set

• 0: Disable master ID match
• 1: Enable master ID match

28 Reserved 0 Reserved

29 Reserved 0 Reserved

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-40: Bit Definitions for the CMD_SNIFFA_PLBS1 Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32-bit of a 36-bit address

Table 14-39: Bit Definitions for the CMD_SNIFF_PLBS1 Register (Continued)

Bits Field Default Description

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 291
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

DCRs for PLB Master, MPLB (0x54 to 0x5F)

0x54: PLB Master Configuration Register (CFG_PLBM), R/W

This register configures PLB Master operation (see Table 14-42). This register is initialized
by embedded processor block attribute PPCM_CONTROL.

Table 14-41: PLB Slave 1 Template Registers

Address Mnemonic Default Description

0x50 TMPL0_PLBS1_MAP 32’hFFFF_FFFF Template Register 0 for PLB Slave 1

0x51 TMPL1_PLBS1_MAP 32’hFFFF_FFFF Template Register 1 for PLB Slave 1

0x52 TMPL2_PLBS1_MAP 32’hFFFF_FFFF Template Register 2 for PLB Slave 1

0x53 TMPL3_PLBS1_MAP 32’hFFFF_FFFF Template Register 3 for PLB Slave 1

Table 14-42: Bit Definitions for the CFG_PLBM Register

Bits Field Default Description

0 LOCK_SESR 1
When this bit is set, the SESR and SEAR registers (0x56, 0x57, and
0x58) are locked.

1:22 Reserved 0 Reserved

23 Reserved 0 Must be set to 0.

24 XBAR_PRIORITY_ENA 1
• 0: Priority is disabled during crossbar arbitration
• 1: Priority is enabled during crossbar arbitration

25 Reserved 0 Reserved (can lead to unexpected behavior, if set to 1).

26 SL_ETERM_MODE 0
When this bit is set, slave early burst termination is supported. Bits 28
and 29 are cleared automatically when this bit is set. This mode
prevents R/W command re-ordering.

27 LOCKXFER 1

Lock Transfers.

• 0: Disables lock transfers
• 1: Enables lock transfers

28 RPIPE 1

Read Address Pipelining.

• 0: Disables read address pipelining
• 1: Enables read address pipelining

Can be cleared directly or through bit 26.

29 WPIPE 1

Write Address Pipelining.

• 0: Disables write address pipelining
• 1: Enables write address pipelining

Can be cleared directly or through bit 26. This bit is cleared if bit 30 is
0 to prevent posted write data.

http://www.xilinx.com

292 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x56: FPGA Logic Slave Error Address Register (FSEAR_U_PLBM), Clear on
Writes

This register is cleared by writing to register 0x58. This register captures the upper 4-bit
address of a 36-bit address of a failed transaction (see Table 14-43). The content is valid if
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x57: FPGA Logic Slave Error Address Register (FSEAR_L_PLBM), Clear on
Writes

This register is cleared by writing to register 0x58. This register captures the lower 32-bit
address of a 36-bit address of a failed transaction (see Table 14-44). The content is valid if
bit 0 of register 0x58 is set. A failed transaction corresponds to one of the following
conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave MrdErr. This
register is also used by the command sniffer (see registers 0x5D – 0x5E).

0x58: FPGA Logic Slave Error Status Register (FSESR_PLBM), Clear on Writes

This register is cleared by writing to it. This register captures the transaction qualifiers of a
failed transaction (see Table 14-45). A failed transaction corresponds to one of the
following conditions: address time-out, data time-out, PLB slave MwrErr, or PLB slave
MrdErr.

This register is also used by the command sniffer (see registers 0x5D – 0x5E).

The content is valid if bit 0 is set. See also registers 0x56 and 0x57. If bit 0 of register 0x54
is set, this register is only updated when bit 0 becomes 0. If bit 0 of register 0x54 is not set,
the register is updated every time an error or sniff event is detected.

30 WPOST 1

Write Posting.

• 0: No write posting (early data ack)
• 1: Enable write posting

Bit 29 is cleared if this bit is 0. Only single transactions are supported
if write posting is disabled. Interrupt status flag (bit 17 of Crossbar
register 0x20) is set if other types of transactions are received.

31 Reserved 1 Must be set to 1.

Table 14-42: Bit Definitions for the CFG_PLBM Register (Continued)

Bits Field Default Description

Table 14-43: Bit Definitions for the FSEAR_U_PLBM Register

Bits Field Default Description

0:27 Reserved 0 Reserved

28:31 U4BIT 0 Upper 4 bits of a 36-bit address

Table 14-44: Bit Definitions for the FSEAR_L_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 293
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x59: PLB Master Miscellaneous Status Register (MISC_ST_PLBM), Clear on
Writes

This register contains miscellaneous status bits for the PLB Master (see Table 14-46).
Individual register bits are cleared by writing 1s to those bits that need to be cleared. Bit 17
of the Interrupt Status register is set if either or both of the configuration error bits are set.
Bit 24 of the Interrupt Status register is set if any FIFO overflow or underflow bit is set.
None of these bits should ever be set under normal operating conditions.

Table 14-45: Bit Definitions for the FSESR_PLBM Register

Bits Field Default Description

0 VLD 0

Valid

• 0: No error detected
• 1: Error or sniffed command detected

1 LOCKERR 0 M_lockErr to the PLB slave

2 PLBS_DMA 0

• 1: Command from PLB slave 0 or 1
• 0: Command from a DMA engine. Value is only valid if

MID is 3 or 4.

3:5 MID 3’b0

Master ID.

• 000: ICUR
• 001: DCUW
• 010: DCUR
• 011: PLBS0
• 100: PLBS1

6:7 SSIZE 2’b0 Slave size (00, 01, or 10). 11 indicates address time-out.

8:10 TYPE 3’b0 PLB Type. Only 000 for memory transfers is supported.

11 RNW 0

Read/Write.

• 0: Write
• 1: Read

12:15 SIZE 4’b0 PLB Size

16:31 BE 16’b0 16-bit Byte Enable

Table 14-46: Bit Definitions for the MISC_ST_PLBM Register

Bits Field Default Description

0 WPOST_CFG_ERR 0
When this bit is set, a write posting configuration error occurred. No write
posting is configured (see register 0x54) but a line or a burst transfer is
detected.

1 ETERM_CFG_ERR 0
When this bit is set, a slave early burst termination configuration error
occurred. Early termination is not configured (see register 0x54), but
early termination is detected.

2:17 Reserved 0 Reserved

18 FIFO_OF_RDAT 0 When set, a Read Data Queue overflow occurred

19 FIFO_UF_RDAT 0 When set, a Read Data Queue underflow occurred

20 FIFO_OF_WDAT 0 When set, a Write Data Queue overflow occurred

http://www.xilinx.com

294 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x5A: PLB Master PLB Error Status Register (PLBERR_ST_PLBM), Read Only or
Clear on Writes

This register contains MIRQ status bits for the PLB Master (see Table 14-47). Bits 19:31 are
PLB MIRQ status bits that can be set due to either the propagation of the slave MIRQ status
or conversion of slave MwrErr into MIRQ because of write posting.

• If the slave PLB MIRQ signal, which is latched at the slave, is set, all MIRQ bits in the
register are set. They are read only, so they are cleared when the PLB MIRQ is cleared.

• If the slave PLB MwrErr, which is a pulse, is set and write posting is enabled, one of
the MIRQ bits is set. In this case, the register bit is cleared by writing a 1 to the bit.

Bits 19 and 20 correspond to MIRQ errors for writes that originated from the DMA engines
in SPLB0/1.

21 FIFO_UF_WDAT 0 When set, a Write Data Queue underflow occurred

22 FIFO_OF_SRDQ 0 When set, a Slave Read Queue overflow occurred

23 FIFO_UF_SRDQ 0 When set, a Slave Read Queue underflow occurred

24 FIFO_OF_SWRQ 0 When set, a Slave Write Queue overflow occurred

25 FIFO_UF_SWRQ 0 When set, a Slave Write Queue underflow occurred

26 FIFO_OF_MRDQ 0 When set, a Master Read Queue overflow occurred

27 FIFO_UF_MRDQ 0 When set, a Master Read Queue underflow occurred

28 FIFO_OF_MWRQ 0 When set, a Master Write Queue overflow occurred

29 FIFO_UF_MWRQ 0 When set, a Master Write Queue underflow occurred

30 FIFO_OF_INCMD 0 When set, an Input Command Queue overflow occurred

31 FIFO_UF_INCMD 0 When set, an Input Command Queue underflow occurred

Table 14-46: Bit Definitions for the MISC_ST_PLBM Register (Continued)

Bits Field Default Description

Table 14-47: Bit Definitions for the PLBERR_ST_PLBM Register

Bits Field Default Description

0:18 Reserved 0 Reserved

19 PLBS0_DMA_MIRQ 0 PLB Slave 0, DMA MIRQ

20 PLBS1_DMA_MIRQ 0 PLB Slave 1, DMA MIRQ

21 C440_MIRQ_ICUR 0 Processor ICUR MIRQ

22 C440_MIRQ_DCUW 0 Processor DCUW MIRQ

23 C440_MIRQ_DCUR 0 Processor DCUR MIRQ

24 PLBS0_M0_MIRQ 0 PLB Slave 0, Master 0 MIRQ

25 PLBS0_M1_MIRQ 0 PLB Slave 0, Master 1 MIRQ

26 PLBS0_M2_MIRQ 0 PLB Slave 0, Master 2 MIRQ

27 PLBS0_M3_MIRQ 0 PLB Slave 0, Master 3 MIRQ

28 PLBS1_M0_MIRQ 0 PLB Slave 1, Master 0 MIRQ

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 295
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

0x5B: PLB Master State Machine States Register (SM_ST_PLBM), Read Only

This register indicates the states of the state machine for the PLB Master (see Table 14-48).
This register is reserved.

0x5C: PLB Master Miscellaneous Control and Status Register (MISC_PLBM), R/W
or Write Only

This register contains miscellaneous control and status bits for the PLB Master (see
Table 14-49). Write-only bits always read as 0s.

29 PLBS1_M1_MIRQ 0 PLB Slave 1, Master 1 MIRQ

30 PLBS1_M2_MIRQ 0 PLB Slave 1, Master 2 MIRQ

31 PLBS1_M3_MIRQ 0 PLB Slave 1, Master 3 MIRQ

Table 14-48: Bit Definitions for the SM_ST_PLBM Register

Bits Field Default Description

0:31 Reserved 0 Reserved

Table 14-47: Bit Definitions for the PLBERR_ST_PLBM Register (Continued)

Bits Field Default Description

Table 14-49: Bit Definitions for the MISC_PLBM Register

Bits Field Default Type Description

0 Reserved 0 Write Only Reserved

1:2 FLUSH_MODE 00 R/W

Flush mode select

• 00: Automatic addrAck time-out flush
• 01 - 10: Reserved
• 11: No flush

3 Reserved 0 R/W Reserved

4:24 Reserved 0 - Reserved

25 FIFO_RDAT_RST 0 Write Only Write a 1 to this bit to reset the Read Data Queue

26 FIFO_WDAT_RST 0 Write Only Write a 1 to this bit to reset the Write Data Queue

27 FIFO_SRDQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Read Queue

28 FIFO_SWRQ_RST 0 Write Only Write a 1 to this bit to reset the Slave Write Queue

29 FIFO_MRDQ_RST 0 Write Only Write a 1 to this bit to reset the Master Read Queue

30 FIFO_MWRQ_RST 0 Write Only Write a 1 to this bit to reset the Master Write Queue

31 FIFO_INCMD_RST 0 Write Only Write a 1 to this bit to reset the Input Command Queue

http://www.xilinx.com

296 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

0x5D: PLB Master Command Sniffer Register (CMD_SNIFF_PLBM), R/W

This register contains the description of a command (whose address is specified in register
0x5E) that is to be monitored (see Table 14-50). The results are placed in registers 0x58
through 0x5A. This register is used for debugging purposes.

0x5E: PLB Master Command Sniffer Address (CMD_SNIFFA_PLBM), R/W

This register, used in conjunction with register 0x5D, contains the ABUS address (lower
32 bits) for command sniffing (see Table 14-51).

Table 14-50: Bit Definitions for the CMD_SNIFF_PLBM Register

Bits Field Default Description

0 ENABLE 0
• 0: Command capture is disabled
• 1: Command capture is enabled

1:3 Reserved 000 Reserved

4:7 SIZE 0000 PLB size value to be matched

8 RNW 0 PLB RNW to be matched

9:11 MID 000 Master ID (0 – 4) to be matched

12 SPLBNDMA 0
• 0: Command from DMA engine to be matched
• 1: Command from SPLB to be matched

13 Reserved 0 Reserved

14:15 SPLB_MID 00 FPGA logic master’s ID (0 – 3) to be matched

16:17 SSIZE 00 SSIZE to be matched

18:24 Reserved 7’h0 Reserved

25 SIZE_EN 0
• 0: Disable size match
• 1: Enable size match

26 RNW_EN 0
• 0: Disable RNW match
• 1: Enable RNW match

27 MID_EN 0
• 0: Disable master ID match
• 1: Enable master ID match

28 SPLBNDMA_EN 0
• 0: Disable SPLBndma match
• 1: Enable SPLBndma match

29 SPLB_MID_EN 0
• 0: Disable SPLB_MID match
• 1: Enable SPLB_MID match

30 SSIZE_EN 0
• 0: Disable ssize match
• 1: Enable ssize match

31 ADDR_EN 0
• 0: Disable address match
• 1: Enable address match

Table 14-51: Bit Definitions for the CMD_SNIFFA_PLBM Register

Bits Field Default Description

0:31 L32BIT 0 Lower 32 bits of a 36-bit address

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 297
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

DMA Engines (0x80 – 0xDF)
Table 14-52 lists the address map for the DCRs.

Table 14-52: DCR Address Map

DCR Addresses Mnemonic Register Description Direction

0x80,0x98,0xB0,0xC8 TX_NXTDESC_PTR TX Next Descriptor Pointer RW(1)

0x81,0x99,0xB1,0xC9 TX_CURBUF_ADDR TX Current Buffer Address Register RW(1)

0x82,0x9A,0xB2,0xCA TX_CURBUF_LENGTH TX Current Buffer Length Register RW(1)

0x83,0x9B,0xB3,0xCB TX_CURDESC_PTR TX Current Descriptor Pointer RW

0x84,0x9C,0xB4,0xCC TX_TAILDESC_PTR TX Tail Descriptor Pointer RW

0x85,0x9D,0xB5,0xCD TX_CHANNEL_CTRL TX Channel Control Register RW

0x86,0x9E,0xB6,0xCE TX_IRQ_REG TX Interrupt Register RD-ACK

0x87,0x9F,0xB7,0xCF TX_STATUS_REG TX Status Register RW(1)

0x88,0xA0,0xB8,0xD0 RX_NXTDESC_PTR RX Next Descriptor Pointer RW(1)

0x89,0xA1,0xB9,0xD1 RX_CURBUF_ADDR RX Current Buffer Address Register RW(1)

0x8A,0xA2,0xBA,0xD2 RX_CURBUF_LENGTH RX Current Buffer Length Register RW(1)

0x8B,0xA3,0xBB,0xD3 RX_CURDESC_PTR RX Current Descriptor Pointer RW

0x8C,0xA4,0xBC,0xD4 RX_TAILDESC_PTR RX Tail Descriptor Pointer RW

0x8D,0xA5,0xBD,0xD5 RX_CHANNEL_CTRL RX Channel Control Register RW

0x8E,0xA6,0xBE,0xD6 RX_IRQ_REG RX Interrupt Register RD-ACK

0x8F,0xA7,0xBF,0xD7 RX_STATUS_REG RX Status Register RW(1)

0x90,0xA8,0xC0,0xD8 DMA_CONTROL_REG DMA Control Register RW

Notes:
1. These registers are loaded from the descriptors and updated dynamically by the DMA engine. As such, they should not be written

during normal operation. Writing them is made available for debug purposes only.
2. See also the DMA enable and DMA priority fields of the SPLB0 and SPLB1 configuration registers (CFG_PLBS0/1) Table 4-6,

page 108 in Chapter 4.

http://www.xilinx.com

298 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x80, 0x98, 0xB0, 0xC8 – TX Next Descriptor Pointer
(TX_NXTDESC_PTR)

Figure 14-5 shows the TX Next Descriptor Pointer. Table 14-53 defines the bits in this
pointer.

Register 0x81, 0x99, 0xB1, 0xC9 – TX Current Buffer Address
(TX_CURBUF_ADDR)

Figure 14-6 shows the TX Current Buffer Address register. Table 14-54 defines the bits in
this register.

Register 0x82, 0x9A, 0xB2, 0xCA – TX Current Buffer Length
(TX_CURBUF_LENGTH)

Figure 14-7 shows the TX Current Buffer Length register. Table 14-55 defines the bits in this
register.

0 31

Address

Figure 14-5: TX Next Descriptor Pointer

Table 14-53: Bit Description for TX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must
be eight-word aligned.

0 31

Address

Figure 14-6: TX Current Buffer Address

Table 14-54: Bit Description for TX Current Buffer Address

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes
dynamically when the DMA is operating. This address is a byte
address.

0 7 8 31

Reserved[0:7] Length

Figure 14-7: TX Current Buffer Length Register

Table 14-55: Bit Description for the TX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be transferred. This
field changes dynamically when the DMA is operating.

[0:7] Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 299
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x83, 0x9B, 0xB3, 0xCB – TX Current Descriptor Pointer
(TX_CURDESC_PTR)

Figure 14-8 shows the TX Current Descriptor Pointer register. Table 14-56 defines the bits
in this register.

Register 0x84, 0x9C, 0xB4, 0xCC – TX Tail Descriptor Pointer
(TX_TAILDESC_PTR)

Figure 14-9 shows the TX Tail Descriptor Pointer register. Table 14-57 defines the bits in
this register.

0 31

Address

Figure 14-8: TX Current Descriptor Pointer

Table 14-56: Bit Descriptions for the TX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor. Must be eight-
word aligned.

0 31

Address

Figure 14-9: TX Tail Descriptor Pointer

Table 14-57: Bit Descriptions for the TX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

These bits contain the address of the last descriptor to be fetched.
When this register is written to, it initiates a fetch from the address
pointed to by the TX Current Descriptor Pointer register. This register
can be updated dynamically, while the DMA channel is busy. The
control register field, TailPtrEn, must be set for this feature to be
enabled.

http://www.xilinx.com

300 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x85, 0x9D, 0xB5, 0xCD – TX Channel Control
(TX_CHANNEL_CTRL)

Figure 14-10 shows the TX Channel Control register. Table 14-58 defines the bits in this
register. This register controls operation for the TX channel only. These registers are
initialized by embedded processor block attributes DMA0_TXCHANNELCTRL through
DMA3_TXCHANNELCTRL.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] Reserved Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 14-10: TX Channel Control Register

Table 14-58: Bit Descriptions for the TX Channel Control Register

Bit Name Default Description

[31] Coalescing Mechanism
Interrupt Enable

dmtxchannelctrl[31] Enable (1) or disable (0) the Coalescing interrupt
mechanism.

[30] Delay Timer Mechanism
Interrupt Enable

dmtxchannelctrl[30] Enable (1) or disable (0) the Delay Timer interrupt
mechanism.

[29] Error Detect Mechanism
Interrupt Enable

dmtxchannelctrl[29] Enable (1) or disable (0) the Error Detection interrupt
mechanism.

[25:28] Reserved dmtxchannelctrl[25:28] Reserved

[24] Master Interrupt Enable dmtxchannelctrl[24]

When set, this bit indicates that the DMA TX channel
is enabled to generate interrupts to the CPU. This is
the master enable for the TX channel. Individual
interrupt sources can be enabled or disabled
separately.

[23]
Load the Interrupt

Coalescing Counter 1’b0
Writing a 1 to this field forces the loading of the
Interrupt Coalescing counters from the DCR
IrqCount[0:7] field. This bit is self-clearing.

[22]
Use the Interrupt-On-

End Mechanism
dmtxchannelctrl[22]

• 1: Select the interrupt-on-end mechanism for
interrupt coalescing.

• 0: Select the eop mechanism for interrupt
coalescing.

[21]
Use 1-bit Interrupt

Counters
dmtxchannelctrl[21]

When this bit is enabled, the four-bit Interrupt
Coalescing counter and two-bit Delay Timer counters
are forced to be one-bit only. For certain device driver
applications, this is a desirable use model.

[20] Reserved dmtxchannelctrl[20] Reserved

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 301
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x86, 0x9E, 0xB6, 0xCE – TX Interrupt Register (TX_IRQ_REG)

This register contains the interrupt status bits for the TX channel as well as read-only status
for the TX coalescing and delay timer counters and timers. There are three regular
interrupt sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable
interrupts (NMI): PlbRdErr and PlbWrErr.

A regular interrupt can be acknowledged (and hence cleared if the corresponding counter
equals 0), by writing a “1” to the respective interrupt status bit in this register. The NMIs
can only be cleared by issuing a reset to the DMA (hard or soft).

Figure 14-11 shows the TX Interrupt register. Table 14-59 defines the bits in this register.

[16:19] Msb Address dmtxchannelctrl[16:19]
These bits contain the statically assigned, most-
significant four bits of the DMA address. This field
must be all zeros.

[8:15]
Interrupt Coalescing

Count Value
dmtxchannelctrl[8:15]

These bits contain the eight-bit value to be preloaded
into the TX interrupt coalescing counter. They are
loaded into the counter when a write to the TX
LdIrqCnt field is performed and subsequently
reloaded whenever the Count reaches 0.

[0:7]
Interrupt Delay Time-

out Value
dmtxchannelctrl[0:7]

These bits hold the compare value for the TX
interrupt delay timer. The value in this field is
compared to the TX Irq Delay Timer output. When
they are equal, a TX interrupt event is generated.

Table 14-58: Bit Descriptions for the TX Channel Control Register (Continued)

Bit Name Default Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16:17] CoalesceIrqCounter[0:3] DelayIrqCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 14-11: TX Interrupt Register

http://www.xilinx.com

302 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Table 14-59: Bit Descriptions for the TX Interrupt Register

Bit Name Default Description

[31]
Coalescing Counter

Interrupt
1’b0

When this bit is 1 the TX DMA channel has a pending interrupt
because of a TX Coalescing interrupt counter greater-than-0
condition. This bit is ORed with the two other TX interrupt bits
and ANDed with the TX Interrupt Enable bit to produce the TX
Irq pin. Even if the TxIrqEn bit is disabled, software can still
poll this bit. Acknowledging a TX interrupt due to a coalescing
counter condition is accomplished by writing a 1 to this bit.
This action decrements the TX Coalescing interrupt counter.

[30]
Delay Timer

Interrupt
1’b0

When this bit is 1, the TX DMA channel has a pending interrupt
because of a TX Delay Timer interrupt counter greater-than-0
condition. This bit is ORed with the two other TX interrupt bits
and ANDed with the TX Interrupt Enable bit to produce the TX
Irq pin. Even if the TxIrqEn bit is disabled, software can still
poll this bit. Acknowledging a TX interrupt due to a Delay
Timer counter condition is accomplished by writing a 1 to this
bit. This action decrements the TX Delay Timer interrupt
counter.

[29] Error Interrupt 1’b0

When this bit is 1, the TX DMA channel has a pending interrupt
because of a TX error that has occurred. This bit is ORed with
the two other TX interrupt bits and ANDed with the TX
Interrupt Enable bit to produce the TX Irq pin. Even if the
TxIrqEn bit is disabled, software can still poll this bit.
Acknowledging a TX interrupt due to an error is accomplished
by writing a 1 to this bit. This action clears this bit.

[28]
PLB Write Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error
from the PLB due to a PLB write operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the TX DMA channel has received an error
from the PLB due to a PLB read operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23]
Delay Timer

Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the two-bit counter used to store the number of TX
Delay Timer interrupts that are outstanding.

[18:21]
Coalescing

Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the four-bit counter used to store the number of TX
coalescing counter interrupts that are outstanding.

[16:17] Reserved

[8:15]
Coalescing Counter

Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Coalescing Counter.

[0:7] Delay Timer Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Delay Timer.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 303
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x87, 0x9F, 0xB7, 0xCF – TX Status Register (TX_STATUS_REG)

Figure 14-12 shows the TX Status register. Table 14-60 defines the bits in this register. Even
though most of these fields are writable via DCR, this is purely for debug purposes. In
normal operation, this register should not be directly written.

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop TXChannelBusy Reserved

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 14-12: TX Status Register

Table 14-60: Bit Descriptions for the TX Status Register

Bit Name Default Description

[31] Reserved

[30]
DMA Engine

Busy
1’b0

When set, this read-only bit indicates that the respective
channel is busy with a DMA operation. In general, software
should not write any DMA registers while this bit is set.
Reading of registers is allowed.

[29] DMA End of
Packet

1’b0

When set, this bit indicates that the current descriptor is the
final one of a packet. For TX, the CPU sets this bit in the
descriptor to indicate that this is the last descriptor of a packet
to be transmitted.

[28]
DMA Start of

Packet
1’b0

When set, this bit indicates that the current descriptor is the
start of a packet. For TX, the CPU sets this bit in the descriptor
to indicate that this is the first descriptor of a packet to be
transmitted.

[27]
DMA

Completed
1’b0

When set, this bit indicates that the DMA has transferred all
data defined by the current descriptor. In the case of TX, the
DMA transfers data until the length field specified in the
descriptor is zero, and then sets this bit.

[26] DMA Stop On
End

1’b0

When this bit is set, the DMA is forced to halt operations when
the descriptor is completed. The CPU sets this bit in the status
field of the descriptor. This bit is then read into the DMA TX
Status register as each descriptor is processed. It is
recommended that this bit be set on the EOP descriptor only.

http://www.xilinx.com

304 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x88, 0xA0, 0xB8, 0xD0 – RX Next Descriptor Pointer
(RX_NXTDESC_PTR)

Figure 14-13 shows the RX Next Descriptor Pointer register. Table 14-61 defines the bits in
this register.

Register 0x89, 0xA1, 0xB9, 0xD1 – RX Current Buffer Address
(RX_CURBUF_ADDR)

Figure 14-14 shows the RX Current Buffer Address register. Table 14-62 defines the bits in
this register.

[25] DMA Interrupt
on End

1’b0

When this bit is set, the DMA is forced to generate an interrupt
event when the descriptor is completed. The CPU sets this bit
in the status field of the descriptor. This bit is then read into the
DMA TX Status register as each descriptor is processed. A
typical use model would be to set this bit on the EOP
descriptor only. However, it might be set for intermediate
descriptors, too. Refer to the UseIntOnEnd field in the TX
Channel Control register for details on how to enable this
feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered a TX error. This bit
is a copy of the ErrorIrq bit in the TX Interrupt register.

[0:23] Reserved

Table 14-60: Bit Descriptions for the TX Status Register (Continued)

Bit Name Default Description

0 31

Address

Figure 14-13: RX Next Descriptor Pointer

Table 14-61: Bit Descriptions for the RX Next Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the next descriptor to be fetched. Must
be eight-word aligned.

0 31

Address

Figure 14-14: RX Current Buffer Address Register

Table 14-62: Bit Descriptions for the RX Current Buffer Address Register

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the current payload address. This field changes
dynamically when the DMA is operating. This address is a
byte address.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 305
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x8A, 0xA2, 0xBA, 0xD2 – RX Current Buffer Length
(RX_CURBUF_LENGTH)

Figure 14-15 shows the RX Current Buffer Length register. Table 14-63 defines the bits in
this register.

Register 0x8B, 0xA3, 0xBB, 0xD3 – RX Current Descriptor Pointer
(RX_CURDESC_PTR)

Figure 14-16 shows the RX Current Descriptor Pointer register. Table 14-64 defines the bits
in this register.

Register 0x8C, 0xA4, 0xBC, 0xD4 – RX Tail Descriptor Pointer
(RX_TAILDESC_PTR)

Figure 14-17 shows the RX Tail Descriptor Pointer register. Table 14-65 defines the bits in
this register.

0 7 8 31

Reserved[0:7] Length

Figure 14-15: RX Current Buffer Length Register

Table 14-63: Bit Descriptions for the RX Current Buffer Length Register

Bit Name Default Description

[8:31] Length 24’h00_0000
Contains the remaining 24-bit payload length to be
transferred. This field changes dynamically when the DMA is
operating.

[0:7] Reserved

0 31

Address

Figure 14-16: RX Current Descriptor Pointer

Table 14-64: Bit Descriptions for the RX Current Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000
Contains the address of the currently executing descriptor.
Must be eight-word aligned.

0 31

Address

Figure 14-17: RX Tail Descriptor Pointer

http://www.xilinx.com

306 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x8D, 0xA5, 0xBD, 0xD5 – RX Channel Control
(RX_CHANNEL_CTRL)

Figure 14-18 shows the RX Channel Control register. Table 14-66 defines the bits in this
register. This register controls operation for the RX channel only. These registers are
initialized by embedded processor block attributes DMA0_RXCHANNELCTRL through
DMA3_RXCHANNELCTRL.

Table 14-65: Bit Descriptions for the RX Tail Descriptor Pointer

Bit Name Default Description

[0:31] Address 32’h0000_0000

Contains the address of the last descriptor to be fetched. When
this register is written to, it initiates a fetch from the address
pointed to by the RX Current Descriptor Pointer register. This
register can be updated dynamically, while the DMA channel
is busy. The control register field, TailPtrWrEn, must be set for
this feature to be enabled.

24 25 28 29 30 31

IrqEn Reserved[25:28] IrqErrorEn IrqDelayEn IrqCoalesceEn

16 19 20 21 22 23

MsbAddr[0:3] AppMaskEn Use1BitCnt UseIntOnEnd LdIrqCnt

8 15

IrqCount[0:7]

0 7

IrqTimeout[0:7]

Figure 14-18: RX Channel Control Register

Table 14-66: Bit Descriptions for the RX Channel Control Register

Bit Name Default Description

[31]
Coalescing Mechanism

Interrupt Enable
dmrxchannelctrl[31]

Enable (1) or disable (0) the Coalescing interrupt
mechanism.

[30]
Delay Timer Mechanism

Interrupt Enable
dmrxchannelctrl[30]

Enable (1) or disable (0) the Delay Timer interrupt
mechanism.

[29]
Error Detect Mechanism

Interrupt Enable
dmrxchannelctrl[29]

Enable (1) or disable (0) the Error Detection interrupt
mechanism.

[25:28] Reserved dmrxchannelctrl[25:28] Reserved Bits.

[24] Master Interrupt Enable dmrxchannelctrl[24]

When this bit is set, the DMA RX channel is enabled
to generate interrupts to the CPU. This is the master
enable for the RX channel. Individual interrupt
sources can be enabled or disabled separately.

[23]
Load the Interrupt

Coalescing Counter
1’b0

Writing a 1 to this bit forces the loading of the
Interrupt Coalescing counters from the DCR
IrqCount[0:7] field. This bit is self-clearing.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 307
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x8E, 0xA6, 0xBE, 0xD6 – RX Interrupt Register (RX_IRQ_REG)

This register contains the interrupt status bits for the RX channel as well as the read-only
status for the RX coalescing and Delay timer counters. There are three regular interrupt
sources: ErrorIrq, DelayIrq, and CoalesceIrq. There are two non-maskable interrupts
(NMI): PlbRdErr and PlbWrErr. A regular interrupt can be acknowledged (and hence
cleared if the corresponding counter equals 0) by writing a “1” to the respective interrupt
status bit in this register. The NMIs can only be cleared by issuing a reset to the DMA (hard
or soft).

Figure 14-19 shows the RX Interrupt register. Table 14-67 defines the bits in this register.

[22]
Use the Interrupt-On-

End Mechanism
dmrxchannelctrl[22]

• 1: Select the interrupt-on-end mechanism for
interrupt coalescing.

• 0: Select the eop mechanism for interrupt
coalescing.

[21]
Use 1-bit Interrupt

Counters
dmtxchannelctrl[21]

When this bit is enabled, the four-bit Interrupt
Coalescing counter and two-bit Delay Timer counters
are forced to be one-bit only. For certain device driver
applications, this is a desirable use model.

[20] Application Data Mask
Enable

dmrxchannelctrl[20]
This bit enables the Application Data Mask mode.
Refer to “Masking of Application Data Update,”
page 233 for details of operation.

[16:19] Msb Address dmtxchannelctrl[16:19]
These bits contain the statically assigned, most-
significant four bits of the DMA address. This field
must be all zeros.

[8:15]
Interrupt Coalescing

Count Value dmrxchannelctrl[8:15]

These bits contain the eight-bit value to be preloaded
into the RX interrupt coalescing counter. This value is
loaded into the counter when a write to the RX
LdIrqCnt field is performed and subsequently
reloaded whenever the Count reaches 0.

[0:7]
Interrupt Delay Time-

out Value
dmrxchannelctrl[0:7]

These bits hold the compare value for the RX
interrupt delay timer. The value in this register is
compared to the RX Irq Delay Timer output. When
they are equal, an RX interrupt event is generated.

Table 14-66: Bit Descriptions for the RX Channel Control Register (Continued)

Bit Name Default Description

24 26 27 28 29 30 31

Reserved[24:26] PlbRdErr PlbWrErr ErrorIrq DelayIrq CoalesceIrq

16 17 18 21 22 23

Reserved[16] WrQEmpty CoalesceCounter[0:3] DelayCounter[0:1]

8 15

CoalesceCounterValue[0:7]

0 7

DelayTimerValue[0:7]

Figure 14-19: RX Interrupt Register

http://www.xilinx.com

308 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Table 14-67: Bit Descriptions for the RX Interrupt Register

Bit Name Default Description

[31]
Coalescing

Counter Interrupt
1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX Coalescing interrupt counter greater-than-0
condition. This bit is ORed with the two other RX interrupt bits
and ANDed with the RX Interrupt Enable bit to produce the RX
Irq pin. Even if the RxIrqEn or IrqCoalesceEn bit is disabled,
software can still poll this bit. Acknowledging an RX interrupt
due to a coalescing counter condition is accomplished by
writing a 1 to this bit. This action decrements the RX Coalescing
interrupt counter.

[30] Delay Timer
Interrupt

1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX Delay Timer interrupt counter greater-than-0
condition. This bit is ORed with the two other RX interrupt bits
and ANDed with the RX Interrupt Enable bit to produce the RX
Irq pin. Even if the RxIrqEn or IrqDelayEn bit is disabled,
software can still poll this bit. Acknowledging an RX interrupt
due to a Delay Timer counter condition is accomplished by
writing a 1 to this bit. This action decrements the RX Delay
Timer interrupt counter.

[29] Error Interrupt 1’b0

When this bit is 1, the RX DMA channel has a pending interrupt
because of an RX error that has occurred. This bit is ORed with
the two other RX interrupt bits and ANDed with the RX
Interrupt Enable bit to produce the RX Irq pin. Even if the
RxIrqEn or IrqErrorEn bit is disabled, software can still poll this
bit. Acknowledging an RX interrupt due to an Error is
accomplished by writing a 1 to this bit. This action clears this
bit.

[28]
PLB Write Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error
from the PLB due to a PLB write operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[27]
PLB Read Error
Non-Maskable

Interrupt
1’b0

When this bit is 1, the RX DMA channel has received an error
from the PLB due to a PLB read operation. This serious error
causes the DMA to freeze the LocalLink interface as soon as it
receives this indication from the crossbar. This bit can only be
cleared by resetting the DMA (hard or soft).

[24:26] Reserved

[22:23]
Delay Timer

Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the two-bit counter used to store the number of RX
Delay Timer interrupts that are outstanding.

[18:21] Coalescing
Interrupt Counter

This read-only field is useful for debug purposes. It contains the
value of the four-bit counter used to store the number of RX
coalescing counter interrupts that are outstanding.

[17]
Write Command

Queue Empty
Status

This read-only field is useful for debug purposes. It indicates
whether the Write Command Queue is empty (1) or not (0). If
the DMA is paused, reading this field indicates that all the write
data associated with the pending commands has been flushed.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 309
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

Register 0x8F, 0xA7, 0xBF, 0xD7 – RX Status Register (RX_STATUS_REG)

Figure 14-20 shows the RX Status register. Table 14-68 defines the bits in this register. Even
though most of these fields are writable via DCR, this register is purely for debug
purposes. In normal operation, this register should not be directly written.

[16:] Reserved

[8:15]
Coalescing

Counter Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Coalescing Counter.

[0:7]
Delay Timer

Value
This read-only field is useful for debug purposes. It contains the
value of the eight-bit Delay Timer.

Table 14-67: Bit Descriptions for the RX Interrupt Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Error IrqOnEnd StopOnEnd Completed Sop Eop ChainBusy RXChanBusy

16 23

Reserved[16:23]

8 15

Reserved[8:15]

0 7

Reserved[0:7]

Figure 14-20: RX Status Register

Table 14-68: Bit Descriptions for the RX Status Register

Bit Name Default Description

[31] Reserved

[30] DMA Engine Busy 1’b0

When this read-only bit is set, the respective channel is busy with
a DMA operation. In general, software should not write any
DMA registers while this bit is set. Reading of registers is
allowed.

[29] DMA End of Packet 1’b0

When this bit is set, the current descriptor is the final one of a
packet. For RX, when an EOP is received by the LocalLink
interface, the DMA sets this bit in the descriptor to inform the
CPU that the current descriptor is the last of a received packet.

[28]
DMA Start of

Packet
1’b0

When this bit is set, the current descriptor is the start of a packet.
For RX, when an SOP is received by the LocalLink interface, the
DMA sets this bit in the descriptor to inform the CPU that the
current descriptor is the first of a received packet.

[27] DMA Completed 1’b0

When this bit is set, the DMA has transferred all data defined by
the current descriptor. For RX, the DMA transfers data until the
length field specified in the descriptor is zero OR when it receives
an EOP indication from the LocalLink interface. At that point, the
DMA sets this bit.

http://www.xilinx.com

310 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

Register 0x90, 0xA8, 0xC0, 0xD8 – DMA Control Register
(DMA_CONTROL_REG)

Figure 14-21 shows the DMA Control register. Table 14-69 defines the bits in this register.
This register contains control fields that affect both the RX and TX channels. These registers
are initialized by embedded processor block attributes DMA0_CONTROL through
DMA3_CONTROL.

[26] DMA Stop On End 1’b0

When this bit is set, the DMA is forced to halt operations when
the descriptor is completed. The CPU sets this bit in the status
field of the descriptor. This bit is then read into the DMA RX
Status register as each descriptor is processed. It is recommended
that this bit be set, corresponding to an EOP descriptor only.

[25]
DMA Interrupt on

End 1’b0

When this bit is set, the DMA is forced to generate an interrupt
event when the descriptor is completed. The CPU sets this bit in
the status field of the descriptor. This bit is then read into the
DMA RX Status register as each descriptor is processed. A typical
use model is to set this bit on the EOP descriptor only. However,
it can be set for intermediate descriptors, too. Refer to the
UseIntOnEnd field in the RX Channel Control register for details
of how to enable this feature.

[24] DMA Error 1’b0
When this bit is set, the DMA encountered an RX error. This bit is
a copy of the ErrorIrq bit in the RX Interrupt register.

[0:23] Reserved

Table 14-68: Bit Descriptions for the RX Status Register (Continued)

Bit Name Default Description

24 25 26 27 28 29 30 31

Reserved[24:25] PlbErrDisable OverFlowErrDisable[0:1] TailPtrEn Reserved SwReset

0 23

Reserved[0:23]

Figure 14-21: DMA Control Register

Table 14-69: Bit Descriptions for the DMA Control Register

Bit Name Description

[31] Software Reset

Writing a 1 to this bit forces the DMA engine (both RX and TX channels) to shut
down and reset itself. Because the dma_ll_rst_engine_ack output is asserted when
this bit is a 1, it can be used to reset a remote LocalLink device while the DMA
engine is resetting itself. After setting this bit, software must poll it until the bit is
cleared by the DMA, which indicates that the reset process is done and the pipeline
has been flushed.

[30] Reserved

[29] Tail Pointer Enable

When this bit is set, the Tail Pointer mechanism is enabled. In this mode, writing
to the tail pointer initiates a DMA transaction and the comparison (tail pointer ==
current pointer) ends descriptor execution. When cleared, the legacy mode of
writing to the current pointer to initiate a transfer is supported. Refer to “DMA
Legacy Mode,” page 229 for details.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 311
UG200 (v1.6) January 20, 2009

Detailed Descriptions
R

[27:28]
Overflow Counter

Error Interrupt
Disable

When this bit is set, the error interrupt is disabled when either the two-bit Delay
Timer counter or the four-bit Coalescing counter overflows. Bit [27] is used for the
RX channel, and Bit [28] is used for the TX channel.

[26] PLB Error Disable

When this bit is set, error checking is disabled due to reads/writes to and from the
crossbar PLB. If one of these errors occurs, the DMA reacts as follows:

• PLB Error Disable = 1’b1:

The DMA ignores the error and continues as usual.

• PLB Error Disable = 1’b0:
♦ Read Data Error. The DMA logs a plb_rd_error NMI bit in the appropriate

interrupt register (RX or TX). The LocalLink interface is frozen immediately.
♦ Write Data Error. The DMA logs a plb_wr_error NMI bit in both RX and TX

interrupt registers. The LocalLink interfaces is frozen immediately.

[0:25] Reserved

Table 14-69: Bit Descriptions for the DMA Control Register (Continued)

Bit Name Description

http://www.xilinx.com

312 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 14: DCR Programming Considerations
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 313
UG200 (v1.6) January 20, 2009

R

Chapter 15

APU Programming

Introduction
This chapter describes the Xilinx extension of the PowerPC 440 ISA through the Auxiliary
Processor Unit (APU) of the embedded processor block in Virtex-5 FXT FPGAs. The
processor relies on custom Fabric Coprocessing Modules (FCMs) implemented in the
FPGA logic to execute these instructions. An FCM can be either a user IP or a Xilinx IP.

This chapter lists the APU instruction set extension supported by the processor on Virtex-5
FXT devices.

The notation FCM5 in this document indicates a five-bit immediate value. The
interpretation of the value is left to the FCM. Typically, this is the register value on the
FCM.

Refer to the “Document Convention” section of the PowerPC Processor Reference Guide for
definitions of the remaining notations.

If there is an unconnected FPU in hardware, the APU and the Disable FPU Decode bits in
the APU Control register must not be enabled by software because an FP unavailable
exception will result. This condition implies that software can never enable the APU and
clear the Disable FPU Decode bits in the APU Control register unless the designer knows
whether a FPU is connected or not. Tools or the user must configure the APU control
register properly. Without an FPU, the Disable FPU Decode bits should be set.

http://www.xilinx.com

314 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

udi<n>fcm
udi<n>fcm.

User-Defined Instructions (UDIs)

Description

The exact operation done by the instruction is determined by the user based on the FCM.
For more information about user-defined instructions, refer to “FCM User-Defined
Instructions,” page 194.

The Xilinx GNU assembler recognizes 32 UDIs:

• 16 instructions that modify the condition code (Rcn = 0)

• 16 instructions that do not modify the condition code (Rcn = 1)

Note that <n> in the mnemonic can range from 0 to 15. The instruction definition as
provided by the user determines which conditional code register is to be modified.

Special Notations for this Instruction

T : PowerPC GPR (rD)/ FCM Register (FCR)
A : PowerPC GPR (rD)/ FCM Register (FCR)/ 5 bit Immediate
B : PowerPC GPR (rD)/ FCM Register (FCR)/ 5 bit Immediate

Five bits each are available for the special notations defined above.

Pseudocode

Dependent on the user operation.

Registers Altered

Dependent on the user operation.

Exceptions

Dependent on the user operation.

Compatibility

These instructions are defined by Xilinx as UDIs that use the APU controller. The processor
in the embedded processor block in Virtex-5 FXT FPGAs allows for 16 UDIs as compared
to 8 allowed by the PowerPC 405 processor in Virtex-4 devices.

udi<n>fcm T, A, B UDIs that do not modify the condition code register

udi<n>fcm. T, A, B UDIs that modify the condition code register

4 T A B 1 n 3 Rcn

0 5 6 10 11 15 16 20 21 22 25 26 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 315
UG200 (v1.6) January 20, 2009

Introduction
R

lbfcmux

Load Byte with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The byte referenced by EA is sign-extended to 32 bits and loaded into the FCM5 register.
The EA is loaded into rA.

Pseudocode

EA _ (rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+7 _ MEM(EA,1)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lbfcmux FCM5, rA, rB

31 FCM5 rA rB 519 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

316 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

lhfcmux

Load Halfword with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into the FCM5
register. The EA is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+15 _ MEM(EA,2)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lhfcmux FCM5, rA, rB

31 FCM5 rA rB 551 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 317
UG200 (v1.6) January 20, 2009

Introduction
R

lwfcmux

Load Word With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

The word referenced by EA is loaded into the FCM5 register. The EA is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lwfcmux FCM5, rA, rB

31 FCM5 rA rB 583 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

318 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

ldfcmux

Load Double with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

Two words referenced by EA and EA +4 are loaded into the FCM5 register. The EA is
loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

The instruction assumes that the FCM5 register is 64 bits wide.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

ldfcmux FCM5, rA, rB

31 FCM5 rA rB 775 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 319
UG200 (v1.6) January 20, 2009

Introduction
R

lqfcmux

Load Quad with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address.

Four words referenced by EA through EA + 12 are loaded into the FCM5 register. The EA
is loaded into rA.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+8,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+12,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
(rA) _ EA

Registers Altered

• rA

• Register inferred by FCM5

The instruction assumes that the FCM5 register is 128 bits wide.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lqfcmux FCM5, rA, rB

31 FCM5 rA rB 615 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

320 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

lbfcmx

Load Byte Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The byte referenced by EA is sign-extended to 32 bits and loaded into the FCM5 register.

Pseudocode

EA _ (0|rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+7 _ MEM(EA,1)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lbfcmx FCM5, rA, rB

31 FCM5 rA rB 7 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 321
UG200 (v1.6) January 20, 2009

Introduction
R

lhfcmx

Load Halfword Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into the FCM5
register.

Pseudocode

EA _ ((0|rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ undefined
APU(FCM).dataeb:eb+15 _MEM(EA,2)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
boundedly undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lhfcmx FCM5, rA, rB

31 FCM5 rA rB 39 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

322 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

lwfcmx

Load Word Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The word referenced by EA is loaded into the FCM5 register.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lwfcmx FCM5, rA, rB

31 FCM5 rA rB 71 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 323
UG200 (v1.6) January 20, 2009

Introduction
R

ldfcmx

Load Double Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

Two words referenced by EA and EA + 4 are loaded into register(s) inferred by FCM5.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5. The exact implementation of the register inferred is to be
determined by the user.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

ldfcmx FCM5, rA, rB

31 FCM5 rA rB 263 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

324 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

lqfcmx

Load Quad Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

Four words referenced by EA through EA + 12 are loaded into register(s) inferred by
FCM5.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ MEM(EA,4)
(FCM5) _custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+4,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+8,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))
APU(FCM).data _ MEM(EA+12,4)
(FCM5) _ custom_op(APU(FCM).data, (FCM5))

Registers Altered

Register inferred by FCM5. The exact implementation of the register inferred is to be
determined by the user.

Exceptions

• Data storage: this exception is raised if the access is prevented by no-access-allowed
zone protection. This only applies to accesses in user mode when data relocation is
enabled.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

lqfcmx FCM5, rA, rB

31 FCM5 rA rB 103 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 325
UG200 (v1.6) January 20, 2009

Introduction
R

stbfcmux

Store Byte with Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The least-significant byte of the register inferred by FCM5 is stored into the byte referenced
by EA. The EA is loaded into the rA register.

Pseudocode

EA _ (rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,1) _APU(FCM).dataeb:eb+7
(rA) _ EA

Registers Altered

rA

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stbfcmux FCM5, rA, rB

31 FCM5 rA rB 647 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

326 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

sthfcmux

Store Halfword With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

Two least-significant bytes of the register inferred by FCM5 are stored into the addressed
referenced by EA. The EA is loaded into the rA register.

Pseudocode

EA _ ((rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,2) _ APU(FCM).dataeb:eb+15
(rA) _EA

Registers Altered

rA

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stbfcmux FCM5, rA, rB

31 FCM5 rA rB 679 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 327
UG200 (v1.6) January 20, 2009

Introduction
R

stwfcmux

Store Word With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA.
The EA is loaded into the rA register.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
(rA) _ EA

Registers Altered

rA

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stwfcmux FCM5, rA, rB

31 FCM5 rA rB 711 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

328 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

stdfcmux

Store Double With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA
and EA + 4. The source register is assumed to be 64 bits wide. The EA is loaded into the rA
register.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
(rA) _ EA

Registers Altered

rA

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stdfcmux FCM5, rA, rB

31 FCM5 rA rB 903 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 329
UG200 (v1.6) January 20, 2009

Introduction
R

stqfcmux

Store Quad With Update Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA
through EA+12. The source register is assumed to be 128 bits wide. The EA is loaded into
the rA register.

Pseudocode

EA _ ((rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+8,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+12,4) _ APU(FCM).data
(rA) _ EA

Registers Altered

rA

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

• rA = 0

stqfcmux FCM5, rA, rB

31 FCM5 rA rB 743 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

330 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 331
UG200 (v1.6) January 20, 2009

Introduction
R

stbfcmx

Store Byte Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The least-significant byte of the register inferred by FCM5 is stored into the byte referenced
by EA.

Pseudocode

EA _ (0|rA) + (rB)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,1) _ APU(FCM).dataeb:eb+7

Registers Altered

None

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stbfcmx FCM5, rA, rB

31 FCM5 rA rB 135 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

332 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

sthfcmx

Store Halfword Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The two least-significant bytes of the register inferred by FCM5 are stored into the address
referenced by EA.

Pseudocode

EA _ ((0|rA) + (rB)) & (~1)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,2) _APU(FCM).dataeb:eb+15

Registers Altered

None

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

sthfcmx FCM5, rA, rB

31 FCM5 rA rB 167 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 333
UG200 (v1.6) January 20, 2009

Introduction
R

stwfcmx

Store Word Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data

Registers Altered

None

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stwfcmx FCM5, rA, rB

31 FCM5 rA rB 199 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

334 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

stdfcmx

Store Double Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA.
The source register is expected to be 64 bits wide.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data

Registers Altered

None

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stdfcmx FCM5, rA, rB

31 FCM5 rA rB 391 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 335
UG200 (v1.6) January 20, 2009

Introduction
R

stqfcmx

Store Quad Indexed (FCM)

Description

An effective address (EA) is calculated by adding an index to a base address, which is
formed as follows:

• The contents of the rB register are used as the index.

• The contents of the rA register are used as the base address. If rA is 0, then 0 is used as
the base address.

The contents of the register inferred by FCM5 are stored into the address referenced by EA.
The source register is expected to be 128 bits wide.

Pseudocode

EA _ ((0|rA) + (rB)) & (~3)
eb _ 8 * EA28:31
APU(FCM).data _ custom_op(FCM5)
MEM(EA,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+4,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+8,4) _ APU(FCM).data
APU(FCM).data _ custom_op(FCM5)
MEM(EA+12,4) _ APU(FCM).data

Registers Altered

None

Exceptions

• Data storage: this exception is raised if the access is prevented by zone protection
when data relocation is enabled.

♦ No-access-allowed zone protection applies only to accesses in user mode.

♦ Read-only zone protection applies to user and privileged modes.

• Data TLB miss: this exception is raised if data relocation is enabled and a valid
translation entry corresponding to the EA is not found in the TLB.

Execution of any of the following invalid instruction forms results in a boundedly
undefined result rather than a program exception:

• Reserved bits containing a non-zero value

Compatibility

This instruction is predefined by Xilinx as using the APU controller.

stqfcmx FCM5, rA, rB

31 FCM5 rA rB 231 0

0 5 6 10 11 15 16 20 21 30 31

http://www.xilinx.com

336 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 15: APU Programming
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 337
UG200 (v1.6) January 20, 2009

R

Chapter 16

Additional Programming
Considerations

This chapter contains additional information for programmers. The information here
overrides what is specified in the PPC440x5 CPU Core User’s Manual [Ref 5] for PowerPC
implementations in Virtex-5 FXT FPGAs.

Processor Version Register
The Processor Version Register (PVR) is a 32-bit read-only register typically used to
identify a specific processor core and chip implementation. Software can read the PVR to
determine processor core and chip hardware features. The PVR can be read into a GPR
using the mfspr instruction. Valid PVR values are 0x7FF21910, 0x7FF21911, and
0x7FF21912.

Processor Identification Register
The Processor Identification Register (PIR) is a read-only register that uniquely identifies a
specific instance of a processor core, enabling software to determine exactly which
processor it is running on. The PIR can be read into a GPR using the mfspr instruction. Bits
[0:27] of the PIR are reserved. The default value for bits [28:31] of the PIR is 1111, but the
value for these four bits can be defined by the user while configuring the processor as
described in PowerPC 440 Wrapper Data Sheet [Ref 7].

Bit Settings for APU/FPU Usage
Whenever the APU/FPU is used, CCR0[9] must be set to 1. Whenever the APU/FPU is
used, CCR0[26] must be set to 1 in any operating environment where ITLB exceptions can
occur. ITLB exceptions can occur in operating systems such as Linux. If the APU/FPU is
not used, CCR0[26] must be set to 0 to avoid performance degradation.

http://www.xilinx.com

338 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

Chapter 16: Additional Programming Considerations
R

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 339
UG200 (v1.6) January 20, 2009

Numerics
128-bit mode 70, 78
36-bit physical addressing 35
405 processor migration 209
64-bit mode 70, 78

A
ABUS address 85

mismatch error 67, 74, 110
address map

DCR 152, 242
user-programmable 51

address match 79, 85
address mismatch error 69, 76
address phase 53
address pipelining 25, 89, 100, 121
address space, system 35
address template registers 51, 52

SPLB 110
appMasken bit 233
APU

configuration register 204
control register 205
instruction set extension 313
interface 26, 31

APU controller 31, 187
decode exceptions 201
description 188
features 187
generated exceptions 203
signals 191

APU_CONTROL attribute 263
APU_UDI attributes 262
APUFCMNEXTINSTRREADY signal

197
APUFCMWRITEBACKOK signal 197
ARB_XBC register 44, 98
ARB_XBM register 44
arbiter operation 156
arbitration 43

crossbar 34
DCR 154
fixed 44, 46
LRU 44
registers 44, 47
round-robin 44, 45, 156

arbitration mode 47, 62, 63, 98
arbitration schemes

fixed 61
round-robin 61

asynchronous mode 158, 159
attribute pins 52
attributes

APU_CONTROL 263
APU_UDI 262
DCR_AUTOLOCK_ENABLE 161
DESKEW_ADJUST 150, 158
DMA_CONTROL 310
DMA_RXCHANNELCTRL 306
DMA_TXCHANNELCTRL 300
DMAn_CONTROL 254
DMAn_RXIRQTIMER 236
DMAn_TXIRQTIMER 236
INTERCONNECT_IMASK 272
INTERCONNECT_TMPL_SEL 276
load/store endian 191, 197, 201,

206, 212
MI_ARBCONFIG 63
MI_CONTROL 265
PPCDM_ASYNCMODE 158, 161
PPCDS_ASYNCMODE 158, 161
PPCM_ARBCONFIG 61
PPCM_CONTROL 80
PPCS0_ADDRMAP_TMPL 72
PPCS0_CONTROL 65
PPCS1_ADDRMAP_TMPL 79
PPCS1_CONTROL 72
storage 89
XBAR_ADDRMAP_TMPL 64

auto bus lock 153
auto hold-off causes 133
autohold 144, 145
auto-lock 161
autonomous instructions 199

B
back-to-back read burst requests 121
block symbol

debug interface 177
JTAG interface 167
trace interface 181

board layout considerations 146

Book E: Enhanced PowerPC Architecture
Specification 17, 19, 187, 193

Boundary-Scan 26, 167
branch history table 20
branch target address cache 20
buffer address 227
buffer length 227
burst length 136, 266
burst requests, requirements 87
burst transaction type 87
burst transfers 99

early terminated 38
reads 91, 94, 114
variable length 38, 41
writes 97, 104

burst width 136, 266
burst, premature termination 89, 100
bus lock

auto 155
normal 155

bus-based ordering assumptions 33
busy signals 39

crossbar arbiters 49
DMA_CHANNEL_BUSY 228
PPCCPMINTERCONNECTBUSY

54, 148, 149
slave PLB 38

byte enable signals
MPLB 93
SPLB 101

C
cache-inhibited pages 87
cache-line

locking 22
transaction type 88
transfers 88, 100

requirements 87
caches, primary 18
CCR0[26] setting 337
CCR0[9] setting 337
clock alignment requirement 150
Clock Divider module 236
clock domain synchronization 187
clock frequency ratios 149, 150
clock interface 147

signals 147

Index

http://www.xilinx.com

340 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

clock ratio mode 136
clocks

embedded processor block 147
FCM 208

CoalesceCounterValue field 237
coalescing counters, RX and TX 234
CodePack 18
command address mismatch 75
command capture 71, 78, 84
command error 59, 60
command queues 53, 111
command sniffer 67, 68, 74, 75, 81
command sniffer address register 71, 79,

85
command sniffer register 71, 78, 84
complex integer pipeline 21
configuration error 59, 60
conflict signal 144
control, configuration, and status register

161
CoreConnect 151
CPMC440CLK signal 149, 150
CPMC440CLKEN signal 149
CPMC440TIMERCLOCK signal 149
CPMINTERCONNECTCLK signal 149,

150
CPMINTERCONNECTCLKEN signal

149
CPMINTERCONNECTCLKNTO1 sig-

nal 149
critical interrupts 164
crossbar 30, 33

arbiters 49
features 34
interface bus widths 37
latency 112
MPLB interface 87
ordering requirement 49
output command queue 35
SPLB interfaces 99
supported transfer types 35
template registers 64
transaction size 35

crossbar arbitration 43
priority 61, 63, 98
priority enabling 80

current descriptor pointer register 237

D
data cache controller 22
data phase 53

of transfers 49

ordering 49
DBCR0 24
DBSR register 149
DCC 22
DCR 44

address map 56, 152, 242
arbitration diagram 154
blocks 151
clock frequency 158
masters 151
programming considerations 259
reads 204
register summary 259 to 311
slaves 151
time-out 153

DCR bus 151
DCR controller 152

address decoding 152
features 152
input clocks 158

DCR interface 26
signals 157

DCR interrupt registers 235
DCR TX interrupt register 237
DCR_AUTOLOCK_ENABLE attribute

161
DCRs 31, 56
DCURD interface 33, 38
DCUWR interface 33, 37
DDR 266
deadlock situations 55, 99
deadlock, avoiding 129
debug event 183
debug facilities 18
debug interface 177

block symbol 177
signals 178

debug wait mode 24
decode signals 194, 195, 196
decoded UDI register 191
decrement timer 164
decrementer 18, 148
decrementer (DEC) 23
decrementer auto-reload register 24
delay timer 236

RX and TX 234
Descriptor

Life cycle 239
descriptor

DMA channel 226
format 227
packet definition 229

Descriptor ring 240
Descriptor state machine 237
DESKEW_ADJUST attribute 150, 158
direct addressing mode 152
DMA

channels 226
control register 254
interfaces 34
interrupts 234
legacy mode 229
priority value 108
software sequence operation 237

DMA controller 31, 225
features 225
signals 255

DMA engine interfaces 255
DMA LocalLink interface

RX 231
TX 229

DMA_CONTROL attributes 310
DMA_RXCHANNELCTRL attributes

306
DMA_TXCHANNELCTRL attributes

300
DMA0/DMA1 enabling 65
DMA2/DMA3 enabling 72
DMALLRSTENGINEACK signal 238,

254
DMAn_CONTROL attribute 254
DMAn_RXIRQTIMER attribute 236
DMAn_TXIRQTIMER attribute 236
DTLB 23
dynamic reconfiguration, processor block

54

E
early terminated burst 38
EDK 34, 35, 51, 52, 65, 110
Embedded Development Kit. See EDK.
embedded processor 17

block diagram 29
EOP 227
error address registers 81
error Irqs, RX and TX 234
errors

ABUS address mismatch 67, 110
address mismatch 69
configuration or command 59, 60
FIFO 60
parity 21, 22
PLB MIRQ 59, 60
PLB time-out 60

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 341
UG200 (v1.6) January 20, 2009

R

PLBM configuration 60
read transaction 59, 60
soft 18, 21, 22
write posting 69, 76, 82
write transaction 59, 60

exceptions
alignment interrupt 201
APU controller decode 201
APU controller generated 203
auxiliary processor enabled 202
byte ordering 201
data TLB error interrupt 201
FCM generated 202
floating-point enabled 202
floating-point unavailable interrupt

201
FPU generated 202
illegal instruction exception 201
privileged instruction 202
read access control 200
storage 200
UDI or FPU 200
unimplemented operation 201
write access control 201

extended opcode 187, 193, 194, 207
extended real page number 96
external DCR master

access time-out 162
auto bus lock 161
interface asynchronous mode 161
time-out wait 161

external DCR slave
interface asynchronous mode 161

external debug mode 24, 25, 179
external interrupts 164
external master bus lock 161

F
failed transaction 67, 68, 75
FCM 188

clocking 208
features 187
instruction format 192
instructions 196
signals 191

FCM5 313
FCMAPUDONE signal 198
FIFO error 60
FIFO overflow 69, 76, 82
FIFO overflow status 62, 64
FIFO underflow 69, 76, 82

FIFO underflow status 62, 64
first level arbitration 136
fixed interval timer 18, 148, 164
fixed interval timer (FIT) 23
fixed length bursts 99
floating-point instructions 193
flush mode 84
flush signal 197
flushed command 89
footer 229, 232
FPGA logic error address registers 81
FPGA logic slave error status register 81
FPU generated exceptions 202

G
garbage header data 232
ghost write 204
GPR file 20
Grestore event 149

H
hardware reset 238
header 229, 232
high-speed I/O device 127
hold-off signal 133

I
ICC 21
ICURD interface 33, 37
IEEE 1149.1 18, 26, 167
illegal command 69, 75, 76
indeterminate bursts 42
indirect access register 160
indirect address register 160
indirect addressing mode 152, 153
input command queue 69, 77, 83
instruction cache controller 21
instruction format

FCM general 192
FCM load/store 195

instruction set extension 313
instruction unit 20
instructions

autonomous 199
FCM load/store 195, 196
FCM non-storage 199
non-autonomous with early confir-

mation 199

non-autonomous with late confirma-
tion 199

INTERCONNECT_IMASK attribute 272
INTERCONNECT_TMPL_SEL attribute

276
interfaces

APU 26, 31
crossbar MPLB 87
crossbar SPLB 99
DCR 26
DCURD 33, 38
DCUWR 33, 37
debug 177
DMA 34
DMA RX LocalLink 231
DMA TX LocalLink 229
ICURD 33, 37
interrupt controller 163
JTAG 26, 167
LocalLink 34
MCI 33
MPLB 33
PLB 25
PLB master 30
PLB slave 30
SPLB 38
trace 181

internal debug mode 24, 25, 179
interrupt coalescing 236

counter 236
interrupt controller

interface 163
usage requirements 165

interrupt enable bits 234
interrupt interface signals 165
interrupt mask register 61
interrupt masks 61, 272
interrupt sources 164, 245, 251
interrupt status 59
interrupt status register 59
interrupts

coalescing counter 246, 252
critical 163, 164
delay timer 246, 252
distributed PLB 42
DMA 234
error 246, 252
external 163, 164
maskable error 235
non-maskable 245, 251
non-maskable error 235

http://www.xilinx.com

342 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

PLB read error non-maskable 246,
252

PLB write error non-maskable 246,
252

TX delay timer 236
ISA 313
ITLB 23
ITLB exceptions 337

J
JTAG interface 26, 167

block symbol 167
signals 168

JTAG_PPC Processor IP module 167
JTAGPPC440 primitive 173, 175
JTGC440TRSTNEG signal 167

L
latency 114, 125

crossbar 112
ldIrqCnt field 237
limitations

crossbar 55
PLB interface 99

Linux 337
livelock 55
load and store instructions, FCM 195, 196
load instruction sequence 197
load/store endian attribute 191, 197, 201,

206, 212
load/store pipeline 21
LocalLink channels 30
LocalLink interfaces 34, 225
lock transfers 67, 74, 80, 97, 110
locked transfers 47

M
machine state register 23, 24
maskable error interrupts 235
MaskEnable mode 233
master ID 68, 71, 75, 78, 82, 85
master priority 43, 44
master read queue 69, 77, 83
master size 68, 75
master write queue 69, 77, 83
maximum burst threshold

memory interface read 109
memory interface write 109
MPLB read 109

MPLB write 110
MBusy signal 39, 89
MCI 33, 41

arbitration configuration register 63
block 131
clock 137
description 132
disabling 42
enable bit 135
features 132
signals 137

MCMIADDRREADYTOACCEPT signal
144, 145

MCMIREADDATAERR signal 134
memory interface 41
memory management unit 18, 22
MI_ARBCONFIG attribute 63
MI_BANKCONFLICT_MASK register

135
MI_CONTROL attribute 265
MI_CONTROL register 135
MI_ROWCONFLICT_MASK register

135
MIMCBANKCONFLICT signal 135, 267
MIMCROWCONFLICT signal 135, 267
MIRQ signal, SPLB 106
MIRQ status bits 70, 77, 83
mismatch 36
MMU 18, 20, 22
Mn_busLock signal 47
modes

128-bit 70, 78
64-bit 70, 78
arbitration 47, 62, 63, 98
asynchronous 158, 159
clock ratio 136
debug 24
debug wait 24
direct addressing 152
DMA legacy 229
external debug 24, 25, 179
flush 84
indirect addressing 152, 153
internal debug 24, 25, 179
MaskEnable 233
QDR support 134
Read Modify Write 134
real-time trace 24
slave early burst termination 80
sleep 54, 149, 178, 192
synchronous 158
wildcard 193

MPLB 40, 87
interface 33
signals 90

MPLBnMCI signal 53
MSR register 203

N
narrow slaves 89
next descriptor pointer field 227
non-autonomous with early confirmation

instructions 199
non-autonomous with late confirmation

instructions 199
non-maskable error interrupts 235
non-maskable interrupts 245, 251
non-storage instructions 199

O
opcodes

extended 187, 193, 194
primary 187, 193, 194

ordered transfer 96
output command queue, crossbar 35
overflow 62, 64, 76
overlapped transfers 89, 100
overlapping reads and writes 134

P
packet 229, 232

description of 229
parity error 21, 22
partial address decoding, DCR 152
payload 229, 232
periodic interrupt 24
pipelined read enable 136
pipelined write enable 137
pipelines 17, 20
pipelining

address 100
performance issue 45
read address 67, 74, 80, 97, 110
write address 67, 74, 80, 97, 110

PIR register 337
PLB 87

arbitration configuration register 61
configuration register 72, 80, 97, 108
error address register 68, 74, 75
error address registers 67
error status register 70, 75, 77, 83

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 343
UG200 (v1.6) January 20, 2009

R

FIFO overflow and underflow status
register 62

interconnection strategies 124
interfaces 25
limitations 99
master interface 30
MIRQ error 59, 60
miscellaneous control and status reg-

ister 63, 70, 78, 84
miscellaneous status register 69, 76,

82
priority enable 136
protocol 49, 53, 127
size 69, 76, 82
slave interfaces 30
template registers 72, 79
time-out error 60
type 68, 75, 82

PLB Architecture Specification 34, 70, 87,
99

PLB interfaces
primary function 36

PlbRdErr 245
PlbWrErr 245
ports, SPLB 33
power management

interface 147
signals 147

PowerPC 440 embedded processor 17
block diagram 20
features 17

PPC440 JTAG logic 169, 173
PPCCPMINTERCONNECTBUSY signal

54, 149
PPCDM_ASYNCMODE attribute 158,

161
PPCDS_ASYNCMODE attribute 158, 161
PPCM_ARBCONFIG attribute 61
PPCM_CONTROL attribute 80
PPCS0_ADDRMAP_TMPL attributes 72
PPCS0_CONTROL attribute 65
PPCS1_ADDRMAP_TMPL attributes 79
PPCS1_CONTROL attribute 72
precise exceptions 202
pre-decode stage 192
primary caches, list 18
primary opcode 187, 193, 194, 207
primary read request 102
primary write request 105
primitive, JTAGPPC440 173, 175
priority

DMA0/DMA1 65
DMA2/DMA3 72

process ID (PID) 23
processor auto bus lock 161
processor bus lock 161
processor DCR master access time-out

162
processor identification register 337
processor pipeline 188
processor version register 337
programming considerations, DCR 259
programming differences 337
PVR register 337

Q
QDR 136, 266
QDR support mode 134
quadword transfers 53

R
R/W command re-ordering, prevention

of 80
read command queue 62, 64
read data queue 69, 76, 82
read MCI threshold 66, 73
Read Modify Write mode 134
read PLB master threshold 66, 73
read transaction error 59, 60
real-time trace mode 24
re-arbitrate signal 111
registers

address template 51, 52
APU configuration 204
APU control 205
arbitration 44, 47
arbitration configuration 63
CFG_PLBS0 38
CFG_PLBS1 38
command sniffer 71, 78, 84
command sniffer address 71, 79, 85
control, configuration, and status

161
crossbar template 64
DCR control, configuration, and sta-

tus 161
DCR indirect access 160
DCR indirect address 160
Debug Control Register 0 24
decrementer auto-reload 24
DMA control 254
error status 68, 75
FPGA logic error address 81

FPGA logic slave error address 81
interrupt mask 61
interrupt status 59
machine state 23, 24
MCI FIFO overflow and underflow

status 64
MCI miscellaneous control and sta-

tus 64
MI_BANKCONFLICT_MASK 135
MI_CONTROL 135
MI_ROWCONFLICT_MASK 135
PLB arbitration configuration 61, 98
PLB configuration 65, 72, 80, 97, 108
PLB error address 67, 68, 74, 75
PLB error status 70, 77, 83
PLB FIFO overflow and underflow

status 62
PLB miscellaneous control and sta-

tus 63, 70, 78, 84
PLB miscellaneous status 69, 76, 82
PLB template 72, 79
processor identification 337
processor version 337
RX channel control 250
RX current buffer address 248
RX current buffer length 249
RX current descriptor pointer 249
RX interrupt 251
RX next descriptor pointer 248
RX status 253
RX tail descriptor pointer 249
SEAR 65, 67, 68, 72, 74, 75, 80, 81,

94, 101
SESR 65, 68, 72, 75, 80, 81, 94, 101
slave error status 81
template selection 51, 65
timer control 24
TX channel control 244
TX current buffer address 243
TX current buffer length 243
TX current descriptor pointer 244
TX interrupt 245
TX next descriptor pointer 243
TX status 247
TX tail descriptor pointer 244
UDI 194
UDI configuration 195, 204, 207

request priority 43
requirements

burst requests 87
cache-line transfers 87
crossbar 49
interrupt controller 165

http://www.xilinx.com

344 www.xilinx.com Embedded Processor Block Reference Guide
UG200 (v1.6) January 20, 2009

R

reset
DMA engine 238
hardware engine mechanism 238
interface 147
queues 63, 64, 70, 78, 84
signals 147
software engine mechanism 238

restrictions
MaskEnable mode 233
precise exceptions 202
wildcard 194

RISC CPU 17
RMW bit 146
round-robin

arbitration 156
priority scheme 37

RSTC440RESETCHIP signal 149
RSTC440RESETCORE signal 149
RSTC440RESETSYSTEM signal 149
RX channel control register 250
RX current buffer address register 248
RX current buffer length register 249
RX current descriptor pointer register

249
RX interrupt register 251
RX next descriptor pointer register 248
RX status register 253
RX tail descriptor pointer register 249

S
SEAR register 65, 67, 68, 72, 74, 75, 80,

81, 94, 97, 101, 108
secondary read request 102
secondary write request 105
SESR register 65, 68, 72, 75, 80, 81, 94, 97,

101, 108
shadow TLBs 23
signals

APU controller and FCM 191
busy, slave PLB 38
clock interface 147
crossbar arbiters 49
DCR clock 158
DCR interface 157
debug interface 178
DMA controller 255
interrupt interface 165
JTAG interface 168
MBusy 39
MCI 137
MPLB interface 90

power interface 147
reset interface 147
SPLB interfaces 101
trace interface 182

simple integer pipeline 21
single transfers 53
single-unit transaction type 87
single-unit transfers 99
size match 79
Sl_rdWdAddr signal 37
slave early burst termination mode 80
slave interface, supported commands 68,

75
slave read queue 69, 76, 82
slave size 82
slave write queue 69, 76, 82
sleep control 54
sleep mode 54, 149, 178, 192
soft errors, protection against 18, 21, 22
software reset 238
SOP 227
specifications

Device Control Register Bus 3.5 Ar-
chitecture 151

enhanced PowerPC architecture 193
PLB architecture 34, 70, 87, 99
Xilinx LocalLink 229

speculative prefetching, warning 21
SPLB

interfaces 38
SPLB interfaces

signals 101
SPLB ports 33
stall 133
standards

IEEE 1149.1 18, 26, 167
starvation 45, 46
static reconfiguration event 149
StopOnEnd bit 237
storage attribute 21, 22, 23, 89

caching inhibited 95, 103
guarded 95, 103
memory coherent 95, 103
user-defined 18, 23, 51, 95, 96, 103,

104
write through 22, 95, 103

storage exceptions 200
store instruction sequence 198
store-with-allocate operation 22
store-without-allocate operation 22
Sts/Ctrl format 228
SwReset bit 238

Sync 89
sync control signal 89
Sync TAttribute 50, 62, 165

implementation 51
sync transaction request 50
synchronous mode 158

T
tail descriptor pointer register 237
TAP controller 167
TAttribute signal 89, 98
TCK 168
TDI 168
TDO 168
template selection register 51, 65
threshold

read MCI 66, 73
read PLB master 66, 73
write MCI 66, 73
write PLB master 67, 74

TIEDCRBASEADDR pins 152
tie-off pins 152
time base 18, 23, 148
time-out signal 89
time-out wait 155, 157
timer control register 24
timer status register 24
timers 18, 23
TLB 22, 51, 96
TMPL_SEL_REG register 51, 52
TMPLx_XBAR_MAP registers 51, 52
TMS 169
topology, DCR 152
trace cycle 182
trace interface 181

block symbol 181
signals 182

transaction rate mismatch 36
transaction types

MPLB 87
SPLB 99

transactions in flight 54
transfer rate mismatch 111
transfers

APU controller size 191
locked 47
quadword 53
single 53
size and type 95

translation lookaside buffer 22
trigger event indication 182

http://www.xilinx.com

Embedded Processor Block Reference Guide www.xilinx.com 345
UG200 (v1.6) January 20, 2009

R

TRST 169
TX channel control register 237, 244
TX current buffer address register 243
TX current buffer length register 243
TX current descriptor pointer register 244
TX delay timer interrupt 236
TX interrupt register 245
TX next descriptor pointer register 243
TX status register 247
TX tail descriptor pointer register 244

U
U3 attribute 89
UDI configuration registers 195, 204, 207
UDI registers 194
UDIs 195
unconnected FPU 313
underflow 62, 64, 76
user-defined storage attributes 18, 23, 51

V
valid bit 68, 75, 81
variable burst lengths 38, 41, 42

W
watchdog timer 18, 23, 148
waveforms

APU exception, CPU flushed 223
APU exception, CPU received 222
autohold 144, 145
autonomous instructions 213, 214
burst read command 116
burst transfer split 139
burst write command 122
DCR timing 160
enabled RMW bit 146
FPU exception 224
locked transfer 48
MCI data translation 141
MCI data translation not ready 141
missed ready to accept 145
non-autonomous instructions 217
non-autonomous instructions with

early confirm 218
non-autonomous instructions with

late confirm 221
PLB burst 139
QDR operation 143
quadword loads 215, 216

quadword read burst 123
quadword stores 219, 220
read burst requests 121
single-unit read 118
single-unit write 117
system-level read request 138
system-level write request 138
typical burst read transfer 114
typical burst write transfer 113
unaligned burst 119
write burst requests 120
write burst transfer 115

WCRR 154
wildcard 194, 208, 263
wildcard mode 193
write command queue 62, 64
write data queue 69, 76, 82
write MCI threshold 66, 73
write PLB master threshold 67, 74
write posting 67, 68, 70, 74, 75, 77, 80, 83,

98, 110, 165
write posting error 69, 76, 82
write transaction error 59, 60
writebackok 198
write-through storage attribute 22

X
XBAR_ADDRMAP_TMPL attributes 64
Xilinx LocalLink Specification 229

http://www.xilinx.com

	Embedded Processor Block in Virtex-5 FPGAs
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Documentation
	Additional Support Resources
	Typographical Conventions
	Online Document

	Section I: Introduction
	PowerPC 440 Embedded Processor
	PowerPC 440 Embedded Processor Features
	PowerPC 440 Embedded Processor as an IBM PowerPC Implementation
	Processor Organization
	Superscalar Instruction Unit
	Execution Pipelines
	Instruction and Data Cache Controllers
	Memory Management Unit (MMU)
	Timers
	Debug Facilities

	Processor Interfaces
	Processor Local Bus (PLB)
	Device Control Register (DCR) Interface
	Auxiliary Processor Unit (APU) Port
	JTAG Port

	Section II: Embedded Processor Block
	Embedded Processor Block Overview
	Embedded Processor Block Components
	Crossbar and its Interfaces
	Control and other Interfaces
	Auxiliary Processor Unit Controller
	Direct Memory Access Controller

	Crossbar
	Overview
	Key Features

	Hardware Description
	Overview
	Hardware Interface
	Slave Ports
	Slave Port PLB Busy Signals
	Master Ports
	Interrupts

	Functional Description
	Arbitration
	Address Mapping
	Pipelining
	Miscellaneous Notes
	Miscellaneous Signals

	Usage Notes and Limitations
	Crossbar Limitations for PCI and PCI Express Designs

	Device Control Registers (DCRs)
	Overview of the DCR Map
	Detailed DCR Descriptions

	PLB Interface
	MPLB Interface
	Transaction Types
	MPLB Interface Features
	MPLB Interface Signals
	MPLB Configuration

	SPLB Interfaces
	Transaction Types
	SPLB Interface Features
	SPLB Interface Signals
	SPLB Configuration

	Command Translation
	Crossbar Timing
	Crossbar Latency
	Transaction Waveforms

	PLB Interconnection Techniques

	Memory Controller Interface
	Overview
	Interface Features
	Crossbar Transactions

	Control and Configuration
	MI_ROWCONFLICT_MASK [0:31] Register
	MI_BANKCONFLICT_MASK [0:31] Register
	MI_CONTROL [0:31] Register

	Signal Descriptions
	Timing Diagrams
	Board Layout Considerations

	Reset, Clock, and Power Management Interfaces
	Overview
	Reset, Clock, and Power Management Interface
	Clock and Reset During Configuration and Reconfiguration
	System-Level Considerations
	Clock Insertion Delays and PLL Usage

	Device Control Register Bus
	Introduction
	Design and Implementation
	Partial Address Decoding
	Indirect Addressing
	Dual DCR Master Arbitration
	Time-out Wait
	Input and Output Interfaces
	DCR Controller Registers

	Interrupt Controller Interface
	Functional Description
	Related Processor Behavior
	On-Core Interrupt Sources

	Interrupt Interface Signals
	Usage Requirements

	JTAG Interface
	JTAG Interface I/O Symbol
	JTAG Interface I/O Signal Descriptions
	Connecting PPC440 JTAG Logic Directly to Programmable I/O
	Connecting PPC440 JTAG Logic in Series with the Dedicated Device JTAG Logic

	Debug Interface
	Debug Interface I/O Symbol
	Debug Interface I/O Signal Descriptions

	Trace Interface
	Trace Interface I/O Symbol
	Trace Interface I/O Signal Descriptions

	Section III: Controllers
	Auxiliary Processor Unit Controller
	Overview
	Feature Summary
	Interface Description
	Instruction Decoding
	FPU Instructions
	FCM User-Defined Instructions
	FCM Load/Store Instructions

	Instruction Execution
	Storage Instructions (FCM Loads and Stores)
	Non-Storage Instructions

	Exceptions
	Storage Exceptions
	APU Controller Decode Exceptions
	FCM Generated Exceptions
	FPU Generated Exception Execution Details
	APU Generated Exception Execution Details

	APU Configuration
	Enabling the APU Controller
	Configuration Registers

	Clocking
	Processor Migration
	New Features
	Dropped Features
	Interface Changes

	Timing Diagrams for the APU Controller

	DMA Controller
	DMA Controller Features
	DMA Operation
	Descriptor Format
	Using Descriptors to Describe a Packet
	DMA Legacy Mode

	DMA TX LocalLink Interface
	DMA RX LocalLink Interface
	Masking of Application Data Update
	DMA Addressing Limitation
	Interrupt Mechanism
	Maskable Error Interrupts
	Non-Maskable Error Interrupts
	Delay Timer
	Interrupt Coalescing Counter

	Dynamic Descriptor Appending
	DMA Engine Reset
	Hardware Engine Reset Mechanism
	Software Engine Reset Mechanism

	Software/Device Driver Considerations
	Implementation Note

	Programming Interface and Registers
	DCR Address Map
	DCR Descriptions

	Physical Interface

	Section IV: Programming Considerations
	DCR Programming Considerations
	Overview of the Device Control Registers (DCRs) Map
	Detailed Descriptions
	DCR Controller (0x00 - 0x02)
	APU Controller (0x04 - 0x05)
	Memory Controller Interface (0x10 - 0x12)
	DCRs for the PLB Interfaces and Crossbar (0x20 - 0x5F)
	DMA Engines (0x80 - 0xDF)

	APU Programming
	Introduction

	Additional Programming Considerations
	Processor Version Register
	Processor Identification Register
	Bit Settings for APU/FPU Usage

	Index

