
Design of a radix-8/4/2 FFT processor for OFDM
systems

Jungmin Park

Computer Engineering

Iowa State University

The FFT processor is a very important component in Orthogonal Frequency Division Multi-

plexing(OFDM) communication system. In this paper, we propose an efficient variable-length
radix-8/4/2 FFT architecture for OFDM systems. The FFT processor is based on radix-8 FFT

algorithm and also supports radix-4 or radix-2 FFT computation. The pipelined radix-8/4/2

butterfly unit computes radix-8 FFT algorithm basically. For the limitation of FFT length, if
it cannot run radix-8 FFT algorithm at the last stage then it computes radix-4 or radix-2 FFT

algorithm. Furthermore, proposed FFT architecture use shared-memory to minimize and simplify

hardware. We are using efficient In-place memory access method to maintain conflict-free data
access and minimize memory size. Also we replace a very large lookup table with a twiddle factor

generator which consumes less area then a ROM-based lookup table. The proposed FFT proces-

sor performs variable-length FFT including 64, 256, 512, 1024, 2048, 4096 and 8192 points which
cover all the required FFT lengths used in 802.11a, 802.16a, DAB, DVB-T, VDSL and ADSL.

Categories and Subject Descriptors: CprE583 [Project]: Design of a radix-8/4/2 FFT processor
for OFDM systems

Additional Key Words and Phrases: FFT, OFDM, Radix-8 DIF FFT, Radix-4 DIF FFT, Radix-2

DIF FFT

1. INTRODUCTION

An Orthogonal frequency division multiplexing (OFDM) signal consists of a sum of
subcarriers that are modulated by using phase shift keying (PSK) or quadrature am-
plitude modulation (QAM)[Nee and Prasad 2000]. These days, OFDM technique is
widely used for high-speed digital communications, such as xDSL, DAB, DVB-T/H,
and WLAN. In OFDM system, Discrete Fourier transform (DFT)/Inverse-DFT is
used and it is a very important operation. Since DFT/IDFT computation requires
a large amount of arithmetic operations, we need an efficient FFT algorithm which
can reduce the number of arithmetic operations to meet real time computation in
OFDM systems.

There are many kinds of FFT architectures used in OFDM systems. They are
mainly categorized as three types : the parallel architecture[Wold and Despain
1984], the pipeline architecture[He and Torkelson 1998] and the shared memory
architecture[Lee et al. 2006]. The parallel and pipeline architecture have more but-
terfly processing units to achieve high performance but they consume larger area
than the shared memory architecture. On the other hand, the shared memory ar-
chitecture requires only one butterfly processing unit and has the advantage of area
efficiency. But the shared memory architecture has a drawback of low throughput
and requires a complex circuit design of memory address controller. Fortunately,
the lower throughput of the shared memory architecture increases dramatically if
the high radix algorithm is used. But the high radix algorithm has defects of more

CPRE/COMS 583 Project Paper.

2 · Jungmin Park

complex memory scheme and limitation that FFT length(N) must be only powers
of radix- r(rn).

We focus on the shared memory architecture for area efficiency and hardware
simplicity which are required to make small OFDM receivers. One radix-8 but-
terfly processing unit is used and it has the pipeline structure in order to realize
high throughput. However, the FFT computation is restricted to N points which
are 8n. We propose the structure which can perform the radix-4 or radix-2 FFT
algorithm in the radix-8 butterfly processing unit to permit the FFT computation
of all points which are powers of 2. Because of choosing high and mixed radix FFT
algorithm, memory scheme is complex. Efficient memory assignment and address-
ing are proposed to reduce the complexity of memory scheme. The ROM-based
lookup table storing twiddle factors consumes large area in case of long-length FFT
computation. To solve the problem, the twiddle factor generator is replaced with
the ROM-based lookup table.

In the next section, FFT algorithm is reviewed. An efficient In-place memory
assignment and addressing for the shared memory architecture are proposed in
section 3. Section 4 describes the proposed FFT architecture. Section 5 explains
implementation and simulation. Performance analysis is shown in section 6. Finally,
a concluding remark is given in section 7.

2. FFT ALGORITHM

The N -point Discrete Fourier Transform(DFT) of a sequence x(n) is defined as

X[k] =

N−1∑
n=0

x(n)Wnk
N , k = 0, 1, ..., N − 1 (1)

where WN is exp(−j2π/N). To compute X[k] directly, N2 multiplication and
N(N − 1) addition are needed. If (1) is represented in the matrix form like the
following equation,

~X = W~x (2)

W is defined as

W =


1 1 1 · · · 1

1 w1
N w2

N · · · wN−1
N

1 w2
N w4

N · · · w2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w

2(N−1)
N · · · w(N−1)2

N

 (3)

If N points are a power of the radix-r, the N -point DFT is decomposed into a
set of recursively related r-point transforms. Equation (3) is decomposed into the
following matrix, F .

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 3

F =


1 1 1 · · · 1
1 w1

r w2
r · · · wr−1

r

1 w2
r w4

r · · · w2(r−1)
r

...
...

...
. . .

...

1 wr−1
r w

2(r−1)
r · · · w(r−1)2

r

 (4)

The permutation matrix, P is defined as

P =



e1
er+1

...
e(N/r−1)r+1

e2
er+2

...
e(N/r−1)r+2

...
er
er+r

...
e(N/r−1)r+r



(5)

where ej denotes a row vector of length N with 1 in the jth position and 0 in every
other position. The diagonal matrix, D is defined as

D =


1 0 0 · · · 0
0 w1

N 0 · · · 0
0 0 w2

N · · · 0
...

...
...

. . .
...

0 0 0 · · · wr−1
N

 (6)

W · P =



F DF D2F · · · DN/r−1F

F wr
NDF w2r

ND
2F · · · w

(N/r−1)r
N DN/r−1F

F w2r
NDF w4r

ND
2F · · · w2(N/r−1)r

N DN/r−1F
...

...
...

. . .
...

F w
(N/r−1)r
N DF w

2(N/r−1)r
N D2F · · · w(N/r−1)2r

N DN/r−1F



CPRE/COMS 583 Project Paper.

4 · Jungmin Park

= A ·


I 0 0 · · · 0
0 DF 0 · · · 0
0 0 D2F · · · 0
...

...
...

. . .
...

0 0 0 · · · DN/r−1F

 (7)

where A =



1 1 1 · · · 1

1 wr
N w2r

N · · · w
(N/r−1)r
N

1 w2r
N w4r

N · · · w2(N/r−1)r
N

...
...

...
. . .

...

1 w
(N/r−1)r
N w

2(N/r−1)r
N · · · w(N/r−1)2r

N


The N/r×N/r matrix A is also decomposed into the matrix F . Thus it is possible
to evaluate the N -point DFT by performing a DiF matrix operation recursively.
When the radix-r is 8 in (4),

F =



1 1 1 1 1 1 1 1
1 w1

8 w2
8 w3

8 w4
8 w5

8 w6
8 w7

8

1 w2
8 w4

8 w6
8 1 w2

8 w4
8 w6

8

1 w3
8 w6

8 w1
8 w4

8 w7
8 w2

8 w5
8

1 w4
8 1 w4

8 1 w4
8 1 w4

8

1 w5
8 w2

8 w7
8 w4

8 w1
8 w6

8 w3
8

1 w6
8 w4

8 w2
8 1 w6

8 w4
8 w2

8

1 w7
8 w6

8 w5
8 w4

8 w3
8 w2

8 w1
8


(8)

In (8), the matrix F is used in the radix-8 FFT and also decomposed into the
matrix when r is 2 in (4). Fig. 1 shows the radix-8 butterfly unit and Fig. 2 shows
the decomposed radix-8 buttefly unit. In Fig. 2, the radix-8 butterfly unit consists
of 3 sub-stages which contains radix-2 buttefly units. If computation is completed
in the substage 2, it is to perform 2 radix-4 FFT computations simultaneously.
And if computation finishes in the the substage 1, it is to perform 4 radix-4 FFT
computations simultaneously. By using a decomposed radix-8 butterfly unit, FFT
computation is possible in case of N points which is not powers of 8.

3. EFFICENT IN-PLACE MEMORY ASSIGNMENT AND ADDRESSING

In the shared memory architecture, ideally a PE should should simultaneously fetch
r data from a memory then write r computed output data back to the memory. In
order to avoid memory contention, the memory is divided into r seperate banks so
that r data values can be read/written simultaneously. The ”In-Place” strategy is
used to minimized the memory size[Johnson 1992].

There are some efforts on memory addressing methods to achieve conflict-free
memory access[Pease 1969][Cohen 1976][Johnson 1992][Ma 1999][Lo et al. 2001].
These methods hava a drawback that input data can come into the memory, when
all output data in the memory have gone out. Chang[Chang and Park 2004]’s
method can resolve this problem. But that method is applied to the fixed radix-r

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 5

Fig. 1. The radix-8 butterfly unit.

Fig. 2. The decomposed radix-8 butterfly unit.

FFT algorithm in a r-bank memory. We need to modify Chang’s method to be
applied to the radix-8, radix-4 and radix-2 FFT algorithm in a 8-bank memory.

At first, input data are stored from memory bank0 sequentially. The assigned
address in bank and index of bank can be described by the following equations.

bankaddress = (I)mod(N/8)

bankindex = bI × 8/Nc (9)

where I is the index of input data, 0 ≤ I < N . In the first computation stage, 8
read bank addresses are generated from 0 to (N/8)− 1 in sequential order equally.
8 data in each bank are read simultaneously and then 8-point DFT operation is
performed. The output data of the DFT operation are stored in 8 memory banks

CPRE/COMS 583 Project Paper.

6 · Jungmin Park

of which write addresses are equal to read addresses. But some output data are
assigned to different banks from read memory banks so that confliction of data
can be avoided in the next stages. If the difference between indexes of two input
data is 8x, 2 · 8x, or 4 · 8x, where x is integer, such as (0, 8), (8, 24), (0, 32) and
so on, these input data must not be stored in the same bank to avoid memory
contension in all computation stages. When bank address represented in binary
number are partitioned every 3 bits from MSB, each group means the data index’s
difference from data index in bank address 0 is (a2a1a0)2 · 2 · 8x, (a2a1a0)2 · 2 · 8x,
or (a2a1a0)2 · 4 · 8x. For example, in case of 512 points, 8 data indexes in each bank
of which address is (000000)2 are 0, 64, 128, 192, 256, 320, 384 and 448. When
bank address is (010000)2, 8 data index in each bank is 16, 80, 144, 208, 272, 336,
400 and 464. If two data groups are assigned from bank0 to bank7 sequentailly,
confliction of data cannot be avoided. Thats why indexes of input data to compute
in next stage are 0, 8, 16, 24, 32, 40, 48 and 56. To avoid confliction of data, 8 data
in bank address (010000)2 are rotation-shifted by (010)2 +(000)2 and then assigned
into each bank. In conclusion, 8 data are rotation-shifted by the sum of each group
and then assigned into 8 memory banks to avoid memory contention. The method
of assignment can be described by the following equations.

n = log2N

bankaddress = [an−4an−5...a1a0]2

bankindex = (i+

d(n−3)/3e−1∑
t=0

(22an−4−3t + 2an−5−3t + an−6−3t))mod8

if n− y − 3t < 0, an−y−3t = 0. (10)

where i is the index of computed data in the butterfly unit.
From the second computation stage, the computed data in butterfly unit are

assigned into the same address and memory-bank of input data. But the final out-
puts are stored in the different banks so that outputs of low index can be stored in
low-index memory banks. Thus, the group of low-index data in low-index memory
banks can go out first and then new data and old data can be accepted and go out
concurrently. Table I shows the data stored in each memory bank after each stage
in case of 64-point FFT.

The method of memory addressing change according to each stage and FFT
length. Table II represents this method. In Table II,cn is the nth bit of a butterfly
counter which counts the number of butterfly operation in each stage and is reseted
whenever each stage is complete. n2n1n0 is 000, 001, 010, 011, 100, 101, 110 or
111.

4. THE PROPOSED FFT ARCHITECTURE

Components of proposed FFT architecture are a memory, a butterfly unit, two
commutators, a data address generator, a twiddle factor generator and a control
unit. The structure of proposed FFT processor is shown in Fig. 3.

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 7

Table I. Data of 64-point after stage computation in memory
After input

B0 B1 B2 B3 B4 B5 B6 B7

x[0] x[8] x[16] x[24] x[32] x[40] x[48] x[56]

x[1] x[9] x[17] x[25] x[33] x[41] x[49] x[57]

x[2] x[10] x[18] x[26] x[34] x[42] x[50] x[58]

x[3] x[11] x[19] x[27] x[35] x[43] x[51] x[59]

x[4] x[12] x[20] x[28] x[36] x[44] x[52] x[60]

x[5] x[13] x[21] x[29] x[37] x[45] x[53] x[61]

x[6] x[14] x[22] x[30] x[38] x[46] x[54] x[62]

x[7] x[15] x[23] x[31] x[39] x[47] x[55] x[63]

After Stage1 computation

B0 B1 B2 B3 B4 B5 B6 B7

g[0] g[8] g[16] g[24] g[32] g[40] g[48] g[56]

g[57] g[1] g[9] g[17] g[25] g[33] g[41] g[49]

g[50] g[58] g[2] g[10] g[18] g[26] g[34] g[42]

g[43] g[51] g[59] g[3] g[11] g[19] g[27] g[35]

g[36] g[44] g[52] g[60] g[4] g[12] g[20] g[28]

g[29] g[37] g[45] g[53] g[61] g[5] g[13] g[21]

g[22] g[30] g[38] g[46] g[54] g[62] g[6] g[14]

g[15] g[23] g[31] g[39] g[47] g[55] g[63] g[7]

After Stage2 computation

B0 B1 B2 B3 B4 B5 B6 B7

y[0] y[9] y[18] y[27] y[36] y[45] y[54] y[63]

y[7] y[8] y[17] y[26] y[35] y[44] y[53] y[62]

y[6] y[15] y[16] y[25] y[34] y[43] y[52] y[61]

y[5] y[14] y[23] y[24] y[33] y[42] y[51] y[60]

y[4] y[13] y[22] y[31] y[32] y[41] y[50] y[59]

y[3] y[12] y[21] y[30] y[39] y[40] y[49] y[58]

y[2] y[11] y[20] y[29] y[38] y[47] y[48] y[57]

y[1] y[10] y[19] y[28] y[37] y[46] y[55] y[56]

Table II. Memory Addressing
Mode Address 64 512 4096 128 1024 8192 256 2048

1 [c9...c0]2 First stage

2 [n2n1n0c9...c3]2 2 stage

3 [c9n2n1n0c8...c3]2 2 stage

4 [c9c8n2n1n0c7...c3]2 2 stage

5 [c9...c7n2n1n0c6...c3]2 2 stage 3 stage

6 [c9...c6n2n1n0c5...c3]2 2 stage 3 stage

7 [c9...c5n2n1n0c4c3]2 2 stage 3 stage

8 [c9...c4n2n1n0c3]2 2 stage 3 stage 4 stage

9 [c9...c3n2n1n0]2 Last stage

CPRE/COMS 583 Project Paper.

8 · Jungmin Park

Fig. 3. The structure of proposed FFT processor.

4.1 Memory

The memory consists of 8 memory banks and has dual ports so that 8 complex data
can simultaneously be read/written at one clock cycle.

4.2 Butterfly unit

The butterfly unit is designed to perform basically the radix-8 DIF FFT algorithm
and also it can compute radix-4 or radix-2 DIF FFT algorithm. It computes the
radix-8 FFT in all computation stage. But when the radix-8 FFT cannot be per-
formed in the last stage for the limitation of FFT length, radix-4 or radix-2 FFT
algorithm can be performed by this butterfly unit. Also, it has the pipeline struc-
ture with total 4 pipeline stages. The first, second and third pipeline stages perfome
radix-2 FFT computations and multiplications by twiddle factors are computed in
the last pipeline stage. Fig. 4 shows the pipelined radix-8/4/2 butterfly unit. In
Fig. 4, if the control signals of MUXs, S is ”00”, the butterfly unit can compute four
radix-2 FFT algorithm simultaneously. When the signal, S is ”01”, it performs two
parallel radix-4 FFT algorithm. When S is ”10”, it can compute the radix-8 FFT
algorithm without multiplication by twiddle factors. When S is ”11”, it can execute
the radix-8 FFT computation and then multiply the results by twiddle factors.

4.3 Address generator

Memory addressing is performed by the address generator. Fig. 5 shows the struc-
ture of proposed address generator. When one of 9 modes in Table 2 are selected, 8
addresses are generated by each address generator. The position of 8 addresses are
changed by a switch and a barrel shifter. The switch operates differently according

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 9

Fig. 4. The pipelined radix-8 butterfly unit.

Fig. 5. The structure of proposed address generator.

to the radix r and 8 addresses are rotated right by [c2c1c0]2 which means 3 LSBs in
the butterfly counter. Write addresses are equal to 4-clock delayed read addresses of
each bank during computation because data read from each bank shoud be written
to the same addresses of each bank after 4 clock cycles.

4.4 Commutator

Two commutators are barrel shifters which consist of 8 8-to-1 MUXs. The first
commutator close to output ports of butterfly unit assigns the output data of the
butterfly unit to correct memory banks. The second one close to input ports of
butterfly unit changes the position of 8 data read from memory in index order.
The control of two commutators changes according to each stage and FFT length
and the control signal has 3-bit wide. Table III shows the control signal of two

CPRE/COMS 583 Project Paper.

10 · Jungmin Park

Table III. Controal signal of two commutators
1 stage Other stages Last stage

Comm.1 000 c2c1c0 c2c1c0

Comm.2

64, 512, 4 k : c′8c
′
7c

′
6 + c′5c4c

′
3 + c′2c

′
1c

′
0

c′2c
′
1c

′
0 000128, 1 k, 8 k : c′9c

′
8c

′
7 + c′6c

′
5c

′
4 + c′3c

′
2c

′
1 + c′000

256, 2 k : c′7c
′
6c

′
5 + c′4c

′
3c

′
2 + c′100

commutators. In Table III, c′n represents the nth bit of the 4-clock delayed butterfly
counter .

4.5 Twiddle-factor generator

We use the recursive sine/cosine function generator which is based on the well-
known recursive feedback difference equation for the computation of sine and cosine
functions. This method has the advantage of low complexity[Chi and Sau-Gee Chen
2004]. Equation (11) shows difference equations for the generation of sine function
and cosine function.

sin(nθ) = 2cosθ × sin(n− 1)θ − sin(n− 2)θ

cos(nθ) = 2cosθ × cos(n− 1)θ − cos(n− 2)θ (11)

In (11), there are feedback terms of previous computed value. It causes error
propagation problem in finite precision calculation. If all terms in (11) have n-bit
fraction precision, the maximum error of computed sin(mθ) and cos(mθ) is two-bit
error[Chi and Sau-Gee Chen 2004]. Thus the bound of error is represented by the
following equation.

− 3

2n
≤ error ≤ +

3

2n
(12)

We can know which is larger between correct value and computed value by compar-
ing only 3 LSBs of correct value with 3 LSBs of computed value because only one of
three cases(A < B,A = BorA > B) satisfies (12). Thus error can be calculated and
then compensated by using the correction table which contains 3 LSBs of correct
values. The compensation method is represented by the following equations.

[z2z1zo]2 = unsigned([x2x1x0]2 − [y2y1y0]2)

valuecorrect = signed(valuecomputed + [z2z1z0]2) (13)

where [x2x1x0]2 is the 3 LSBs in the correction table and [y2y1y0]2 is the 3 LSBs
of computed value. Fig. 6 shows the structure of twiddle factor generator. In Fig.
6, the data width of cosθj in the cosine generator is 23 bits because all cosθj are
distinguished when represented in minimum 23 bits which consists 2-bit integer and
21-bit fraction. We need 7 twiddle factor generators to be applied to the proposed
FFT processor and 7 ROMs which store initial twiddle factors. 7 ROMs consume
small area because initial twiddle factors of the first butterfly operation in each
stage are only stored. Fig. 7 shows total structure of twiddle factor generator in
the proposed FFT processor.

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 11

Fig. 6. The structure of twiddle factor generator.

Fig. 7. Total structure of twiddle factor generator.

CPRE/COMS 583 Project Paper.

12 · Jungmin Park

Fig. 8. The method of simulation and verification.

Fig. 9. The constellations of input and output data (N = 512).

Table IV. Synthesis results
Input data width Phase factor width LUTs Block RAMs DSP48s Max. Freq.(MHz)

16 16 4811 22 10.339 96.723

5. IMPLEMENTATION AND SIMULATION

The proposed FFT processor has been modeled by VHDL in RTL-level. Input
data consists of real part and imaginary part. Each part consists of 5 bits of integer
and 11 bits of fraction. Thus total data width is 16 bits. In MATLAB, 16-QAM
modulated data are generated randomly and these data come into IFFT module.
The output data of IFFT is transformed into input format of the proposed FFT
architecture. Fig. 8 shows our method to simulate and verify our FFT processor.
Fig. 9 shows that input data and output data of the proposed FFT are mapped
onto orthogonal coordinates in case of 512-point. The proposed FFT processor is
also implemented in hardware using the Xilinx Virtex-5 FPGA. Design synthesis
results are shown in Table IV.

6. PERFORMANCE ANALYSIS

The clock cycles of complete N -point FFT operation for only one frame can be
computed by the following equations:

Tframe = I + L+Ooverlap cycles

I = N cycles

CPRE/COMS 583 Project Paper.

Project paper : Design of a radix-8/4/2 FFT processor for OFDM systems · 13

Fig. 10. The clock cycles of complete FFT operation for n frames.

Table V. Latency of N -point FFT (96 MHz)

N points Latency cycles Latency time (µs)

64 32 0.33

128 120 1.25

256 170 1.77

512 268 2.79

1K 1036 10.79

2K 1550 16.15

4K 2576 26.83

8K 9234 96.20

L = C +Ononoverlap cycles

C = (dlog8Ne − 1)(
N

8
+ 4) + (

N

8
+ x) cycles

where x = 4 if rlast = 8, x = 2 if rlast = 4, x = 0 if rlast = 2.

Ononoverlap =
N

rlast
cycles

Ooverlap = N − N

rlast
cycles (14)

where rlast is the radix at the last stage computation. I means the cylces required
to write input data in memory and C and O represent computation cycles and
output cycles, respectively. L represents latency cycles from last input data of
present frame to first input data of next frame and consists of computation cycles,
C and output cycles which do not overlap with input cycles. N

8 + 4 computation
cycles are needed every stage except the last stage and the computation cycles of
the last stage are different according to rlast. Fig. 10 shows complete clock cycles
of n frames. If n is very large number, complete clock cycles per each frame is
I + L +

Ooverlap

n ≈ I + L. Table V shows latency cycles and time according to N
points when the FFT processor operates at 96 MHz.

7. CONCLUSION

In this paper, we proposed a memory-based variable-length FFT processor archi-
tecture. We designed a pipelined radix-8/4/2 butterfly unit and proposed efficient

CPRE/COMS 583 Project Paper.

14 · Jungmin Park

In-place memory assignment. Also we designed the twiddle factor generator which
consume smaller area than ROM-based lookup table. This FFT processor has been
modeled by VHDL and the verification in RTL-level has been completed in case of
64, 128, 256, 512, 1024, 2048, 4096 and 8192 points. This FFT processor can be ap-
plied to multi-standard OFDM systems including 802.11a, 802.16a, DAB, DVB-T,
ADSL and VDSL.

REFERENCES

Chang, Y.-S. and Park, S.-C. 2004. An enhanced memory assignment scheme for memory-based

fft processor. Fundamentals of Electronics, Communications and Computer Sciences, IEICE
TRANSACTIONS on E87-A, 11 (nov), 3020–3024.

Chi, J.-C. and Sau-Gee Chen, B. 2004. An efficient fft twiddle factor generator. In EUSIPCO

2004 : (XII. European Signal Processing Conference).

Cohen, D. 1976. Simplified control of fft hardware. Acoustics, Speech and Signal Processing,
IEEE Transactions on 24, 6 (dec), 577 – 579.

He, S. and Torkelson, M. 1998. Designing pipeline fft processor for ofdm (de)modulation. In

Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on.
257 –262.

Johnson, L. 1992. Conflict free memory addressing for dedicated fft hardware. Circuits and

Systems II: Analog and Digital Signal Processing, IEEE Transactions on 39, 5 (may), 312

–316.

Lee, S.-Y., Chen, C.-C., Lee, C.-C., and Cheng, C.-J. 2006. A low-power vlsi architecture
for a shared-memory fft processor with a mixed-radix algorithm and a simple memory control

scheme. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on. 4 pp. –160.

Lo, H.-F., Shieh, M.-D., and Wu, C.-M. 2001. Design of an efficient fft processor for dab system.

In Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on.

Vol. 4. 654 –657 vol. 4.

Ma, Y. 1999. An effective memory addressing scheme for fft processors. Signal Processing, IEEE
Transactions on 47, 3 (mar), 907 –911.

Nee, R. v. and Prasad, R. 2000. OFDM for Wireless Multimedia Communications, 1st ed.

Artech House, Inc., Norwood, MA, USA.

Pease, M. C. 1969. Organization of large scale fourier processors. J. ACM 16, 474–482.

Wold, E. and Despain, A. 1984. Pipeline and parallel-pipeline fft processors for vlsi implemen-
tations. Computers, IEEE Transactions on C-33, 5 (may), 414 –426.

CPRE/COMS 583 Project Paper.

