
Page | 1 CprE 583 – Final Project Report

Configurable Ethernet Frame Generator
CprE 583 Project Final Report

Adam Pfab & Tim Polehna

Introduction
Our project was meant to provide the ability to generate Ethernet traffic at very high, constant rates for

testing hardware and software network stacks. A Linux PC is able to generate random Ethernet frames

with specific data, but many of the PCs available for testing like this are not able to produce the data at

high and consistent rates. FPGAs offer a highly parallel architecture and no interference in processing

from other tasks running on the system. This makes them a good candidate to achieve the goals of the

project.

This report is meant to be supplemental to the project presentation and slides. The information

contained in the presentation was primarily focused on the details in the implementation and what

pieces of the design were meant to do. Shortcoming and final project status are covered in this report.

Design/Architecture
Our design approach had the following in mind:

 Keep it simple

 Use standard approaches/concepts

 Allow for easy expansion

 Provide a way for the user to interact

 Use as little resources as possible for storage

By keeping our design simple and standard concepts, such as state machines and register banks, we

were avoiding errors that can happen due to complex architectures. Because this project was meant to

be the starting point for a more complex Ethernet generator, one with more types of packets, we

decided that several of the components needed to be easily reproducible. The multiplexing frame

generator was designed using a component generic. This allows it to multiplex any number of

configurations.

We had discussed a few ways to configure the device. It could have been done with a special

configuration pack or via RS-232. The RS-232 interface was chosen to eliminate some of the complexity

involved with buffering the configuration information and having to create a program that would

generate the configuration message. RS-232 provided the quickest way for getting the configuration

information onto the device.

A main bank of block RAM was desired to store the configuration information. That information could

then be directly used by the user interface and the frame generator. Individual registers would only

then be needed as utilities for the implementation in the different modules. In the frame generation,

this method could be referred to as on-the-fly creation.

Configurable Ethernet Frame Generator Pfab & Polehna

Page | 2 CprE 583 – Final Project Report

Shortcomings
With the amount of that could be dedicated to this project, certain features had to be left out. The

largest piece of the project that was left out was the checksum generator. We set the checksums to

values that disabled their usage, but ideally the checksums would have been valid. Originally, we had

planned to use checksums generators that were available through Xilinx or VHDL algorithms freely

available on the internet. Since the proper functionality of project did not depend on having checksums

enabled in the headers, it was decided to remove them. This saved time by removing complexity from

the frame generator.

The device currently only supports IP packets with UDP or TCP data. For this to be a true Ethernet frame

generator it should support other protocols, such as ICMP and RTP. Ideally it would even support

custom data frames where the payload for the Ethernet frame is completely hardcoded by the user.

This was something that was mentioned in the presentation as a possible feature if time allowed. Along

these lines, it would be nice to allow the user to change any field in any header without having to

hardcode the entire frame. This is a very complex feature to implement so it was scrapped for the

current project, but would definitely be something with added benefit later. Also mentioned in the

presentation, we had wanted to possibly make an ICMP echo configuration. This would have been nice

for determining if the device was properly connected to the network.

The user interface is quick, but requires that user enter the information in a very specific format. It

would be nice to either make the serial output more of a menu type setup. Another possibility would

have been to create a serial application that can control the device using the input method currently

employed.

Enhancements
As mentioned in the shortcomings, it would be ideal to add the CRC generator, have a completely user

defined frame, allow the user to change any field in any header, and also have an easier to use user

interface. Beyond that, it may be nice to increase the operating frequency of the design to allow for

shorter packet transmission times. Another enhancement that could be made to improve output rate

consistency would be to adjust the round-robin scheduling algorithm used in the shift-register of the

frame generator.

Currently the shift register output algorithm only allows one instance of the frame configuration to be in

the queue at a given time. If it the configuration expires before the frame is added to the local link FIFO,

the specified rate is lost. As mentioned in the presentation this could be fixed by increasing the

operating frequency without decreasing the frame generation interval, but it would be better to expand

the shift register so that if each configuration was at the fastest rate all configurations could always be

added. This involves a fairly complex computation because of the variable number configurations so it

was not even attempted.

Final State of Project
Even with the modifications to the project to remove things like the CRCs, time that could be allocated

to complete the project was still small. We met a few times to discuss the challenges we were having

when coming up with the implementation for the modules that each of us had decided to take on. We

Configurable Ethernet Frame Generator Pfab & Polehna

Page | 3 CprE 583 – Final Project Report

also let each other know of implementation restrictions that may impact how the other person was

implementing their module. In the end, we were not able to produce a fully functioning and tested bit

file that could be loaded on the FPGA. Getting closer to the end of the project, our main concern was

having all the pieces coded and compiled so they could be tested individually. Once each piece of the

design was functioning, then they could be pulled together into a top-level design and tested. Many of

the modules were tested, but a large one, the frame generator, was not tested.

