

FPGA Based Hardware Emulation of Image
Morphing

Final Report
CprE 583, Fall 2011

12/19/2011

Talha Ansari
Heather Garnell
Anamika Shams

 2

Table of Contents

1. Introduction .. 3

2. Scope & Objective .. 3

3. Design Description .. 3
Software Development.. 3
Hardware Development ... 5

4. Design Integration ... 7

5. Project Status .. 8

6. Lessons Learned... 8

7. Conclusion ... 8

8. References ... 9

 3

1. Introduction

Morphing is an image processing technique used for the visual effect of transforming

from one image to another image. Ideally this is a seamless transition over a period of

time. The main concept is to create an intermediate image by mixing the pixel color

of the original image with another image.

The easiest way to morph one image into another, for images that are the same width

and height, is to blend each pixel in one image with the corresponding pixel in the

other image. Basically, the color of each pixel is interpolated from the first image

value to the corresponding second image value.

Additional, more complex, image morphing techniques exist. We focused on an

approach that makes use of barycentric coordinates for our project.

The steps needed for image morphing consist of many repetitive tasks. Some aspects

of the process are independent such as the computation to determine color for the

pixels in the morphed image. This processing can be completed in parallel and

therefore is a good candidate for optimization on FPGA.

2. Scope & Objective
The scope of this project is to implement an FPGA-based hardware implementation

of an image morphing application.

The objective of the project is to learn more about reconfigurable hardware. This

includes the steps involved with designing and implementing a system that makes use

of reconfigurable hardware, such as an FPGA.

The final design will allow two images to be sent to a microprocessor and FPGA and

will return a morphed image that can be displayed on monitor or saved to the hard

disk.

3. Design Description

Software Development

The main idea of our project is to blend the pixels between two images. For this

project, the concept of barycentric coordinates is used in the logic to create the

morphed image.

 4

To make use of the barycentric coordinates concept, the project must contain two

images that are preferably the same size and oriented such that the outline of the

object is similar.

There must be points of interest on each image that can be matched up. In this project,

those points are the eyes and nose of the face. Using these points, the image is

divided into triangle, such as in the figure below of the kitten and cat images divided

into eight triangles, as seen in the Figure below. The pixel data in each triangle of

one image corresponds to the pixel data in the same triangle in the other image.

Figure 1. Triangulated images

Once the images are divided into triangles, the processing for each triangle is

independent. This processing can be completed in parallel and therefore is a good

candidate for optimization on FPGA.

Morphing Computation Details

For each triangle (A0B0C0 in the first image, A1B1C1 in the second image) there is a

corresponding triangle AtBtCt for the morphed image. For this project, t = 0.5 or

halfway through with image morph.

For the triangle AtBtCt for the morphed image, each point Pt can be determined using

barycentric coordinates (α, β, γ), which are derived from the ratio of the smaller

triangle formed by P (PAB, PAC, PBC) over the area of the entire triangle.

Figure 2. Final image after morphing

The equations to determine a barycentric coordinate (α, β, γ), is shown here.

Figure 3. Equations for α, β, and γ

 5

Using α, β, γ the corresponding points (and their pixel color, I0 and I1) in triangle

A0B0C0 and A1B1C1 can be determined as shown

P0 = αt A0 + βtB0 + γtC0

P1 = αt A1 + βtB1 + γtC1

The color of point Pt can be determined as shown:

It = (1-t)I0 + t I1.

By doing this procedure for all points in all triangles in the morphed image, the pixel

color for the entire image can be determined by an interpolation of the initial color

and final color.

The image below shows the final morphed image that is output from the application

developed for this project.

Figure 4. Final image after morphing

We created a document repository in Google docs, or project website containing the

initial project proposal, weekly status reports, the draft of the final project plan

presentation and final report. This helped to allow each group member to make

updates at any time.

Hardware Development

The MP3 software architecture was reused for the project with the intent that

integration of the image morphing functions will be much easier. Also, by using MP3

architecture the results would have easily been displayed on the monitor. APU_INV

entity was reused, with slight modifications from MP3. The state machine

architecture was designed to perform two successive loads followed by a store. The

first load was used to store image data from the first image while the second load was

used to store data from the second image. Both loads were 128 bits long, with bits

120 to 127 containing blank bits. The primary goal of each load was to store data of 5

pixels, each of which contains 24 bits of color element data. Therefore for 5 pixels

total number of bits came out to be 120, hence last 8 bits were ignored.

The hardware design was broken up into 4 processes. Figure 5 below outlines each of

the processes. InputReg process is where all inputs are mapped to local signals with

 6

in the entity. If reset is detected, all signals are set to “0”, otherwise they are mapped

to the input ports. The second process, StateMachineReg is where the next state of the

state machine is determined. As the figure states, this was a clocked process used to

help sync the hardware design flow. OutPutReg is also a clocked process where

image merging is carried out. The initial goal was to take average of each element

from each of the two images, i.e pixel 1 red from image 1 was added to pixel 1 red

from image 2 and divided by two. The last process of the hardware design is

Comp_Nxt_St. This is not a clocked process and depended on bit changes to signals

as shown in the apu_inv.vhd file.

Process: InputReg
Type: Clock
Description: Maps all input ports to
local signals. Sets default values when
entity in reset.

Process: StateMachineReg
Type: Clock
Description: Sets default starting state
as well as next state.

Process: OutputReg
Type: Clock
Description: Computation done in this
process for Morphing.

Process: Comp_Nxt_st
Type: Sgnals
Description: Depending of input
signals, switches between different
states of design.

Figure 5. Hardware design high-level block diagram.

As described earlier, the state machine for checking the instruction type is similar to

the MP3 design, except the state machine is designed to track two consecutive loads.

Figure 6 shows the state machine used for this project. The design defaults to

INST_TYPE state where it waits for a valid instruction. If a load instruction is

detected, the next state is set to WAIT_WBLV where it waits for either a “loadvalid”

or a “writebackok” input, whichever comes first. Depending on which signal is

detected first, the next state is either set to WAIT_LV or WAIT_WB. From here the

next state is set to LOAD_DATA where data from the first image is stored. At this

point local signal LDCNT is set to “1” and the next state is set to WAIT_LV to get

ready for data from second load. LDCNT here is used to track the number of

consecutive loads. Once the second load arrives, LDCNT is set o “2” and image

merging takes place inside OutputReg. The next state is set to WAIT_INST, where

 7

the state machine either waits for the store or another set of load instructions. It is

important to note that if another set of load instructions are detected before the store,

result from the first two loads will be lost.

INST_TYPE WAIT_WBLV

WAIT_WBWAIT_LV

LOAD_DATA STORE_DATA

DECLOAD = 1

DECSTORE = 1

WRITEBACKOK = 1

LOADVALID = 1

LDCNT = 01b

DECNONAUTION = 0

LDCNT: Local signal that counts number of consecutive loads

WRITEBACKOK = 1

LOADVALID = 1

LDCNT = 10b

Figure 6. Hardware design state machine.

The hardware section was designed and tested with the “TestApp_Peripheral” from

MP3. The file was slightly modified with two sets of two loads followed by a store.

The design was tested out in simulation. A couple of run time errors were

encountered where division was carried out and so this part of the code was

commented out. The goal was to either do the division in software or to come back

and fix the error after a successful integration had occurred.

4. Design Integration
Since the morphing algorithm was complex, we decided to break the integration into

multiple steps. The main morphing algorithm was coded on a windows based

machine and the hardware was developed on the Xilinx-3 machine. The goal was to

design both sections independent of each other to keep the complexity of the design

simple. The next steps were to integrate the software on the ML507 board without the

use of the VHDL. Once everything was working, VHDL code for pixel merging

would have been off loaded to the hardware. However, a critical mistake was made in

 8

this design step. We highly under estimated the integration step and spent majority of

our time on the software and hardware designs. To much of our disappointment we

were unable to integrate the morphing on the ML507 board. Independently, both the

software and hardware features work but once combined together on the hardware we

kept running into one roadblock after another. Our integration via a modified echo.c

didn’t work out as expected. Our work schedules also didn’t help the cause, as most

of us couldn’t meet regularly to discuss issues and come up with an appropriate

solution.

5. Project Status
We were able to successfully implement the morphing algorithm in software and on

any windows or linux-based machine. We were also able to code and test majority of

the hardware design. However, both of the design blocks could not be combined to

work on the hardware board.

6. Lessons Learned

 Use of chat programs was very helpful to keep communication lines open

 Use of tools to keep documentation in a common location is helpful (Google

docs and Google sites)

 Checking for integration issues early on is important

7. Conclusion
Completion of the image morphing implementation with the FPGA was the ideal goal

of the project. Another goal of the project was to speed up the processing time for the

final morphing image to display to the monitor. Also, code reusability was considered

while creating the project to enable this project to be reused for any kind of the image

morphing project with minimal update.

We ran into more issues that expected when we tried to integrate which is captured in

the lesson learned section. If the integration effort of the C code with the FPGA

would have started earlier as we planned then we expect we could have resolved the

issues we have currently to get our project to work on the hardware. Though our

integration via a modified echo.c didn’t work out as expected, we did meet many of

the goals of the project.

 9

8. References

[1] Ching-Kuang Shene. "Barycentric Coordinates and Morphing,” Department of
Computer Science. Michigan Technological University. April 19, 2003.

[2] T. Balercia, A. Zitti, H. Francesconi, S. Orcioni and M. Conti. "FPGA
Implementations of a Simplified Retinex Image Processing Algorithm." IEEE
2006.

[3] CprE583 Course Website, http://class.ece.iastate.edu/cpre583/.

