
Talha Ansari

CprE 583

Fall 2011

Soft Error Susceptibility in SRAM-Based FPGAs

 With the increasing emphasis on minimizing mass and volume along with

cost in aerospace equipment, the use of FPGAs has slowly but gradually increased

over the last decade. With the SRAM-based FPGAs offering more flexibility for

designers, it has quickly become one of the most common source of FPGA in the

industry. However, with the selection of this type of a device, engineers have also

had to integrate techniques to account for soft errors caused by the harsh

environments, thirty to sixty thousand miles in the air. These environments are

filled with ionized neutrons and protons that can generate soft errors in the system.

There are many things that can cause a soft error, from signal noise to

electromagnetic interface to alpha particles to cosmic rays creating energetic

neutrons and protons. Since majority of the space in the FPGA is used as memory

bits, Single Event Upsets (SEU) and Single Event Transients (SET) are more common

in these devices. Also, since configuration memory in these devices is composed of

static RAM cells these are more susceptible to soft errors as composed to flash based

FPGAs. These errors if not detected or accounted for can cause erroneous data into

the system leading to catastrophic outcomes. These devices when compared to

Application Specific Integrated Circuits (ASICs) are more susceptible to such soft

errors, as majority of the FPGA is allocated to memory bits.

 This paper focuses on SEU and SET errors referred henceforth as soft errors.

Mitigation techniques for both will be discussed which include both analytical and

real on chip solutions. Mitigation against SEU and SET can be handled at two levels,

by manufacturer of the FPGA through built-in circuit techniques and by end-user

through design and system techniques. Along side mitigation, detection mechanisms

will also be briefly discussed for each type of soft error.

Single Event Upsets

 Single event upset is a state change for a memory buffer, whether it is in a

processor, a memory component of an FPGA. It is mainly caused by an ion striking

the transistor and causing it to change its state. Therefore a transistor might change

its state from bit 1 to bit 0, hence making the data stored in that part of the memory

invalid. To address SEUs in FPGAs, it is important to handle two parts of the FPGA,

the user memory and the configuration memory areas [2]. The users memory area

contains information such as registers, gate information, memory arrays etc. On the

contrary information in the configuration memory part of the FPGA consists of

information as to which part of the FPGA implements what functions. One of the

most common mechanisms for handling SEUs in FPGAs is the Triple Modular

Redundancy.

 Triple modular redundancy (TMR) scheme is a very creative way to harden

the FPGA against SEU. The basic idea for a TMR is that three copies of the same

design are copied on the FPGA along with a majority voter [1]. It is important to

note that this approach is only valid for single faults. For multiple faults, this

architecture might not hold true. For example if the same bit is flipped on two of the

three copies of the design, then the fault can carry over. The probability of this

happening however is very low. The majority voter can be either designed inside the

FPGA or outside in a different circuit. When implemented inside the FPGA, this part

of the circuit is also susceptible to SEU. Hence another more advanced approach is

to triplicate the majority voter circuit as well [2]. Figure 1 and Figure 2 show the

two different approaches of TMR with a high-level block diagram.

Figure 1. Basic TMR approach with code replication and single majority voter [1].

Figure 2. TMR approach where circuit and majority voter are hardened [2]

 In the first figure, the design is triplicated with a single majority voter while

the second figure shows the triplication of the design as well as the majority voter.

Since TMR requires the design to be triplicated, more power and more footprint is

utilized. Hence this impacts cost directly. In systems where cost and footprint are

important, partial TMR can be implemented [3]. In partial TMR, instead of

triplicating the whole design only a subset or the design is triplicated. This subset is

quantified as being critical with the use of analysis and projection tools to provide a

more reliable solution while minimizing cost as compared to a full TMR approach.

Figure 3. Partial TMR Approach. (a) No TMR applied, (b) & (c) partial TMR applied.

Shaded area represents SEU sensitive areas [3].

 As seen in the figure, multiple voters have to be placed after triplicating part

of the circuit instead of a final voter as in the full TMR approach. This also adds more

logic to the FPGA, which now becomes sensitive to SEUs therefore by concentrating

on these triplicating sections more reliability gains can be achieved [3].

PRATT et al.: FINE-GRAIN SEU MITIGATION FOR FPGAS USING PARTIAL TMR 2275

with TMR by triplicating them and adding voters when neces-

sary. This subset must be carefully selected so that the resulting

partially mitigated design is as reliable as possible.

Our Partial TMR method uses the concept of persistence, de-

fined in detail in [7], as a first level of prioritization. A persis-

tent error is caused by an SEU which corrupts the internal state

of the circuit. While non-persistent errors are corrected simply

by repairing the FPGA configuration (i.e., re-loading the orig-

inal contents of the FPGA programming memory), persistent er-

rors remain even after the configuration is repaired. Partial TMR

gives priority to the circuit components which are susceptible to

persistent errors and applies TMR to them. Section III will ex-

plain the concept of persistence in more detail.

B. Voter Placement and Continuous Triplication

The number and placement of voters is another important

consideration when applying partial TMR. For traditional full

TMR, voters are needed only in feedback sections of the cir-

cuit. These voters are needed in order to correct any errors in-

troduced in one of the three TMR replicates in that feedback

section. Three voters are placed in each feedback loop in order

to restore the state for all three TMR branches, even if one tem-

porarily has an erroneous value [2].

Partial TMR implies that some of the components in a de-

sign are to be triplicated and others are not. When a triplicated

component is meant to drive a non-triplicated component, the

triplicated output of the first component must be reduced to a

single output. When a non-triplicated component drives a trip-

licated one, three inputs are needed from the single driver.

In the case of a triplicated component driving a non-tripli-

cated component, three outputs can be combined into one by

a majority voter, thus producing a single output. In the case of

a non-triplicated component driving a triplicated one, a single

output wire can be routed to drive three different inputs. In both

cases, however, the sensitive cross section of the design is in-

creased. Since both the logic and the routing of an FPGA are

sensitive to SEUs, the voters inserted and the added routing both

add to the SEU-sensitive cross-section of the design.

Fig. 1 illustrates the difference between choosing adjacent

components and non-adjacent components to triplicate. Circuit

components are numbered and voters are labeled with the letter

“V.” Fig. 1(a) represents the unmitigated circuit while Fig. 1(b)

and (c) represents two options when triplicating two circuit com-

ponents. The area of the circuit which is sensitive to SEUs is

shaded in the figure. Notice that in Fig. 1(c), there are more cir-

cuit components (including voters and routing) that are sensitive

to SEUs than in Fig. 1(b).

Due to this added cross section, it is important to limit the

transitions from triplicated to non-triplicated logic and vice

versa. The addition of hardware to split one domain into three

as well as combine three TMR branches into one can cause

more chip resources to be used and a larger overall design

cross-section sensitive to SEUs. More reliability gains can be

achieved by concentrating the triplicated sections to avoid these

situations. Any method that triplicates only part of a design

should choose contiguous regions for TMR application.

Fig. 1. Circuit flow diagrams illustrating voter placement options. The SEU-
sensitive portions of the circuit are highlighted. (a) The unmitigated circuit.
(b) Two contiguous modules triplicated. (c) Two non-contiguous modules trip-
licated.

III. PERSISTENCE

As mentioned in Section II-A, our Partial TMR method uses

the concept of persistence as a method of prioritizing the ap-

plication of TMR. We have previously proposed that an FPGA

design can be divided into two sections: a persistent section and

a non-persistent section [7]. When any SRAM configuration bit

is upset, it remains in error until it is corrected. Although up-

sets in the configuration memory can be repaired, an upset in

the persistent section of the design may leave errors in the state

of the circuit even after the configuration is corrected. Upsets in

the non-persistent section will not produce these persistent er-

rors. This section will explain the difference between these two

circuit sections and how this affects the application of partial

TMR.

A. Configuration Scrubbing

To effectively protect an FPGA design from SEUs, mitiga-

tion schemes such as TMR must be accompanied with config-

uration scrubbing. Since TMR can only function if at least two

of the three replicates of the circuit are functioning, any mal-

functioning replicates should be repaired as soon as possible. If

upsets in the configuration of the FPGA are allowed to build up,

even a circuit with full TMR in place will eventually fail.

Configuration scrubbing, or simply scrubbing, is a periodic

refresh of the FPGA configuration memory. A sufficiently fast

scrubbing rate can insure that only a single fault exists in the

configuration at one time, allowing TMR to properly mitigate

functional errors.

Scrubbing coupled with TMR is not bullet-proof, however.

The random nature of upset occurrence means that no scrub-

bing rate can guarantee that two faults will not occur within the

same scrubbing period. Also, TMR has been shown to fail in

the presence of a single upset in some instances [8]. It is also

feasible that a single multi-bit upset (MBU) could affect more

than one triplicated module and cause TMR to fail.

It is important to understand that scrubbing does not prevent

errors from occurring in the circuit. It can only restore the con-

tents of the configuration memory of the FPGA. An unmiti-

gated circuit may operate incorrectly during the time between

the upset and the repair of the configuration. The way the circuit

Single Event Transients

 Contrary to SEU, Single Event Transients (SET) can also be caused through

electromagnetic radiation or by a striking cosmic partible, but in this case the fault is

propagated through a signal line. Generally when a particle strikes the FPGA node it

produces a current pulse, which then becomes a voltage disturbance that

propagates through the logic and eventually latches a fault [4]. Figure 4 shows a

very general picture where SET propagates on the output of an AND gate.

Figure 4. SET propagating through the AND gate output.

 When handling SETs in FPGA, masking has to be considered. There are three

types of masking effects that can prevent a transient pulse in combinational logic

from propagating and being latched by a memory element; logic masking, latch

window masking, and electrical masking [4]. Basically all these masking’s are to

protect and filter out these transients, as in electrical masking the transient goes

through multiple gates until it is eventually nullified.

 To add to the electrical masking part of the design, one approach suggested is

the Voltage-Time Quantization (VTQ) where rising and falling edges of each

transition are sampled and rounded to points in the interval from 0 to 2^N -1, where

N is the voltage resolution in bits [4]. This approach basically captures each

transition and the counter counts up to a high voltage, and counts low to the low

voltage. Then using synthesis delays at the electrical level are back annotated to the

VTQ model for analysis. So if a SET transient occurs in the design, it can be captured

by the counter implemented through the VTQ model. Experiments with such a

model show promising results [4] on how the design handles SETs.

System Level Improvements to Handle SET & SEU

Apart from implementing approaches within the FPGA, end users can also

implement detection schemes such as Error Detection and Correction (EDAC) or

Error Checking Correction (ECC). These features not only detect, but can also

correct single bit errors that may have occured due to an SET or an SEU. With these

mechanism, the user can have the FPGA reload it self from an external EEPROM

incase a fault is detected. These techniques are very common in the aerospace

industry as a mechanism to counter both types of soft errors.

With systems used in mission critical and aerospace industries, it is

important to detect soft errors caused by single event upsets and single event

transients to prevent the system from displaying or computing erroneous data. With

the flexibility and popularity of SRAM-based FPGAs, designers have to be aware of

such faults and need to design systems that are more robust through techniques like

TMR and VTQ.

Reference:

[1] L. Sterpone; M Violante, “Analysis of the Robustness of the TMR Architecture

in SRAM-Based FPGAs”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Vol.

52, No. 5, October 2005.

[2] L. Sterpone; M Violante, “A New Analytical Approach to Estimate the Effects

of SEUs in TMR Architectures Implemented Through SRAM-Based FPGAs”,

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Vol. 52, No. 6, December 2005.

[3] B. Pratt; M. Caffrey; J.F. Carroll; P. Graham; K. Morgan; M. Wirthlin, “ Fine-

Grain SEU Mitigation for FPGAs Using Partial TMR”, IEEE TRANSACTIONS ON

NUCLEAR SCIENCE, Vol. 55, No. 4, August 2008.

[4] L. Entrena; M. Valderas; R. Cardenal; M. Garcia; Celia Ongil, “SET Emulation

Considering Electrical Masking Effects”, IEEE TRANSACTIONS ON NUCLEAR

SCIENCE, Vol. 56, August 2009.

[5] S. Liu; G. Sorrenti; P. Reviriego; F. Casini; J. Antonio; M. Alderighi, “Increasing

Reliability of FPGA-Based Adaptive Equalizers in the Presence of Single Event

Upsets”, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Vol. 58, No. 3, June

2011.

[6] H. Asadi; M. Tahoori; B. Mullins; D. Kaeli; K. Granlund, “Soft Error

Susceptibility Analysis of SRAM-Based FPGAs in High-Performance

Information Systems”, IEEE TRANSACTION ON NUCLEAR SCIENCE, Vol. 54,

No. 6, December 2007.

