

Literary Survey
True Random Number Generation in FPGAs

Adam Pfab
Computer Engineering 583

Random Numbers

Cryptographic systems require randomness to create strong encryption protection and unique

identification. The strength of these protections resides in the non-predictability of moderate

amounts of data. As the need for larger keys and more unique IDs grows, the need for random

numbers also grows. This paper will summarize a survey of recent IEEE publications on the

subject of True Random Number Generation in FPGAs.

Research

The publications presented in this survey were sourced from the IEEE website. The articles

were refinement to the search terms “Random” and “FPGA”. They primarily comprise journals

submitted from the years 2007-2010.

Problems in True Random Number Generation

Across the publications researched, two primary problems are identified in True Random

Number Generation (TRNG). The first is a reliable source of randomness. The second is a

proven method to generate entropy (the measure of "disorder" of a variable). A third subject

was addressed in some papers, which was resource utilization.

The source of randomness was nearly uniformly identified as mining from analog sources.

These analog sources are precisely the issue with FPGAs, which are digital in nature. By design,

they are precise, uniform, and predicable.

Entropy was solved differently in each journal. Based upon the source of random data,

different mechanisms were required to achieve a level of entropy desired. There was tight

coupling between the two problems and their resolutions.

The third subject that some journals identified was that their particular solution provided and

optimization from previous solutions (operating frequency, throughput, resources). While

these statements were made, no paper explicitly addressed that the previous implementations

were excessive or that previous implementations required redesign due to being too inefficient.

Sources of Randomness

Randomness is a compound issue. The primary issue is finding a source that provides variation.

The second issue is that while a source may provide good variation, care must be taken to

ensure that the source does not provide repeatable results.

Kwok and Lam [5] used a Xilinx Digital Clock Manager’s (DCM) inherent jitter and coupled it

with a high-frequency clock to generate an infinite stream of ones and zeroes. Specifically, they

matched the jitter period of a slow clock with an accurate, high-frequency clock. For this

configuration to work, a specific ratio of clock frequencies is required. The period of the fast

clock needs to be the same order of magnitude to the jitter out of the DCM. The high-

frequency clock was supplied to the D input of a D-Flip-Flop while the jitter-prone DCM output

of a slower clock was supplied to the CLOCK input of that D-Flip-Flop.

This design is dependent upon two clock sources, both of which are external stimulus to the

FPGA in their study (Xilinx Virtex II Pro). They took advantage of inherent limitations of the

silicon itself and were able to generate data at the frequency of the slower clock rate (1 bit of

data per clock).

While Kwok and Lam exploited a data source, they did not address the predictability of this

source. Specifically, can the external sources or the environment (or both) be manipulated to

result in a predictable output? Tsoi, Leung, and Leong [1] identify these, and more, limitations

and propose an alternative.

Tsoi, Leung, and Leong proposed the use of a string of inverters that feed back on themselves

to create a ring oscillation. Further, they propose, is that if a delay element can be

incorporated and an additional XOR gate, that ring oscillation can be doubled, thereby halving

the predictability on that ring. That ring oscillator feeds into the D input of a D-Flip-Flop, while

a system clock feeds into the CLOCK input of that D-Flip-Flop. This design was implemented in

130 slices of a Xilinx XCV300-8 device and requires only one external source: a system clock.

They argue that this design is an improvement to Kwok and Lam due to the ability to generate

data at the system clock frequency as opposed to the limitation of dependency of two clock

ratios. This implementation also appears to resolve problems with respect to external

manipulation. It removes the ability to adjust external stimulus and leaves only the

predictability due to environment (temperature, power, process).

In contrast to these two clock-based sources, Cheung, Lee, Luk, and Villasenor [3] use pre-

defined seeds. These seeds are entered into a Tausworthe Uniform Random Number

Generator (URNG). This style of number generator inherently combines the seeds and shifts

their outputs when not in reset. While it does not state that the shift registers are rotated at

different frequencies, it would be assumed that by doing so with non-periodic clocks would

result in better randomization.

This solution appears to solve a slightly different problem than the DCM solutions. The URNG

may be excluded for use in random stream generation due to definable seeds and a predictable

algorithm especially if the shift registers are (iso-)synchronous. Further, if the shift registers are

not (iso-)synchronous, that implies three unique external clock sources which provide the

weakness of manipulation.

Entropy Creation

While a random source is required for True Random Number Generation, it does not imply

uniform distribution of ones and zeroes. Specifically, since TRNG is implemented digitally, the

results are binary: ones and zeros. Additionally, it is statistically improbable that there is

precisely a 50% distribution. Therefore any given source is certainly biased towards generating

ones or zeros. This then identifies a need to manipulate the data from the random source to

provide the uniformity needed to provide the security that cryptography and identity rely on to

complete their functions.

That said, Tsoi, Leung, and Leong attempt to prove that their ring oscillator provides sufficient

distribution without further manipulation. They are careful, though, to point out that a specific

implementation of the ring oscillator is required. To enforce good distribution, they have

optimized the ring oscillator to take advantage of the Xilinx XCV300-8 architecture. This

solution passed both NIST [7] and Diehard [8] random number testing. This was done using a

very small amount of resources, which can be found in the table below.

As you recall, Kwok and Lam used two clock sources and a D-Flip-Flop to generate a binary

string of data at the frequency of the slower clock. They hypothesized three different

randomizers to disassociate this stream. They chose to implement a parity filter in conjunction

with a Strong fixing function (MD5). By experiment, they tested several combinations of

different parity filter taps and MD5 compressions to determine an optimally-uniform output.

Based upon testing a tap and compression pair was identified that passed NIST and DIEHARD

test suites. This solution used a relatively small amount of resources, as can be seen in the

table below

This solution requires the note that the result vectors are selected based upon test pass/fail

criteria and not specifically pre-determined.

These two solutions apply probabilities to the random data source. The alternative that both

Cheung, Lee, Luk, and Villasenor and Alimohammad, Fard, Cockburn, and Schlegel [4] is data

permutation (via Gaussian Distribution).

Recall that both of these journals used pre-defined seeds and Tausworthe URNGs as their data

source. They further generate random data by sourcing the URNG outputs into an address

decoder. The address decoder is a complex circuit that comprises a barrel shifter, adders, and

look-up tables similar to an SBOX. The output of the address decoder then feeds into a

polynomial equation thus resulting in a random number. The table below identifies the

resources needed to implement this entropy on a XILINX VIRTEX-4 XC4VLX100-12 FPGA.

These random number generators were not tested against the NIST or Diehard test suites.

Similar to the previous Gaussian solution, the Mersenne Twister [6] utilizes data manipulation

to generate a random distribution of ones and zeroes. The paper wasn’t clear about what a

Mersenne Twister actually does; instead it focuses on how to translate the design from

software to hardware. The software algorithms were mapped to a Xilinx Virtex4 VFX100 FPGA

with the following resources.

Again, these random number generators were not tested against the NIST or Diehard test suite.

Instead, the intent of the Mersenne Twister journal entry was to compare the efficiencies of a

hardware implementation over a software implementation.

Conclusion

To create secure systems, random number generation must occur. Strong random number

generation must be created using a good random data source and in conjunction with a

mechanism to create an even distribution of data (entropy).

The journals studied for this paper included several random data sources as well as a strongly-

coupled mechanism to further process that data. One common solution is to use truly random

data sources with filtering as identified in [5] and [1]. Another common solution is to use less

random seed data and strong permutations as identified in [3], [4], and [6].

References

[1] Tsoi, K.H.; Leung, K.H.; Leong, P.H.W.; , "High performance physical random number

generator," Computers & Digital Techniques, IET , vol.1, no.4, pp.349-352, July 2007doi:

10.1049/iet-cdt:20050173

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4271377&isnumber=4271368

[2] Sonnaillon, M.O.; Urteaga, R.; Bonetto, F.J.; , "Software PLL Based on Random

Sampling," Instrumentation and Measurement, IEEE Transactions on , vol.59, no.10,

pp.2621-2629, Oct. 2010doi: 10.1109/TIM.2009.2036459

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5546971&isnumber=5571852

[3] Cheung, R.C.C.; Dong-U Lee; Luk, W.; Villasenor, J.D.; , "Hardware Generation of

Arbitrary Random Number Distributions From Uniform Distributions Via the Inversion

Method," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.15,

no.8, pp.952-962, Aug. 2007doi: 10.1109/TVLSI.2007.900748

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4276772&isnumber=4276770

[4] Alimohammad, A.; Fard, S.F.; Cockburn, B.F.; Schlegel, C.; , "A Compact and Accurate

Gaussian Variate Generator,“ Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.16, no.5, pp.517-527, May 2008doi: 10.1109/TVLSI.2008.917552

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4476028&isnumber=4490005

[5] Kwok, S.H.M.; Lam, E.Y.; , "FPGA-based High-speed True Random Number Generator for

Cryptographic Applications,“ TENCON 2006. 2006 IEEE Region 10 Conference , vol., no.,

pp.1-4, 14-17 Nov. 2006doi: 10.1109/TENCON.2006.344013

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4142319&isnumber=4142121

[6] Xiang Tian; Benkrid, K.; , "Mersenne Twister Random Number Generation on FPGA, CPU

and GPU," Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on ,

vol., no., pp.460-464, July 29 2009-Aug. 1 2009doi: 10.1109/AHS.2009.11

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5325420&isnumber=5325404

[7] National Institute of Standards and Technology, agency of the U.S. Department of

Commerce

 http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5325420&isnumber=5325404
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html

[8] The diehard tests are a battery of statistical tests for measuring the quality of a random

number generator. They were developed by George Marsaglia over several years and

first published in 1995 on a CD-ROM of random numbers

 http://www.stat.fsu.edu/pub/diehard/

