
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Investigation of a Reconfigurable Processor for 

a SLAM System 
 

 

 

 

 

 

 

 

 

 

 

 

 

by: 

 

Roy Lycke 

Ji Li 

Ryan Hamor 

 

 

 

Iowa State University 



CPRE 583 

December 17
th

, 2011 

Introduction 

 

 The purpose of this project was to take a computational intensive algorithm implemented 

on an embedded processor, benchmark it, and then create custom instructions in reconfigurable 

hardware to speed that execution up.  The algorithm chosen was a Rao-Blackwellised Particle 

Filter type SLAM algorithm.  SLAM stands for Simultaneous Localization and Mapping.  By 

recursively estimating a vehicles pose and at the same time collecting landmarks from the 

environment and correlating them to that pose to create a map of the environment. 

 For this project we choose the predict step of the particle filter to be implemented in 

hardware for acceleration.  The predict step of the particle filter is responsible for completing the 

following algorithm: 

 

Algorithm 1: 
For each particle 

 Using the previous and new odometer readings derived an estimated control vector. 

 Using the control vector estimate compute a predicted pose. 
 The predicted pose and the measured sensor variance is used to draw a sample from a Gaussian distribution. 

End For 

 

 

The goal will be to benchmark algorithm computation time for the software / hardware 

vs. the all software version.  The breakdown of the paper is as follows; section one discusses the 

hardware implementation of the predict step, section two gives detailed analysis of the profiling 

and bench marking process, section three reviews the simulation results from hardware and 

section four presents conclusions. 

 

Hardware / Software  Co-design of Predict Step for SLAM Algorithm 

 

 During our initial project work we found a SLAM algorithm developed by Kris Beevers 

for a PHD thesis called ratbot-slam.  This algorithm was originally designed to run on an 

embedded processor using a fixed point representation of 16.16.  The algorithm was modified to 

take in data and odometer information from encoders and laser scanners in place of the IR range 

finders used in the thesis.  An initial run was done using “usc-sal200-021120” from 

www.radish.com.  

 In figure 1 below shows the initial bench mark results running the algorithm on a PC.  

The results, captured with Glow Code, show that 83.3% of the algorithms time is spent in the 

filter update function.  Looking deeper into we targeted two other functions, gaussian_pose and 

motion_model_deadreck, these two functions compose the predict step in the algorithm and 

consume 39% of the application run time.  With these numbers we are hoping to get close to a 

1.66x speed up. As a result of this we targeted two main functions to be implemented in 

hardware and be heavily pipelined.  Our analysis of the filter update function shows we could 

have implemented more of the algorithm in hardware; however, due to time constraints we have 

limited the hardware design to the two functions listed above. 

 

http://www.radish.com/
http://www.radish.com/
http://www.radish.com/
http://www.radish.com/
http://www.radish.com/


 
Figure 1 - Initial Profiling of SLAM Algorithm 

 

 

Top Level Design 

 

As discusses above, the main object of our project is to take an existing SLAM implementation 

and accelerate as much of it as possible in the time limit allotted for the project.  To enable us to 

meet this goal we need a reliable and repeatable way to benchmark the system.  We choose to do 

this by running a log file of odometry and laser scan data over UDP to an ml507 development 

board with an F70T Xilinx 5 Vertex processor.  The FPGA on the ml507 has an embedded 

PowerPC 440 processor that the bulk of our algorithm shall run on.  We then implement the 

motion_model_deadreck and gaussian_pose functions in hardware.  To communicate with the 

reconfigurable fabric of the FPGA we connected to the APU controller.  The APU controller is a 

hardcore piece of hardware that allows for special instruction and data to be committed to the 

reconfigurable fabric via software assembly instructions.  Two such functions we take advantage 

of are the load and store functions.  Below is the top level architecture of the system. 

 



 
 

Figure 2 - Top Level System Block Diagram 

 

The log file is preprocessed in MatLab to only use the odometry data and five out of the 180 laser scan 

points.  The main PC program then reads this modified log file, converts it into packets, and transmits 

them via UDP to the PowerPC which is running the modified ratbot-slam algorithm. 

 

The next sections of the paper shall discuss the detailed implementation of the specific parts in 

our system. 

 

 

Software Design 

 

The software system of this project is the code used for implementing the original SLAM 

algorithm on the PowerPC and the PC based data loading functions.  The software described in 

the following section is used for loading data, communicating over a network, running the 

SLAM algorithm, and returning its output.  This section does not describe the operation of the 

SLAM algorithm used in this project; that information is covered in the introduction. 

 

PC Data Loader 

The first portion of the software design is the PC data loader.  This portion of the project code is 

run by the user on the PC and is responsible for loading the sensor data to the FPGA for running 

the algorithm and returning the results to the user. This code is run entirely on the PC, excluding 

the receiving code on the FPGA, and pulls data from input files on the PC. 

 

The operation of the PC data loader starts by loading the input data file into structures for 

sending to the FPGA.  The data structures for this transmission had to be formatted so that the 



endianess of the two systems, PC and FPGA, did not impact communication or interpretation of 

values.  The second step of the data transfer was sending the data the FPGA via UDP packets.  

Once the data was sent to the FPGA the PC data loader would wait for a request from the FPGA 

for more data.  The PC data loader would continue to send data until the input data files were 

empty.  Once the input files had reached end-of-file the PC data loader would send a request to 

the FPGA to transmit back the output files from the SLAM algorithm.  As the output files would 

get sent back to the PC data loader they would be written into output files with no change in 

formatting. 

 

SLAM Running Code 

The second region of the software design is the code that runs on the Xilinx FX70 FPGA and 

runs the SLAM algorithm.  This code takes network input from the PC data loader, manages the 

operation of the SLAM algorithm, and when requested sends data back to the PC data loader. 

 

The SLAM running code runs in an infinite loop waiting for input form the network.  When a 

request is sent to load data the SLAM algorithm reads in the input data from the network, loads 

the data into sensor data structures then loads each sensor data structure into the SLAM 

algorithm.  Each time a new sensor data is loaded into the SLAM algorithm, the algorithm 

performs all of its calculations and processes the appropriate output maps for the environment 

described by the input sensor data.  Once all the data is loaded into the SLAM algorithm the 

running code sends a request for data to the PC data loader and returns to waiting in the infinite 

loop. 

 

The other case for the SLAM running code is a request for output.  This is usually performed 

once all data from an input file is exhausted, but all needed is a request from the network.  The 

SLAM running code will first calculate the output map files for the environment currently 

viewed by the SLAM algorithm based on previously input sensor data.  Once these output map 

files are generated they are sent over the network to the requester with no formatting, the data 

must be loaded into an output file directly.  Once all the data from the output maps files is sent 

the SLAM running code sends a request for data to the PC data loader and returns to waiting in 

the infinite loop. 

 

The two previous elements, the PC data loader and the SLAM running code, have one weakness 

in that they communicate via UDP.  Due to this unchecked method of communication a single 

dropped or mal-formatted packed could cause the program to hang.  This was observed to 

occasionally happen after several minutes of network communication, even using handshaking 

techniques to control program synching.  This could be addressed in future implementations of 

this project by using TCP rather than UDP.  The decision to use UDP for this project was made 

because there was a previous implementation of network communication working for the target 

FPGA and adaptation of a working system allowed for further efforts to be spent on other 

elements of the design. 

 

APU Integration 

The last portion of the software design is the integration of the APU co-processor with the C 

implementation of the SLAM algorithm.  This was performed by modifying the predict step of 

the SLAM algorithm to perform calls to our APU co-processor.  The current implementation 



uses only loads and stores to the co-processor to initialize data analysis.  The operation of the 

APU co-processor is discussed in further detail in the remainder of the document. 

 

FCM Module Design 

 

As discussed above we took advantage of the APU controller interface and the special load and 

store instructions for our accelerated hardware.  Our top level hardware component is called 

apu_inv after our MP3 project from the class.  The base apu_inv allowed for a load instruction 

directed at register 2 of the FCM to invert all colors of one pixel of an image.  Our modified 

version added additional registers to load data specific to our project. 

 

There are three main types of data that must be loaded to the HW Predict Step; Old odometry 

data from the last sample, new odometry data from the current sample, and the current pose of 

the particle that a new pose shall be predicted.  Each of the data structures are a pose type data 

structure which means they consist of 3 32bit fixed point numbers (16.16 bit division).  The 

algorithm for loading the particle data is shown below. 

 

Algorithm 2: 
 

For each filter update step 

 Load(Old Odometry Data, FCM Reg 0x01) 
 Load(New Odometry Data, FCM Reg 0x03) 

 For each Particle 

  Load (Particle Pose Data, FCM Reg 0x04) 
 end loop 

 For each Particle 

  Store(Particle Pose Data) 
 end loop 

end 

 

 

As the FCM receives the load instructions it determines where to put the data based on the 

desired register specified in the load instruction as shown in the table below: 

 

 

Load Instruction 

Register 

FCM Register Description 

0x01 Old_Odometer_Data_reg(95 

downto 0) 

This register holds the previous 

sampled odometry 

0x0395 New_Odometer_Data_reg( 

downto 0) 

This register hold the current update 

step’s odometry data. 

0x04 Particle_Data_reg(95 downto 0)  

 

The next two sections shall describe the two main hardware subsystems, Motion Model and 

Gaussian Pose. 

 

 



Motion Model  

 

After the first three registers are filled the FCM module signals that particle data is ready to start 

processing by asserting the Particle_Data_Valid_reg signal to the Motion Model.  A typical run 

for one predict step involves 100 particles that must be updated while the old and new odometry 

information remains unchanged.  Due to this we have pipe-lined all the subsystems to 

continuously take in new particle pose information.  The top level inputs and outputs for the 

Motion Model are listed in the table below: 

 

 

Signal Name Description Input/Output 

clk Motion Model clock signal Input 

reset Motion Model reset signal to clear all internal registers Input 

DataValid Signal to Motion Model that all input data has been loaded 

and processing can begin 

Input 

Stall Signal from the gaussian_pose subsystem that the Motion 

Model should stop processing while keeping the interal 

states of its registers 

Input 

OLD_X (31 

downto 0) 

Old odometry x value Input 

OLD_Y (31 

downto 0) 

Old odometry y value Input 

OLD_T (31 

downto 0) 

Old odometry angular value Input 

NEW_X (31 

downto 0) 

New odometry x coordinate Input 

NEW_Y (31 

downto 0) 

New odometry y coordinate Input 

New_T (31 

downto 0) 

New odometry angular coordinate Input 

Part_X (31 

downto 0) 

Current particle x coordinate Input 

Part_Y (31 

downto 0) 

Current particle y coordinate Input 

Part_T (31 Current particle angular coordinate Input 



downto 0) 

DataValidOut Used to signal gaussian_pose subsystem that there is data to 

be processed 

Output 

PRED_T Nominal predicted new angular coordinate for the particle Output 

PRED_X Nominal predicted new x coordinate for the particle Output 

PRED_Y Nominal predicted new y coordinate for the particle Output 

 

To create the Motion Model the modified C code was mapped to a data flow graph.  The data 

flow graph was then analyzed to extract areas of parallelism and identify where pipelines maybe 

necessary.  The figure below is the data flow graph for the Motion Model: 

 

 
Figure 3 - Data Flow Graph of the Motion Model 

 

 

From the data flow graph is apparent that not all operation can be completed in parallel.  The 

next design decision was to determine if pipelines needed to be used.  To do this the motion 

model was created to run in one process and the circuit synthesized to analyze timing.  It was 



found that the circuit timing was approximately 40ns, which meant that the clock would have to 

be slower than 25MHz.  The original FCM module was setup to run at 100 MHz and we wanted 

to be able to maintain at least this speed.  Based upon this, the decision was made to pipeline the 

Motion Model. 

 

From the flow graph the Motion Model can be divided up into 8 stages.  One additional stage is 

used to align the registers.  Timing on this 9 stage Motion Model indicated that we were under 

the 10 ns requirement to run at 100 MHz.  In addition to the 9 stages for the motion model logic 

three main components were also designed; Cosine BRAM table, Sine BRAM table, and 32bit 

16.16 fixed point multiplier. 

 

 

Common Motion Model Pipeline Stages 

 

While the intermediate signals for each of the motion model stages varied there were some core 

signals that each pipeline stage contained to keep the data flowing.  Those signals are listed in 

the table below: 

 

 

Signal Name Description Input/Output 

clk Pipeline stage clock Input 

reset Synchronous reset to clear all pipeline registers Input 

Stall Halts the pipeline stage execution, but keeps the register states 

when asserted high 

Input 

DataValid Enables pipeline stage execution on input data Input 

DataValidOut Signals next pipeline stage that data is available on the pipeline 

stage output registers 

Output 

 

 

Sine and Cosine BRAM Table 

 

The Motion Model required that the sine and cosine of the input angles be computed as part of its 

functionality.  To facilitate this we use a look up table of 16.16 sine and cosine values stored in 

BRAM memory.  In addition to the BRAM memory it was also necessary to add logic to perform 

the following tasks: 

 

- Determine the sign of the angle and set the sign of the output sine values accordingly 

- Bit shift the input angle to a look up value of 0 to 402 

- Range limit the look value if the input angle was greater than pi 

 

 

 



The input and output table of the look-ups is shown below: 

 

Signal Name Description Input/Output 

clk Lookup Table clock signal Input 

Angle (31 downto 0) 16.16 fixed point angle in radians that the trig 

function should be evaluated on 

Input 

SineAngle / CosineAngle 

(31 downto 0) 

16.16 fixed point trig-function value Output 

 

 

32bit 16.16 Fixed Point Multiplier 

 

When working with the 16.16 fixed point format a special multiplier needed to be developed.  

The multiplier consists of a 32 bit signed multiply with addition shift logic to transform the result 

to a 16.16 fixed point number.  The input and output table is given below: 

 

Signal Name Description Input/Output 

MultInA (31 downto 0) First 16.16 fixed point value to be multiplied Input 

MultInB (31 downto 0) Second 16.16 fixed point value to be multiplied Input 

MultOut (31 downto 0) 16.16 fixed point value of A x B Output 

 

 

Simulation Results for Motion Model 

 

To verify the correct operation of the Motion Model hardware a simple C program was used to 

load in 3 sets of particle information.  The figure below is the simulation of the Motion Model.  

The simulation show contains 5 consecutive loads; old odometry data, new odometry data, and 3 

particle poses’. Once the first particle pose has been loaded the datavalid signal is asserted.  10 

clocks later the first new particle pose estimate is output along with the datavalid out signal.  The 

next 2 new pose estimates are output at less than 10 clocks due to the pipeline stages. 

 



 
 

Figure 4 - Simulation of Motion Model Subsystem 

 

 

 

Implementation of function of gaussian_pose  

 

The C program code of gaussian_pose function is shown as follows. It consists of three gassian 

functions. Because this is fast version of slam algorithm, the original C program code ignores 

cross-variance terms, which are set to constants. So for this gaussian_pose function, it takes 

three input values, which are the predicted value of x, y, and t, and outputs three numbers 

processed by gaussian functions for them. 

 

 

 

 

 

 

 

 

 

 

The detail C program code of gaussian function is shown as below. It can work in two ways, 

which are determined the variable cached. When the static variable cached equals 1, this 

function only does one multiplication and one addition calculation. When it equals 0, it will do 

more calculations, including generating and selecting random numbers, look-ups to the Gaussian 

table, multiplications, and additions. Every time the gaussian function is called, the cached 

signal switches between 0 and 1.  

 

 

void gaussian_pose(const pose_t *mean, const cov3_t *cov, pose_t 
*sample) 
{ 
  sample->x = gaussian(mean->x, fp_sqrt(cov->xx)); 
  sample->y = gaussian(mean->y, fp_sqrt(cov->yy)); 
  sample->t = gaussian(mean->t, fp_sqrt(cov->tt)); 
} 

fixed_t gaussian(fixed_t mean, fixed_t stddev) 
{ 
  static int cached = 0; 
  static fixed_t extra; 
  static fixed_t a, b, c, t; 
 



 

Parallelism analysis 

 

As the code shows, two high-level parallelisms exist and can be used to accelerate the calculation 

speed: 

1. gaussian_pose function consists of three gaussian functions, and they can run 

simultaneously. Thus, these three functions can be realized using multi-threads technique. 

2. Gaussian function can be separated into two parts. The first part is to generate and select 

qualified couples of random numbers, and then look up the Gaussian table based on the 

random numbers achieved. The second part of work is to take the inputs from 

motion_model_deadreck function, random numbers and looking up result of Gaussian table 

to do further calculations. Actually, the first part is fully independent with the second one. 

While it does not need any input when it is running, the second part needs the input from 

previous calculation results. Thus, the gaussian function can be implemented as two 

components, which can run simultaneously. In that case, one component produces and stores 

random numbers without ceasing, and the other one consumes these calculation products 

when inputs arrive. 

 

 

Techniques used for acceleration 

 

To accelerate the calculations, three techniques are applied: 

(1) Pipeline: Pipelines are heavily used for the hardware design. Even though there are high-

level parallelisms exist in gaussian_pose functions. Its subcomponents still are made up with 

sequential operations. Because of that, multiple clocks are needed to process one set of 

inputs. By using pipeline techniques, new inputs can be fed before the previous ones are fully 

processed, and the hardware can take one input and produce one output every clock. Thus, 

this technique can greatly accelerate the calculations. 

(2) Multi-thread: Multi-thread techniques are applied to implement the three gaussian functions 

of gaussian_pose, so that they can run parallel in the hardware. 

 

High level architecture of gaussian_pose 

 

The high level architecture of gaussian_pose entity is shown by figure 5. It consists of three 

gaussian entity, they work in parallel as multi-thread. And there are three 

random_number_manager components feed the random numbers needed to them. Each gaussian 

component produces one 32 bit output. The total three outputs of them are combined together 

and stored in a 96 bit FIFO to be accessed by APU later. 
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Figure 5: High level architecture of gaussian_pose 

 

Actually, as shown by Fig. 5, the original gaussian function of the C program code is separated 

into two parts and implemented as two hardware components, which are named as 

Random_number_manager and Gaussian entities. The first component is to generate and select 

qualified couples of random numbers, and then look up the Gaussian table based on the random 

numbers achieved. The second one is to take the inputs from motion_model_deadreck function, 

random numbers and looking up result of Gaussian table to do further calculations. There are two 

reasons of this design: 

(1) As discussed in above part, the work of Random_number_manager is completely 

independent with any other components and can work without any inputs, while gaussian 

entity needs to wait until the input from motion_model_deadreck is available. So it is 

reasonable to split their work into two parts to free the calculations of 

Random_number_manager from any other constraints. 

(2) Not all the sets of random numbers generated are qualified for later calculations. One entity 

produces two 16 bits random numbers every clock, whose sum of square needs to be not 

bigger than 1
32

. Otherwise, they should be discarded, and additional clocks are needed to 

generate new couple of random numbers for later procession. That means if system produces 

and evaluate the random numbers only when the input from motion_model_deadreck arrives, 

the later calculations need to wait indefinite clocks before one couple of suitable random 

numbers arrive. It has two disadvantages. Firstly, it unnecessarily wastes some clocks. 

Secondly, the indefinite clock needed to produce the suitable random numbers lead to 

indefinite clocks needed to finish the whole operations of gaussion functions. That means the 

multi-thread of Gaussian functions may need different clocks to finish their work, and this 

make it harder to synchronize them. To save the clock wasted and convenient the 

synchronization of multi-threads of Gaussian functions, the work related with random 

numbers is taken out from gaussian entity and is taken care by Random_number_manager 



entity, which generates and selects the random numbers with non-stop no matter whether the 

inputs from motion_model_deadreck arrives. And the suitable ones are stored into a FIFO for 

later use of further calculations when needed until it is filled. 

 

Random_number_manager 

 

Random_number_manager entity generates and selected suitable couples of random numbers 

needed for later calculations. Its main structure is shown by Fig. 6.  It consists of two random 

number generators, one Gaussian look up table, and one FIFO. Pipelines are used to 

implement this entity, and it has four working stages. Firstly, two 16 bits random numbers are 

produced by two random number generators. Secondly, the sum of square R of two random 

numbers is calculated. Thirdly, the system judge whether R is smaller than 1
32

. If so, it takes 

10 bits of R as the address to look up the Gaussian table, and the result will be stored into one 

FIFO along with the two random numbers for the later calculations. 
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Figure 6: Diagram of Random_number_manager component 

 

 

The pseudorandom random number generators implemented are called Xorshift random 



number generator. They generate the next number in their sequence by repeatedly taking the 

exclusive or (XOR) of a number with a bit shifted version of itself. Each of them can work 

very fast, and can produce one random number every clock. The random number sequence 

produced is determined by its initial setting value and the bits chosen to do the XOR 

operations.  

As the Gaussian function of the algorithm needs two independent random numbers every 

time, the two Xorshift random number generators in each Random_number_manager are 

very different. They are given different initialization values, and the different bits of them are 

selected to do the XOR operations. This solution can make sure the random number 

sequences generated by them are not correlated. 

 

  

The following sample VHDL program shows how one Xorshift random number works: 

 

 

 

 

 
 

 

 

On the other hand, the Gaussian look-up table is generated by Coregen using block memory 

resource. Its width is 32 bits, and depth is 1024. So, it consume one 36 Kbit block memory. 

In the end, one FIFO is implemented to store the selected random numbers and related result 

of checking Gaussian table. As the suitable random numbers are produced very fast, this 

design can make sure the FIFO is always almost full of data for later calculation. 
 

 

 

 

Gaussian Entity 

 

Figure 6 shows the Gaussian entities implemented. And pipeline is applied to accelerate its 

calculations. As discussed above, the Gaussian Entity has two working modes as shown by 

Table 1. In mode one, the Gaussian Entity only needs to do one multiplication and one 

addition which can be finished with two steps. However, in mode two, there are four steps, 

including: reading the data from FIFO, three multiplications, and one addition. Additionally, 

there are always one or two of the three Gaussian components working at one mode, and the 

others works at another one. This may cause some problems on synchronizing the three 

Gaussian components. Additionally, it may make the output of later input processed by mode 

one be send out earlier than the earlier input processed by mode two. To solve this problem, 

working mode one is also extended to four steps to complete; the first two steps do nothing 

but pass the input data to the registers of next stage. By doing this, the two working modes 

need same amount of clocks to be finished, and the right output sequence is ensured. On the 

other hand, as the pipeline stages of different Gaussian components working at different 

modes align well, their synchronization and data exchange can work pretty well. As Fig. 6 

shows, the extra variable produced at stage 2 by left Gaussian component at mode 2 can 

num_seed <= num_seed(0) & num_seed(15 downto 13) & (num_seed(0) xor 

num_seed(12)) &  

                       num_seed (11 downto 8) & (num_seed(0) xor num_seed(7)) & 

        num_seed(6 downto 2) & 

(num_seed(0) xor num_seed(1)); 



directly feed to the stage 3 of right Gaussian component at mode 1. They are well 

synchronized and cooperate well. 

 

 

 

 
Table 1: Different work mode of Gaussian component 

 Mode 1 Mode 2 

Step 1 N/A Read data from 

FIFO 

Step 2 N/A Multiplication 

Step 3 Multiplication Multiplication 

Step 4 Addition Addition 

 

 
Figure 6: Diagram of two well synchronized Gaussian component 

 

 

FIFO and look-up table 

 

The system applied look-up tables to do Gaussian, sine, and cosine functions. On the other hand, 

FIFOs are used to buffer the output data of some components. All the FIFOs and look-up tables 

were generated by Coregen using block memory resource. Efforts were made to optimize these 

designs by careful configuration. For example, when generating 32 bits width and 512 depth sine 

table, if the default Minimum Area algorithm is chosen to concatenate the block RM primitives, 

it takes one 36K BRAM. But if 512 x 36 fixed primitives algorithm is applied instead, it only 

cost one 18K BRAM. On the other hand, it should be noticed that the same amount of BRAM 

resource is cost when generating the FIFO with different depth in some ranges. For example, 

both 16 depth and 512 depth of 51 bit width FIFO cost one 36K BBRAM. While the 512 depth 

FIFO takes full advantage of the BBRAM cost, the 16 depth one greatly wastes the BRAM 



resources. Efforts were made to optimize the configuration when using Coregen in order to save 

the hardware resource while the performance is satisfied.  

 

 

Hardware Simulation Results 

 

The simulation of the program was performed by running the SLAM algorithm implementation 

both with and with out the APU coprocessor code implemented and using simulated sensor data 

as the input.  The running environment was the Xilinx FX70 board.  The run-times were obtained 

from clock cycle calculations and print statements to the minicom output.  Both before and after 

coprocessor predict step averages are based on more than 400 data points each.  The “Average 

Time in us” column describes the average time to execute the described step in microseconds.  

The “Present in Percentage of Runs” column describes the percentage of times the described step 

executed over all simulated sensor inputs. 

 

The results of these simulations are shown in the following table. 

 

 

Before APU Acceleration  Average Time in us Present in Percentage of Runs 

Predict Step 107,502 100.00% 

Multiscan Step 2,487,969 2.17% 

Filter Step 3,394 2.17% 

   

After APU Acceleration   

Predict Step 12,784 100.00% 

Multiscan Step 1,982,950 1.94% 

Filter Step 13,291 1.94% 

 

The results show that for the predict step there was an execution time reduction of 88.108%; 

100% time reduction could only occur in the case that predict step takes no time to execute.  The 

resulting acceleration for the whole program is 34.362%. This is considered significant 

acceleration for the predict step and the program in as a whole. 

 

The results also show that the percentage of executions in comparison to number of input values 

by all three different steps is approximately constant between non-accelerated and accelerated 

implementations (within 0.25%).  These results agree with the assumption that the program 

should operate in the same manner before and after the addition of the co-processor acceleration. 

 



The simulation results also describe the multiscan feature extraction and data association step 

and the filer health evaluation and re-sample step.  The average run-times for these two steps 

change between non-accelerated and accelerate implementations with the multiscan step 

accelerating by 20.29% and the filter step slowing by 74.46%. A possible reason for this is a 

difference in the output of the particle poses between the non-accelerated and accelerated 

implementations.  Different value ranges could account for more computations to be performed 

on the particle poses in filter step, such as resampling, and fewer computations in the multiscan 

step.  These variances do cause merit further investigation at a later time, but due to their small 

impact, present in only approximately 2% of total executions, their impact is viewed as minimal 

for the scope of this project. 

 

 

Conclusions 

 

For the VHDL design, pipelines and multi-thread techniques were successfully applied to 

accelerate the calculation particle pose for the SLAM algorithm by approximately 34% out of a 

possible 39%. The development team believes that this acceleration is significant, and multiple 

executions of the algorithm show this acceleration level to reliable. This was performed while 

saving hardware resource and meeting the performance is required; efforts were made to 

optimize the configuration when Coregen with generate look-up tables and FIFO components.  

This project shows that by using FPGA as the platform for running SLAM algorithm on, the 

algorithm can be run to required performance levels and accelerated to run efficently.  Further 

research in the field could yield more efficient SLAM systems running on reconfigurable 

hardware. 
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Appendix 

 

Source code can be downloaded via SVN at the link below: 

 

https://source.ece.iastate.edu/projects/slam-f2011/ 


