

Investigation of a Reconfigurable Processor for

a SLAM System

by:

Roy Lycke

Ji Li

Ryan Hamor

Iowa State University

CPRE 583

December 17
th

, 2011

Introduction

 The purpose of this project was to take a computational intensive algorithm implemented

on an embedded processor, benchmark it, and then create custom instructions in reconfigurable

hardware to speed that execution up. The algorithm chosen was a Rao-Blackwellised Particle

Filter type SLAM algorithm. SLAM stands for Simultaneous Localization and Mapping. By

recursively estimating a vehicles pose and at the same time collecting landmarks from the

environment and correlating them to that pose to create a map of the environment.

 For this project we choose the predict step of the particle filter to be implemented in

hardware for acceleration. The predict step of the particle filter is responsible for completing the

following algorithm:

Algorithm 1:
For each particle

 Using the previous and new odometer readings derived an estimated control vector.

 Using the control vector estimate compute a predicted pose.
 The predicted pose and the measured sensor variance is used to draw a sample from a Gaussian distribution.

End For

The goal will be to benchmark algorithm computation time for the software / hardware

vs. the all software version. The breakdown of the paper is as follows; section one discusses the

hardware implementation of the predict step, section two gives detailed analysis of the profiling

and bench marking process, section three reviews the simulation results from hardware and

section four presents conclusions.

Hardware / Software Co-design of Predict Step for SLAM Algorithm

 During our initial project work we found a SLAM algorithm developed by Kris Beevers

for a PHD thesis called ratbot-slam. This algorithm was originally designed to run on an

embedded processor using a fixed point representation of 16.16. The algorithm was modified to

take in data and odometer information from encoders and laser scanners in place of the IR range

finders used in the thesis. An initial run was done using “usc-sal200-021120” from

www.radish.com.

 In figure 1 below shows the initial bench mark results running the algorithm on a PC.

The results, captured with Glow Code, show that 83.3% of the algorithms time is spent in the

filter update function. Looking deeper into we targeted two other functions, gaussian_pose and

motion_model_deadreck, these two functions compose the predict step in the algorithm and

consume 39% of the application run time. With these numbers we are hoping to get close to a

1.66x speed up. As a result of this we targeted two main functions to be implemented in

hardware and be heavily pipelined. Our analysis of the filter update function shows we could

have implemented more of the algorithm in hardware; however, due to time constraints we have

limited the hardware design to the two functions listed above.

http://www.radish.com/
http://www.radish.com/
http://www.radish.com/
http://www.radish.com/
http://www.radish.com/

Figure 1 - Initial Profiling of SLAM Algorithm

Top Level Design

As discusses above, the main object of our project is to take an existing SLAM implementation

and accelerate as much of it as possible in the time limit allotted for the project. To enable us to

meet this goal we need a reliable and repeatable way to benchmark the system. We choose to do

this by running a log file of odometry and laser scan data over UDP to an ml507 development

board with an F70T Xilinx 5 Vertex processor. The FPGA on the ml507 has an embedded

PowerPC 440 processor that the bulk of our algorithm shall run on. We then implement the

motion_model_deadreck and gaussian_pose functions in hardware. To communicate with the

reconfigurable fabric of the FPGA we connected to the APU controller. The APU controller is a

hardcore piece of hardware that allows for special instruction and data to be committed to the

reconfigurable fabric via software assembly instructions. Two such functions we take advantage

of are the load and store functions. Below is the top level architecture of the system.

Figure 2 - Top Level System Block Diagram

The log file is preprocessed in MatLab to only use the odometry data and five out of the 180 laser scan

points. The main PC program then reads this modified log file, converts it into packets, and transmits

them via UDP to the PowerPC which is running the modified ratbot-slam algorithm.

The next sections of the paper shall discuss the detailed implementation of the specific parts in

our system.

Software Design

The software system of this project is the code used for implementing the original SLAM

algorithm on the PowerPC and the PC based data loading functions. The software described in

the following section is used for loading data, communicating over a network, running the

SLAM algorithm, and returning its output. This section does not describe the operation of the

SLAM algorithm used in this project; that information is covered in the introduction.

PC Data Loader

The first portion of the software design is the PC data loader. This portion of the project code is

run by the user on the PC and is responsible for loading the sensor data to the FPGA for running

the algorithm and returning the results to the user. This code is run entirely on the PC, excluding

the receiving code on the FPGA, and pulls data from input files on the PC.

The operation of the PC data loader starts by loading the input data file into structures for

sending to the FPGA. The data structures for this transmission had to be formatted so that the

endianess of the two systems, PC and FPGA, did not impact communication or interpretation of

values. The second step of the data transfer was sending the data the FPGA via UDP packets.

Once the data was sent to the FPGA the PC data loader would wait for a request from the FPGA

for more data. The PC data loader would continue to send data until the input data files were

empty. Once the input files had reached end-of-file the PC data loader would send a request to

the FPGA to transmit back the output files from the SLAM algorithm. As the output files would

get sent back to the PC data loader they would be written into output files with no change in

formatting.

SLAM Running Code

The second region of the software design is the code that runs on the Xilinx FX70 FPGA and

runs the SLAM algorithm. This code takes network input from the PC data loader, manages the

operation of the SLAM algorithm, and when requested sends data back to the PC data loader.

The SLAM running code runs in an infinite loop waiting for input form the network. When a

request is sent to load data the SLAM algorithm reads in the input data from the network, loads

the data into sensor data structures then loads each sensor data structure into the SLAM

algorithm. Each time a new sensor data is loaded into the SLAM algorithm, the algorithm

performs all of its calculations and processes the appropriate output maps for the environment

described by the input sensor data. Once all the data is loaded into the SLAM algorithm the

running code sends a request for data to the PC data loader and returns to waiting in the infinite

loop.

The other case for the SLAM running code is a request for output. This is usually performed

once all data from an input file is exhausted, but all needed is a request from the network. The

SLAM running code will first calculate the output map files for the environment currently

viewed by the SLAM algorithm based on previously input sensor data. Once these output map

files are generated they are sent over the network to the requester with no formatting, the data

must be loaded into an output file directly. Once all the data from the output maps files is sent

the SLAM running code sends a request for data to the PC data loader and returns to waiting in

the infinite loop.

The two previous elements, the PC data loader and the SLAM running code, have one weakness

in that they communicate via UDP. Due to this unchecked method of communication a single

dropped or mal-formatted packed could cause the program to hang. This was observed to

occasionally happen after several minutes of network communication, even using handshaking

techniques to control program synching. This could be addressed in future implementations of

this project by using TCP rather than UDP. The decision to use UDP for this project was made

because there was a previous implementation of network communication working for the target

FPGA and adaptation of a working system allowed for further efforts to be spent on other

elements of the design.

APU Integration

The last portion of the software design is the integration of the APU co-processor with the C

implementation of the SLAM algorithm. This was performed by modifying the predict step of

the SLAM algorithm to perform calls to our APU co-processor. The current implementation

uses only loads and stores to the co-processor to initialize data analysis. The operation of the

APU co-processor is discussed in further detail in the remainder of the document.

FCM Module Design

As discussed above we took advantage of the APU controller interface and the special load and

store instructions for our accelerated hardware. Our top level hardware component is called

apu_inv after our MP3 project from the class. The base apu_inv allowed for a load instruction

directed at register 2 of the FCM to invert all colors of one pixel of an image. Our modified

version added additional registers to load data specific to our project.

There are three main types of data that must be loaded to the HW Predict Step; Old odometry

data from the last sample, new odometry data from the current sample, and the current pose of

the particle that a new pose shall be predicted. Each of the data structures are a pose type data

structure which means they consist of 3 32bit fixed point numbers (16.16 bit division). The

algorithm for loading the particle data is shown below.

Algorithm 2:

For each filter update step

 Load(Old Odometry Data, FCM Reg 0x01)
 Load(New Odometry Data, FCM Reg 0x03)

 For each Particle

 Load (Particle Pose Data, FCM Reg 0x04)
 end loop

 For each Particle

 Store(Particle Pose Data)
 end loop

end

As the FCM receives the load instructions it determines where to put the data based on the

desired register specified in the load instruction as shown in the table below:

Load Instruction

Register

FCM Register Description

0x01 Old_Odometer_Data_reg(95

downto 0)

This register holds the previous

sampled odometry

0x0395 New_Odometer_Data_reg(

downto 0)

This register hold the current update

step’s odometry data.

0x04 Particle_Data_reg(95 downto 0)

The next two sections shall describe the two main hardware subsystems, Motion Model and

Gaussian Pose.

Motion Model

After the first three registers are filled the FCM module signals that particle data is ready to start

processing by asserting the Particle_Data_Valid_reg signal to the Motion Model. A typical run

for one predict step involves 100 particles that must be updated while the old and new odometry

information remains unchanged. Due to this we have pipe-lined all the subsystems to

continuously take in new particle pose information. The top level inputs and outputs for the

Motion Model are listed in the table below:

Signal Name Description Input/Output

clk Motion Model clock signal Input

reset Motion Model reset signal to clear all internal registers Input

DataValid Signal to Motion Model that all input data has been loaded

and processing can begin

Input

Stall Signal from the gaussian_pose subsystem that the Motion

Model should stop processing while keeping the interal

states of its registers

Input

OLD_X (31

downto 0)

Old odometry x value Input

OLD_Y (31

downto 0)

Old odometry y value Input

OLD_T (31

downto 0)

Old odometry angular value Input

NEW_X (31

downto 0)

New odometry x coordinate Input

NEW_Y (31

downto 0)

New odometry y coordinate Input

New_T (31

downto 0)

New odometry angular coordinate Input

Part_X (31

downto 0)

Current particle x coordinate Input

Part_Y (31

downto 0)

Current particle y coordinate Input

Part_T (31 Current particle angular coordinate Input

downto 0)

DataValidOut Used to signal gaussian_pose subsystem that there is data to

be processed

Output

PRED_T Nominal predicted new angular coordinate for the particle Output

PRED_X Nominal predicted new x coordinate for the particle Output

PRED_Y Nominal predicted new y coordinate for the particle Output

To create the Motion Model the modified C code was mapped to a data flow graph. The data

flow graph was then analyzed to extract areas of parallelism and identify where pipelines maybe

necessary. The figure below is the data flow graph for the Motion Model:

Figure 3 - Data Flow Graph of the Motion Model

From the data flow graph is apparent that not all operation can be completed in parallel. The

next design decision was to determine if pipelines needed to be used. To do this the motion

model was created to run in one process and the circuit synthesized to analyze timing. It was

found that the circuit timing was approximately 40ns, which meant that the clock would have to

be slower than 25MHz. The original FCM module was setup to run at 100 MHz and we wanted

to be able to maintain at least this speed. Based upon this, the decision was made to pipeline the

Motion Model.

From the flow graph the Motion Model can be divided up into 8 stages. One additional stage is

used to align the registers. Timing on this 9 stage Motion Model indicated that we were under

the 10 ns requirement to run at 100 MHz. In addition to the 9 stages for the motion model logic

three main components were also designed; Cosine BRAM table, Sine BRAM table, and 32bit

16.16 fixed point multiplier.

Common Motion Model Pipeline Stages

While the intermediate signals for each of the motion model stages varied there were some core

signals that each pipeline stage contained to keep the data flowing. Those signals are listed in

the table below:

Signal Name Description Input/Output

clk Pipeline stage clock Input

reset Synchronous reset to clear all pipeline registers Input

Stall Halts the pipeline stage execution, but keeps the register states

when asserted high

Input

DataValid Enables pipeline stage execution on input data Input

DataValidOut Signals next pipeline stage that data is available on the pipeline

stage output registers

Output

Sine and Cosine BRAM Table

The Motion Model required that the sine and cosine of the input angles be computed as part of its

functionality. To facilitate this we use a look up table of 16.16 sine and cosine values stored in

BRAM memory. In addition to the BRAM memory it was also necessary to add logic to perform

the following tasks:

- Determine the sign of the angle and set the sign of the output sine values accordingly

- Bit shift the input angle to a look up value of 0 to 402

- Range limit the look value if the input angle was greater than pi

The input and output table of the look-ups is shown below:

Signal Name Description Input/Output

clk Lookup Table clock signal Input

Angle (31 downto 0) 16.16 fixed point angle in radians that the trig

function should be evaluated on

Input

SineAngle / CosineAngle

(31 downto 0)

16.16 fixed point trig-function value Output

32bit 16.16 Fixed Point Multiplier

When working with the 16.16 fixed point format a special multiplier needed to be developed.

The multiplier consists of a 32 bit signed multiply with addition shift logic to transform the result

to a 16.16 fixed point number. The input and output table is given below:

Signal Name Description Input/Output

MultInA (31 downto 0) First 16.16 fixed point value to be multiplied Input

MultInB (31 downto 0) Second 16.16 fixed point value to be multiplied Input

MultOut (31 downto 0) 16.16 fixed point value of A x B Output

Simulation Results for Motion Model

To verify the correct operation of the Motion Model hardware a simple C program was used to

load in 3 sets of particle information. The figure below is the simulation of the Motion Model.

The simulation show contains 5 consecutive loads; old odometry data, new odometry data, and 3

particle poses’. Once the first particle pose has been loaded the datavalid signal is asserted. 10

clocks later the first new particle pose estimate is output along with the datavalid out signal. The

next 2 new pose estimates are output at less than 10 clocks due to the pipeline stages.

Figure 4 - Simulation of Motion Model Subsystem

Implementation of function of gaussian_pose

The C program code of gaussian_pose function is shown as follows. It consists of three gassian

functions. Because this is fast version of slam algorithm, the original C program code ignores

cross-variance terms, which are set to constants. So for this gaussian_pose function, it takes

three input values, which are the predicted value of x, y, and t, and outputs three numbers

processed by gaussian functions for them.

The detail C program code of gaussian function is shown as below. It can work in two ways,

which are determined the variable cached. When the static variable cached equals 1, this

function only does one multiplication and one addition calculation. When it equals 0, it will do

more calculations, including generating and selecting random numbers, look-ups to the Gaussian

table, multiplications, and additions. Every time the gaussian function is called, the cached

signal switches between 0 and 1.

void gaussian_pose(const pose_t *mean, const cov3_t *cov, pose_t
*sample)
{
 sample->x = gaussian(mean->x, fp_sqrt(cov->xx));
 sample->y = gaussian(mean->y, fp_sqrt(cov->yy));
 sample->t = gaussian(mean->t, fp_sqrt(cov->tt));
}

fixed_t gaussian(fixed_t mean, fixed_t stddev)
{
 static int cached = 0;
 static fixed_t extra;
 static fixed_t a, b, c, t;

Parallelism analysis

As the code shows, two high-level parallelisms exist and can be used to accelerate the calculation

speed:

1. gaussian_pose function consists of three gaussian functions, and they can run

simultaneously. Thus, these three functions can be realized using multi-threads technique.

2. Gaussian function can be separated into two parts. The first part is to generate and select

qualified couples of random numbers, and then look up the Gaussian table based on the

random numbers achieved. The second part of work is to take the inputs from

motion_model_deadreck function, random numbers and looking up result of Gaussian table

to do further calculations. Actually, the first part is fully independent with the second one.

While it does not need any input when it is running, the second part needs the input from

previous calculation results. Thus, the gaussian function can be implemented as two

components, which can run simultaneously. In that case, one component produces and stores

random numbers without ceasing, and the other one consumes these calculation products

when inputs arrive.

Techniques used for acceleration

To accelerate the calculations, three techniques are applied:

(1) Pipeline: Pipelines are heavily used for the hardware design. Even though there are high-

level parallelisms exist in gaussian_pose functions. Its subcomponents still are made up with

sequential operations. Because of that, multiple clocks are needed to process one set of

inputs. By using pipeline techniques, new inputs can be fed before the previous ones are fully

processed, and the hardware can take one input and produce one output every clock. Thus,

this technique can greatly accelerate the calculations.

(2) Multi-thread: Multi-thread techniques are applied to implement the three gaussian functions

of gaussian_pose, so that they can run parallel in the hardware.

High level architecture of gaussian_pose

The high level architecture of gaussian_pose entity is shown by figure 5. It consists of three

gaussian entity, they work in parallel as multi-thread. And there are three

random_number_manager components feed the random numbers needed to them. Each gaussian

component produces one 32 bit output. The total three outputs of them are combined together

and stored in a 96 bit FIFO to be accessed by APU later.

gaussian 1 gaussian 2 gaussian 3

Random

number

manager

Random

number

manager

Random

number

manager

96 bits Fifo

X Y T Input Valid

Output

Valid
Output data

Stall

extra extra Extra_reg

Figure 5: High level architecture of gaussian_pose

Actually, as shown by Fig. 5, the original gaussian function of the C program code is separated

into two parts and implemented as two hardware components, which are named as

Random_number_manager and Gaussian entities. The first component is to generate and select

qualified couples of random numbers, and then look up the Gaussian table based on the random

numbers achieved. The second one is to take the inputs from motion_model_deadreck function,

random numbers and looking up result of Gaussian table to do further calculations. There are two

reasons of this design:

(1) As discussed in above part, the work of Random_number_manager is completely

independent with any other components and can work without any inputs, while gaussian

entity needs to wait until the input from motion_model_deadreck is available. So it is

reasonable to split their work into two parts to free the calculations of

Random_number_manager from any other constraints.

(2) Not all the sets of random numbers generated are qualified for later calculations. One entity

produces two 16 bits random numbers every clock, whose sum of square needs to be not

bigger than 1
32

. Otherwise, they should be discarded, and additional clocks are needed to

generate new couple of random numbers for later procession. That means if system produces

and evaluate the random numbers only when the input from motion_model_deadreck arrives,

the later calculations need to wait indefinite clocks before one couple of suitable random

numbers arrive. It has two disadvantages. Firstly, it unnecessarily wastes some clocks.

Secondly, the indefinite clock needed to produce the suitable random numbers lead to

indefinite clocks needed to finish the whole operations of gaussion functions. That means the

multi-thread of Gaussian functions may need different clocks to finish their work, and this

make it harder to synchronize them. To save the clock wasted and convenient the

synchronization of multi-threads of Gaussian functions, the work related with random

numbers is taken out from gaussian entity and is taken care by Random_number_manager

entity, which generates and selects the random numbers with non-stop no matter whether the

inputs from motion_model_deadreck arrives. And the suitable ones are stored into a FIFO for

later use of further calculations when needed until it is filled.

Random_number_manager

Random_number_manager entity generates and selected suitable couples of random numbers

needed for later calculations. Its main structure is shown by Fig. 6. It consists of two random

number generators, one Gaussian look up table, and one FIFO. Pipelines are used to

implement this entity, and it has four working stages. Firstly, two 16 bits random numbers are

produced by two random number generators. Secondly, the sum of square R of two random

numbers is calculated. Thirdly, the system judge whether R is smaller than 1
32

. If so, it takes

10 bits of R as the address to look up the Gaussian table, and the result will be stored into one

FIFO along with the two random numbers for the later calculations.

Random Number

Generator 1

R = a2 + b2

Random Number

Generator 2

Gaussian Table

FIFO

Reg A1 Reg B1

Reg A2 Reg B2Reg R1

R < 132 ?

Reg A2 Reg B2Reg R1

Random Number Manager

Figure 6: Diagram of Random_number_manager component

The pseudorandom random number generators implemented are called Xorshift random

number generator. They generate the next number in their sequence by repeatedly taking the

exclusive or (XOR) of a number with a bit shifted version of itself. Each of them can work

very fast, and can produce one random number every clock. The random number sequence

produced is determined by its initial setting value and the bits chosen to do the XOR

operations.

As the Gaussian function of the algorithm needs two independent random numbers every

time, the two Xorshift random number generators in each Random_number_manager are

very different. They are given different initialization values, and the different bits of them are

selected to do the XOR operations. This solution can make sure the random number

sequences generated by them are not correlated.

The following sample VHDL program shows how one Xorshift random number works:

On the other hand, the Gaussian look-up table is generated by Coregen using block memory

resource. Its width is 32 bits, and depth is 1024. So, it consume one 36 Kbit block memory.

In the end, one FIFO is implemented to store the selected random numbers and related result

of checking Gaussian table. As the suitable random numbers are produced very fast, this

design can make sure the FIFO is always almost full of data for later calculation.

Gaussian Entity

Figure 6 shows the Gaussian entities implemented. And pipeline is applied to accelerate its

calculations. As discussed above, the Gaussian Entity has two working modes as shown by

Table 1. In mode one, the Gaussian Entity only needs to do one multiplication and one

addition which can be finished with two steps. However, in mode two, there are four steps,

including: reading the data from FIFO, three multiplications, and one addition. Additionally,

there are always one or two of the three Gaussian components working at one mode, and the

others works at another one. This may cause some problems on synchronizing the three

Gaussian components. Additionally, it may make the output of later input processed by mode

one be send out earlier than the earlier input processed by mode two. To solve this problem,

working mode one is also extended to four steps to complete; the first two steps do nothing

but pass the input data to the registers of next stage. By doing this, the two working modes

need same amount of clocks to be finished, and the right output sequence is ensured. On the

other hand, as the pipeline stages of different Gaussian components working at different

modes align well, their synchronization and data exchange can work pretty well. As Fig. 6

shows, the extra variable produced at stage 2 by left Gaussian component at mode 2 can

num_seed <= num_seed(0) & num_seed(15 downto 13) & (num_seed(0) xor

num_seed(12)) &

 num_seed (11 downto 8) & (num_seed(0) xor num_seed(7)) &

 num_seed(6 downto 2) &

(num_seed(0) xor num_seed(1));

directly feed to the stage 3 of right Gaussian component at mode 1. They are well

synchronized and cooperate well.

Table 1: Different work mode of Gaussian component

 Mode 1 Mode 2

Step 1 N/A Read data from

FIFO

Step 2 N/A Multiplication

Step 3 Multiplication Multiplication

Step 4 Addition Addition

Figure 6: Diagram of two well synchronized Gaussian component

FIFO and look-up table

The system applied look-up tables to do Gaussian, sine, and cosine functions. On the other hand,

FIFOs are used to buffer the output data of some components. All the FIFOs and look-up tables

were generated by Coregen using block memory resource. Efforts were made to optimize these

designs by careful configuration. For example, when generating 32 bits width and 512 depth sine

table, if the default Minimum Area algorithm is chosen to concatenate the block RM primitives,

it takes one 36K BRAM. But if 512 x 36 fixed primitives algorithm is applied instead, it only

cost one 18K BRAM. On the other hand, it should be noticed that the same amount of BRAM

resource is cost when generating the FIFO with different depth in some ranges. For example,

both 16 depth and 512 depth of 51 bit width FIFO cost one 36K BBRAM. While the 512 depth

FIFO takes full advantage of the BBRAM cost, the 16 depth one greatly wastes the BRAM

resources. Efforts were made to optimize the configuration when using Coregen in order to save

the hardware resource while the performance is satisfied.

Hardware Simulation Results

The simulation of the program was performed by running the SLAM algorithm implementation

both with and with out the APU coprocessor code implemented and using simulated sensor data

as the input. The running environment was the Xilinx FX70 board. The run-times were obtained

from clock cycle calculations and print statements to the minicom output. Both before and after

coprocessor predict step averages are based on more than 400 data points each. The “Average

Time in us” column describes the average time to execute the described step in microseconds.

The “Present in Percentage of Runs” column describes the percentage of times the described step

executed over all simulated sensor inputs.

The results of these simulations are shown in the following table.

Before APU Acceleration Average Time in us Present in Percentage of Runs

Predict Step 107,502 100.00%

Multiscan Step 2,487,969 2.17%

Filter Step 3,394 2.17%

After APU Acceleration

Predict Step 12,784 100.00%

Multiscan Step 1,982,950 1.94%

Filter Step 13,291 1.94%

The results show that for the predict step there was an execution time reduction of 88.108%;

100% time reduction could only occur in the case that predict step takes no time to execute. The

resulting acceleration for the whole program is 34.362%. This is considered significant

acceleration for the predict step and the program in as a whole.

The results also show that the percentage of executions in comparison to number of input values

by all three different steps is approximately constant between non-accelerated and accelerated

implementations (within 0.25%). These results agree with the assumption that the program

should operate in the same manner before and after the addition of the co-processor acceleration.

The simulation results also describe the multiscan feature extraction and data association step

and the filer health evaluation and re-sample step. The average run-times for these two steps

change between non-accelerated and accelerate implementations with the multiscan step

accelerating by 20.29% and the filter step slowing by 74.46%. A possible reason for this is a

difference in the output of the particle poses between the non-accelerated and accelerated

implementations. Different value ranges could account for more computations to be performed

on the particle poses in filter step, such as resampling, and fewer computations in the multiscan

step. These variances do cause merit further investigation at a later time, but due to their small

impact, present in only approximately 2% of total executions, their impact is viewed as minimal

for the scope of this project.

Conclusions

For the VHDL design, pipelines and multi-thread techniques were successfully applied to

accelerate the calculation particle pose for the SLAM algorithm by approximately 34% out of a

possible 39%. The development team believes that this acceleration is significant, and multiple

executions of the algorithm show this acceleration level to reliable. This was performed while

saving hardware resource and meeting the performance is required; efforts were made to

optimize the configuration when Coregen with generate look-up tables and FIFO components.

This project shows that by using FPGA as the platform for running SLAM algorithm on, the

algorithm can be run to required performance levels and accelerated to run efficently. Further

research in the field could yield more efficient SLAM systems running on reconfigurable

hardware.

References

1. Durrant-Whyte, Bailey, “Simultaneous Localization and Mapping: Part 1”, IEEE Robotics and

Automation Magazine, June 2006, pg 99 – 108

2. Durrant-Whyte, Bailey, “Simultaneous Localization and Mapping: Part 2”, IEEE Robotics and

Automation Magazine, September 2006, pg 108 - 117

3. Bonato, Peron, Wolf, Holanda, Marques, Cardoso, “An FPGA Implementation for a Kalman

Filter with Application to Mobile Robotics”, Industrial Embedded Systems, 2007, pg 148 – 155

4. Bonato, Marques, Constantinides, “A Floating-point Extended Kalman Filter Implementation

for Autonomous Mobile Robots”, Field Programmable Logic and Applications, 2007, pg 576-

579

5. Beevers K.R., Huang, W.H., “SLAM with Sparse Sensing”, Robotics and Automation 2006,

pg 2285-2290

Appendix

Source code can be downloaded via SVN at the link below:

https://source.ece.iastate.edu/projects/slam-f2011/

