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Physical Unclonable Functions 
A Physical Unclonable Function, or PUF as they are generally referred to, is a function with 

certain desirable properties. First of all, the function must be embodied in a physical structure.  This may 

seem obvious, but it’s important to clarify that PUF only refers to the function of a physical unit and not 

something like a software implementation.  Secondly, a PUF must be easy to evaluate, but hard 

(“impossible”) to predict. It is similar in this way to a mathematical one-way function.  A given input 

should repeatedly lead to the same output, but it should be impossible to predict the output of a given 

input without previously observing it.  Finally, a PUF should be easy to make, but “impossible” to 

duplicate.  It’s necessary that it be easy to make, or it would not be economically reasonable. It must be 

“impossible” to duplicate, otherwise it wouldn’t really serve any purpose at all.  An attacker could just 

manufacture or purpose a duplicate, provide the same input, and generate the same output.  The 

response of such a PUF would basically prove nothing at all. 

The terminology for discussing PUFs is pretty simple, but a few terms need to be defined before 

summarizing the existing relevant literature.  The type of authentication that is being done here is 

known as “Challenge Response Authentication”.  To initiate this type of authentication procedure, a 

physical stimulus (input) is applied to the PUF.  This is known as the “Challenge”.  The PUF then reacts in 

an unpredictable but consistent way and generates an output, known as the “Response”.  Together, 

these are often referred to as a Challenge Response Pair, or CRP. 

Additionally, it should be mentioned that this literature survey is focused only on the types of 

PUFs that can be implemented on an FPGA.  There are many other PUF designs that rely on physical 

units that do not lend themselves well to integration with an FPGA.  While some of these designs are 

very interesting and likely useful, they are outside the scope of this paper and class. 

With this basic understanding of functionality and terminology, it should be fairly easy to take a 

high-level look at the existing research in this area, and that’s exactly what this paper attempts to do.  

There are basically two main strategies that have been proposed for designed a PUF to be implemented 

on an FPGA.  The first relies on the timing characteristics, delays, and inconsistencies of all integrated 

circuits.  It will be described in the first section of this paper, and several implementations based on 

these characteristics will be described.  The second major strategy relies on certain circuits or elements 

of an FPGA that tend towards one of two stable states.  This behavior is exploited in several PUF designs, 

and these will be examined in the second section of this paper. 



(I should also point out that often the name of a paper doesn’t indicate the type of PUF design 

being discussed.  I have structured this paper based on the name of the design, but the powerpoint tree 

should prove to match papers with designs.) 

 

Timing Characteristics and Delays 
It’s a common fact that elements in integrated circuits have slightly varying characteristics, even 

when they are manufactured in the same exact manner.  Even the slightest environmental variations 

during manufacturing lead to gates and wires with slightly different delays.  These “random” 

characteristics can be used to generate inherently random output, and the following designs rely on this 

to serve as a PUF.   

 

Delay PUF with MUXes and Arbiter 

 This type of PUF was one of the first proposed designs.  It basically consists of two paths that are 

created by connecting a number of “switch delay elements” in series.  Each element uses a two-to-one 

multiplexer to control which path is taken by each input.  The challenge bits X are used as the select bits 

to the multiplexers, and the response of the PUF is based on which path leads to the faster signal 

propagation.  The idea is that each wire and gate will have a slightly different delay, and so one of the 

two signals will reach the end of its path before the other one does.  These signals are connected to an 

arbiter, and this unit determines which signal propagated more quickly along its path.  The two paths 

are identical in theory and design, so the only factors that impact the speed of signal propagation are 

the inherently random delays present in the circuit elements.  Since the input bits are used as the select 

signals to the multiplexers, each input leads to a different path which in turn leads to a different 

outcome.  The delay characteristics are consistent for any one specific path, so a certain set of challenge 

bits should always result in a certain set of output bits.  This PUF design can be seen in the following 

figure. 

 

 

 

 



Ring Oscillator and Counters 

 Another PUF design that relies on the random delays inherent to circuit elements is the ring 

oscillator PUF.  This design is composed of many delay loops that oscillate with a particular frequency.  

They are laid out identically, but the minor variations in manufacturing lead to loops with slightly 

different frequencies.  These loops drive counters which are used to produce the response bits to a 

given challenge.  One of the two counters will reach a given number more quickly than the other, even 

when the design and implementation of the circuits are the same.  This PUF design is displayed in the 

following figure. 

 

 

Reconfigurability of the FPGA 

While the last two PUF designs were originally published several years ago, a newer design has 

recently been developed that also relies on the random delay characteristics of circuits.  However, 

instead of implementing a specific circuit such as the previous two designs, this design actually takes 

advantage of the reprogrammability of an FPGA.  The challenge in this case is an entire bitfile that is 

used to program the FPGA.  Based on which cells are used as PUFS, the timing characteristics of the 

entire FPGA serve as the response.  The design is presented in the following image showing multiple 

FPGA configurations.   

 



This design is rather unique in its approach, but there are certain liabilities that may make it less 

than optimal.  The FPGA must be carefully analyzed prior to it being used as a PUF.  All possible input 

bitfiles must be programmed on the board, and the unique timing characteristics of the board must be 

stored in a database and matched with the appropriate bitfile.  This is a limitation of all PUF designs, but 

the information needed for this design is much more substantial than just a set of input bits and the 

corresponding output.  Also, there is the issue of the challenge being a reprogramming of the FPGA.  

While it is often possible to reprogram only certain portions of an FPGA, this approach is certainly more 

invasive of the normal functioning of the board than the other designs discussed.  It’s likely that this will 

prevent this design from being used in more commercial applications where the original functioning of 

the board cannot be affected. 

 

Two Stable States 
The second set of PUF designs that will be examined in this paper rely on interesting circuit 

elements that have only two stable states.  Such elements tend to move towards one of the two states 

in a seemingly random manner when they are left in an uninitialized state.  While it’s “impossible” to 

predict which state will be taken by a given element, the actual functioning of each individual element is 

rather consistent.  In this way, PUFs can be created based on the characteristics of which state a given 

implementation of a circuit assumes. 

 

SRAM PUF 

Unlike the previously discussed designs, this design does not depend on laying out a certain 

circuit and programming it onto an FPGA.  Instead, it relies on the SRAM that is present on most modern 

FPGAs.  Since an SRAM bit assumes a “random” value of 0 or 1 when it is originally given power, these 

bits can be used to provide a unique response.  These bits also have the beneficial characteristic that 

they tend to repeatedly assume the same value.  This is necessary for a successful PUF design, because 

the output must be repeatable to correctly identify a given device. 

 

Butterfly PUF 

Another design fairly similar to the SRAM PUF is the Butterfly PUF.  It is based on unstable cross-

coupled circuits, and largely serves the same purpose as the SRAM PUF.  When forced into an unstable 

state, each circuit tends to either the ‘0’ state or the ‘1’ state. This tendency is inherently random due to 

minor variations in the manufacturing process, but it is also consistent across repeated iterations.  This 

makes it a good circuit for use in a PUF.  The design is displayed in the following figure. 



 

So what purpose does this Butterfly PUF serve since it seems to function similarly to the SRAM 

PUF?  The main benefit is that it is implemented as a circuit and not as a memory unit.  This makes it 

possible to implement this PUF on any FPGA, not just those with SRAM units.  It also means that no 

memory needs to be sacrificed in order to use this design.  That doesn’t mean it’s better than the SRAM 

PUF, it just means that it is a better fit for certain situations. 

 

Bi-stable Ring PUF 

The final design examined in this paper is the Bi-stable Ring PUF, or BR-PUF.  This design is based 

on the fact that an inverter ring made up of an even number of inverters only has two possible states.  It 

tends towards one of these states when it is released from an unstable state.  Again, the tendency of the 

BR-PUF is inherently random, but it is consistent across several identical challenges.  This design results 

in a success PUF and can be seen in the following figure. 



 

 

Testing and Evaluation 
 In addition to explanations of various PUF designs, many of these papers also included testing 

methodology and evaluation criteria for determining how successful a given design is.   Common testing 

criteria involves testing a PUF under a variety of environmental conditions and measuring both the intra-

PUF variation and also the inter-PUF variation.  The intra-PUF variation is the number of bits in the 

response that change when a PUF is repeatedly given the same challenge.  The inter-PUF variation is the 

number of bits in the response that vary between devices when given the same challenge.  Ideally, a PUF 

would have an intra-PUF variation of zero and an inter-PUF variation of 50 percent.  It is also desirable 

that the Hamming distance of the output is large when the input is changed. 

 

 

 

 

 

 

 

 

 

 

 

 



Paper References 
Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2002. Silicon physical random 

functions. In Proceedings of the 9th ACM conference on Computer and communications security (CCS 

'02), Vijay Atluri (Ed.). ACM, New York, NY, USA, 148-160. DOI=10.1145/586110.586132 

http://doi.acm.org/10.1145/586110.586132 

 

Guajardo, J.; Kumar, S.S.; Schrijen, G.-J.; Tuyls, P.; , "Physical Unclonable Functions and Public-Key Crypto 

for FPGA IP Protection," Field Programmable Logic and Applications, 2007. FPL 2007. International 

Conference on , vol., no., pp.189-195, 27-29 Aug. 2007 

doi: 10.1109/FPL.2007.4380646 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4380646&isnumber=4380602 

 

Kumar, S.S.; Guajardo, J.; Maes, R.; Schrijen, G.-J.; Tuyls, P.; , "Extended abstract: The butterfly PUF 

protecting IP on every FPGA," Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE 

International Workshop on , vol., no., pp.67-70, 9-9 June 2008 

doi: 10.1109/HST.2008.4559053 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4559053&isnumber=4559030 

 

Majzoobi, M.; Koushanfar, F.; , "Time-Bounded Authentication of FPGAs," Information Forensics and 

Security, IEEE Transactions on , vol.6, no.3, pp.1123-1135, Sept. 2011 

doi: 10.1109/TIFS.2011.2131133 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5737786&isnumber=5983314 

 

Suh, G.E.; Devadas, S.; , "Physical Unclonable Functions for Device Authentication and Secret Key 

Generation," Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE , vol., no., pp.9-14, 4-8 June 

2007 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4261134&isnumber=4261114 

 

 

http://doi.acm.org/10.1145/586110.586132
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4380646&isnumber=4380602
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4559053&isnumber=4559030
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5737786&isnumber=5983314
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4261134&isnumber=4261114


Qingqing Chen; Csaba, G.; Lugli, P.; Schlichtmann, U.; Ruhrmair, U.; , "The Bistable Ring PUF: A new 

architecture for strong Physical Unclonable Functions," Hardware-Oriented Security and Trust (HOST), 

2011 IEEE International Symposium on , vol., no., pp.134-141, 5-6 June 2011 

doi: 10.1109/HST.2011.5955011 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5955011&isnumber=5954984 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5955011&isnumber=5954984

