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1. Project Idea 

The motivation of this project is from the study of EE 505 CMOS Data Conversion 

circuits. In that class, we studied a type of digital-to-analog data converter which is used 

Delta-Sigma algorithm. That class is almost analog circuit design, but this kind of DAC 

can be implemented in digital, except for an analog low pass filter. 

2. The Overview of the Project 

Our project aims at the implementation of delta-sigma modulation in digital to analog 

converter. We have investigated a series of techniques to improve the performance of 

digital audio converter in terms of power consumption and noise shaping capability. 

This audio DAC has been successfully applied in digital amplifier field. We used the 

Matlab Simulink tool to simulate the algorithm. And the simulation results had been 

verified using Xilinx‟s FPGA. 

Our group mainly works on the following parts: 

1) We used delta-signal modulator to push noise in audio to high frequency band, 

and then we adopt the speaker/headphone as the low-pass filter to filtrate high 

frequency white noise.  

2) We reduced the dynamic power consumption of the whole audio amplifier system 

by decreasing the system frequency to 16.9344MHz. It can not be reduced 

anymore. Otherwise, the synchronization with DVD player will be a problem. We 

also minimize the frequency of every module to save power. 

3) We designed and added a sleep mode module, which reduce the power 

consumption of the whole audio DAC system in case that it has not been in use 

for a long time (3 seconds), when considering possible use in portable digital 

audio field. 

4) For additional functions, we added a digital volume controller in this audio 

amplifier system. 

Our project decreased the power consumption and enhanced noise shaping capability of 

the whole audio system. As the result of the project, using two-stage noise shaping and 

16 times oversampling, the SNR can reach about 100dB in theory. But we did not get a 

chance to measure it because we had not found equipments. 
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3. The Overview of the System 

The design has the ability to process stereo digital audio signal form DVD player through 

SPDIF interface. 

 

The real system is shown below, including DVD player, FPGA and speaker. 
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4. The Demo of the Project. 

http://www.youtube.com/watch?v=582E_OXeVOU  

5. High-Level Algorithm 

5.1 Input Signal--PCM: quantization of analog signal 
The PCM signal is 16-bit wide and contains analog signal information, which is widely used in 

digital communication field. 

 

http://www.youtube.com/watch?v=582E_OXeVOU
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5.2 Output--PWM: digital signal but also has analog information  
As shown below, the width of this kind of digital signal is keep changing. So this signal 

charges or discharges the output low-pass filter or speaker/headphone, so that the analog 

signal can be restored.  

 

5.3 Noise shaping 
Noise shaping is a negative feedback of the digital signal. It plays the role of feeding 

back the former data to the consequent data and thus eliminates the quantization error. 

Figure 5-1 shows the model of Non-noise shaping. Figure 5-2 shows the model of one 

stage noise shaping.  

In figure 5-2, the system feedbacks the output Y of quantizer. At the same time, it feeds 

back the input signal of the quantizer to the original input X. Which means, the system 

feedbacks both the input (U) and output (Y) signals of the quantizer. The difference 

between the Y and U is quantization error. 

We deliver the sum of response part of former signal with the consequent signal to the 

quantizer, as well as respond it to the input port, get the quantization error of this time 

and feed it back to the signal. 
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If we view this process mathematically, this process is differential the quantization error. 

It subtracts quantization error of last time (Qn-1) from the quantization error of current 

time (Qn). Therefore, it decreases the quantization error time by times. 

The distortion caused by quantization error distributes equally in the full frequency band. 

After the noise shaping, which works similar to high pass filter, the noise in audible band 

decreases sharply, while the noise out of audible band increases sharply. Such procedure 

greatly changes the shape of noise distribution, hence the name is noise shaping. 

 

Figure 5-1 Non-noise shaping model 

 

Figure 5-2 One-stage noise shaping model 

The noise shaping circuits can decrease the error of the quatization. The speed of 

quantizer should be as fast as possible to feed a data (16 bits) back multiply. Therefore, 

we need to greatly increase the sampling times, even to tens or hundreds of times. For 

example, the speed of quantizer is 50MHz, the data speed is 44110/s, that is, the data can 

be fed back 50×1000000/44100 = 1134 times.  Namely, we feed one data back as many 

as 1000 times. Now, we analyze the process using mathematical expression.  

X: 16-bit input signals 

Y: output signals of the system 

Q: quantization error 
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Z
－1 

: time delay unit, signal delayed for one cycle 

U : the input signal of quantizer 

In figure 5-1，Y is subtracted from X repeatedly after Y is fed back. Z
－1 

delays Y for 

once cycle. X－Y•Z
－1＝U. Therefore X is different from U. 

In figure 5-2, the system feeds back Y, as well as U to the input port. Because it is 

feedbacked before time delay unit, after subtracting Y, U is feedbacked to input port 

through time delay unit. U-Y is the difference between quantizer input and quantizer 

output. The difference is called quantization error. 

Q＝Y－U                     (5-1) 

                    U－Y＝－Q                    (5-2) 

Feed back –Q to the input port, add with X to get U, 

U＝X－Q                             (5-3) 

If we view from the time sequence, the feedbacked U is one time cycle delayed than Q. 

So we need to use n to distinguish. The current time is n, so the one of last time is n-1. 

And we denote the Q of last time as Q(n-1). 

                 U(n)＝X(n)－Q(n-1)                        (5-4) 

Q＝Y－U                           (5-5) 

Q(n)＝Y(n)－U(n)                        (5-6) 

Combine with (5-4) and (5-6), we get the relationship between X and Y 

                Y(n)－Q(n)＝X(n)－Q(n－1)                           (5-7) 

                                                                      Y(n)＝X(n)－Q(n－1)＋Q(n) 

                                             ＝X(n)＋Q(n)－Q(n－1)                            (5-8) 

Q(n)－Q(n－1) is the difference of quantization error of current time and last time. So 5-8 

means the input subtract the quantization error times by times. 

Q(n)－Q(n－1)＝（1－Z
－1）•Q                         (5-9) 

That is 
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Y＝X＋（1－Z
－1）•Q                            (5-10) 

This is the generalized equation of noise shaping. 1－Z
－ 1

 is the differential. This 

equation means that the input of one stage noise shaping is the sum of input and 

quantization error after difference. Therefore the noise in audible range is reduced, the 

noise out of audible range is increased, changes the shape of noise distribution, namely, 

noise shaping. 

5.4 Simulation analysis of two-stage noise shaping 
Two-stage noise shaping model is shown in the figure 5-3.There is still one quantizer. 

"Feed back before and behind quantizer" and "quantization error is 180
o  

fed back" are the 

same as in one-stage noise shaping. But we added a time delay unites on the front side of 

model, it also feeds back signal to input port. So the output of these two time delay units 

will be amplified by 2 times and -1 time and then fed back. R2 stands for quantization 

error of one delay. R1 stands for quantization error of two delays. Same as one-stage 

integrated model, list the expression of input port of quantizer and we can find U is equal 

to -1 R1 plus 2 R2 , i.e. 

 U＝X－R1+2R2                            (5-11) 

As R2 is equal to one delay -Q, R1 means delayed again, so 

R2＝Z
－1

• (－Q)                   (5-12) 

R1＝Z
－1

• R2＝Z
－1

•（Z
－1

•（－Q））＝ (Z
－1

)
2
•（－Q）     (5-13) 

Thus U can be expressed as  

U＝X－（Z
－1）2

•（－Q）＋2 Z
－1

•（－Q） 

＝X＋（Z
－1）2

•Q－2 Z
－1

•Q                  (5-14) 

Outputting Y is same as one-stage noise shaping, and also can be expressed as: 

Y＝U＋Q                      (5-15) 

U＝Y－Q                      (5-16) 

So 

Y－Q＝X＋（Z
－1）2

•Q－2 Z
－1

•Q           (5-17) 

                                   Y＝Q＋X＋（Z
－1）2

•Q－2 Z
－1

•Q 

                                                            ＝X＋[1－2 Z
－1＋（Z

－1）2
]•Q 
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＝X＋（1－Z
－1）2

•Q                     (5-18) 

As 1－ Z
－1

 means differential, its square means twice difference. So two-stage noise 

shaping exactly is the process of adding the quantization error after twice difference into 

input port.  

 

Figure 5-3 Two-stage noise shaping model 

We use Simulink in Matlab software environment to make the simulation, and the 

simulation model is shown as in figure 5-4, the input is white noise. We observe the 

frequency spectrum of noise both in input port and output port(as seen in figure 5-5).We 

can find that curve of the original white noise with tape limit upsweeps in high band after 

two-stage noise shaping. Therefore the noise in audible range is reduced, the noise out of 

audible range is increased, changes the shape of noise distribution, namely, noise shaping.

 

Figure 5-4 Two stage noise shaping model used for simulation 
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(a) Input flat noise frequency 

 

（b）two stage noise shaping output frequency 

Figure5-5 The simulation result of two stage noise shaping model 

5.5 Simulation analysis of multi-stage noise shaping  

The elemental mode of multi-stage noise shaping is shown as in figure5-6, we set it as 3-

stage. MASH（Multi-stage noise Shaping）can be classified as first level, second level 

and third level. Every single level is as same as the elemental mode of one-stage noise 

shaping model. The first level is totally same as one-stage noise shaping model; One 

more time differential quantization on quantization error of output of first level forms the 

second level; implement differential quantization on the quantization error of second 

level. Therefore, the quantified output of second level and third level gets the difference 

processed and then adds output of first level, turns to be the final output. 

dict://key.0895DFE8DB67F9409DB285590D870EDD/elemental%20form
dict://key.0895DFE8DB67F9409DB285590D870EDD/differential%20quantization
dict://key.0895DFE8DB67F9409DB285590D870EDD/differential%20quantization
dict://key.0895DFE8DB67F9409DB285590D870EDD/difference
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Figure 5-6 Three stages noise shaping model 

As the output of first level is exactly the same as in one-stage noise shaping model, 

so  

Y1＝X+(1－Z
-1

)•Q                     (5-19) 

It‟s same in second level and third level, but the inputs are respectively opposite numbers 

of quantization error of previous level, i.e. –Q, replace the X by –Q, and therefore the Y2、

Y3 will be  

Y2＝（－Q1）＋ (1－Z
-1

)•Q2                    (5-20) 

Y3＝（－Q2）＋ (1－Z
-1

)•Q3                    (5-21) 

We can compute as top for fourth level and fifth level. The Q2 and Q3 in the expression 

are respectively the quantization error of the second level and third level.  

Second level and third level have differential attached, besides, the third level have 2 

differentials. As mentioned before, differential in digit circuit exactly means subtracting 

previous value, represent as 1－Z
－1

. Thus, Y2 in n times minus Y2 in n-1 times and then 

adds Y1 to be the second level; the output of third level get 2 times difference processed, 

like we mentioned in two-stage noise shaping which can be represented by (1-Z
－1

)
2
. 

Y＝Y1＋ (1－Z
-1

)•Y2＋ (1－Z
-1

)
2
•Y3                (5-22) 

dict://key.0895DFE8DB67F9409DB285590D870EDD/opposite%20number
dict://key.0895DFE8DB67F9409DB285590D870EDD/digit%20circuit
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substitute Y2、Y3 into above expression，and we can get 

Y＝X＋ (1－Z
-1

)•Q1＋  

(1－Z
-1

)•[（－Q1）＋ (1－Z
-1

)•Q2]＋ 

(1－Z
-1

)
2
•[（－Q2）＋ (1－Z

-1
)•Q3] 

=X＋ (1－Z
-1

)•Q1－ (1－Z
-1

) •Q1＋ (1－Z
-1

)
2
•Q2－(1－Z

-1
)
2
•Q2＋ 

       (1－Z
- 1

)
3
•Q3                                                                      (5-23) 

Q1、Q2 are canceled out，so 

Y＝X＋(1－Z
-1

)
3
•Q3                                 (5-24) 

After being processed in differential, the second level and third level will make the Q1 

and Q2 be canceled out. At last the expression will be this form: Q3  was differentiated by 

3 times and then add X. Three-stage noise shaping can make the distribution character of  

quantizing noise 18(db/double frequency) curve. Simulation result of three-stage noise 

shaping model is as seen in figure 5-7. We can find that quantization error is introduced 

due to quantification. But the distribution of noise (the quantization error), is 

characterized. As we can see, the curve of the original white noise should be distributed 

in the full frequency band. But the noises of audible region reduce rapidly, and the noise 

outside of audible region increases greatly. The shape of noise distribution accordingly 

changes a lot.  

 

(a) Input signal spectrum of three stage noise shaping 

 

dict://key.0895DFE8DB67F9409DB285590D870EDD/substitute%20into
dict://key.0895DFE8DB67F9409DB285590D870EDD/distribution%20character
dict://key.0895DFE8DB67F9409DB285590D870EDD/quantizing%20noise
dict://key.0895DFE8DB67F9409DB285590D870EDD/quantization%20error
dict://key.0895DFE8DB67F9409DB285590D870EDD/quantization%20error
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(b) Output signal spectrum of three stage noise shaping 

 

Figure 5-7 Simulation result of three stage noise shaping model 

 

The figure 5-8 and figure 5-4 both are two-stage noise shaping model, the difference is 

their input signal. Input signal in figure 5-4 is white noise with band limit, and figure 5-8 

input signal is sine-wave. Figure 5-9 is the frequency spectrum of input signal of two-

stage noise shaping model. Compare this with figure 5-7, you can find that three-stage 

noise shaping can obtain better SNR.  

 

Figure 5-8 Two stage noise shaping with the stage sine input signal 

dict://key.0895DFE8DB67F9409DB285590D870EDD/frequency%20spectrum
dict://key.0895DFE8DB67F9409DB285590D870EDD/SNR
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Figure 5-9  Output signal of two stage noise shaping with the stage sine input signal 

The two-stage three times noise shaping is shown as follows. 

 

Figure 5-10 Two-stage three times noise shaping model 

The first stage is one stage noise shaping 

Y1＝X＋（1－Z
－1）•Q1                                           (5-25) 

The second stage is two stage noise shaping 
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Y2＝－Q1＋（1－Z
－1）2

•Q2                                     (5-26) 

After the difference, 

（1－Z
－1）•Y2＝－（1－Z

－1）•Q1＋（1－Z
－1）3

•Q2          (5-27) 

Therefore, the output Y is 

    Y＝Y1＋（1－Z
－1）•Y2 

  ＝X＋（1－Z
－1）•Q1＋[－（1－Z

－1）•Q1＋（1－Z
－1）3

•Q2] 

                 ＝X+（1－Z
－1）3

•Q2                                                  (5-28) 

Figure 5-11 is the simulation model of two-stage three times noise shaping model. 

The input is sine wave. Figure 5-12 shows the spectrum in the output. Comparing 5-7(b) 

and Figure 5-12, we can conclude that, in audible range, the two stage three times noise 

shaping can achieve the same SNR with the three stages noise shaping model 

 

Figure 5-11 Two-stage three times noise shaping model in simulink 
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Figure 5-12 The output of two stage three times noise shaping model in simulink 

5.6 Post process of low pass filter 
After we shape the white noise to higher frequency band, a low pass filter can be used to 

cutoff the high frequency white noise, as shown below. In this way, the total power of 

white noise was decreased in the audible frequency band. 

 

 

6. High-Level Diagram of the System 

Please refer to the diagram of the design. For the system, the input signals are: 

 rst_n: system reset, active low 

 clk_16: system clock. It should be 16.9344MHz. We used on-chip PLL to 

generate.  

 spdif_n: digital audio signal from DVD player. It is serial signal which uses 

SPDIF standard(“IEC 60958) 



 
 

17 
 

 vol: music volume control input. Each pulse makes music lauder a little bit. 

Totally it has 3 levels, 3 pulses will make music go back to original volume value  

Output signals: 

 pwm_l: pwm audio signal, left channel 

 pwm_r: pwm audio signal, right channel 

Other signals are for debugging. 

 

 

 

7. Input Signal Voltage converting 
Because the serial output signal from DVD player is in the range of -0.5V to 0.5V. But our FPGA 

works on 0V to 5V. So we need to shift the voltage region of DVD output into 0V to 5V. We 

used a Schmidt trigger (SN74LS14N) combined with capacitors and rheostat shown below to 

make it works. In the figure below, the SPDIF is the signal from DVD player, and the output of 

the Schmidt trigger is what we want.  
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The real circuit is shown below in red circle: 
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The demo of how this module works: 

http://www.youtube.com/watch?v=uBhcLwn46QM&feature=youtu.be 

 

8. Implementation 

8.1 Clock Synchronization Module 

S/PDIF (Sony/Philips Digital Interface) is a digital audio interconnect used in consumer 

audio equipment over relatively short distances. S/PDIF is a biphase encoding data. The 

benefit of biphase encoding is that we can extract clock signal from data signal. In the 

figure blow, the major unit is a block, and each block has a header Z which contains 192 

frames. Each frame contains two sub-frames (one for right channel and the other for left 

channel). The preamble has three types, X, Y and Z. 

 

Biphase-Mark: Show on the figure below, the clock frequency is two times of original 

data bit rate. The original data is encoded into biphase-mark data. In the encoding data, 

each bit is indicated by two bits. „1‟ becomes “01” or “10” and „0‟ becomes “00” or “11”. 

When two of the data are continuous (“11” or  “00”), the third one must to change. 

Therefore, in enodng data, there is no data that contain three continuous „0‟ or „1‟. 

 

Sub-frame: One frame contains two continuous sub-frames. Each sub-frame is a sound 

data of one channel. One sub-frame contains 32 bits data but this data is encoding by 

byphase-mark so the total number are 64 bits. In the figure below, 0 to 3 bits indicate the 

preamble for sub-frame, 4 to 7 are aux data, and 8 to 27 are sound data. We use 16 bits in 

http://www.youtube.com/watch?v=uBhcLwn46QM&feature=youtu.be
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PCM so the data we used in sub-frame are 16 bits (12 to 27). From 8 to 31 bits are 

validity, user data, channel status data and parity bit. 

 

Preamble: The three types of preamble are X, Y and Z. For indicating the data contained 

in preamble is different from normal data, the preamble contains three continuous „1‟ or 

„0‟. The figure blow shows the biphase patterns for preamble. 

  

Clock frequency: In S/PDIF, the clock rate is not fixed. The rate changes by transiting 

data‟s rate. The frequency of data which is stores in CD is 44.1kHz. Every frame has two 

channel‟s data. Every data are 32 bits. And S/PDIF is biphase mark encoding. Therefore, 

the clock rate is 44.1kHz×2×32× 2＝5.6448MHz. 

For fetching S/PDIF data, we choose the frequency that is three times of S/PDIF data rate 

(56488x3 =16.9344). We used two components for data synchronizing and extracting 

(synchron and extract). The figure blow shows how we connect our design. The synchron 

produce a clock (which is decided by spdif_in signal) to extract. Then extract can fetch 

data from spdif_in depends on the input clock rate. 
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Synchronized Clock: When synchron detect the input data clock rate, this component will 

produce a suitable clock signal to extract continuously until the extract send frame end 

signal to synchron. 

 

The detailed FSM is shown below 

S1/0
S2/2

S3/1 S4/4

S5/3

Reset

(header buff==8'b11100100)||(header buff==8'b00011011)

(count==4'b1111)

m!=5b10000

m==5'b10000

rst==0

header_buff[7]=header_buff[6];
header_buff[6]=header_buff[5];
header_buff[5]=header_buff[4];
header_buff[4]=header_buff[3];
header_buff[3]=header_buff[2];
header_buff[2]=header_buff]1];
header_buff[1]=header_buff[0];
header_buff[0]=spdif_in;
Fnsh=1'b0;

count=count+1;

temp_data=spdif_in;
fnd=1;

i=spdif_in;
pcm-out_r[m]=(i^temp_data);
m=m+1;
temp_data_spdif_in;

i=0;
m=0;
count=0;
header_buff=8'b0;
fnsh=0;
fnd=0;

 

8.2 Data Extraction Module  
The figure below shows how we get clock from S/PDIF data signal. When our 

component detect there are two pair of three same continuous bits (e.g. “000111” or 

“111000”), it will start to produce clock signal. 
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The blow picture shows when extract component detect the preamble (11100010 or 

00011101 for first channel; 11100100 or 00011011 for second channel) of one sub-frame, 

this component will start to count and decide which data are needed to be fetched and 

which one will be dropped. Then, the extract component will send the data which it fetch 

to PCM. 

 

 

The detailed FSM shown below 

S1/0 S2/1
S3/4

S4/2

S5/3S6/5

S7/6

Reset

rst==0

rst==1

!(tmp[1]==tmp[2])&&(tmp[4]==tmp[5])

(tmp[0]==tmp[1]==tmp[2])&&
(tmp[3]==tmp[4]==tmp[5])

fnsh==1

fnsh!=1

count=6b’0;
smpl_clk=0;
tmp=6'b0;

tmp[]=tmp[];
tmp[]=tmp[];
tmp[]=tmp[];
tmp[]=tmp[];
tmp[]=tmp[];
tmp[]=tmp[];
tmp[]=spdif_in;

smpl_clk=1;

smpl_clk=0;
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Simulation: 

 

8.3 Clock divider module  
Module “clk_div” is a divider, which divides system clock into few inner clocks. After 

that, each signal is send to module “ppc” and module “mash”, so these two modules help 

generate eleven different PWN signals. 

Communal music players use 16.9344MHz as normal system clock. As we can see on the 

figure below, module “clk_div” divides the input clock, which is 16.9344 MHz, into 

many signals: 
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 fs00_en is 44.1kHz, which is used only for test purpose. 

 fs02_en is 88.2kHz, which is also for test purpose. 

 fs16_en is 16 times larger than 44.1kHz ; it is 705.6kHz 

 fs16r1_ena, fs16r2_ena, fs16r3_ena, fs16r4_ena, fs16r5_ena, fs16r6_ena, 

fs16r7_ena, fs16r8_ena and fs16r9_ena are all 705.6 kHz. However, each signal 

has equal delay between them.  

These signals are necessary for further MASH module computing. When each fs16_ena 

signal is active, Module ”mash” and Module “ppc” read sixteen bits PCM simple. In 

other word, fs16r1_ena, fs16r2_ena, fs16r3_ena, fs16r4_ena, fs16r5_ena, fs16r6_ena, 

fs16r7_ena, fs16r8_ena and fs16r9_ena spark off Module “mash” and “ppc” to sample 

each 16 bits PCM.   

fs384_ena signal, twelve time as fs16_ena signal, sent to PWM from sample module. 

fs384_ena is used to generate one bit string PWM data from four bits input.  

 Finally, PWM module can generate 11 PWM sample signals by using all the fs16_ena 

and fs384_en.  

 

8.4 Sigma-Delta data converting module 
For this module, we implement the algorithm mentioned in the chapter 5.5.  

8.5 Volume module  
The method of volume adjusting is right and left shifting the input 16-bit PCM vector. 

For making the volumn lauder, we need to time the 16-bit PCM vector by 2. So we left 

shift the PCM data. On the other hand, for making the volume lower, we right shift the 

PCM data, while repeat the MSB.  
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As shown above, we used a counter to count how many pushes are received, to decide 

how many times left or right shifting the input PCM data should. However, there is a 

practical problem, that when we push the button by fingers only one time, there are 

shakings and multiple pushes are received. So we designed a debounce module which can 

screen out this kind of glitches.  

8.6 Sleep mood module 
Figure 2.1 shows the block diagram of sleep module. 

 

The input of sleep module is 

 clk 

With the stimulation of the clk signal, sleep module inspects the 16-bit audios which are 

inputs to D/A converter. The system without valid inputs begins clocking when the clk 

signal begins. 

 pcm_in 

The 16-bit audios inputs to D/A converter. 

 reset_n 

Reset signal 

 wake_up 

When the system goes into sleep mode, once the event of this signal is inspected, this 

signal is connected to the serial audio input of the system. 
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The output of sleep module is 

 i3  

When there is no valid input in the system, the system begins clocking. This signal is 

used to inspect if the sleep module has began clocking. 

 sleep_n 

This signal is used as the power supply of the chip. When the system needs to “sleep”, 

the output of the signal is logic low, the crystal oscillator stops working. When the 

system is waked up, the output is logic high, the oscillator begins working. 

The state machine of the sleeping module is shown as follows. 

S1/0

S2/1

S3/2

Reset

rst==0 || wake_up=1

rst==1
i!=20'b11111111111111111111

i==20'b11111111111111111111wake_up==1

i=20'b0;
Sleep=1

I3=i[3];

i=i+1;

sleep=0;

 

 

There are three states in the sleep module: S1, S2 and S3. When the system resets, the 

state goes to S1, the counter is cleared to zero, and sleep_n is set to “1”, the crystal 

oscillator begins to work. 

After the reset is done, the state goes to S2. In S2, the system keeps inspecting the input 

of the whole D/A converter to check if pcm_in is zero. Once the pcm_in is zero, it means 

the system has new valid input, so the state goes back to S1, the module begin resetting 

again. 

On the other hand, if the counter continues counting, when the counter is full, it goes to 

S3. The sleep_n is set to “0”, the power supply of crystal oscillator is turn off, the whole 

system begins sleeping. Then when wake_up signal changes, the sleep module resets 
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simultaneously and goes back to S1, and then sets sleep_n to “1”, the crystal oscillator is 

powered again, and wakes up the whole system to begin working. 

The demo of this module: 

http://www.youtube.com/watch?v=Q74URMVuhF8&feature=youtu.be 

We can see, after we unplug the input signal of our system, 3 seconds later, the output of 

our system shuts down. 

9. Conclusion 

This project is a very good practice for us to implement an idea using FPGA 

for what we have learned in CPRE583. And it is also a good training for us 

to integrate and debug a real system. For example, in the sleep mode module, 

we need to design a debounce module to screen the finger shaking and to 

suppress generated glitches when we push the button on the FPGA board. 

We successfully finished this project and we learn much. 
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