Platform Specification
Format Reference Manual

Embedded Development Kit (EDK)
12.3

UG642 September 21, 2010

& XILINX.

2. XILINX®

© Copyright 2010 Xilinx, Inc. All Rights Reserved.

XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.

The PowerPC name and logo are registered trademarks of IBM Corp., and used under license. All other trademarks are the property of their
respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. THE DOCUMENTATION IS DISCLOSED TO
YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY
CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST
PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Platform Specification Format Reference Manual = www.xilinx.com UG642 September 21, 2010

http://www.xilinx.com

Platform Specification Format Reference Manual
EDK 12.3

The following table shows the revision history for this document.

Date Revision

08/20/04 | Initial release for EDK 6.3i.

02/15/05 | EDK 7.1i release.

04/28/05 | EDK 7.1i Service Pack 1 release.

07/05/05 | EDK 7.1i Service Pack 2 release.

10/24/05 | EDK 8.1i release.
01/16/06 | EDK 8.1 Service Pack 1 release. Updated to note obsolete cores.
06/23/06 | EDK 8.2i release.
01/08/07 | EDK 9.1i release.
09/05/07 | EDK 9.2i release.
01/14/07 | EDK 10.1 release.

07/30/08 | EDK 10.1 Service Pack 3 release.

03/31/09 | EDK 11.1 release.

06/24/09 | EDK 11.2 release.

04/19/10 | EDK 12.1 release

7/23/10 | EDK 12.2 release

9/21/10 | EDK 12.3 release

UG642 September 21, 2010 www.Xxilinx.com Platform Specification Format Reference Manual

http://www.xilinx.com

Platform Specification Format Reference Manual = www.xilinx.com UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Preface

About This Guide

Guide Contents

This manual contains the following chapters:

e Chapter 1, Introduction

e Chapter 2, Microprocessor Hardware Specification (MHS)

* Chapter 3, Microprocessor Peripheral Definition (MPD)
¢ Chapter 4, Peripheral Analyze Order (PAO)

e Chapter 5, Black-Box Definition (BBD)

¢ Chapter 6, Microprocessor Software Specification (MSS)

¢ Chapter 7, Microprocessor Library Definition (MLD)

e Chapter 8, Microprocessor Driver Definition (MDD)
* Chapter 9, Xilinx Board Description (XBD) Format

* Appendix A, Glossary

Additional Resources

To find additional documentation, see the Xilinx website:

http:/ /www.xilinx.com/support/documentation/index.htm.

The following table lists some of the resources you can access from this website. You can
also directly access these resources using the provided URLs.

Resource

Description/URL

EDK Home

Embedded Development Kit home page, FAQ, and tips.

http:/ /www.xilinx.com /ise/embedded_design_prod/
platform_studio.htm

EDK Examples

A set of complete EDK examples.
http:/ /www.xilinx.com /ise/embedded /edk_examples.htm

Tutorials

Tutorials covering Xilinx design flows from design entry to verification
and debugging

http:/ /www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser

To search the Answer Database of silicon, software, and IP questions
and answers, or to create a technical support WebCase, see the Xilinx
website at:

http:/ /www.xilinx.com/support/mysupport.htm

Platform Specification Format Reference Manual = www.xilinx.com 5

UG642 September 21, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/support/mysupport.htm

Preface: About This Guide

& XILINX.

Conventions

Resource Description/URL
Application Notes | For descriptions of device-specific design techniques and approaches,
click the Doc Type tab on the following web page:
http:/ /www.xilinx.com /support/documentation/index.htm
Data Sheets For device-specific information on Xilinx device characteristics,

including readback, boundary scan, configuration, length count, and
debugging, click the Doc Type tab on the following web page:

http:/ /www.xilinx.com/support/documentation/index.htm

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues:

http:/ /www.xilinx.com /support/troubleshoot/psolvers.htm

GNU Manuals

The entire set of GNU manuals may be found at:

http:/ /www.gnu.org /manual

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention

Meaning or Use Example

Courier font

Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold

Literal commands that you enter

i i dbuild design_name
in a syntactical statement ngdbui on_

Helvetica bold

Commands that you select from

File — Open
a menu

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

See the Development System
Reference Guide for more
information.

References to other manuals

If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Emphasis in text

[]

Square brackets

An optional entry or parameter.
However, in bus specifications,
such asbus[7:0], they are
required.

ngdbuild [option_name]
design_name

www.xilinx.com Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.gnu.org/manual

& XILINX.

Conventions

Convention

Meaning or Use

Example

Braces { }

A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |

Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has
been omitted

IOB #1:
IOB #2:

QOouT’
CLKIN'

Name
Name =

Horizontal ellipsis. ..

Repetitive material that has
been omitted

allow block block_name locl
loc2 ... locn;

Online Documents

The following conventions are used in this document:

Convention

Meaning or Use

Example

Blue text

Cross-reference link to a location
in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text

Hyperlink to a website (URL)

Go to http:/ /www.xilinx.com
for the latest speed files.

Platform Specification Format Reference Manual
UG642 September 21, 2010

www.Xxilinx.com

http://www.xilinx.com
http://www.xilinx.com

Preface: About This Guide & XILINX.

8 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

Table of Contents

Preface: About This Guide

Guide Contents e 5
Additional ReSOUICeSottt 5
CONVENLIONSottt e 6
Typographical. 6
Online Documentst 7

Chapter 1:

Chapter 1: Introduction

Files 15
BBD - Black Box Definition............... 15
MDD - Microprocessor Driver Definition 15
MHS - Microprocessor Hardware Specification 16
MPD - Microprocessor Peripheral Definition 16
MSS - Microprocessor Software Specification 16
MLD - Microprocessor Library Definition.................................... 16
PAO - Peripheral AnalyzeOrder....................., 16
XBD - Xilinx Board Definition oo oo 16

Fileand IP Naming Rules 16
VersionScheme 17
Version Setting for MHSand MSS L 17
Version Setting for BBD, MPD, and PAO..................................... 17

Load Path 17
Peripheral and pcore Directory Structures. 17
Using Versions i 18

Creating Your IP 19
IsYour IPPure HDL? e 19
Is Your IP Only a Black-Box Netlist?................. 19
Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog? 19

Creating HDL Libraries for Your IP....................................... ... 19
Primary Library 19
Resource Library 19

Resource Librariesand PAOFiles. i i 20
Library File Locations i 20

Verilog Include Directories. 20
Format 20
Restrictions 21

Chapter 2: Microprocessor Hardware Specification (MHS)

MHS Syntax 23
AbouttheSyntax 23
COMIMENESot e 24
Format e 24

Platform Specification Format Reference Manual = www.xilinx.com
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MHSExample.. 25
Bus Interface. 27
Definition. . . .ottt e 27
Example.o 27
Bus Interface Keyword(s) ... 28
Global Parameter 28
Definition.o e 28
Global Parametert 28
Local Parameter i 28
Definition. . . oottt e 28
Local Parametersouuii e e 28
Global Port 29
Global Port Keyword Summary 29
Global Port Keyword Definitions 29
Local Port 31
Design Considerations 31
Defining Memory Size............ ... i 31
Power Signals (net_gnd/net_vcc) o oo oo 31
Unconnected POrts.o ot 32
Constant Assignments. 32
Concatenationttt e 32
Internal vs. External Signals............... L 33
External Interrupt Signals................ 33
AXISystems 33

Chapter 3: Microprocessor Peripheral Definition (MPD)

MPD Syntax ... 40
D finition. . . .o 40
COMMENES . . . oo e 40
Format e 40

Assignment Commands 40
MPD Example. 40

BusInterface. e 44
Definition. . . . 44
Bus Interface Keyword Summary 44
Bus Interface Keyword Definitionsl 44
Bus Interface Naming Conventions 46

IO Interface 46
Definition.o e 46
IO Interface Keywords 47

Option. 47
Definition. . . .o 47
Option Keyword Summary i 47
Option Keyword Definitions oL 48

Parameter 55
Definition.o 55
Parameter Keyword Summary oo 55
Parameter Keyword Definitions oo 55
Parameter Naming Conventions o ... 61

Parameter Superscript Definitions i oo 61

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Required Parameters for AXI Peripherals 62
Optional HDL Parameters for AXI Peripherals................................ 63
Reserved Parameterst i e e 67
Reserved Parameter Names Summary, 67
Reserved Parameter Descriptions. i 67
Interconnect Related Parameters for AXI Peripherals. 69
POrtS . . e 72
DefiNition. . ..o 72
Port Keyword Summary 72
Port Keyword Definitions. 73
Port Naming Conventions, 78
Global PoOrts ..ottt e e 78

LMB -Clock and ReSet . . . o oo ittt it ettt e e e e e e 78
PLB-Clock and Reset. . ..o vi ittt ettt e e e e e e 78
Slave DCR POrtS « oottt it ettt et e e e e 78
DCRSIave OUtputs.o oo 78
DCRSIave INputso 79
Slave LMB POrts . . o vttt ettt ettt e e e e e 79

LMB Slave Outputs.o 79
LMBSlave INputso 79
Master PLB POrtsttt ettt e e e 79
PLBMaster Outputsot 80
PLBMasterInputs 80
Slave PLB PoOrtS. . o v vttt et e e e e 80
PLBSlave Outputst 81
PLBSlave INputs.ot 81
Reserved Port ConnectionsS.ottt et et et 82
Clock and ReSet POrtS . . v v v v it it et ettt e e e e e e 82
Slave LM B POrts . . o vttt ettt ettt e e e e e e 82
Master PLB POrtsttt et et e e e 82
Slave PLB PoOrtS. . o ittt ittt e e e 83
Design Considerations 84
Unconnected PortS.ot e 84
Scalable Data Path e it 84
MPD Example.o 84
Interrupt Signals. 84
Tri-state (InOut and Output) Signals 85
Tri-state (InOut) With Single-Bit Enable............. 86
VHDL Example.o 86
MPD Example.o 86
Tri-state (InOut) With Multi-BitEnable 86
VHDL Example.o 86
MPD Example.o 86
Tri-state (In/Out) With Single-Bit Enable With Freely Named Ports 87
VHDL Example.o 87
MPD Example.o 87
Tri-state (InOut) With Multi-Bit Enable With Freely Named Ports. 87
VHDL Example.o 87
MPD Example.o 87
Tri-state (Output) With Single-Bit Enable. 87
VHDL Example.o o 88
MPD Example. o 88
Tri-state (Output) With Multi-Bit Enable, 88

Platform Specification Format Reference Manual = www.xilinx.com
UG642 September 21, 2010

11

http://www.xilinx.com

& XILINX.

VHDL Example.o e 88
MPD Example. o 88
Tri-state (Output) With Single-Bit Enable With Freely Named Ports 88
VHDL Example.o e 88
MPD Example. o 89
Tri-state (Output) With Multi-Bit Enable With Freely Named Ports 89
VHDL Example.o e 89
MPD Example.o 89

Chapter 4: Peripheral Analyze Order (PAO)

PAOFormat......... 91
Format 91
Comments 92

Verilog Include Directories. 92
Format 92

PAO Example 93

Chapter 5: Black-Box Definition (BBD)

BBD Format......... 95
Comments.............o i 95
Lasts . 95
Common Repository Library oo i 96

BBD Examples 96
File Selection Without Options 96
Multiple File Selections Without Options 96
File Selection With Options 96
File Selection With Common Repository Library 96

Chapter 6: Microprocessor Software Specification (MSS)

OV eI VIOW . . o 97
Additional ReSourcesoo i 97
MSS Format. 97
MSS Keywords 98
Requirements 98
MSSExample ... 99
Global Parameterso 100
PSE Version . ..ot 100
Parameter INT _HANDLER e 100
Instance-Specific Parameters L 100
OS, Driver, Library, and Processor Block Parameters Summary 101
OS, Driver, Library, and Processor Block Parameters Definitions 101
MDD/MLD Specific Parameterso i i 103
OS-Specific Parameters Summaryl 103
Processor-Specific Parameter Summary...............o 104
Processor-Specific Parameter Definitions....................... 104

Chapter 7: Microprocessor Library Definition (MLD)

OVeIVICW . . oottt 107

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Requirements.........
Additional Resources
Library Definition Files

MLD Format Specification
MLD File Format Specification il
Parameter Description Section i

Tcl File Format Specification o o o i i
DRC SeCHON . ot vttt et e e e
Generation SeCtionttt e e e
Examples
Example: MLD FileforaLibrary i,
Example: Tcl FileofaLibrary i
Example: MLD Fileforan OS........ i
Example: Tcl Fileof anOS o

MLD Parameter Description Section........................,
Conventionsoo i
Comments...........oo i
OS or Library Definition
MLD or MDD Keyword Summary,
MLD or MDD Keyword Definitions,

Design Rule Check (DRC) Section...............

Library Generation (Generate) Section......................................

Chapter 8: Microprocessor Driver Definition (MIDD)

OVeIVIOW . .o
Requirements.........
Additional Resources i
Driver Definition Files

MDD Format Specification............
MDD File Format Specification i

Tcl File Format Specification o
DRCSECHON . . \ott e
Generation Sectiono

Example.
MDD: File Example.o

Example: Tl File. o

MDD Parameter Descriptiono
Conventions i

MDD Keyword Summary. ...
MDD Keyword Definitions o i

Design Rule Check (DRC) Section..
Driver Generation (Generate) Section,

Chapter 9: Xilinx Board Description (XBD) Format

OV VIEW . .o
XBD Syntax. ...

Platform Specification Format Reference Manual = www.xilinx.com
UG642 September 21, 2010

13

http://www.xilinx.com

& XILINX.

Commentsin XBD 132
Format 132
Module Definitions. 132
Assignment Commands i 133
XBDExample ... 133
Global Attribute Commands i 134
Global Attribute Command Summary 134
Global Attribute Command Definitions.................., 134
Local Attribute Commands.............. 135
Local Attribute Command Summaryl 135
Local Attribute Command Definitions............... L. 135
Local Parameter Commands 136
Local Parameter Subproperties L 136
Local Port Commands 137
Local Port Subproperties 137
Local Port Subproperty Summary.................... ... 137
Local Port Subproperty Definitions oL 138
Associating IPs with IO_INTERFACEin XBD 139
Bridging IP with IO_INTERFACE 141
XBD Load Path. 141
Board-specific IP Constraints. 142
BSB Restrictions 142
Existing Xilinx IO Types 143

Appendix A: Glossary

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Chapter 1

Introduction

EDK tools are designed to operate in a data-driven manner. There are various meta-data
files that capture information, for example, about various IPs, drivers, and software
libraries being used in the EDK tools. Files are also used to capture both hardware and
software aspects of your design information. These are ASCII files. The set of all these
meta-data formats is referred to as the Platform Specification Format or PSF.

This chapter contains the following sections:
e Files

¢ File and IP Naming Rules

¢ Load Path

¢ Creating Your IP

* Creating HDL Libraries for Your IP

e Verilog Include Directories
Files

BBD - Black Box Definition

The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

Refer to Chapter 5, Black-Box Definition (BBD), for more information.

MDD - Microprocessor Driver Definition

An MDD file contains directives for customizing software drivers.

Refer to Chapter 8, Microprocessor Driver Definition (MDD), for more information.

Platform Specification Format Reference Manual = www.xilinx.com 15
UG642 September 21, 2010

http://www.xilinx.com

Chapter 1: Introduction & XILINX.

MHS - Microprocessor Hardware Specification

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
You supply an MHS file as an input to the Platform Generator (Platgen) tool.

Refer to Chapter 2, Microprocessor Hardware Specification (MHS), for more information.

MPD - Microprocessor Peripheral Definition

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

Refer to Chapter 3, Microprocessor Peripheral Definition (MPD), for more information.

MSS - Microprocessor Software Specification

You supply an MSS file as an input to the Library Generator (Libgen). The MSS file
contains directives for customizing libraries, drivers, and file systems.

Refer to Chapter 6, Microprocessor Software Specification (MSS), for more information.

MLD - Microprocessor Library Definition

An MLD file contains directives for customizing software libraries and operating systems.

Refer to Chapter 7, Microprocessor Library Definition (MLD) for more information.

PAQO - Peripheral Analyze Order

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis and defines the analyze order for compilation.

Refer to Chapter 4, Peripheral Analyze Order (PAO), for more information.

XBD - Xilinx Board Definition

An XBD file contains a definition of logical interfaces present on a board and how they are
connected to the FPGA. Refer to Chapter 9, Xilinx Board Description (XBD) Format, for
more information.

File and IP Naming Rules

File and IP names must be all lower-case to ensure consistency across the following:
e OS: Linux (case-sensitive) vs. Win (case-insensitive)
e HDL: Verilog (case-sensitive) vs. VHDL (case-insensitive)

A lower-case naming convention is used to deal with the above combinations. For
example: MYCORE_v2_1_0 and mycore_v2_1_0 would mean two different files in
Linux, whereas in Windows, they would be the same.

Assembly of lower-level cores into the top-level are merged by name reference. Therefore,
it is important that names match.

16

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Load Path

Version Scheme

Form of the version level is X.Y.Z
* X -major revision
e Y -minor revision

* 7 - patch level

Version Setting for MHS and MSS
In the body of the MHS and MSS file, add the following statement:

PARAMETER VERSION = 2.1.0

The version is specified as a literal of the form 2.1.0.

Version Setting for BBD, MPD, and PAO

The version level is concatenated to the base name of the data files. The literal form of the
version level is vX_Y 7.

® <ipname>_vX_Y_7.mpd
® <ipname>_vX_Y_7.bbd
® <ipname>_vX_Y_7.pao

® <ipname>_vX_Y_7.mdd

Load Path

Peripheral and pcore Directory Structures

To specify additional directories, use one of the following options:

e Current directory

* Set the EDK tool -1p option.

EDK tools use a search priority mechanism to locate peripherals, as follows:
1. Search the pcores directory in the project directory.

2. Search <Ilibrary_ path>/<Library Name>/pcores as specified by the -1p
option. The following figure shows the peripheral directory structure.

Platform Specification Format Reference Manual = www.xilinx.com 17
UG642 September 21, 2010

http://www.xilinx.com

Chapter 1: Introduction & XILINX.

-Ip<library_path>

)

il

)

drivers bsp SW_services

X10133

Figure 1-1: Peripheral Directory Structure

3. Search XILINX EDK/hw/<Library Name>/pcores. The following figure shows
the pcore directory structure.

pcores

\

<mycore_v1_00_a>

(data) hdl

X11000

Figure 1-2: pcore Directory Structure

Using Versions

You can create multiple versions of your peripheral. The version is specified as a literal of
the form 1.00.a. The version is always specified in lower case.

At the MHS level, use the HW_VER parameter to set the hardware version. The EDK Tools
concatenate a _v and translates periods to underscores. The peripheral name and HW_VER
are joined together to form a name for a search level in the load path. For example, if your
peripheral is version 1. 00 . a, then the MPD, BBD, and PAO files are found in the
following location:

<repository_dir>/pcores/<ipname>_v1l_00_a/data (Linux)

<repository_dir>\pcores\<ipname>_vl_00_a\data (PC)

18 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Creating Your IP

Creating Your IP

How you build your own reference depends on the characteristics of your design.

Is Your IP Pure HDL?

Read about MPD and PAO files in the following chapters:

* Chapter 3, Microprocessor Peripheral Definition (MPD)
* Chapter 4, Peripheral Analyze Order (PAO)

Is Your IP Only a Black-Box Netlist?

Read about MPD and BBD files in the following chapters:

e Chapter 3, Microprocessor Peripheral Definition (MPD)
e Chapter 5, Black-Box Definition (BBD)

Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog?
Read about the MPD, BBD, and PAO files in the following chapters:

e Chapter 3, Microprocessor Peripheral Definition (MPD)
e Chapter 5, Black-Box Definition (BBD)
e Chapter 4, Peripheral Analyze Order (PAO)

Creating HDL Libraries for Your IP

There are two classes of design libraries: primary libraries and resource libraries.

Primary Library

The library into which the library unit resulting from the analysis of an IP is placed. A

primary library contains all the primary HDL files for the IP, and is referenced in the PAO
as <ipname>_v1l_00_a.

Only primary libraries contain an MPD file; resource libraries do not.

Resource Library

A resource library contains library units that are referenced within the IP being analyzed,
and contains all the resource HDL files for the IP and is referenced in the PAO file as
<resource_name>_v1_00_a.

Resource libraries must contain a PAO file to enable primary libraries access to the PAO file
set from the resource library. To accomplish this from the primary library PAO, use theall
keyword. For example:

primary_core PAO
lib reference_lib_vl_00_a all

Platform Specification Format Reference Manual = www.xilinx.com 19
UG642 September 21, 2010

http://www.xilinx.com

Chapter 1: Introduction & XILINX.

Resource Libraries and PAO Files

If a resource library defines a PAO, the language field must be present. Please refer to
Chapter 4, Peripheral Analyze Order (PAO) for complete details.

For example:

reference_lib PAO
1lib reference_lib_vl 00_a file2.vhd vhdl
1lib reference_lib_vl_00_a filel.vhd vhdl

Library File Locations

Primary and resource libraries are physically located in <repository_dir>/pcores.

Resource HDL File Locations

For VHDL:
<repository_dir>/pcores/<resource_name>_vl_00_a/hdl/vhdl

For Verilog;:

<repository_dir>/pcores/<resource_name>_vl1_00_a/hdl/verilog

Primary HDL File Locations

For VHDL:
<repository_dir>/pcores/<ipname>_vl_00_a/hdl/vhdl

For Verilog;:

<repository_dir>/pcores/<ipname>_vl_00_a/hdl/verilog

Verilog Include Directories

You must use relative paths to allow project maneuverability from development platform
to development platform. Use the * include compiler directive in your Verilog HDL files
to insert the contents of an entire file.

The following is an example Verilog HDL file:

“include "global_consts.v"
“include "pcore_vl_00_a/hdl/verilog/consts.v"

By default, all known EDK repositories are automatically included to the calls that process
Verilog:

<proj_dir>/pcores

SXILINX_ EDK/hw/XilinxBFMinterface/pcores

SXILINX_ EDK/hw/XilinxProcessorIPLib/pcores$SXILINX EDK/hw/XilinxReferen
ceDesigns/pcores

You need only specify include paths that are not default. User-specified paths have a
higher precedence over the default paths.

Format

Use the following format:

vlgincdir <library> <relative path from library>

20 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Verilog Include Directories

Restrictions

If you intend to define a library file of text macros, you must give each text macro a unique
name. The IEEE document 1364-2006 Section 3.12 defines the Verilog name space.

The text macro name space is global. The text macro names are defined in the linear order
of appearance in the set of input files that make up the description of the design unit.

Subsequent definitions of the same name override the previous definitions for the balance
of the input files.

Use unique names, as shown below:
‘define PCORE_V1_00_A MASKVAL 2'bl10
(Do not use “define MASKVAL 2'b10.)

When multiple vlgincdir options are in use, it is possible for the compiler to read an
unwanted included file. The preferred use of text inclusion within Verilog files is to include
the relative path of the pcore library in use, as shown in the example below:

“include "pcore_vl_00_a/hdl/verilog/consts.v"

Platform Specification Format Reference Manual = www.xilinx.com 21
UG642 September 21, 2010

http://www.xilinx.com

Chapter 1: Introduction

& XILINX.

22

www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Chapter 2

Microprocessor Hardware Specification

(MHS)

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file defines the configuration of the embedded processor system and includes the
following:

This chapter contains the following sections:

MHS Syntax

Bus architecture
Peripherals
Processor
Connectivity

Address space

MHS Syntax

Bus Interface

Global Parameter
Local Parameter
Global Port

Local Port

Design Considerations
AXI Systems

About the Syntax

MHS file syntax is case insensitive. The current version is 2.1.0.

MHS parameter, component, instance, and signal names must be HDL, VHDL, and Verilog
compliant. VHDL and Verilog have certain naming rules and conventions that must be
followed.

Because the MHS stands as a neutral format on top of HDL, VHDL, and Verilog, it is
possible to generate invalid VHDL or Verilog, even if the MHS is syntactically correct. You
might, therefore, be violating syntax rules in either VHDL or Verilog in the downstream

HDL compliant synthesis and simulation tools.

For example, it is invalid in VHDL to use an instance name that already exists as a

component name. Consider the following example:

Platform Specification Format Reference Manual = www.xilinx.com

UG642 September 21, 2010

23

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS) & XILINX.

microblaze : microblaze
port map (<snip>);

However, Verilog allows such a declaration:
microblaze microblaze (<snip>);

It is also invalid in VHDL to declare an object (parameter, component, instance, or signal)
name that already exists as the name of another object. For example, it is invalid to declare
a signal name in VHDL as MYTESTNAME and also to declare an instance name of
MYTESTNAME.

signal MYTESTNAME : std_logic;
MYTESTNAME : microblaze
port map (<snip>);

However, this is valid in Verilog.

It is your responsibility to recognize the output format and comply with the rules of the
HDL language.

Comments

Format

You can insert comments in the MHS file without disrupting processing. The following are
guidelines for inserting comments:

¢ Precede comments with the pound sign (#).
e Comments can continue to the end of the line.

¢ Comments can be anywhere on the line.

Use the following format at the beginning of a component definition:
BEGIN peripheral_name
The BEGIN keyword signifies the beginning of a new component.
Use the following format for assignment commands:
command name = value
Use the following format to end a component definition:
END
There are three assignment commands:
¢ BUS_INTERFACE
¢ PARAMETER
¢ PORT

24

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MHS Syntax

MHS Example
The following is an example MHS file:

Parameters
PARAMETER VERSION = 2.1.0

Global Ports

Assign power signals

PORT wvcc_out = net_vcc, DIR=0OUTPUT

PORT gnd_out = net_gnd, DIR=0UT

PORT gnd_out6 = net_gnd, DIR=OUTPUT, VEC=[0:5]

PORT intrl = intr_1, DIR=IN, SENSITIVITY=EDGE_RISING, SIGIS=INTERRUPT
PORT intr2 = intr2, DIR=INPUT, SENSITIVITY=LEVEL_HIGH, SIGIS=INTERRUPT

Assign constant signals
PORT constl = 0b1010, DIR=OUTPUT, VEC=[0:3]
PORT const2 = 0xC, DIR=OUTPUT, VEC=[0:3]

PORT sys_rst = sys_rst, DIR=IN
PORT sys_clk sys_clk, DIR=IN, SIGIS=CLK, CLK_FREQ=100000000
PORT gpio_io = gpio_io, DIR=INOUT, VEC=[0:31]

Sub Components

HHEFFF A HHHHFAA A HHHHFFAAA RSB HHFFAAAA S HHHHFA A SHHHHAAA SRS
BEGIN 1lmb_v10

PARAMETER INSTANCE = ilmb_v10

PARAMETER HW_VER = 1.00.a

PORT LMB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HHFFFH A HHHHFAAA A HHHHFFAAA SR HHFFAAAA S HHHHFA A HHHFHAA AR HH
BEGIN 1mb_v10

PARAMETER INSTANCE = dlmb_wv10

PARAMETER HW_VER = 1.00.a

PORT LMB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HARFHHA R H AR H A HH A B AR H AR H AR H AR H AR AR R R S H
BEGIN opb_v20

PARAMETER INSTANCE = myopb_bus

PARAMETER HW_VER = 1.10.c

PARAMETER C_PROC_INTRFCE = 0

PORT OPB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HAEFHH AR HH R H AR H AR R R R
BEGIN opb_gpio

PARAMETER INSTANCE = mygpio

PARAMETER HW_VER = 1.00.a

PARAMETER C_GPIO_WIDTH = 32

PARAMETER C_BASEADDR = Oxffff0100

PARAMETER C_HIGHADDR = Oxffff0lff

PORT GPIO_IO = gpio_io

BUS_INTERFACE SOPB = myopb_bus

END

Platform Specification Format Reference Manual = www.xilinx.com 25

UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS)

& XILINX.

HHEFFFHH SRS R HHFHFFHHA
BEGIN bram block
PARAMETER INSTANCE =
PARAMETER HW_VER 1.
BUS_INTERFACE PORTA
BUS_INTERFACE PORTB
END
H#HEFFFFH AR HHHHHFFFHHA

HHAH AR R

braml

00.a
ilmbl_porta
dlmbl_portb

FHAH A R A A

BEGIN 1lmb_bram_if_ cntlr

PARAMETER INSTANCE =
PARAMETER HW_VER 1
PARAMETER C_BASEADDR
PARAMETER C_HIGHADDR
BUS_INTERFACE SLMB

BUS_INTERFACE BRAM_PORT

END
HHAHHH AR HH SRS H

my_ilmb_cntlrl

.00.b

0x00000000
0x00000fff
ilmb_wv10
ilmbl_porta

HHAHHHAHH R HH AR H R H RS AR R

BEGIN lmb_bram if cntlr

PARAMETER INSTANCE =
PARAMETER HW_VER = 1.
PARAMETER C_BASEADDR
PARAMETER C_HIGHADDR
BUS_INTERFACE SLMB =

my_dlmb_cntlrl
00.b
0x00000000
0x00000fff
dlmb_v10

BUS_INTERFACE BRAM_PORT = dlmbl_portb

END
H#HEFFHFH S HHHHHFFFHHH
BEGIN microblaze
PARAMETER INSTANCE
PARAMETER HW_VER
BUS_INTERFACE DLMB
BUS_INTERFACE ILMB =
BUS_INTERFACE DOPB
PORT Interrupt
END

EEE SRS T LT

Priorities are numbered N downto 1,

BEGIN opb_intc
PARAMETER INSTANCE =
PARAMETER HW_VER 1.
PARAMETER C_HIGHADDR
PARAMETER C_BASEADDR
PARAMETER C_HAS_IPR
PARAMETER C_HAS_SIE
PARAMETER C_HAS_CIE
PARAMETER C_HAS_IVR
BUS_INTERFACE SOPB
PORT Intr intr2 & i
PORT Irqg mblaze_int
END

FHAH AR A

mblaze

.00.a

dlmb_v10
ilmb_v10
myopb_bus

mblaze_intr

HHSHHH SR AR H SRS AR R
where 1 is the highest priority

opb_intc_1

00.c

0xC800001F

0xC8000000
1 # Interrupt Pending Register present
0 # Set Interrupt Enable bits not present
0 # Clear Interrupt Enable bits not present
0 # Interrupt Vector Register not present
myopb_bus

ntr_1 # intr_1 has highest priority

r

26

www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Bus Interface

Bus Interface

Definition

Example

A bus interface is a grouping of interconnecting signals that are related.

Several components often have many of the same ports, requiring redundant port
declarations for each component. Every component connected to an OPB bus, for example,
must have the same ports defined and connected together.

A bus interface provides a high level of abstraction for the component connectivity of a
common interface. Components can use a bus interface as if it were a single port. In its
simplest form, a bus interface can be considered a bundle of signals.

The followign table lists the recommendations for bus labels.

Table 2-1: Bus Labels

Bus Name Description
SDCR Slave DCR interface
SLMB Slave LMB interface
MPLB Master PLB interface
MSPLB Master-slave PLB interface
SPLB Slave PLB interface
S_AXI Slave AXI interface
M_AXI Master AXI interface

For components that have more than one bus interface, refer to the MPD file for a
definition of listed bus interface labels. For example, the data-side OPB and
instruction-side OPB are named DOPB and IOPB, respectively.

A bus interface is assigned by name to an instance of the bus in your system.

For the SPLB bus instance named “mb_plb,” and a connection to the SPLB slave interface
of the OPB Uart Lite is made with the bus_interface command.

BEGIN xps_uartlite
PARAMETER INSTANCE = RS232
PARAMETER C_FAMILY = spartan3
PARAMETER C_BAUDRATE = 9600
PARAMETER C_DATA_BITS = 8
PARAMETER C_USE_PARITY =
PARAMETER C_ODD_PARITY =
PARAMETER HW_VER = 1.01.a
PARAMETER C_BASEADDR = 0x84000000
PARAMETER C_HIGHADDR = 0x8400ffff
BUS_INTERFACE SPLB = mb_plb
PORT RX = fpga_0_RS232_RX pin
PORT TX = fpga_0_RS232_TX pin

0
0

Platform Specification Format Reference Manual = www.xilinx.com 27
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS) & XILINX.

Bus Interface Keyword(s)

POSITION

Use the POSITION keyword to set the position of the bus interface on the bus. For
example, use to define master request priority, or DCR slave rank, in the following format:

BUS_INTERFACE PLB=plb_bus_inst, POSITION=N
Where v is a positive integer. Order is defined from 1 to .
The order of assignment is retained as listed in the MHS in top-to-bottom order.

Note: When specifying bus interfaces of master-slave like MSPLB, there is a possibility that Platgen
will error out when you have more masters than slaves on the bus. The reason is that the MSPLB is
assigned a position. This means the master interface and the slave interface must reside at the same
position. There is a possibility that the assigned position of the slave interface is out of range to the
number of slaves on the bus.

Global Parameter

Definition

A global parameter is defined outside of an instance BEGIN-END block.

Global Parameter

VERSION

Use the VERSTON keyword to set the MHS version in the following format:
PARAMETER VERSION = 2.1.0
The version is specified as a literal of the form 2.1.0.

Note: This is the only supported top-level parameter in XPS.

Local Parameter

Definition

A local parameter is defined between an instance BEGIN-END block.

Local Parameters

Apart from the parameters which are present in the MPD of the core, the following two
parameters are allowed in the MHS instance to specify the version and instance name of
the core. No other parameters (that are not present in the MPD of the core), can be present
in the MHS file; with the exception of AXI designs.:

HW_VER

Use the HW_VER keyword to set the hardware version in the following format:

PARAMETER HW_VER = 1.00.a

28 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Global Port

The version is specified as a literal of the form 1.00.a.

INSTANCE

Use the INSTANCE keyword to set the instance name of the peripheral. This keyword is
mandatory, and the instance name must be specified in lower-case, in the following format:

PARAMETER INSTANCE = my_uart0

Note: Inthe case of cores that have an AXI interface, a bunch of other parameters (specified in the
Interconnect related parameters section of the MPD chapter) are also allowed to be specified in the
MHS.

Global Port

Global Port Keyword Summary

A global port is defined outside of an instance BEGIN-END block. It can have the
keywords (sub-properties) listed below:

BUFFER_TYPE
CLK_FREQ
DIFFERENTIAL_POLARITY
DIR

RST_POLARITY
SENSITIVITY

SIGIS

VEC

Global Port Keyword Definitions

BUFFER_TYPE

Selects the type of buffer to be inserted on the input port using the BUFFER_TYPE keyword
in the following format:

PORT CLK = "", DIR=I, BUFFER_TYPE=IBUF
The available values are the following: bufgdll, ibufg, bufgp, ibuf, bufr, and none.

If the BUFFER_TYPE exists on the MPD port, Platgen raises the property up to the top-level
port that is directly connected. If the BUFFER_TYPE exists on the top-level MHS port, it
overrides any MPD port definition of BUFFER_TYPE.

The BUFFER_TYPE is translated into an XST pragma resident in the top-level <system>
HDL.

Note: This constraint selects the type of buffer to be inserted on the input port. In general, it is best
to avoid using this constraint and allow XST to infer the proper buffer. Avoidance of this constraint
allows for flexibility across device migration or synthesis tool selection.

For an EDK submodule flow, XST does not infer the buffer as defined by the
BUFFER_TYPE. This is correct behavior since it is not expected that IO buffers will be
present for a submodule flow.

Platform Specification Format Reference Manual = www.xilinx.com 29
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS) & XILINX.

CLK_FREQ

The frequency of the top-level clock port of the system can be specified in the MHS using
the CLK_FREQ keyword, as in the following format:

PORT sys_clk = sys_clk, DIR = IN, SIGIS = CLK, CLK_FREQ = 100000000

This keyword should only be used with the top-level clock ports. For the tools to read the
clock frequency specified using the CLK_FREQ keyword, the port must have the
SIGIS=CLK sub-property.

DIFFERENTIAL_POLARITY
Defines the associative ports of the differential buffer.

A differential buffer captures a design level interface signal that is represented as two
distinct ports (I and IB), one deemed the “Master” and the other the “slave”.

This is translated to either the IBUFDS, OBUFDS, OBUFTDS, or IOBUFDS.

UNISIM primitives where the I port is represented by the DIFFERENTIAL_POLARITY=P,
and the IB port is represented by the DIFFERENTIAL_POLARITY=N keyword-value
pairs, and is expressed in the following format:

PORT DATA_p = DATA, DIR=I, DIFFERENTIAL_POLARITY=P
PORT DATA_n = DATA, DIR=I, DIFFERENTIAL_POLARITY=N

DIR

The driver direction of a signal is specified by the DIR keyword in the following format:
PORT mysignal = "", DIR=direction

In this example, direction is either I, O, or IO.

RST POLARITY

The reset polarity of the top-level reset port in the system can be specified in the MHS
using the RST_POLARITY keyword, as in the following format:

PORT sys_rst = sys_rst, DIR = IN, SIGIS = RST, RST_POLARITY=1

SENSITIVITY

The sensitivity of an interrupt signal is specified by the SENSITIVITY keyword. This
keyword supersedes the EDGE and LEVEL keywords in the following format:

PORT interrupt = "", DIR=0, SENSITIVITY=value, SIGIS=INTERRUPT

In this example, the value is either EDGE_FALLING, EDGE_RISING, LEVEL_HIGH or
LEVEL_LOW.

SIGIS

The class of a signal is specified by the SIGIS keyword in the following format:
PORT mysig = "", DIR=0, SIGIS=value

In this example, the value is either CLK, INTERRUPT, or RST. The table below describes
SIGIS usage.

30

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Local Port

Table 2-2: SIGIS Usage
SIGIS Usage

CLK e XPS
Displays all clock signals.

¢ Platgen

For all bus components, the clock signals are automatically
connected to the clock input of the peripherals on the bus.

INTERRUPT e XPS
Displays all interrupt signals.
¢ Platgen

Encodes the priority interrupt vector.

RST e XPS
Displays all reset signals.

VEC
The vector width of a signal is specified by the VEC keyword in the following format:
PORT mysignal = "", DIR=I, VEC=[A:B]

In this example, A and B are positive integer expressions.

Local Port

Alocal port is a port defined between an instance BEGIN-END block. A local port does not
have keywords.

Design Considerations

This section identifies general design considerations.

Defining Memory Size

Memory sizes are based on C_BASEADDR and C_HIGHADDR settings. Use the following
format when defining memory size:

PARAMETER C_HIGHADDR= OxFFFFOOFF
PARAMETER C_BASEADDR= OxFFFF0000

All memory sizes must be 2V, where N is a positive integer and 2N boundary overlaps are
not allowed.

The range specified by C_BASEADDR and C_HIGHADDR must comprise a complete,
contiguous power-of-two range, such that range = 2N and the N least significant bits of
C_BASEADDR must be zero.

Power Signals (net_gnd/net_vcc)

Power signals are constantly driven with either GND (net_gnd) or VCC (net_vcc) in the
following format:

PORT mysignal = power_signal

Platform Specification Format Reference Manual = www.xilinx.com 31
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS) & XILINX.

In this example, power_signalis either net_vcc or net_gnd. Platgen expands net_vcc
or net_gnd to the appropriate vector size. Therefore, it is not legal to use net_vcc or
net_gnd in a concatenation construct because the number of bits that are consumed is
unknown.

Unconnected Ports

Unconnected output ports are assigned open, and unconnected input ports are either set to
GND (net_gnd) or VCC (net_vcc).

i

An unconnected output port is identified as an empty double-quote (“*) string.

Platgen resolves the driver value on unconnected input ports with the INITIALVAL
keyword, as defined in the MPD in the following format:

PORT mysignal = "", INITIALVAL=VCC

Constant Assignments

Use the 0b denotation to define a binary constant, or 0x for a hex constant. An underscore
(L) can be used for readability in the following format:

PORT mysignal = 0b1010_0101 # mysignal is 8-bits
Or
PORT mysignal = 0xA5 # mysignal is 8-bits

In general, use the 0b syntax for bitwidths that are not evenly divided by 4. Use the 0x
syntax for bitwidths that are multiples of 4.

Concatenation

Concatenation is performed with the ampersand (&) operator and allows you to group
signals together. It is not legal to use net_vcc or net_gnd in a concatenation construct
because the number of bits that are consumed is unknown.

Concatenation combines signals in their bit order. Note, for example, the following
top-level port declarations:

PORT A = A, DIR=INPUT

PORT B = B, DIR=INPUT, VEC[1:0]

PORT C = C, DIR=INPUT

PORT D = D, DIR=INPUT, VEC[0:3]

PORT Y = A & B & C & D, DIR=OUTPUT, VEC=[7:0]

Concatenation is accomplished on A, B, C, and D connecting to port Y of [7:0]. This maps
to the following: Y[71=A,Y[61=B[1],Y[5]1=B[0], Y[4]=C,Y[3]1=D[0],Y[2]=D[1],
Y[1]=D[2],and Y[0]=DI[3].

Concatenation is also useful for extending the length of a vector. Use the Ob denotation to
define a binary constant, or the 0x for a hex constant. An underscore (_) can be used for
readability. Note, for example, the following top-level port:

PORT E = E, DIR=INPUT, VEC=[1:0]
PORT Z = 0b00 & E, DIR=OUTPUT, VEC=[0:3]

In this example, the ampersand (&) operator is used to extend the signal E to 4 bits. This
maps to the following: Z[0]1=0b0, Z[1]=0b0, Z[2]=E[1],and Z[3]=E[0].

32

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. AXI Systems

Note: MHS syntax does not support vector indexing. For example, the following syntax is
unsupported. The usage of B[1] and B[0] is unsupported.

PORT Y = A & B[1l] & B[0O] & C & D, DIR=OUTPUT, VEC=[7:0]

Internal vs. External Signals

By default, all signals defined between a BEGIN-END block are internal signals.

External signals are available through the port-declaration of the top-level module. Use the
PORT command outside of a BEGIN-END block to declare the external signal.

External Interrupt Signals

For internal interrupts, each interruptible, peripheral instance defines an interrupt signal
locally.

For external interrupts, use the PORT command outside of a BEGIN-END block to declare
the external signal and define the interrupt sensitivity in the following format:

PORT my_intl = my_intl, LEVEL=HIGH, DIR=I

AXI Systems

Theoretically, an AXI Master (memory mapped) can be directly connected to an AXI Slave
(memory mapped). However, XPS tools always requires you to instantiate an AXI
interconnect in between them. This interconnect degenerates to wires if there is only 1
master and 1 slave on the interconnect and no data width conversions need to be made
between them.

The block diagram of a sample AXI system is shown below. The MHS representation of
that system is also shown below.

Block diagram of a sample MHS System:

Figure 2-1: Sample AXI System Block Diagram

Platform Specification Format Reference Manual www.xilinx.com 33
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS)

& XILINX.

MHS Representation:

BEGIN microblaze

PARAMETER INSTANCE = mb_0
PARAMETER HW_VER = 8.00.a
PARAMETER C_INTERCONNECT

PARAMETER C_INTERCONNECT M _AXI_DP_AW_ REGISTER

BUS_INTERFACE M_AXI_DP =
PORT MB_RESET = mb_reset
END

BEGIN microblaze

PARAMETER INSTANCE = mb_1
PARAMETER HW_VER = 8.00.a
PARAMETER C_INTERCONNECT

PARAMETER C_INTERCONNECT M AXI_DC_AW_REGISTER
PARAMETER C_INTERCONNECT M AXI_IC_AW_REGISTER

BUS_INTERFACE M_AXI_DP =
BUS_INTERFACE M_AXI_DC =
BUS_INTERFACE M_AXI_IC =
PORT CLK = sys_clk_s
PORT MB_RESET = mb_reset
END

BEGIN axi_interconnect

=2

axi_0

= 2

axi_0
axi_1
axi_1

PARAMETER INSTANCE = axi_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT_DATA_WIDTH
sys_clk_s
PORT INTERCONNECT ARESETN = sys_bus_reset_n

PORT INTERCONNECT_ACLK =

END

BEGIN axi_interconnect

PARAMETER INSTANCE = axi_1

PARAMETER HW_VER = 1.00.a
PORT INTERCONNECT_ACLK =

END

BEGIN axi_gpio

PARAMETER INSTANCE = axi_gpio_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT_S_AXI_MASTERS

mb_1.M AXI_DP

PARAMETER C_BASEADDR = 0x81440000
PARAMETER C_HIGHADDR = Ox8144ffff

BUS_INTERFACE S_AXTI = axi

sys_clk_s
PORT INTERCONNECT_ ARESETN = sys_bus_reset_n

_0

1

mb_0.M_AXI_DP &

PORT GPIO_IO_ O = fpga_0_LEDs_Positions_GPIO_IO_pin
PORT S_AXI_ACLK = sys_clk_s

END

BEGIN axi_v6_ddrx

PARAMETER INSTANCE = axi_v6_ddrx_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT_S_AXI_MASTERS

mb_1.M_AXI_IC

PARAMETER C_BASEADDR = 0x40000000
OxSEEffffff

PARAMETER C_HIGHADDR

mb_1.M_AXI_DC &

34

www.Xxilinx.com

Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX. AXI Systems

BUS_INTERFACE S_AXI = axi_1
PORT clk = sys_clk_ s
END

BEGIN axi_emc

PARAMETER INSTANCE = axi_emc_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT_S_AXI_MASTERS = mb_1.M_AXI_DC
PARAMETER C_S_AXI MEMO BASEADDR = 0x60000000

PARAMETER C_S_AXI_MEMO_HIGHADDR Ox6lffffff
BUS_INTERFACE S_AXI = axi_0

PORT S_AXI_ACLK = sys_clk_ s

END

BEGIN chipscope_axi_monitor

PARAMETER INSTANCE = monitor_1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE MON_AXI = mb_1.M AXI_IC
END

You notice that this MHS representation of AXI systems is very similar to that of PLB
systems. The addresses of the slaves are still specified on the slaves using the BASEADDR
and HIGHADDR parameters.

However, there are three important differences between the MHS representations of PLB
designs and AXI designs.

1. The MASTERS parameter: The AXI interconnect IP is a crossbar. This means that not
all masters are connected to all the slaves. There needs to be a mechanism in which
slaves that are connected to the interconnect can specify which masters can access
them. This is specified using the "C_INTERCONNECT_<Buslf>_MASTERS"
parameter. In the above example the "C_INTERCONNECT_S_AXI_MASTERS"
parameter on the axi_gpio_0 IP indicates that the 'M_AXI_DP"' interface of mb_0 and
mb_1 can access it. The value of this parameter is an '&' separated list of master
interfaces.

2. The INTERCONNECT parameters: Notice that there are some parameters specified in
the mb_0 and mb_1 instances of the Microblaze core in the MHS that are not present in
the MPD (of the Microblaze core). These parameters start with the prefix
"C_INTERCONNECT_<Busif>". An example shown is "PARAMETER
C_INTERCONNECT_M_AXI_DP_AW_REGISTER =1"

Recall that in the Local Parameter section, we said that parameters that are not present
in the MPD of the cores cannot be present in the MHS, with the exception of
'INSTANCE', ' HW_VER' parameters. Also we said that AXI systems are an exception.
This is because some interconnect related settings are captured on the end point
(masters and slaves) IP interfaces as INTERCONNECT parameters. These parameters
will not be present in the MPD of the end-point IPs. However, these parameters are
allowed in the MHS, as if they were present in the MPD of the cores. The list of such
parameters and more information on them is present in the MPD Chapter.

3. Clock connections: One other difference between the PLB systems and AXI systems is
that in the case of AXI systems, the clock port must be connected explicitly for all the
IPs in the design (with the exception of monitors and axi2axi_connectors, for which the
tools automate the clock connections).

Platform Specification Format Reference Manual = www.xilinx.com 35
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS) & XILINX.

Monitor core: Unlike PLB systems where a monitor core monitors the entire bus, the AXI
monitor cores can be added in a design to monitor individual interfaces. The MHS syntax
in the example above is shown here:

BEGIN chipscope_axi_monitor

PARAMETER INSTANCE = monitor_1
PARAMETER HW_VER = 1.00.a
BUS_INTERFACE MON_AXI = mbl.M _AXI_IC
END

The monitor_1 core monitors the M_AXI_IC' interface of 'mb_1' core.

axi2axi_connector core: The axi2axi_connector core is used when two axi interconnects
need to be cascaded. A sample design is shown below:

Figure 2-2: AXI Sample Design

A snippet of the MHS file for the above design is given below:

BEGIN axi2axi_connector

PARAMETER INSTANCE = axi2axi_0

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT S_AXI_MASTERS = mb_0.M _AXI_DP
PARAMETER C_S_AXI_BASEADDR = 0x81440000

PARAMETER C_S_AXI_HIGHADDR = Ox8144ffff

BUS_INTERFACE S_AXI = axi_0

BUS_INTERFACE M_AXI = axi_1

END

BEGIN axi_gpio

PARAMETER INSTANCE = axi_gpio_1

PARAMETER HW_VER = 1.00.a

PARAMETER C_INTERCONNECT_S_AXI_MASTERS = axi2axi_0.M_AXI
PARAMETER C_BASEADDR = 0x81440000

PARAMETER C_HIGHADDR = 0x8144ffff

BUS_INTERFACE S_AXI = axi_1

PORT S_AXI_ACLK = sys_clk s

END

Note: The axi2axi_0 core specifies the masters that can access it using the
C_INTERCONNECT_S_AXI_MASTERS parameter. Also, its address range must be specified such

36 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. AXI Systems

that it contains all the addresses of the slaves that are connected on the other side of the
axi2axi_connector.

The slaves connected on the other side of the axi2axi_connector (to axi_1 interconnect),
must specify the axi2axi_0.M_AXI as their master.

Platform Specification Format Reference Manual = www.xilinx.com 37
UG642 September 21, 2010

http://www.xilinx.com

Chapter 2: Microprocessor Hardware Specification (MHS)

& XILINX.

38 www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Chapter 3

Microprocessor Peripheral Definition
(MPD)

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

An MPD file has the following characteristics:
e Lists ports and default connectivity for bus interfaces
¢ Lists parameters and default values

¢ Any MPD parameter is overwritten by the equivalent MHS assignment. Refer to
Chapter 2, Microprocessor Hardware Specification (MHS) for additional information.

Individual peripheral documentation contains information on all MPD file keywords.
This chapter contains the following sections:

¢ MPD Syntax

* Bus Interface

¢ IO Interface

* Option

® Parameter

e Ports

® Design Considerations

Platform Specification Format Reference Manual = www.xilinx.com 39
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

MPD Syntax

Definition

MPD file syntax is case insensitive. The current version is 2.1.0.

The MPD parameter or signal name must be Hardware Description Language (HDL)
compliant. VHDL and Verilog have certain naming rules and conventions that must be
followed.

The MPD file is supplied by the IP provider and provides peripheral information. This file
lists ports and default connectivity to the bus interface. Parameters that you set in this file
are mapped to generics for VHDL, or to parameters for Verilog (with the exception of
NON_HDL parameters, which you should specify with the TvypPE=NON_HDL keyword).

Comments

Format

You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

® Precede comments with the pound sign (#).
¢ Comments continue to the end of the line.

¢ Comments can be anywhere on the line.

Use the following format at the beginning of a component definition:
BEGIN peripheral_name

The BEGIN keyword signifies the beginning of a new peripheral.

Use the following format for assignment commands:
command name = value

Use the following format to end a peripheral definition:

END

Assignment Commands

There are five assignment commands:
L4 BUS_INTERFACE

L4 IO_INTERFACE

e OPTION

. PARAMETER

L4 PORT

MPD Example

The following is an example MPD file:

BEGIN xps_gpio

Peripheral Options

40

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MPD Syntax

OPTION IPTYPE = PERIPHERAL

OPTION IMP_NETLIST = TRUE

OPTION HDL = VHDL

OPTION LAST_UPDATED = 9.2

OPTION USAGE_LEVEL = BASE_USER

OPTION DESC = XPS General Purpose IO

OPTION LONG_DESC = General Purpose Input/Output (GPIO) core for the
PLBV46 bus.

OPTION IP_GROUP = General Purpose IO:MICROBLAZE:PPC

OPTION ARCH_SUPPORT MAP = (spartan3=PREFERRED, virtex4lx=PREFERRED,
virtex4sx=PREFERRED, virtex4fx=PREFERRED, spartan3e=PREFERRED,
virtex51x=PREFERRED, virtex5sx=PREFERRED, spartan3a=PREFERRED,
spartan3adsp=PREFERRED)

I0_INTERFACE IO_IF = gpio_0, IO_TYPE = XIL_GPIO_V1

Bus Interfaces
BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog

PARAMETER C_BASEADDR = Oxffffffff, DT = std _logic_vector(0 to 31),
BUS = SPLB, ADDRESS = BASE, PAIR = C_HIGHADDR, MIN_SIZE = 0x200,
ASSIGNMENT = REQUIRE

PARAMETER C_HIGHADDR = 0x00000000, DT = std_logic_vector(0 to 31),
BUS = SPLB, ADDRESS = HIGH, PAIR = C_BASEADDR, ASSIGNMENT = REQUIRE

PARAMETER C_SPLB_AWIDTH = 32, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_SPLB_DWIDTH = 32, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_P2P = 0, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_MID_WIDTH = 1, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_NUM_MASTERS 1, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_NATIVE_DWIDTH = 32, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_SPLB_SUPPORT_BURSTS = 0, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_FAMILY = virtex5, DT = STRING

PARAMETER C_GPIO_WIDTH = 32, DT = INTEGER, RANGE = (1:32),
PERMIT = BASE_USER, DESC = GPIO Data Width, IO_IF = gpio_0,
IO_IS = num_bits

PARAMETER C_ALL_INPUTS = 0, DT = INTEGER, RANGE = (0,1),
PERMIT = BASE_USER, DESC = Data pins are all inputs, IO_IF = gpio_0,
IO_IS = all_inputs, VALUES = (0= FALSE , 1= TRUE)
PARAMETER C_INTERRUPT_PRESENT = 0, DT = INTEGER, RANGE = (0,1)
PARAMETER C_IS_BIDIR = 1, DT = INTEGER, RANGE = (0,1),
PERMIT = BASE_USER, DESC = Data pins are bi-directional,
IO_IF = gpio_0, IO_IS = is_bidir, VALUES = (0= FALSE , 1= TRUE)

PARAMETER C_DOUT_DEFAULT = 0x00000000, DT = std_logic_vector
PARAMETER C_TRI_DEFAULT = Oxffffffff, DT = std_logic_vector

PARAMETER C_IS_DUAL = 0, DT = INTEGER, RANGE = (0,1),
DESC = Use Dual GPIO, IO_IF = gpio_0, IO_IS = is_dual
PARAMETER C_ALL_INPUTS_2 = 0, DT = INTEGER, RANGE = (0,1), DESC = GPIO2

Data All Inputs, IO_IF = gpio_0, IO_IS = all_inputs_2,
VALUES = (0=FALSE, 1=TRUE)
PARAMETER C_IS_BIDIR_2 = 1, DT = INTEGER, RANGE = (0,1),
DESC = Use GPIO2 Bidir IO Pin, IO_IF = gpio_0, IO_IS = is_bidir_2,
VALUES = (0=FALSE, 1=TRUE)
PARAMETER C_DOUT_DEFAULT 2 = 0x00000000, DT = std_logic_vector
PARAMETER C_TRI_DEFAULT 2 = Oxffffffff, DT = std_logic_vector

Platform Specification Format Reference Manual = www.xilinx.com 41

UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD)

& XILINX.

Ports

PORT SPLB_Clk = ““, DIR = I, SIGIS = Clk, BUS = SPLB

PORT SPLB_Rst = SPLB_Rst, DIR = I, SIGIS = Rst, BUS = SPLB

PORT PLB_ABus = PLB_ABus, DIR = I, VEC = [0:31], BUS = SPLB

PORT PLB_UABus = PLB_UABus, DIR = I, VEC = [0:31], BUS = SPLB

PORT PLB_PAValid = PLB_PAValid, DIR = I, BUS = SPLB

PORT PLB_SAValid = PLB_SAValid, DIR = I, BUS = SPLB

PORT PLB_rdPrim = PLB_rdPrim, DIR = I, BUS = SPLB

PORT PLB_wrPrim = PLB_wrPrim, DIR = I, BUS = SPLB

PORT PLB_masterID = PLB_masterID, DIR = I,
VEC = [0:(C_SPLB_MID WIDTH-1)], BUS = SPLB

PORT PLB_abort = PLB_abort, DIR = I, BUS = SPLB

PORT PLB_busLock = PLB_busLock, DIR = I, BUS = SPLB

PORT PLB_RNW = PLB_RNW, DIR = I, BUS = SPLB

PORT PLB_BE = PLB_BE, DIR = I, VEC = [0:((C_SPLB_DWIDTH/8)-1)1]1,
BUS = SPLB

PORT PLB_MSize = PLB_MSize, DIR = I, VEC = [0:1], BUS = SPLB

PORT PLB_size = PLB_size, DIR = I, VEC = [0:3], BUS = SPLB

PORT PLB_type = PLB_type, DIR = I, VEC = [0:2], BUS = SPLB

PORT PLB_lockErr = PLB_lockErr, DIR = I, BUS = SPLB

PORT PLB_wrDBus = PLB_wrDBus, DIR = I, VEC = [0:(C_SPLB_DWIDTH-1)],
BUS = SPLB

PORT PLB_wrBurst = PLB_wrBurst, DIR = I, BUS = SPLB

PORT PLB_rdBurst = PLB_rdBurst, DIR = I, BUS = SPLB

PORT PLB_wrPendReq = PLB_wrPendReq, DIR = I, BUS = SPLB

PORT PLB_rdPendReq = PLB_rdPendReq, DIR = I, BUS = SPLB

PORT PLB_wrPendPri = PLB_wrPendPri, DIR = I, VEC = [0:1], BUS = SPLB

PORT PLB_rdPendPri = PLB_rdPendPri, DIR = I, VEC = [0:1], BUS = SPLB

PORT PLB_reqgPri = PLB_reqgPri, DIR = I, VEC = [0:1], BUS = SPLB

PORT PLB_TAttribute = PLB_TAttribute, DIR = I, VEC = [0:15], BUS = SPLB

PORT S1_addrAck = Sl1_addrAck, DIR = O, BUS = SPLB

PORT S1_SSize = S1_SSize, DIR = O, VEC = [0:1], BUS = SPLB

PORT Sl_wait = Sl_wait, DIR = O, BUS = SPLB

PORT S1_rearbitrate = Sl_rearbitrate, DIR = 0O, BUS = SPLB

PORT S1_wrDAck = S1_wrDAck, DIR = O, BUS = SPLB

PORT S1_wrComp = S1_wrComp, DIR = O, BUS = SPLB

PORT S1_wrBTerm = Sl_wrBTerm, DIR = O, BUS = SPLB

PORT S1_rdDBus = Sl1_rdDBus, DIR = O, VEC = [0:(C_SPLB_DWIDTH-1)],
BUS = SPLB

PORT S1_rdwdAddr = S1_rdwdAddr, DIR = O, VEC = [0:3], BUS = SPLB

PORT S1_rdDAck = S1_rdDAck, DIR = O, BUS = SPLB

PORT S1_rdComp = S1_rdComp, DIR = O, BUS = SPLB

PORT S1_rdBTerm = Sl_rdBTerm, DIR = O, BUS = SPLB

PORT S1_MBusy = S1_MBusy, DIR = O, VEC = [0:(C_SPLB_NUM MASTERS-1)],
BUS = SPLB

PORT S1_MWrErr = S1_MWrErr, DIR = O, VEC = [0:(C_SPLB_NUM_MASTERS-1)],
BUS = SPLB

PORT S1_MRdAErr = S1_MRdJErr, DIR = O, VEC = [0:(C_SPLB_NUM_MASTERS-1)],
BUS = SPLB

PORT S1_MIRQ = S1_MIRQ, DIR = O, VEC = [0:(C_SPLB_NUM_MASTERS-1)],
BUS = SPLB

PORT IP2INTC_Irpt = ““, DIR = O, SIGIS = INTERRUPT,
SENSITIVITY = LEVEL_HIGH, INTERRUPT_PRIORITY = MEDIUM

PORT GPIO_IO = ““, DIR = IO, VEC = [0:(C_GPIO_WIDTH-1)],
THREE_STATE = TRUE, TRI_I = GPIO_IO_I, TRI_O = GPIO_IO_O,
TRI_T = GPIO_IO_T, ENABLE = MULTI, PERMIT = BASE_USER,
DESC = ‘GPIOl Data IO’, IO_IF = gpio_0, IO_IS = gpio_io

PORT GPIO_IO_I = ““, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)]

PORT GPIO_IO_O = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]

42

www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. MPD Syntax

PORT GPIO_IO_T = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]

PORT GPIO_in = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl Data In’, IO_IF = gpio_0,
IO_IS = gpio_data_in

PORT GPIO_d_out = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl Data Out’, IO_IF = gpio_0,
IO_IS = gpio_data_out

PORT GPIO t_out = ““, DIR = O, VEC = [0:(C_GPIO WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl TriState Out’, IO_IF = gpio_0,
IO_IS = gpio_tri_out

PORT GPIO2_IO = “%, DIR = IO, VEC = [0:(C_GPIO_WIDTH-1)],

THREE_STATE = TRUE, TRI_TI = GPIO2_IO_I, TRI_O = GPIO2_IO_O,
TRI_T = GPIO2_IO_T, ENABLE = MULTI, PERMIT = BASE_USER,

DESC = ‘GPIO2 Data IO’, IO_IF = gpio_0, IO_IS = gpio_io_2
PORT GPIO2_IO I = ““, DIR = I, VEC = [0:(C_GPIO WIDTH-1)]
PORT GPIO2_IO_O = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]
PORT GPIO2_IO_T = ““, DIR = O, VEC = [0: (C_GPIO_WIDTH-1)]
PORT GPIO2_in = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)],

PERMIT = BASE_USER, DESC = ‘GPIO2 Data In’, IO_IF = gpio_0,

IO_IS = gpio_data_in_2
PORT GPIO2_d_out = ““, DIR = O, VEC = [0:(C_GPIO WIDTH-1)],

PERMIT = BASE_USER, DESC = ‘GPIO2 Data Out’, IO_IF = gpio_0,

IO_IS = gpio_data_out_2
PORT GPIO2_t_out = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)1,

PERMIT = BASE_USER, DESC = ‘GPIO2 TriState Out’, IO_IF = gpio_O0,

IO_IS = gpio_tri_out_2

END

Platform Specification Format Reference Manual = www.xilinx.com 43
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

Bus Interface

Definition

A bus interface is a grouping of interface ports that are related.

Several components often have many of the same ports, requiring redundant port
declarations for each component. Every component connected to a PLB v4.6 bus, for
example, must have the same ports defined and connected.

A bus interface provides a high level of abstraction for the component connectivity of a
common interface. Components can use a bus interface as if it were a single port. In its
simplest form, a bus interface can be considered a bundle of signals.

Bus Interface Keyword Summary

A bus interface can have the following keywords:

BUS
BUS_STD
BUS_TYPE
EXCLUDE_BUSIF
GENERATE_BURSTS
ISVALID
SHARES_ADDR

Bus Interface Keyword Definitions

BUS

The label of a bus interface is specified by the Bus keyword. It is expressed in the following
format in which bus_label is a string:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

BUS_STD

The bus standard for a bus interface is specified by the Bus_sTp keyword. It is expressed in
the following format:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

The Xilinx-known BUS_STD values are DCR, LMB, OPB, PLB, DSOCM, ISOCM, FSL. You can also
define your own bus standards.

Note: BUS_STD = TRANSPARENT is deprecated. It should be replaced with a user-defined
“compatibility” string for any point-to-point connections.

BUS_TYPE

The bus type for a bus interface is specified by the Bus_TvPE keyword. It represents the
relationship of the interface to the connection. The Bus_TyPE keyword is expressed in the
following format:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

44

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Bus Interface

For centrally connected buses (for example, PLB v4.6), valid values of BUS_TYPE are
MASTER, MASTER_SLAVE, SLAVE, and MONITOR.

Note: BUS_TYPE = MASTER_SLAVE is deprecated.

For point-to-point connected bus_interfaces, valid values are INITIATOR, TARGET.

EXCLUDE_BUSIF

The ExcLUDE_BUSIF keyword defines all BUS_INTERFACE connections when other
BUS_INTERFACE connections are present. Supports a colon-separated list of elements, but
can also take a single element.

For example, if two interfaces are defined for an IP as master-slave, or as a slave interface,
then only one of them can be used to connect the IP. This keyword is expressed in the
following format:

BUS_INTERFACE BUS=MSPLB, BUS_STD=PLB, BUS_TYPE=MASTER_SLAVE,
EXCLUDE_BUSIF=SPLB

BUS_INTERFACE BUS=SPLB, BUS_STD=PLB, BUS_TYPE=SLAVE,
EXCLUDE_BUSIF=MSPLB

GENERATE_BURSTS

GENERATE_BURSTS specifies that a non-bridge master generates bursts. This is only valid
for Bus_INTERFACEs of BUS_TYPE=MASTER. The keyword is expressed in the following
format:

BUS_INTERFACE BUS = MPLB, BUS_STD = PLBV46, BUS_TYPE = MASTER,
GENERATE_BURSTS = [FALSElTRUE]

EDK tools observe all masters and slaves that could communicate through a given bridge.
If there is at least one master that has the GENERATE_BURSTS=TRUE, and if there is at least
one slave that can support bursts, the bridge is configured to support bursts. To determine
whether a slave can support bursts, the EDK tools use the following method:

e If slave does not have the C_<busif>_ SUPPORT_BURSTS parameter, the slave
BUS_INTERFACE does not support bursts. This means any slave that always supports
bursts must also have the parameter.

e Ifaslave has the C_<busif>_ SUPPORT_BURSTS parameter, it is assumed that it can
support bursts.

ISVALID

The 1svaLID keyword defines the validity of a BUS_INTERFACE to an expression. If the
expression evaluates true, the BUS_INTERFACE is included in the list of valid
BUS_INTERFACEs for the defined system. If false, the BUS_INTERFACE is notincluded. It is
expressed in the following format:

BUS_INTERFACE BUS = SPLBO, BUS_STD = PLBV46, BUS_TYPE = SLAVE, ISVALID
= (C_NUM_PORTS > 0 && C_PIMO_BASETYPE == 2)

SHARES_ADDR

The suARES_ADDR keyword defines all BUS_INTERFACE address space regions that need to
be checked against one another. The default is ALL. This keyword supports a
colon-separated list of elements, but can also take a single element.

Platform Specification Format Reference Manual = www.xilinx.com 45
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

For example, the LMB and OPB memory mapped peripherals of a MicroBlaze™ processor
must not conflict. Also, the PLB and OCM address spaces for a PowerPC® 405 processor
must not conflict. This keyword is expressed in the following format:

BUS_INTERFACE BUS=DOPB, BUS_STD=0PB, BUS_TYPE=MASTER, SHARES_ADDR=DLMB
BUS_INTERFACE BUS=IOPB, BUS_STD=0PB, BUS_TYPE=MASTER, SHARES_ADDR=ILMB
BUS_INTERFACE BUS=DLMB, BUS_STD=LMB, BUS_TYPE=MASTER, SHARES_ADDR=DOPB
BUS_INTERFACE BUS=ILMB, BUS_STD=LMB, BUS_TYPE=MASTER, SHARES_ADDR=IOPB

Bus Interface Naming Conventions

10 Interface

Definition

The table below lists recommendations for bus labels.

Table 3-1: Recommended Bus Labels

Bus Label Description
SDCR Slave DCR interface
SLMB Slave LMB interface
MPLB Master PLB interface
MSPLB Master-slave PLB interface
SPLB Slave PLB interface
S_AXI Slave AXI interface
M_AXI Master AXI interface

For the MspPLB bus interface, you should separate the master interface and slave interface as
MPLB and SPLB, respectively, because the MSPLB is assigned its own position. This means
that the master interface and the slave interface must reside at the same position. If given
as separate interfaces for MPLB and SPLB, then each interface can have its own position
assignment.

An TO_INTERFACE defines an interface between the IP and some external off-chip device.
Associated with each IO Interface are sets of ports that the Base System Builder (BSB)
Wizard defines as the systems top-level ports, and a set of parameters that BSB
characterizes from the off-chip device. In an MPD file, you can define an 10_INTERFACE by
assigning it a unique 10_IF name and an IO type (10_TYPE). You can then specify which
ports and parameters are associated with this interface by adding the 10_1F and 10_15
tags to those ports and parameters.

The tools in conjunction use the T0_INTERFACE with information from the Xilinx® Board
Description (XBD) files in order to make intelligent decisions for the user regarding system
connectivity and parameterization. The 10_INTERFACE declaration and associated tags are
not required for core functionality.

46

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Option

IO Interface Keywords

An IO interface can have the following keywords:

I0_IF

A unique, user-defined label assigned an 10_INTERFACE. All ports and parameters
declared in an MPD file that are associated with the name T10_INTERFACE have the same
10_1F value assigned to them. This keyword is expressed in the following format, in which
io_label is the name of the IO_INTERFACE. This is a user-defined string:

IO_INTERFACE IO_IF=io_label,

IO_TYPE

IO_TYPE=io_type

The IO type of an IO interface is specified by the 10_TvPE keyword, which is expressed in

the following format:

IO_INTERFACE IO_IF=io_label,

IO_TYPE=io_type

Here, io_type is one of the following values: XIL_DDR_V1, XIL_EMC_V1,
XIL_Ethernet_V1, XIL_GPIO_V1,XIL_IIC_V1,XIL_PCI_ARBITER_V1,XIL_PCI32_V1,
XIL_SDRAM_ V1, XIL_SPI_V1,XIL_SYSACE V1, or XIL_UART V1.

Option

Definition

An option defines a tool directive.

Option Keyword Summary

An option can have the following keywords:

ALERT
ARCH_SUPPORT
ARCH_SUPPORT_MAP
BUS_STD
CLK_FREQ_RATIOS
CORE_STATE

DESC
EARLY_ACCESS_ARCH_SUPPORT
ELABORATE_PROC
HDL

IMP_NETLIST
IP_GROUP
IPLEVEL_DRC_PROC
IPTYPE

LAST_UPDATED
LONG_DESC

MAX_MASTERS

MAX_SLAVES

PAY_CORE
PLATGEN_SYSLEVEL_UPDATE_PROC
RUN_NGCBUILD

SPECIAL

STYLE

SYSLEVEL_DRC_PROC
SYSLEVEL_UPDATE_PROC
TCL_FILE

USAGE_LEVEL

Platform Specification Format Reference Manual
UG642 September 21, 2010

www.Xxilinx.com 47

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

Option Keyword Definitions

ALERT

A message alert for the IP core is specified with the ALERT keyword in the following
format:

OPTION ALERT = “This belongs to Xilinx”

ARCH_SUPPORT

Deprecated. Subsumed by ARCH_SUPPORT_MAP.

ARCH_SUPPORT is a list of supported FPGA architectures. Valid values are the various
FPGA architectures supported by EDK including (but not limited to): all, spartan2,
spartan2e, spartan3, spartan3e, virtex, virtexe, virtex2, virtex2p, virtex4,
virtex5. The defaultis ALL. This keyword supports a colon-separated list of elements, but
can also take a single element, as in the following format:

OPTION ARCH_SUPPORT = virtex2:spartanle

ARCH_SUPPORT_MAP

This is a list of supported FPGA architectures. Valid values are the various FPGA
architectures supported by EDK.

The keys of the map are the architecture names. The architecture names are composed of
a concatenation of c_FaMILY and c_SUBFAMILY. The parameter C_FAMILY contains
VIRTEX4 and VIRTEX5 as valid values. The c_SUBFAMILY has an FX, LX, or SX designation
for VIRTEX4, an LX or SX designation for VIRTEX5, and an empty “” for other architectures.

The table below lists ARCH_SUPPORT_MAP values.
Table 3-2: ARCH_SUPPORT_MAP Values

ARCH_SUPPORT_MAP Definition
PREFERRED Core is active (full uninhibited use) by EDK.
AVAILABLE Core is available (full uninhibited use) by EDK and info
message is given to that user.
BETA Core is in beta stage and a warning is issued to the user
DEPRECATED Core is deprecated. EDK tools allow use of core, but issues a

warning that the core is deprecated.

DEVELOPMENT Core is in development and will be synthesized each time
Platgen is executed (no cache of synthesis results).

Note: The Base System Builder in XPS does not recognize
cores with ARCH_SUPPORT_MAP value of ' DEVELOPMENT".

EARLY_ACCESS Core is in early access stage and a warning is issued to the
user.
OBSOLETE Core is obsolete. EDK tools issue an error that this core is no

longer valid.

The key is the primary family name, and value is the core state. It is followed by a
comma-separated list of devices. The format is <key name>=<key value>, <key
name>=<key value>, as in the following format:

48

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Option

OPTION ARCH_SUPPORT_MAP = (virtex2p=PREFERRED, virtex4=PREFERRED,
spartan3a=AVAILABLE, spartan3e=AVAILABLE, virtex5fx=EARLY_ACCESS,
spartan2=0BSOLETE)

You can use OTHERS as a key name that expands to all undefined architectures with a
common core state, as illustrated in the following examples:

OPTION ARCH_SUPPORT _MAP = (virtex2p = PREFERRED, others = AVAILABLE)
OPTION ARCH_SUPPORT_MAP = (others = DEVELOPMENT)

Note: Parentheses enclose the beginning and ending of the mapping section. Due to current MPD
parse rules, this must be done within one line of the MPD file. You do not have the option to cross
multiple lines. However, for descriptive purposes, examples are shown to cross multiple lines.

BUS_STD

This keyword defines the bus standard of BUS or BUS_ARBITER cores, as in the following
format:

OPTION BUS_STD = value
In this example, value is one of the following Xilinx-supported bus standards: DCR, DSOCM,

FSL, ISOCM, LMB, OPB, PLBV46, or PLB. You can also define your own bus standard. There is
no default.

CLK_FREQ_RATIOS

This option specifies the allowed ratios between clocks in an IP. Its value is a list of
comma-separated, name-value pairs. Each such pair has a name that describes:

¢ The ports whose ratio must be computed

e A value that is the actual ratio allowed

The value can include multiple ratios and is therefore expressed as a comma-separated list.
The syntax to specify the value for this option is as follows :

OPTION CLK_FREQ RATIOS = (P1/P2 = (N1/D2, [N2:N3]/D2, N4/[D3:D4],
N5), (P1,P2)/P3 = (N6, [N7:N8]/[D5:D6]))

In the expression above, 1, P2, and P3 are the clock ports in the IP. N is the numerator in the
ratio, and D is the denominator. The syntax rules to specify the ratio are given below.

e The whole value of the CLK_FREQ_RATIOS option must be specified in parentheses.

® The value of the option is a comma-separated list of name-value pairs, where name is
the ratio of ports and value is the list of supported ratios with the syntax
Name = (list of values).

¢ The list of values must be enclosed in parentheses, even if the list has only one
element.

* A ratio must be specified as N/D, where N is the numerator and D is the denominator.

¢ Arange (in the numerator or denominator) is only allowed in the list of values
section, and it must be specified by using square brackets and a colon. Otherwise, it is
considered illegal syntax.

* Arange, if specified, cannot contain fractions. Both bounds must be positive integers.
If this option is specified in the MPD of the IP, the tools perform a design rule check (DRC)

to verify that the clocks satisfy the ratio requirements in this option. The DRC passes at the
first ratio in the list that matches the computed ratio.

Platform Specification Format Reference Manual = www.xilinx.com 49
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

CORE_STATE
Deprecated. Subsumed by ARCH_SUPPORT_MAP.

The corRE_STATE keyword specifies the state of the IP core, as in the following format:
OPTION CORE_STATE = ACTIVE

The table below lists CORE_STATE values.
Table 3-3: CORE_STATE Values

CORE_STATE Definition

ACTIVE Core is active (full uninhibited use) by EDK (default).

DEPRECATED Core is deprecated. EDK tools allow use of core, but issues a
warning that the core is deprecated.

DEVELOPMENT Core is in development and will be synthesized each time Platgen
is executed (no cache of synthesis results).

OBSOLETE Core is obsolete. EDK tools issue an error that this core is no longer
valid.

DESC

This keyword allows a short description of the core to be displayed by the GUI tools. The short
description replaces the core name in the display field of the core, as in the following format:

OPTION DESC = “XPS GPIO”

EARLY ACCESS_ ARCH_SUPPORT
Deprecated. Subsumed by ARCH_SUPPORT_MAP.

This keyword is a list of FPGA architectures that the core supports in an early access form.
There is no default value. It supports a colon-separated list of elements, but can also take a
single element, as in the following formats:

OPTION EARLY_ ACCESS_ARCH_SUPPORT = virtex5:spartan3e

OPTION EARLY_ACCESS_ARCH_SUPPORT virtex5

ELABORATE_PROC

The ELABORATE_PROC keyword defines the Tcl entry point for the IP core’s elaboration.
This procedure is run after Platgen completes the merge of MPD and MHS descriptions,
and it is suitable for use in Tcl to generate VHDL /VERILOG for the IP core being
elaborated.

It is expressed in the following format:

OPTION ELABORATE_PROC = proc_name

50

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Option

HDL
Deprecated. The HDL availability of the IP is specified with the HDL keyword, as in the

following format:

OPTION HDL = VERILOG
The table below lists HDL values.
Table 3-4: HDL Values

HDL Definition

BOTH The design is completely written both in Verilog and VHDL. This
means that the HDL code is available as Verilog and VHDL files.
When you select Verilog as the top-level HDL language, the EDK
tools release only the Verilog files for use. When you select VHDL,
the EDK tools release only the VHDL files. The use of both is

deprecated.
MIXED The design is written as a mixture of Verilog and VHDL.
VERILOG The design is completely written in Verilog.
VHDL The design is completely written in VHDL.

IMP_NETLIST

The 1Mp_NETLIST keyword directs Platgen to write an implementation netlist file for the
peripheral, as in the following format:

OPTION IMP_NETLIST = TRUE

The default is FALSE. If FALSE, Platgen does not generate an implementation netlist (NGC)
file. You must provide a mechanism to synthesize your IP.

IP_GROUP

The 1p_GRrROUP keyword defines the IP group classification. The keyword is expressed in
the following format, in which ipgroup_label is a string:

OPTION IP_GROUP = ipgroup_label

If you have more than one IP group sharing the parameter, then use a colon to separate
each IP group in the list.

IPLEVEL_DRC_PROC

The 1PLEVEL_DRC_PROC keyword defines the Tcl entry point for the IP-level DRC routine.
DRCs are based only on IP-level settings. The TPLEVEL_DRC_PROC keyword is expressed
following format:

OPTION IPLEVEL_DRC_PROC = proc_name

Platform Specification Format Reference Manual = www.xilinx.com 51
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

IPTYPE
The 1pTYPE keyword defines the type of the component, as in the following format:
OPTION IPTYPE = PERIPHERAL

The table below lists IPTYPE values.

Table 3-5: 1pTYPE Values

IPTYPE Definition
BUS Bus component
PERIPHERAL Component that is address-mapped to a bus
PROCESSOR Processor component

Note: The values BRIDGE, IP, and BUS_ARBITER for ITPTYPE have been deprecated. The following
conventions are used to model them:

e IPTYPE=IPis now modeled as IPTYPE=PERIPHERAL, and the IP has no address
parameters.

e IPTYPE=BUS_ARBITER is now modeled as IPTYPE=BUS, and the IP has address
parameters.

* IPTYPE=Bridge is now modeled at the ADDRESS parameter level using
ADDR_TYPE=BRIDGE and BRIDGE_TO tags.

LAST UPDATED

This keyword indicates the release for which an IP was last updated. It includes the HDL,
MPDs, and Tcl files for each IP. The syntax is as follows:

OPTION LAST UPDATED = <edk_release number>

The edk_release_number is expressed as a version number, for example, 9. 2.

LONG_DESC

This keyword allows a long description of the core to be displayed by the GUI tools. The
long description allows the GUI tools to display a floating text box that contains additional
help information. There is no default, as in the following format:

OPTION LONG_DESC = "XPS GPIO - IO only, GPIO"

MAX MASTERS

Define maximum number of masters allowed for cores marked as IPTYPE=BUS or
IPTYPE=BUS_ARBITER. No default, as in the following format:

OPTION MAX_MASTERS = 8

MAX SLAVES

This keyword defines the maximum number of slaves allowed for cores marked as
IPTYPE=BUS Or IPTYPE=BUS_ARBITER. There is no default, as in the following format:

OPTION MAX_SLAVES = 8

52

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Option

PAY CORE

Deprecated. This keyword identifies a core as being free or purchased. PAY_CORE is Xilinx
IP-specific and should be used only by Xilinx IPs. pAY_CORE allows a sub-property,
1svALID, which the tools use internally to identify the license status of the core.

PAY CORE_MAP

Only one definition of PAY_CORE_MAP or PAY_CORE may exist in the MPD. If both
exist, then PAY_CORE_MAP takes precedence.

The general syntax:

OPTION PAY_CORE_MAP = (

libname:license keyl = (ISVALID expressionl),
libname:license _key2 = (ISVALID expression2)
)

libname — the HDL file library that contains the defined feature and license pragma.
license_key — the license key for the defined feature.

ISVALID - the conditional expression. If the license_key is not conditioned upon an
expression, then this field is given a constant value of (1).

Example:
OPTION PAY_ CORE_MAP = {
soft_temac_wrap v2_02_a:soft_temac_wrap v2 = (C_TEMAC TYPE == 2),
avb_wrap_vl_00_a:avb_wrap vl = (C_FEATURE2_USED == 1)
}
Example:

OPTION PAY_CORE_MAP = ({
xps_ushb2 _device_v2 00_a:xps_usb2 _device v2 = (1)

}

PLATGEN_SYSLEVEL_UPDATE_PROC

The PLATGEN_SYSLEVEL_UPDATE_PROC keyword defines the Tcl entry point for the
system-level update routine. This procedure is run after Platgen completes the merge of
MPD and MHS descriptions, and it is suitable for use in Tcl to generate UCF entries. The
updates are based only on system-level settings and are expressed in the following format:

OPTION PLATGEN_SYSLEVEL_UPDATE_PROC = proc_name

RUN_NGCBUILD

The rRUN_NGCBUILD keyword directs Platgen to execute NGCBUILD to merge multiple
hardware netlists into a single deliverable hardware netlist. It is also required to include
UCF constraints in the generated netlist.

The flow, as implemented in Platgen, is as follows:

* Run TCL to generate IP level UCF file (referred to as NCF).

¢ Run XST to generate netlist from the HDL referred to in the Peripheral Analyze Order
(PAO) file.

Run NCGBUILD to create a new IP-level netlist that combines the output from the two
previous bullets.

Platform Specification Format Reference Manual = www.xilinx.com 53
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

RUN_NGCBUILD is required when the TCL generates constraints, or when
edk_generatecore is used. It is intuited when a Black Box Definition (BBD) file is present.
The RUN_NGCBUILD keyword is expressed in the following format:

OPTION RUN_NGCBUILD = TRUE

The default is FALSE.

SPECIAL

This keyword is reserved for internal use only.

The spEcIAL keyword defines a class of components that require special handling, as in
the following format:

OPTION SPECIAL = BRAM_CNTLR

STYLE

The sTYLE keyword defines the design composition of the peripheral.

If you have only optimized hardware netlists, you must specify the BLACKBOX value within
the MPD file. In this case, only the BBD file is read by the EDK tools.

OPTION STYLE = BLACKBOX

If you have a mix of optimized hardware netlists and HDL files, you must specify the MIx
value within the MPD file. In this case, the PAO and BBD files are read by the EDK tools.

OPTION STYLE = MIX

If you have only HDL files, you must specify the HDL value within the MPD file. In this
case, only the PAO file is read by the EDK tools.

OPTION STYLE = HDL

The table below lists STYLE values.
Table 3-6: STYLE Values

STYLE Definition
BLACKBOX Only optimized hardware netlists
HDL Only HDL files (default)
MIX Mix of optimized hardware netlists and HDL files

SYSLEVEL_DRC_PROC

The sYsLEVEL_DRC_PROC keyword defines the Tcl entry point for the system-level DRC
routine. DRCs are based only on system-level settings. The sYSLEVEL_DRC_PROC keyword
is expressed in the following format:

OPTION SYSLEVEL_DRC_PROC = proc_name

SYSLEVEL_UPDATE_PROC

The sYSLEVEL_UPDATE_PROC keyword defines the Tcl entry point for the system-level
update routine. The updates are based only on system-level settings. The keyword is
expressed in the following format:

OPTION SYSLEVEL_UPDATE_PROC = proc_name

54

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

Parameter

Definition

TCL_FILE

Deprecated. The TcL_rILE keyword defines the Tcl file name. The keyword is expressed in
the following format:

OPTION TCL_FILE = opb_gpio_v2_1_0.tcl

USAGE_LEVEL

The usaGe_LEVEL keyword defines a tool option BSB uses to determine whether or not BSB
should configure this IP module. It is expressed in the following format:

OPTION USAGE_LEVEL = BASE_USER

The table below lists USAGE_LEVEL values.
Table 3-7: USAGE_LEVEL Values

USAGE_LEVEL Definition
ADVANCED_USER IP cannot be configured by BSB.
BASE_USER IP can be configured by BSB.

A parameter defines a constant that is passed into the entity (VHDL) or module (Verilog)
declaration.

Parameter Keyword Summary

A parameter can have the following keywords:

ADDRESS DESC MIN_SIZE
ADDR_TYPE DT PAIR

ASSIGNMENT IO_IF PERMIT

BRIDGE_TO 10_IS RANGE

BUS IPLEVEL_DRC_PROC SYSLEVEL_DRC_PROC
CACHEABLE IPLEVEL_UPDATE_VALUE_PROC SYSLEVEL_UPDATE_VALUE_PROC
CLK_PORT ISVALID TYPE

CLK_UNIT LONG_DESC VALUES

Parameter Keyword Definitions

ADDRESS

The ADDRESS keyword identifies a named parameter as a valid address parameter. The
keyword is expressed in the following format:

PARAMETER C_BASEADDR=0xFFFFFFFF, MIN_SIZE=0x2000, ADDRESS=BASE

Platform Specification Format Reference Manual = www.xilinx.com 55
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

The table below lists ADDRESS values.
Table 3-8: ADDRESS Values

ADDRESS Definition
BASE Identify base address (default for C_BASEADDR)
HIGH Identify high address (default for C_HIGHADDR)
SIZE Deprecated. Identify size of address (paired with
ADDRESS=HIGH or ADDRESS=BASE)
NONE Disable identification of address parameter
ADDR_TYPE

The ApDR_TYPE keyword identifies an address parameter of a defined memory class. The
keyword is expressed in the following format:

PARAMETER C_BASEADDR=0xFFFFFFFF, MIN_SIZE=0x2000, ADDR_TYPE=REGISTER

The table below lists ADDR_TYPE values.
Table 3-9: ADDR_TYPE Values

ADDR_TYPE Definition
BRIDGE Address window on the bridge. An address of this type is
forwarded to the bus which is slave to the bridge.
MEMORY Address window on the memory controller. An address of
this type points to a storage memory, such as SDRAM, DDR,
FLASH, or BRAM.
REGISTER Address of its own registers. An address of this type points

to registers in the peripheral. These could be status,
control, data registers, or some FIFO registers in the
peripheral. This is the default.

ASSIGNMENT

The ASSIGNMENT keyword defines the assignment usage level. The keyword is expressed in the
following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, ASSIGNMENT=OPTIONAL

The table below lists ASSIGNMENT values.

Table 3-10: ASSIGNMENT Values

ASSIGNMENT Definition
CONSTANT This value is a constant. You cannot modify it.
OPTIONAL If you do not specify a value, the EDK batch tools use the default.

56

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Parameter

Table 3-10: ASSIGNMENT Values

ASSIGNMENT Definition

OPTIONAL_UPDATE | You can specify an MHS value for any parameter associated with a
Tcl procedure. The MHS value has precedence over the
Tcl-calculated value, as called through
IPLEVEL_UPDATE_VALUE_PROC Or
SYSLEVEL_UPDATE_VALUE_PROC.

REQUIRE You must specify a value.
UPDATE You cannot specify a value. It is computed by the EDK batch tools.
Examples:

e MPD example of ASSIGNMENT=0OPTIONAL_UPDATE :

SYSLEVEL_UPDATE_VALUE_PROC
PARAMETER C_MASK=0x00800000, SYSLEVEL_UPDATE_VALUE_PROC =
update_syslevel_mask, ASSIGNMENT = OPTIONAL_UPDATE

It is recommended that the IP developer also provide a DRC procedure to validate the
user-specified MHS value. Use the SYSLEVEL_DRC_PROC to define the name of the DRC
entry point.

e MPD example pairing SYSLEVEL_UPDATE_VALUE_PROC and SYSLEVEL_DRC_PROC
(ASSIGNMENT=OPTIONAL_UPDATE inferred):

PARAMETER C_MASK=0x00800000, SYSLEVEL_UPDATE_VALUE_PROC =
update_syslevel_mask, SYSLEVEL_DRC_PROC = check_syslevel_mask

In the example above, the ASSIGNMENT=OPTIONAL_UPDATE is not listed because it is
inferred from the pairing of the SYSLEVEL_UPDATE_VALUE_PROC and
SYSLEVEL_DRC_PROC subproperties.

The pairing of IPLEVEL_UPDATE_VALUE_PROC and IPLEVEL_DRC_PROC Or
SYSLEVEL_UPDATE_VALUE_PROC and SYSLEVEL_DRC_PROC infers the
ASSIGNMENT=OPTIONAL_UPDATE.

BRIDGE_TO

The BRIDGE_TO keyword allows an address to be visible through the bridge. The keyword is
expressed in the following format:

PARAMETER C_BASEADDR=0xFFFFFFFF, BRIDGE_TO=MPLB

BUS

The bus interface of a parameter is specified by the Bus keyword. It is expressed in the
following format in which bus_1label is a string:

PARAMETER C_SPLB_AWIDTH = 32, DT=datatype, BUS=bus_label

If you have more than one bus interface sharing the parameter, then use the colon to
separate each bus interface in the list. The first item in the list is the default setting.

CACHEABLE

The cACHECABLE keyword identifies a cacheable address. The keyword is expressed in the
following format:

PARAMETER C_BASEADDR=0xXFFFFFFFF, CACHEABLE=TRUE

Platform Specification Format Reference Manual = www.xilinx.com 57
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD)

& XILINX.

CLK_PORT

The cLk_PORT keyword can be used to specify the clock port to which this parameter is
related. It is specified in the following format:

PARAMETER C_CLK_IN = 20, CLK_PORT = CLK_IN, CLK_UNIT=NS

CLK_UNIT

The cLk_UNIT keyword can be used to specify the units in which the parameter value is
specified. Allowed values for units are: Hz, KHz, MHz, S, MS, US, NS and ps. If the CLK_PORT
keyword is specified for a parameter, then the cLK_UNIT keyword must be specified.

DESC

The DESC keyword allows a short description of a parameter to be displayed by the GUI tools.
The short description replaces the parameter name in the display field. The DESC keyword is
expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0,

DT

DT=integer,

DESC="HAS XIN"

The data type for a parameter is specified by the bT keyword, which is expressed in the

following format:

PARAMETER C_SPLB_AWIDTH = 32, DT=datatype,

BUS=bus_label

In this example, datatype can be assigned the values shown in the table below. The table
also describes how the DT value is translated in the appropriate language.

Table 3-11: DT Values

DT Value VHDL Type Verilog Type
bit bit bit
bit_vector bit_vector bit vector
integer integer integer
real real real
string string string
std_logic std_logic bit
std_logic_vector std_logic_vector bit vector

I0_IF

The IO interface association name is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_RCLK=0,

IO_1ISs

IO_TIF=uart_0,

I0_IS=has_ext_rclk

The 10_15s keyword defines an XBD relationship marker. 10_1s implies that the parameter
value can be dictated by a feature on the external hardware to which this IP is connected.
Without a corresponding XBD value the tag has no effect.

58

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

A parameter that has an 10_1S must also have an 10_IF association with a particular
IO_INTERFACE in the MPD. There are special values of 10_1s that do not have an 10_IF
association. This occurs when those values are not specific to a particular T0_INTERFACE.
These special values are c1k_freq and polarity.

An MPD could have more than one 10_INTERFACE. Therefore, a parameter with an 10_1s
must be associated with only one of them. This keyword is expressed in the following
format:

PARAMETER C_FAMILY=virtex, IO_IF=uart_0, IO_IS=C_FAMILY

IPLEVEL_DRC_PROC

The 1PLEVEL_DRC_PROC keyword defines the Tcl entry point for the IP-level DRC routine.
A DRC based only on IP-level settings is done. The IPLEVEL_DRC_PROC keyword is
expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, IPLEVEL_DRC_PROC = proc_name

IPLEVEL_UPDATE_VALUE_PROC

The IPLEVEL_UPDATE_VALUE_PROC keyword defines the Tcl entry point for the IP-level
update routine on parameters. An update based on only IP-level settings is done. The
IPLEVEL_UPDATE_VALUE_PROC keyword is expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, IPLEVEL_UPDATE_VALUE_PROC = proc_name

ISVALID

The 1svaLID keyword defines the validity of a parameter to an expression. If the
expression evaluates true, the PARAMETER is included in the list of valid PARAMETERS of the
defined system for DRC processing. If false, the PARAMETER is not included, and no DRC is
performed. However, the PARAMETER remains listed in the HDL. The 1svaLID keyword is
expressed in the following format:

PARAMETER C_BASEADDR = OxFFFFFFFF, ISVALID = (C_PROC_INTRFCE==1)

If the ISVALID expression includes a string comparison, it cannot be specified using the ==
operator. Instead, the following Tcl procedure and syntax should be used.

PARAMETER C_MEM_PART_DATA_DEPTH = 0, DT = INTEGER,
ISVALID = ([xstrncmp C_MEM_PARTNO CUSTOM])

In this example, the expression is valid when the value of the parameter c_MEM_PARTNO is
CUSTOM.

LONG_DESC

This keyword allows a long description of the parameter to be displayed by the GUI tools. The
long description allows the GUI tools to display a hover help. There is no default, and
LONG_DESC is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, LONG_DESC="XIN? What XIN?”

MIN SIZE

The minimum size for an address window is specified by the MIN_s1zE keyword, which is
expressed in the following format:

Note: The MIN_SIZE number for an address window must be a power of 2.
PARAMETER C_BASEADDR = OxFFFFFFFF, DT=std_logic_vector, MIN_SIZE=0x100

Platform Specification Format Reference Manual = www.xilinx.com 59
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

PATIR

The PAIR keyword tags unidentified BASEADDR-HIGHADDR pairs. If non-standard names are
used instead of *_BASEADDR and *_HIGHADDR, address parameters must identify pairs that

define the BASE and HIGH. You must use the ADDRESS keyword to identify the parameter as

BASE address or HIGH address. It is expressed in the following format:

PARAMETER C_HIGH=0x00000000, PAIR=C_BASE, ADDRESS=HIGH
PARAMETER C_BASE=0xFFFFFFFF, PAIR=C_HIGH, ADDRESS=BASE

PERMIT

This keyword specifies whether BSB should display and lets users edit the parameter.
Allowed values are ADVANCED_USER (default) and BASE_USER. Only parameters that are
tagged as BASE_USER are shown in BSB. PERMIT is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, PERMIT = BASE_USER,

RANGE

RANGE defines a range of allowed valid values. It covers sequences like 8,16,24,32, or breaks
in ranges, for example: RANGE= (1:4, 8,16) . The RANGE keyword is expressed in the
following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, RANGE=(0:1)

SYSLEVEL_DRC_PROC

The sYsLEVEL_DRC_PROC keyword defines the Tcl entry point for the system level DRC
routine. A DRC based on only system-level settings is done. The SYSLEVEL_DRC_PROC
keyword is expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, SYSLEVEL_DRC_PROC = proc_name

SYSLEVEL_UPDATE_VALUE_PROC

The sYSLEVEL_UPDATE_VALUE_PROC keyword defines the Tcl entry point for the
system-level update routine on parameters. The updates are based only on system-level
settings and are expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, SYSLEVEL_UPDATE_VALUE_PROC = proc_name

TYPE

The value of the TYPE keyword defines the kind of parameter. Allowed values are:

* HDL
correlates to a generic for VHDL, or to a parameter for Verilog.

* NON_HDL
this parameter is not present in the HDL of the IP, and it is tools specific.

If the TYPE keyword is not specified, the default is assumed to be HDL.

Note: The TYPE keyword was introduced to support NON_HDL parameters. Previously, there was a
requirement that all parameters of an IP in the MHS and MPD files must be present in the HDL for the
IP. However, there were cases in which the tools need user input (specified using parameters) for
configuring the IP. Dummy parameters were therefore introduced in the HDL. You can now avoid this
workaround by specifying those parameters as NON_HDL using the TYPE keyword.

60

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

VALUES

This keyword is a list of name-value pairs. The name is a parameter value in the range of
allowed valid values. The value is a GUI-representable display string. The VALUES
keyword is expressed in the following format:

PARAMETER C_ODD_PARITY=1, RANGE=(0:1), VALUES=(0=Even, 1=0dd)

Parameter Naming Conventions

An MPD parameter correlates to a generic for VHDL, or to a parameter for Verilog. The
parameter name must be HDL (VHDL, Verilog) compliant. VHDL and Verilog have certain
naming rules and conventions that must be followed.

In the PSF format, any parameter which matches the regular expressions
<prefix>_BASEADDR or C_<BUSIFNAME>_BASEADDR is assumed to be an address
parameter. The address is associated with slave bus interface associated with the IP.

Similarly, the tools perform automatic clock DRCs and check to see if the frequency (or
period) values specified for clock-related parameters in the MHS and MPD files are equal
to the values computed by the tools. For this purpose, the tools rely on certain
sub-properties (CLK_PORT and CLK_UNIT) to be present for that parameter. If the tools do
not find those sub-properties, they try to infer them from the name of the parameter.

If the parameter name follows the convention C_<clock_port>_FREQ_<clock_units> or
C_<clock_port>_PERIOD_<clock_units>

The tools then infer the clock name and clock units for that parameter.
Examples:

(a) PARAMETER C_PLB_Clk_FREQ HZ = 50000000

(b) PARAMETER C_PLB_Clk PERIOD_NS = 20

In case (a), the tools infer that the parameter is related to opB_c1k clock port and the clock
unit is Hz, thatis, frequency = 50,000,000 Hz. In case (b), the tools infer that the parameter
is related to the PLB_cC1k clock port and the clock unit is ns, that is, period = 20 ns.

All the parameters that are related to AXI peripherals follow the naming conventions of
"C_<BUSIF>_<parameter_name>". This can be seen in tables 3-12 through 3-18.

Parameter Superscript Definitions

In tables 3-12 through 3-18, some parameters have a number as a superscript at the end of
their name. The numbers have the definitions as stated below:

1. 1-NonHDL parameter. These are parameters that are not present in the IP RTL code.
They should have the tag “TYPE=NON_HDL"” in the MPD.

2. 2- Auto-computed by EDK tools. In EDK, users do not have to specify value of these
parameters as the tools will compute it based on system information. They should
have the tag “ASSIGNMENT = UPDATE” in the MPD.

3. 3 -Transferred (by the tools) from the Master/Slave to the interconnect. EDK presents
these parameters to the users in context of a particular Master or Slave interface for
ease of use. The tools then gather this information and translate it into a set of
parameters on the interconnect module.

Platform Specification Format Reference Manual = www.xilinx.com 61
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

4. 4 —These parameters are auto-computed by the tools (similar to #2), but they can be
over-written by the user (in the MHS). They should have the tag “ASSIGNMENT =
OPTIONAL_UPDATE” in the MPD.

Required Parameters for AXI Peripherals

For peripherals that have AXI interfaces, the following parameters are required. Please
refer to the following two tables corresponding to Master and Slave interfaces. There
should be one set of such parameters for each interface.

Table 3-12: Parameters for AXI Master Interface

Tools Format
Parameter Name Default Description
(Range)
Value
C_<BUSIF>_SUPPORTS_THREADS Whether the master generates
0 Integer more than 1 thread. If 0, the
(0,1) master does not generate or
use threads.
Number of bits needed by the
Integer master for unique master IDs.
C_<BUSIF>_THREAD_ID_WIDTH 1 Must be set to 1 if
(>0) | C_<BUSIF>_SUPPORTS_TH
READS = 0.
C_<BUSIF>_ADDR_WIDTH 32 Integer | Addr Width of <BUSIF>.
(32) Must be 32.
Integer
(32, 64, Data Width of <BUSIF>.
C_<BUSIF>_DATA_WIDTH 32 128, Allowed values are 32, 64, 128
256) and 256.
If the value of this parameter
is AXI3, then it should not be
String | made configurable.
(AXI13, | Alternately, if the value is
C_<BUSIF>_PROTOCOL AXI4 AXI4LI | either AXI4 or AXI4LITE, then
TE, the IP developer has the
AXI4) | option to allow the user to be
configurable/toggled
between the two values.

In general, most of the IPs support only one flavor of AXI (AXI3 or AXI4 or AXILITE). All
such IPs must set the value of the C_<BUSIF>_PROTOCOL parameter to the flavor which
they support, and must not allow users to change the value of this parameter. This can be
accomplished by using the "ASSIGNMENT = CONSTANT" tag in the MPD. However, in
some cases, the IP developer might want to create a single IP that can either be used as an
AXI4 IP or an AXI4LITE IP. Such IPs will have one set of ports and some of those ports will
be valid or invalid based on the AXI protocol chosen (using the ISVALID tag). Such IPs
must allow the user to change the value of this C_<BUSIF>_PROTOCOL parameter, only
between AXI4 and AXI4LITE. Note that the value cannot be changed from AXI4/

62

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

AXI4LITE to AXI3 and vice versa, as the set of ports in AXI3 are not a true subset of the set

of ports in AXI4.

Table 3-13: Parameters for AXI Slave Interface

Tools Format
Parameter Name Default Description
(Range)
Value
C_<BUSIF>_ID.WIDTH? 4 Tnteger Width of all ID signals across the
system
Integer Addr width of BUSIF. The addr
C_<BUSIF>_ADDR_WIDTH 32 32) width MUST be 32.
Integer .
C_<BUSIF> DATA WIDTH Ry (32, 64, Data Width of <BUSIF>. Allowed
values are 32, 64, 128 and 256
128, 256)
If the value of this parameter is
AXI3, then it should not be made
String configurable. Alternately, if the
(AXI3, value is either AXI4 or AXI4LITE,
C_<BUSIF>_PROTOCOL AXI4 AXI4LITE then the IP developer has the
, AX14) option to allow the user to be
configurable/toggled between
the two values.
Base address of the BUSIE. These
0x parameters need not be used by
C_<BUSIF>_BASEADDR! feffeee | gizz | e IP HDL code. If there is more
than one address range, then this
parameter is optional or it can be
used to specify one of the ranges.
High address of the BUSIF. These
Ox parameters need not be used by
C_<BUSIF>_ HIGHADDR' 0000000 Bit32 the IP HDL code. If there is more
0 than one address range, then this

parameter is optional or it can be
used to specify one of the ranges.

Note: C_<BUSIF>_ID_WIDTH is derived by the tools and is the final size of the ID signals used on
all slaves and Interconnect slots after MasterlD values have been prefixed to any of the AWID/ARID

signals from the masters.

Optional HDL Parameters for AXI Peripherals

For peripherals that have AXI interfaces, the following are optional HDL parameters. The
peripherals must have the following parameters only if their HDL supports them. Please
refer to the following two tables corresponding to Master and Slave interfaces. There

should be one set of such parameters for each interface.

Platform Specification Format Reference Manual

UG642 September 21, 2010

www.Xxilinx.com

63

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.
Table 3-14: Optional HDL Parameters for AXI Master Interface
Tools Format
Parameter Name Default Description
(Range)
Value
2 Frequency (Hertz) of
C_<BUSIF>_ACLK_FREQ_HZ (none) Integer <BUSIF>_ACLK input.
Indicates whether <BUSIF>
uses AR and R channels. Setting
C_<BUSIF> SUPPORTS_READ! 1 Integer | to zero 1nd1cz'ites w1j1te-on1y (or
0,1) skipped if
C_<BUSIF>_SUPPORTS_WRIT
E is also zero)
Indicates whether <BUSIF>
uses AW, W and B channels.
1 Integer Setting to zero indicates
C_<BUSIF>_SUPPORTS_WRITE 1 0.1) read-only (or skipped if
C_<BUSIF>_SUPPORTS_REA
D is also zero)
Indicates if <BUSIF>_*USER
C_<BUSIF>_SUPPORTS_USER_S 0 Integer | signals are valid/supported. O
IGNALS 0,1) indicates the signals are not
valid.
Width of AWUSER signals for
Integer BUSIE. Valid only if
C_<BUSIF>_AWUSER _WIDTH 1 (>=1) | C_<BUSIF>_SUPPORTS_USER
_SIGNALS =1
Width of ARUSER signals for
Integer BUSIE. Valid only if
C_<BUSIF>_ARUSER_WIDTH 1 (>=1) C_<BUSIF>_SUPPORTS_USER
_SIGNALS =1
Width of WUSER signals for
Integer BUSIE. Valid only if
C_<BUSIF>_WUSER_WIDTH 1 (>=1) C_<BUSIF>_SUPPORTS_USER
_SIGNALS =1
Width of RUSER signals for
Integer BUSIF. Valid only if
C_<BUSIF>_RUSER_WIDTH 1 (>=1) | C_<BUSIF> SUPPORTS USER

_SIGNALS =1

64

www.Xxilinx.com

Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

Table 3-14: Optional HDL Parameters for AXI Master Interface

Parameter Name

Tools
Default
Value

Format
(Range)

Description

C_<BUSIF>_BUSER_WIDTH 1

Integer
(>=1)

C_<BUSIF>_SUPPORTS_USER

Width of BUSER signals for
BUSIE. Valid only if

_SIGNALS =1

W_BURST

C_<BUSIF>_SUPPORTS_NARRO 1

Integer

01)

Indicates if the master interface

supports narrow bursts. IP
developers must set it to 0 if
master interface never
generates a narrow burst where
AXSIZE is less than
C_<BUSIF>_DATA_WIDTH,
and master always sets
modifiable bit, AXCACHE[1] =
1. Value can be overridden in
the MHS.

Table 3-15: Optional HDL Parameters for AXI Slave Interface

Parameter Name

Tools
Default
Value

Format
(Range)

Description

C_<BUSIF>_ACLK_FREQ HZ?

(none)

Integer

Frequency (Hertz) of
<BUSIF>_ACLK input.

C_<BUSIF>_NUM_ADDR_RANGES

(1-16

Integer

Number of BASEADDR/
) HIGHADDR pairs per
<BUSIF>.

C_<BUSIF>_RNGr_BASEADDR

0x
fEEEFEES

Bit32

Base address of RANGE 'r'
of BUSIF (if
C_<BUSIF>_NUM_ADDR
_RANGES > 1) wherer =
00 to 15

C_<BUSIF>_RNGr_HIGHADDR

0x

0000000
0

Bit32

High address of RANGE
'x" of BUSIF (if
C_<BUSIF>_NUM_ADDR
_RANGES > 1) where r =
00to 15

C_<BUSIF>_SUPPORTS_READ*

Integer
01

Indicates whether
<BUSIF> uses AR and R
channels. Setting to zero
indicates write-only (or

skipped if
C_<BUSIF>_SUPPORTS_
WRITE is also zero)

Platform Specification Format Reference Manual

UG642 September 21, 2010

www.Xxilinx.com

65

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

Table 3-15: Optional HDL Parameters for AXI Slave Interface

Tools Format
Parameter Name Default Description
(Range)
Value
Indicates whether
<BUSIF> uses AW, W and
Intecer B channels. Setting to zero
C_<BUSIF>_SUPPORTS_WRITE* 1 © % indicates read-only (or
’ skipped if
C_<BUSIF>_SUPPORTS_
READ is also zero)
Indicates if
C_<BUSIF>_SUPPORTS_USER_SIGN Integer | <DUoH>"USER signals
0 are valid/supported. 0
ALS 0,1) N .
indicates the signals are
not valid.
Width of AWUSER signals
Integer for BUSIF. Valid only if
C_<BUSIF>_AWUSER_WIDTH 1 (>=1) C_<BUIF> SUPPORTS_U
SER_SIGNALS =1
Width of ARUSER signals
Integer for BUSIF. Valid only if
C_<BUSIF>_ARUSER_WIDTH 1 (>=1) C_<BUSIF>_SUPPORTS,_
USER_SIGNALS =1
Width of WUSER signals
Integer for BUSIF. Valid only if
C_<BUSIF>_WUSER_WIDTH 1 (>=1) C_<BUSIF> SUPPORTS.
USER_SIGNALS =1
Width of RUSER signals
Integer for BUSIF. Valid only if
C_<BUSIF>_RUSER_WIDTH 1 (>=1) C_<BUSIF>_SUPPORTS,_
USER_SIGNALS =1
Width of BUSER signals
Integer for BUSIF. Valid only if
C_<BUSIF>_BUSER_WIDTH 1 (>=1) C_<BUSIF>_ SUPPORTS.
USER_ SIGNALS =1

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Parameter

Table 3-15: Optional HDL Parameters for AXI Slave Interface

Tools Format
Parameter Name Default Description

Value (Range)

Indicates whether the
slave BUSIF supports
responsereordering. (Used
in the interconnect to
determine whether
deadlock avoidance is
needed.)

C_<BUSIF>_SUPPORTS_REORDERI Integer
NG 0,1)

Indicates if the slave
interface (AXI3 and AXI4
only. AXI4LITE IP is
assumed to not support
narrow bursts) supports
C_<BUSIF>_SUPPORTS_NARROW _ Integer | 0O ET“S*SI' Tools will

BURST* o) up ate.t is value (set it to
0) if ALL masters
connected to this slave
have
SUPPORT_NARROW_BU
RST=0 Value can be
overridden in the MHS.

Reserved Parameters

Reserved Parameter Names Summary

The EDK tools automatically expand and populate a defined set of reserved parameters.
This can help prevent errors when your peripheral requires information on the platform
that is generated. The following list contains the reserved parameter names.

C_DEVICE C_<BUS NAME>_ AWIDTH
C_PACKAGE C_<BUS NAME> DWIDTH
C_SPEEDGRADE C_<BUS NAME> NUM_SLAVES
C_FAMILY C_<BUS NAME>_MASTERS_SLAVES
C_INSTANCE C_<BUS NAME>_MID_WIDTH
C_SUBFAMILY

Reserved Parameter Descriptions

C_DEVICE

The c_DEVICE parameter defines the FPGA device. This parameter is automatically
populated by the EDK tools, and is formatted as follows:

PARAMETER C_DEVICE = “4v1x100”, DT=string
C_PACKAGE

The c_PACKAGE parameter defines the FPGA device package. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

Platform Specification Format Reference Manual = www.xilinx.com 67
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

PARAMETER C_PACKAGE = “ff1016”, DT=string

C_SPEEDGRADE

The c_sPEEDGRADE parameter defines the FPGA device speed grade. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_SPEEDGRADE = “-11”, DT=string

C_FAMILY

The c_FaAMILY parameter defines the FPGA device family. This parameter is automatically
populated by the EDK tools, and is formatted as follows:

PARAMETER C_FAMILY = “virtex4”, DT=string

C_INSTANCE

The c_INSTANCE parameter defines the instance name of the component. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_INSTANCE = instance_name, DT=string

C_SUBFAMILY

The c_suBraMILY parameter defines the FPGA subfamily specification. c_suBraMILyY will
have an FX, LX, or sx designation for VIRTEX4, an LX or SX designation for VIRTEXS5, and
will be empty “” for other architectures.

This parameter is automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_SUBFAMILY = “fx”, DT=string

C_<BUS NAME>_ AWIDTH

The c_<BUS NAME>_AWIDTH parameter is automatically populated by the EDK tools, and is
formatted as follows:

PARAMETER C_<BUS NAME>_AWIDTH = integer, DT=integer
The <BUS NAME> is replaced with the name of the BUS_STD in use or the name of the
BUS_INTERFACE in use.

C_<BUS NAME> DWIDTH

The c_<BUS NAME>_DWIDTH parameter is automatically populated by the EDK tools, and is
formatted as follows:

PARAMETER C_<BUS NAME> DWIDTH = integer, DT=integer
The <BUS NAME> is replaced with the name of the BUS_STD in use, or the name of the

BUS_INTERFACE in use.

C_<BUS NAME> NUM_SLAVES

The c_<BUS NAME>_NUM_SLAVES parameter is automatically populated by the EDK tools,
and is formatted as follows:

PARAMETER C_<BUS NAME>_NUM_SLAVES = integer, DT=integer

The <BUS NAME> is replaced with the name of the BUS_STD in use, or the name of the
BUS_INTERFACE in use.

68

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Parameter

C_<BUS NAME> MASTERS_SLAVES

The c_<BUS NAME>_MASTERS_SLAVES parameter is automatically populated by the EDK
tools, and is formatted as follows:

PARAMETER C_<BUS NAME>_NUM_MASTERS = integer, DT=integer
The <BUS NAME> is replaced with the name of the BUS_STD in use or the name of the

BUS_INTERFACE in use.

C_<BUS NAME> MID_WIDTH

The c_<BUS NAME>_MID_WIDTH parameter defines the PLB master ID width in bits. This is
determined by the number of PLB masters, as shown in the table below.

Table 3-16: C_<BUS NAME> MID_WIDTH Calculation

C_<BUS NAME>_NUM_MASTERS

C_<BUS NAME>_MID_WIDTH
(Number of PLB Masters) —<BUS -

Oto2 1
3to4 2
5to8 3
9to 16 4

This parameter is automatically populated by the EDK tools and is formatted as follows:
PARAMETER C_<BUS NAME> MID_WIDTH = <num>, DT=integer

In this example, <num> is an integer value. The <BUS NAME> is replaced with the name of
the BUS_STD or BUS_INTERFACE in use.

Interconnect Related Parameters for AXI Peripherals

For peripherals that have AXI interfaces, the following parameters are interconnect
related. These are reserved parameters. They are not present in the MPD of the peripherals,
but can be used in the MHS (as if they existed in the MPD). Please refer to the following
two tables corresponding to Master and Slave interfaces. There should be one set of such
parameters for each interface.

Note: For an exact list and detailed usage descriptions of all the available interconnect related
parameters, refer to the AXI Interconnect IP Data Sheet (DS768).

Table 3-17: Interconnect Related Parameters for AXI Master Interface

Tools Format
Parameter Name Default Description
(Range)
Value
C_ This is the unique master ID of
INTERCONNECT_<BUSIF>_BASE_ | (none) Bit32 the master. It is generated by
D14 the tools.
C_ Inteer '0" indicates the ACLK
INTERCONNECT_<BUSIF>_IS_AC 0 © % associated with this BUSIF is
LK_ASYNC* ’ Synchronous.
Platform Specification Format Reference Manual = www.xilinx.com 69

UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD)

& XILINX.

Table 3-17: Interconnect Related Parameters for AXI Master Interface

Tools Format
Parameter Name Default (Range) Description
Value 9
C Clock frequency ratio of the
- Integer BUSIF w.r.t. interconnect.
INTERCONNECT_<BUSIF>_ACLK 1 &
RATIOL 2 - (>=1) (Slowest clock input should
- have ratio=1.)
C_ o o .
INTERCONNECT <BUSIF> ARB 0 Integer | Arbitration priority. Higher
PRIORITY - (0-15) | values indicate higher priority.
Depth of BUSIF write data FIFO
(before W channel arbitration).
T tmeger | ISR Ty
INTERCONNECT_<BUSIlF>_WRIT 0 (0, 32, remains hidden, LUT RAM
E_FIFO_DEPTH 512) (SRL) is used whenever depth
32 is selected, and BRAM is
used whenever depth 512 is
selected.
Depth of BUSIF read data FIFO
(after R channel routing).
. Integer | WIS Pame o ypr
INTERCONNECT_<BUS{F>_READ 0 (0, 32, remains hidden, LUT RAM
_FIFO_DEPTH 512) (SRL) is used whenever depth
32 is selected, and BRAM is
used whenever depth 512 is
selected.
= Integer Insert register slice on AW
INTERCONI\]I:%E;‘,EEPSIF>‘AW‘R 0 0, 1) channel at the BUSIFE.
- Integer Insert register slice on AR
INTERCON@E?;:EEIEP SIF>_AR R 0 0, 1) channel at the BUSIFE.
- Integer Insert register slice on W
INTERCONN(];ZI(;"[FL%;%USIF>_W_RE 0 0, 1) channel at the BUSIE.
- Integer Insert register slice on R
INTERCONN(ig%EE?USIF>_R_RE 0 0, 1) channel at the BUSIFE.
- Integer Insert register slice on B
INTERCONNCI?I%F%;P USIF>_B_RE 0 0, 1) channel at the BUSIFE.

70

www.Xxilinx.com

Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Parameter
Table 3-17: Interconnect Related Parameters for AXI Master Interface
Tools Format
Parameter Name Default Description
(Range)
Value
Maximum number of
C Integer | data-active write transactions
INTERCONNECT_<BUSIF>_WRIT 1 (1,24, | that the BUSIF can generate.
E ISSUING 8, 16, (This will be set as the
- 32) WRITE_ACCEPTANCE
parameter on the interconnect.)
Maximum number of active
C Integer read transactions that the
INTERCONNE CT:<BUSIF>_RE AD 1 (1,2,4, | BUSIF can generate. (This will
ISSUING 8, 16, be set as the
- 32) READ_ACCEPTANCE
parameter on the interconnect.)

Table 3-18: Interconnect Related Parameters for AXI Slave Interface
Tools Format
Parameter Name Default Description
Value (Range)
C_INTERCONNECT_<BUSIF non. trin "&" separated list of masters that can
> MASTERS! one string talk to this slave.
C_INTERCONNECT_<BUSIF 0 Integer | '0'indicates the ACLK associated with
>_IS_ACLK_ASYNC* ©,1) this BUSIF is Synchronous.
C_ Inteer Clock frequency ratio of the BUSIF
INTERCONNECT_<BUSIF>_ 1 (>_‘(’1) w.r.t. interconnect. (Slowest clock input
ACLK_RATIOY 2 h should have ratio=1.)
C_ Inteer Indicates whether the slave BUSIF is
INTERCONNECT_<BUSIF>_ 0 (Oe% secure (allows TrustZone secure
SECURE! ! access).
C_ . .
INTERCONNECT <BUSIF> 0 Integer | Insert register slice on AW channel at
AW RE GISfERl - ©,1) the BUSIFE.
C_ . .
INTERCONNECT <BUSIF> 0 Integer Insert register slice on AR channel at
AR RE GIST_ERl - ©,1) the BUSIFE.
C_ . .
INTERCONNECT <BUSIF> 0 Integer | Insert register slice on W channel at the
W_REGISTER! - 1) BUSIE.
C_ . .
INTERCONNECT <BUSIF> 0 Integer | Insert register slice on R channel at the
R_REGISTER! - 1 BUSIE.
C_ . .
INTERCONNECT <BUSIF> 0 Integer | Insert register slice on B channel at the
B_REGISTER! - 1) BUSIE.

Platform Specification Format Reference Manual

UG642 September 21, 2010

www.Xxilinx.com

7

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

Table 3-18: Interconnect Related Parameters for AXI Slave Interface

Tools Format
Parameter Name Default Description
(Range)
Value
Depth of BUSIF write data FIFO (before
W channel arbitration).
C_ Integer Whil .
1le parameter
INTERCONNECTfBUSIlF > 0 (0,32, C_*_A)QI_*_FIFO_TYPE remains hidden,
WRITE_FIFO_DEPTH 512) LUT RAM (SRL) is used whenever depth
32 is selected, and BRAM is used
whenever depth 512 is selected.
Depth of BUSIF read data FIFO (after R
c Integer - chantnel routing).
1le parameter
IN TERCONNECT—<BUS{F>— 0 ©, 32, C_*_A)QI_*_FIFO_TYPE remains hidden,
READ_FIFO_DEPTH 512) LUT RAM (SRL) is used whenever depth
32 is selected, and BRAM is used
whenever depth 512 is selected.
C Integer Maximum number of active write
INTERCONNECT <oustes | 1| (34 famacton tal b USIE e
WRITE_ACCEPTANCE LY iswimbesetas e e B
32) parameter on the interconnect.
C Integer Maximum number of active read
INTERCONNECT <oustrs | 1| ()70 seton e BUSIE e
READ_ACCEPTANCE At S Wit besetas e BEAT-
32) parameter on the interconnect.

Ports
Definition
A port defines a data flow path that is passed into the entity (VHDL) or module (Verilog)
declaration.
Port Keyword Summary
A port can have the following keywords:
ASSIGNMENT ENABLE LONG_DESC
BUFFER_TYPE ENDIAN PERMIT
BUS INITIALVAL SENSITIVITY
CLK_FACTOR INTERRUPT_PRIORITY SIGIS
CLK_INPORT IOB_STATE THREE_STATE
CLK_PHASE 10_IF TRI_I, TRI_O, and TRI_T
CONTRIBUTION 10_IS VEC
DESC ISVALID
DIR
72 www.xilinx.com Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Ports

Port Keyword Definitions

ASSIGNMENT

The ASSIGNMENT keyword defines assignment usage level. The keyword is expressed in the
following format:

PORT SPLB_Clk="", DT=integer, ASSIGNMENT=REQUIRE

The table below lists ASSIGNMENT values.

Table 3-19: ASSIGNMENT Values

ASSIGNMENT Definition
CONSTANT The value is a constant. You cannot modify this value.
OPTIONAL If you do not specify a value, the EDK batch tools use the default.
REQUIRE You must specify a value.
UPDATE You are not allowed to specify a value. The EDK batch tools
compute the value.

BUFFER_TYPE

This keyword is expressed in the following format:
PORT CLK = "", DIR=I, BUFFER_TYPE=IBUF

If the BUFFER_TYPE exists on the MPD port, Platgen moves the property to the top-level
port that is directly connected. If the BUFFER_TYPE exists on the top-level MHS port, it
overrides any MPD port definition of BUFFER_TYPE.

The BUFFER_TYPE is translated into an XST pragma resident in the top-level <system>
HDL.

Note: This constraint selects the type of buffer to be inserted on the input port or internal net. In
general, you should avoid using this constraint and allow XST to infer the proper buffer. Avoiding this
constraint allows for flexibility across device migration or synthesis tool selection.

For an EDK submodule flow, XST does not infer the buffer as defined by the BUFFER_TYPE.
This is correct behavior since it is not expected that IO buffers be present for a submodule
flow.

BUS

The bus interface association name is expressed in the following format, in which
bus_label is a string:

PARAMETER C_PLB_NUM_MASTERS = 8, DT = INTEGER, BUS = MSPLB

If you have more than one bus interface sharing the parameter, then use the colon to
separate each bus interface in the list. The first item in the list is the default setting, which
is expressed in the following format:

PARAMETER C_PLB_NUM_MASTERS = 8, DT = INTEGER, BUS = MSPLB:SPLB

CLK_FACTOR

The factor by which the output clock varies with respect to the input clock can be specified
with the keyword cLK_FACTOR, as follows:

PORT CLK2X = clk_out, SIGIS=CLK, DIR=0, CLK_FACTOR=2

Platform Specification Format Reference Manual = www.xilinx.com 73
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

The clock factor can also be specified in terms of other parameters, as follows:

PORT CLKFX = "", SIGIS=CLK, DIR=0, CLK_FACTOR = "1.0 * C_CLKFX_MULTIPLY
/ C_CLKFX_DIVIDE"

Note: If the CLK_FACTOR expression includes a division, it is required that the clock factor be
multiplied by 1.0 to ensure that Tcl does not trim off the decimals.

CLK_INPORT

This keyword should only be specified on clock ports when DIR=0 (that is, output clock
ports). The input clock port, on which the output clock ports value is dependent, is
specified using the keyword CLK_INPORT, as follows:

PORT CLK_OUT = clk_out, CLK_INPORT=CLK_IN

If there is only one input clock in an IP, then the tools automatically infer it to be the input
clock. If multiple input clocks are present, this keyword must be used so the tools can
determine clock connectivity.

CLK_PHASE

This keyword specifies the phase information for the clock. Allowed values: 0 to 360.

PORT CLK_IN = sys_clk_s, CLK_FREQ=100000000, CLK_PHASE=180

CONTRIBUTION

This keyword identifies the stride of the signal, or the contribution width of this signal
when it is connected to a larger vector. Platgen's connectivity engine groups all the signals
of the end point masters/slaves that have the same name and connects them to one large
(vectored) signal on the interconnect. This keyword identifies the contribution width of
each of those signals.

If the keyword is not specified, Platgen takes the maximum contributing width of all the
masters (or all slaves) and sets that as the vector stride.

DESC

This keyword allows a short description of the port to be displayed by the GUI tools. The short
description replaces the port name in the display field. The DESC keyword is expressed in the
following format:

PORT SPLB_Clk="", DIR=IN, SIGIS=CLK, BUS=SPLB, DESC="SPLB clock"

DIR

The driver direction of a signal is specified by the DIR keyword. The keyword is expressed
in the following format:

PORT mysignal = “”, DIR=direction

In this example, directionis either I (input), O (output), or IO (inout).

ENABLE

The ENABLE keyword allows you to specify whether tri-state signals have multi-bit enable
control or single-bit enable control on the bus. The keyword is expressed in the following
format:

PORT mysignal = “”, DIR=IO, VEC=[0:31], ENABLE=enable_ value

74

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Ports

In this example, enable_value is either SINGLE or MULTI. If there is no specification, then
SINGLE is the default value.

Refer to the Design Considerations section of this chapter for information about designing
tri-state signals at the HDL level.

ENDIAN

The endianess of a signal is specified by the ENDIAN keyword, which is expressed in the
following format:

PORT mysignal = “”, DIR=I, VEC=[A:B], ENDIAN=endian_value

In this example, endian_value is either BIG or LITTLE. If there is no specification, BIG is
the default value. A and B are positive integer expressions.

Note: ENDIAN is not used to define the endianess of a signal; it is used as a hint to Platgen to
correctly construct the port vector. Since we use [A:B] style syntax for VEC definitions, it is not known
when writing VHDL that it should be std_logic_vector (A to B). Thisis used in a situation in
which A=B. For example, VEC=[0:0] in the port declaration of components allows Platgen to properly
define the datatype of the port.

INITIALVAL

The signal driver value on unconnected input signals is specified by the INITIALVAL
keyword, which is expressed in the following format:

PORT mysignal = “”, DIR=INPUT, INITIALVAL=init value

In this example, the init_value is either vcc or GND. If there is no specification, then GND
is the default value.

INTERRUPT_PRIORITY

The INTERRUPT_PRIORITY keyword defines the relative priority of interrupt signals. The
keyword is expressed in the following format:

PORT Intr="", DIR=0, SENSITIVITY=EDGE_RISING, SIGIS=INTERRUPT,
INTERRUPT_PRIORITY=LOW

The level is dependent on the speed of the interface that the IP controls. For example, a
UART runs at default 19200 baud, which gives a byte-rate of around 2000 bytes/s. An
Ethernet 100 runs at 100 MHz, which gives a byte-rate of 12 000 000 bytes/s. Therefore,
UART is Low and Ethernet is HIGH.

CANBus runs at 1 MHz and gives a byte-rate of 120 000 bytes/s, which would be MEDIUM.
It is also dependent on whether or not the IP has FIFO, which is a judgment that the
designer must make.

IOB_STATE
Deprecated. If necessary, Platgen allows XST to infer all IOB primitives.
Currently, used for DRC purposes to guard against specific IO connectivity issues:

® INOUT ports must have the same port name and connector name if the pcore embeds
an I0BUF. Use THREE_STATE=FALSE to check for condition (remains as a Platgen
DRC).

¢ An INPUT port must have a connector if the pcore embeds an 1BUF. Use Tcl
SYSLEVEL_DRC_PROC to check the condition.

Platform Specification Format Reference Manual = www.xilinx.com 75
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

The 10B_sTATE keyword identifies ports that instantiate or infer IOB primitives. The
keyword is expressed in the following format:

PORT DDR_Addr = “”, DIR=OUT, VEC=[0:C_DDR_AWIDTH-1], IOB_STATE=REG
The values are BUF, INFER, or REG. The default is INFER.

When a port requires an IOB primitive (I0B_STATE=INFER), Platgen instantiates an IOB
buffer. When a port has an I0B buffer (IOB_STATE=BUF) or IOB register
(I0B_STATE=REG), Platgen does not instantiate an IOB primitive.

I0_IF

The IO interface association name is formatted as follows:

PORT C405TRCCYCLE="", DIR=0, IO_IF=trace_0, IO_IS=trace_clk

IO_1ISs

The 10_15 keyword defines an XBD relationship marker. 10_15s implies that the port can
be pulled out to the FPGA boundary.

Without a corresponding XBD value, the tag has no effect.

A port that has an 10_15 must also have an T0_IF association with a particular
I0_INTERFACE in the MPD. An MPD could have more than one 10_INTERFACE. Therefore,
a port with an T0_Is must be associated with only one of them. The 10_1s keyword is
expressed in the following format:

PORT C405TRCCYCLE="", DIR=0, IO_IF=trace_0, IO_IS=trace_clk

ISVALID

The 1svaLID keyword defines the validity of a PORT to an expression. If the expression
evaluates true, the PORT is included in the list of valid PORTs of the defined system for DRC
processing. If false, the PORT is not included and no DRC is performed. However, the PORT
remains listed in the HDL. It is expressed in the following format:

PORT SDRAM _RAS n = "", DIR = O, ISVALID = (C_MEM_TYPE == 2)

LONG_DESC

Allows a long description of the port to be displayed by the GUI tools. The long description
allows the GUI tools to display a hover help. There is no default and the use of this keyword is
formatted as follows:

PORT OPB_Clk="", DIR=I, SIGIS=CLK, BUS=SOPB, LONG_DESC="Clock from OPB"

PERMIT

The PERMIT keyword determines whether or not BSB should specify a particular port as a
top-level port in the MHS. Only those ports that have a PERMIT value of BASE_USER are
connected by BSB to top-level ports. The default value is ADVANCED_USER. The PERMIT
keyword is expressed in the following format:

PORT JTGC405TCK=JTGC405TCK, DIR=I, PERMIT = BASE_USER

76

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Ports

SENSITIVITY

The interrupt sensitivity of an interrupt signal is specified by the SENSITIVITY keyword.
This supersedes the EDGE and LEVEL keywords. The SENSITIVITY keyword is expressed in
the following format:

PORT interrupt="", DIR=0, SENSITIVITY=value, SIGIS=INTERRUPT
In this example, the value is either EDGE_FALLING, EDGE_RISING, LEVEL_HIGH Or
LEVEL_LOW.

SIGIS

The class of a signal is specified by the s1G1s keyword, which is expressed in the following
format:

PORT mysig="", DIR=0, SIGIS=value

In this example, the value is CLK, INTERRUPT, or RST. The table below describes SI1GIS
usage.

Table 3-20: SIGIS Usage
SIGIS Usage

CLK * XPS
Displays all clock signals.

* Platgen

For all bus components, the clock signals are automatically connected to
the clock input of the peripherals on the bus.

INTERRUPT e XPS
Displays all interrupt signals.
* Platgen

Encodes the priority interrupt vector

RST e XPS
Displays all reset signals.

THREE_STATE

The THREE_STATE keyword enables or disables tri-state expansion. This supersedes the
deprecated 3sTATE keyword. The THREE_STATE keyword is expressed in the following
format:

PORT PAR="", DIR=INOUT, THREE_STATE=FALSE, IOB_STATE=BUF
For output ports, the default value is FALSE. For inout ports, the default value is TRUE.

Refer to the Tri-state (InOut and Output) Signals section of this chapter for information
about designing tri-state signals at the HDL level.

TRI I, TRI_O, and TRI_T

The TRI_I, TRI_0, and TRI_T keywords define the associative ports of the tri-state. This
directly correlates to the TOBUF UNISIM primitive where the I port is represented by the
TRI_O keyword, the T port by TRI_T, and the O port by the TRI_I. This also directly
correlates to the OBUFT UNISIM primitive where the I port is represented by the TRI_0
keyword, the T port by TRI_T, and the TRI_I keyword is not defined. These properties are

Platform Specification Format Reference Manual = www.xilinx.com 77
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

only valid when THREE_STATE=TRUE. The TRI_I, TRI_O, and TRI_T keywords are
expressed in the following format:

PORT IPIO = ““, DIR=INOUT, TRI_T=x, TRI_O=y, TRI_T=z, THREE_STATE=TRUE
PORT x = ““, DIR=0UT
PORT y = ““, DIR=0UT
PORT z = ““, DIR=IN

Refer to the Tri-state (InOut and Output) Signals section of this chapter for information
about designing tri-state signals at the HDL level.

VEC

The vector width of a signal is specified by the VEC keyword, which is expressed in the
following format:

PORT mysignal = “”, DIR=INPUT, VEC=[A:B]

A and B are positive integer expressions.

Port Naming Conventions

This section provides naming conventions for bus interface signal names. These
conventions are flexible to accommodate embedded processor systems that have more
than one bus interface and more than one bus interface port per component.

The names must be HDL (VHDL or Verilog) compliant. As with any language, VHDL and

Verilog have certain naming rules and conventions that you must follow.

Global Ports

The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. You can use any name for other global ports (such as the interrupt signal).

LMB - Clock and Reset

LMB_Clk
LMB_Rst

PLB - Clock and Reset

PLB_Clk
PLB_Rst

Slave DCR Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs in which
<S1n> is a meaningful name or acronym for the slave output:

<SIn>_dcrDBus
<SIn>_dcrAck

An additional requirement on <sln> is that it must not contain the string DCR (upper,
lower, or mixed case), so that slave outputs are not confused with bus outputs.

78

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Ports

uart_dcrAck
intc_dcrAck
memcon_dcrAck

DCR Slave Inputs

For interconnection to the DCR, all slaves must provide the following inputs:

<nDCR>_ABus
<nDCR>_S1_DBus
<nDCR>_Read
<nDCR>_Write

In this example, <nDCR> is a meaningful name or acronym for the slave input. An
additional requirement on <nDCR> is that the last three characters must contain the string
DCR (upper, lower, or mixed case).

DCR_S1_DBus
busl_DCR_S1_DBus

Slave LMB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

LMB Slave Outputs

For interconnection to the LMB, all slaves must provide the following outputs:

<S1ln>_DBus
<Sln>_Ready

In this example, <Sln> is a meaningful name or acronym for the slave output. An
additional requirement on <Sln> is that it must not contain the string “LMB” (upper, lower,
or mixed case), so that slave outputs are not confused with bus outputs.

d_Ready
i_Ready

LMB Slave Inputs

For interconnection to the LMB, all slaves must provide the following inputs:

<nLMB>_ABus
<nLMB>_ReadStrobe
<nLMB>_AddrStrobe
<nLMB>_WriteStrobe
<nLMB> WriteDBus
<nLMB>_BE

In this example, <nLMB> is a meaningful name or acronym for the slave input. An
additional requirement on <nLMB> is that the last three characters must contain the string
LMB (upper, lower, or mixed case).

LMB_ABus
busl_LMB_ABus

Master PLB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

Platform Specification Format Reference Manual = www.xilinx.com 79
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

PLB Master Outputs

For interconnection to the PLB, all masters must provide the following outputs:

<Mn>_ABus
<Mn>_BE
<Mn>_RNW
<Mn>_abort
<Mn>_busLock
<Mn>_compress
<Mn>_guarded
<Mn>_JlockErr
<Mn>_MSize
<Mn>_ordered
<Mn>_priority
<Mn>_rdBurst
<Mn>_request
<Mn>_size
<Mn>_type
<Mn>_wrBurst
<Mn>_wrDBus

In this example, <Mn> is a meaningful name or acronym for the master output. An
additional requirement for <Mn> is that it must not contain the string PLB (upper, lower, or
mixed case), so that master outputs are not confused with bus outputs.

iM_request
bridge_request
o20b_request

PLB Master Inputs

For interconnection to the PLB, all masters must provide the following inputs:

<nPLB>_MAddrAck
<nPLB>_MBusy
<nPLB>_MErr
<nPLB>_MRdBTerm
<nPLB>_MRdDAck
<nPLB>_MRAdDBus
<nPLB>_MRAWJAddr
<nPLB> MRearbitrate
<nPLB>_MWrBTerm
<nPLB>_MWrDAck
<nPLB> MSSize

In this example, <nPLB> is a meaningful name or acronym for the master
input. An additional requirement on <nPLB> is that the last three
characters must contain the string PLB (upper, lower, or mixed case).
iPLB_MBusy

PLB_MBusy

busl_PLB_MBusy

Slave PLB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

80

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Ports

PLB Slave Outputs

For interconnection to the PLB, all slaves must provide the following outputs:

In this example, <S1n> is a meaningful name or acronym for the slave output. An

<S1ln>_addrAck
<Sln>_MErr
<Sln>_MBusy
<SIn>_rdBTerm
<S1n>_rdComp
<S1ln>_rdDAck
<SIn>_rdDBus
<SIn>_ rdwdAddr

<SIln>_rearbitrate

<Sln>_SSize
<Sln>_wait
<SIn>_wrBTerm
<S1n>_wrComp
<SIn>_ wrDAck

additional requirement on <S1n> is that it must not contain the string LB (upper, lower, or

mixed case), so that slave outputs are not confused with bus outputs.

tmr_addrAck
uart_addrAck
intc_addrAck

PLB Slave Inputs

For interconnection to the PLB, all slaves must provide the following inputs:

In this example, <nPLB> is a meaningful name or acronym for the slave input. An

<nPLB>_ ABus
<nPLB>_BE
<nPLB> PAValid
<nPLB> RNW
<nPLB>_abort
<nPLB>_busLock
<nPLB>_compress
<nPLB>_guarded
<nPLB>_lockErr
<nPLB>_masterID
<nPLB> MSize
<nPLB>_ordered
<nPLB>_pendPri
<nPLB>_pendReq
<nPLB>_regPri
<nPLB>_size
<nPLB>_type
<nPLB> rdPrim
<nPLB>_SAValid
<nPLB>_ wrPrim
<nPLB>_wrBurst
<nPLB>_wrDBus
<nPLB>_rdBurst

additional requirement on <nPLB> is that the last three characters must contain the string
PLB (upper, lower, or mixed case).

PLB_size
iPLB_size

Platform Specification Format Reference Manual

UG642 September 21, 2010

www.Xxilinx.com

81

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD)

& XILINX.

dPLB_size

Reserved Port Connections
Connectivity of the DCR,

LMB, OPB, and PLB busses to peripherals is done through a

common set of signal connections.

Clock and Reset Ports

For interconnection to the clock and reset ports:

PORT <BUS NAME>_Clk
PORT <BUS NAME>_Rst

w7
’

DIR=I, SIGIS=CLK
<BUS NAME>_Rst, DIR=I

The <BUS NAME> is replaced with the name of the BUS_STD in use or the name of the
BUS_INTERFACE in use. Notice that the clock port has no default value. The clock port is an
input to the bus that you assign in the MHS. Therefore, all peripherals on the bus must also

be treated as a user input

port. If a default value were given to <BUS NAME>_C1k, this

would not match the clock you defined in the MHS, and the EDK tools would assume a
short in the system and tie off the sourceless ports.

The reset port is an output from the bus and has a default value. All peripherals on the bus
share the same default: <BUs NaME>_Rst. Your input to the bus is sYs_rst, which has no

default value.

Slave LMB Ports

For interconnection to the LMB, all slaves must provide the following connections:

PORT
PORT
PORT
PORT
PORT
PORT
PORT
BUS=SLMB

PORT <nLMB>_BE

<SIln>_ DBus
<SIn>_Ready
<nLMB>_ABus

Master PLB Ports

<nLMB>_ReadStrobe
<nLMB>_AddrStrobe
<nLMB>_WriteStrobe
<nLMB>_WriteDBus

LMB_BE, DIR=T,

Sl _DBus, DIR=0, VEC=[0:C_LMB_DWIDTH-1], BUS=SLMB
S1_Ready, DIR=0, BUS=SLMB
LMB_ABus, DIR=I, VEC=[0:C_LMB_AWIDTH-1], BUS=SLMB
= LMB_ReadStrobe, DIR=I, BUS=SLMB
= LMB_AddrStrobe, DIR=I, BUS=SLMB
= LMB_WriteStrobe, DIR=I, BUS=SLMB

LMB_WriteDBus, VEC=[0:C_LMB_DWIDTH-1],

DIR=I,

VEC=[0:C_LMB_DWIDTH/8-1], BUS=SLMB

For interconnection to the PLB, all masters must provide the following connections:

PORT <Mn>_ ABus = M_ABus, DIR=0, VEC=[0:C_PLB_AWIDTH-1], BUS=MPLB
PORT <Mn>_BE = M_BE, DIR=0O, VEC=[0:C_PLB_DWIDTH/8-1], BUS=MPLB
PORT <Mn>_RNW = M_RNW, DIR=0, BUS=MPLB

PORT <Mn>_abort = M_abort, DIR=0, BUS=MPLB

PORT <Mn>_ busLock = M _busLock, DIR=0, BUS=MPLB

PORT <Mn>_compress = M_compress, DIR=0, BUS=MPLB

PORT <Mn>_guarded = M_guarded, DIR=0, BUS=MPLB

PORT <Mn>_lockErr = M_lockErr, DIR=0, BUS=MPLB

PORT <Mn>_MSize = M_MSize, DIR=0, VEC=[0:1], BUS=MPLB

PORT <Mn>_ordered = M_ordered, DIR=0, BUS=MPLB

PORT <Mn>_priority = M_priority, DIR=0, VEC=[0:1], BUS=MPLB
PORT <Mn>_rdBurst = M_rdBurst, DIR=0, BUS=MPLB

PORT <Mn>_request = M _request, DIR=0, BUS=MPLB

PORT <Mn>_size = M_size, DIR=0, VEC=[0:3], BUS=MPLB

PORT <Mn>_type = M_type, DIR=0, VEC=[0:2], BUS=MPLB

PORT <Mn>_wrBurst = M_wrBurst, DIR=0, BUS=MPLB

82

www.xilinx.com Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Ports

PORT
PORT
PORT
PORT
PORT
PORT
PORT

<Mn>_wrDBus = M_wrDBus, DIR=0, VEC=[0:C_PLB_DWIDTH-1], BUS=MPLB
<nPLB> MAddrAck = PLB_MAddrAck, DIR=I, BUS=MPLB

<nPLB> MBusy = PLB_MBusy, DIR=I, BUS=MPLB

<nPLB> MErr = PLB_MErr, DIR=I, BUS=MPLB

<nPLB> MRABTerm = PLB_MRAdBTerm, DIR=I, BUS=MPLB

<nPLB> MRADAck = PLB_MRADAck, DIR=I, BUS=MPLB

<nPLB>_MRADBus = PLB_MRADBus, DIR=I, VEC=[0:C_PLB DWIDTH-1],

BUS=MPLB

PORT
PORT
PORT
PORT
PORT

<nPLB>_MRAWdAddr = PLB_MRAWdAddr, DIR=I, VEC=[0:3], BUS=MPLB
<nPLB> MRearbitrate = PLB_MRearbitrate, DIR=I, BUS=MPLB
<nPLB>_MWrBTerm = PLB_MWrBTerm, DIR=I, BUS=MPLB
<nPLB>_MWrDAck = PLB_MWrDAck, DIR=I, BUS=MPLB

<nPLB> MSSize = PLB_MSSize, DIR=I, VEC=[0:1], BUS=MPLB

Slave PLB Ports

For interconnection to the PLB, all slaves must provide the following connections:

PORT
PORT
PORT

<S1ln> addrAck = S1_addrAck, DIR=0, BUS=SPLB
<SIln> MErr = S1_MErr, DIR=0, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB
<SIn>_MBusy = S1_MBusy, DIR=0, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB

PORT <SIn>_rdBTerm = Sl1_rdBTerm, DIR=0, BUS=SPLB

PORT <SIn>_rdComp = S1_rdComp, DIR=0, BUS=SPLB

PORT <SIn>_rdDAck = S1_rdDAck, DIR=0, BUS=SPLB

PORT <SIn>_rdDBus = S1_rdDBus, DIR=0, VEC=[0:C_PLB_DWIDTH-1],BUS=SPLB
PORT <SIn>_rdWwdAddr = S1_rdwdAddr, DIR=0, VEC=[0:3], BUS=SPLB

PORT <SIn>_ rearbitrate = Sl1_rearbitrate, DIR=0, BUS=SPLB

PORT <Sln>_SSize = S1_SSize, DIR=0, VEC=[0:1], BUS=SPLB

PORT <SIn>_wait = Sl_wait, DIR=0, BUS=SPLB

PORT <SIn> wrBTerm = S1_wrBTerm, DIR=0, BUS=SPLB

PORT <SIn>_wrComp = S1_wrComp, DIR=0, BUS=SPLB

PORT <SIn>_wrDAck = S1_wrDAck, DIR=0, BUS=SPLB

PORT <nPLB>_ABus = PLB_ABus, DIR=I, VEC=[0:C_PLB_AWIDTH-1], BUS=SPLB
PORT <nPLB>_BE = PLB_BE, DIR=I, VEC=[0:(C_PLB_DWIDTH/8)-1], BUS=SPLB
PORT <nPLB>_ PAValid = PLB_PAValid, DIR=I, BUS=SPLB

PORT <nPLB>_RNW = PLB_RNW, DIR=I, BUS=SPLB

PORT <nPLB>_abort = PLB_abort, DIR=I, BUS=SPLB

PORT <nPLB>_busLock = PLB_busLock, DIR=I, BUS=SPLB

PORT <nPLB>_ compress = PLB_compress, DIR=I, BUS=SPLB

PORT <nPLB>_ guarded = PLB_guarded, DIR=I, BUS=SPLB

PORT <nPLB>_lockErr = PLB_lockErr, DIR=I, BUS=SPLB

PORT <nPLB> masterID = PLB_masterID, DIR=I,VEC=[0:C_PLB_MID WIDTH-11],
BUS=SPLB

PORT <nPLB> MSize = PLB_MSize, DIR=I, VEC=[0:1], BUS=SPLB

PORT <nPLB>_ ordered = PLB_ordered, DIR=I, BUS=SPLB

PORT <nPLB>_pendPri = PLB_pendPri, DIR=I, VEC=[0:1], BUS=SPLB

PORT <nPLB>_pendReq = PLB_pendReq, DIR=I, BUS=SPLB

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

<nPLB>_reqgPri = PLB_reqgPri, DIR=I, VEC=[0:1], BUS=SPLB

<nPLB> size = PLB_size, DIR=I, VEC=[0:3], BUS=SPLB

<nPLB>_type = PLB_type, DIR=I, VEC=[0:2], BUS=SPLB

<nPLB> rdPrim = PLB_rdPrim, DIR=I, BUS=SPLB

<nPLB>_ SAValid = PLB_SAValid, DIR=I, BUS=SPLB

<nPLB> wrPrim = PLB_wrPrim, DIR=I, BUS=SPLB

<nPLB>_wrBurst = PLB_wrBurst, DIR=I, BUS=SPLB

<nPLB>_wrDBus = PLB_wrDBus, DIR=I, VEC=[0:C_PLB_DWIDTH-1], BUS=SPLB
<nPLB>_rdBurst = PLB_rdBurst, DIR=I, BUS=SPLB

Platform Specification Format Reference Manual = www.xilinx.com 83

UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

Design Considerations

Unconnected Ports

Unconnected output ports are assigned open, and unconnected input ports are either set to
GND or VCC.

"

An unconnected port is identified as an empty double-quote (““) string.

The EDK tools resolve the driver value on unconnected input ports by the INITIALVAL
keyword, using this format:

PORT mysignal = “”, DIR=OUTPUT

Scalable Data Path

Using an MPD keyword declaration, you can automatically scale the data path width. Bus
expressions are evaluated as arithmetic equation, and are formatted as follows.

PORT name = default_connection, VEC=[A:B]

In this example, A and B are positive integer expressions.

MPD Example

The following is an example MPD file:

BEGIN my_peripheral

Generics for vhdl or parameters for verilog

PARAMETER C_BASEADDR = 0xB00000, DT=std_logic_vector (0 to 31)
PARAMETER C_MY_PERIPH_AWIDTH = 17, DT=integer

Global ports

PORT OPB_Clk = “”, DIR=I

PORT OPB_Rst = “”, DIR=I

My peripheral signals

PORT MY_ADDR = “”, DIR=0, VEC=[0:C_MY_ PERIPH_AWIDTH-1]

OPB signals

END
By default, if the vectors are larger than one bit, EDK tools determine the range
specification on buses as either big-endian or little-endian. However, if the vector has a

one-bit width, then the range cannot be determined, and the EDK tools default to
big-endian style notation.

To change this default behavior, use the ENDIAN keyword, which should be formatted as
follows:

PORT mysignal = “”, DIR=I, VEC=[0:0], ENDIAN=LITTLE
This builds the VHDL equivalent:

mysignal: in std_logic_vector (0 downto 0);

Interrupt Signals

Interrupt signals are identified by the SIGIS=INTERRUPT name-value.

84

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Design Considerations

Tri-state (InOut and Output) Signals

Note: Read this section if you want the EDK tools to infer a tri-state port for your output or in/out
port.

A system on a programmable chip design methodology follows these general rules of
thumb:

* Submodule port driver directions (modes) should be either In or ouT

¢ Top level module/entity is allowed to have ports of mode 1NOUT

The drive direction (mode) of a port impacts the partitioning of a design. The mode of a
port must propagate through all levels of hierarchy, with the result that if the top-level
requests an inout port, then a low-level module must provide an inout port for
connectivity. Alternatively, at the top-level hierarchy, the user must describe the inout
drive direction to connect the lower-level, unidirectional ports of the submodule to the
top-level bi-directional inout port.

This methodology fits well into an FGPA architecture since tri-state buffers are only
available as an T0BUF primitive in the IOB cell. A reduced implementation is a tri-output,
which Platgen maps to the 0BUFT primitive. Tri-states in the CLB do not exist; the synthesis
tool translates the tri-state logic to MUXes.

An abstract inout port on the MPD is defined for connectivity purposes. The abstract port
allows a user to connect the top-level inout port to the lower-level abstract inout port
without changing the partition or interface of the submodule in hardware.

At the MHS/MPD level, there is an abstract inout port in the MPD file that allows a
connection through the I0BUF to the top-level inout port declaration in the MHS file. This
corresponds to the usage of defining an inout port at the top level and preserving
unidirectional ports at the lower level.

MY_IP

IPIO_T T

IPIO_O | + IPIO
O - F——»
|l IPIO_I 0]

X9877

Figure 3-1: OBUF Implementation

Note: The tri-state enable is active-low. This allows a direct connection to the OBUFT or the TOBUF
without an inversion of the tri-state enable port.

The IPIO port in Figure 3-1 is described as an abstract port of drive direction inout. This
portis not listed on the port interface of the hardware module or entity, as demonstrated in
the following HDL code examples.

In the MPD file, an abstract inout port is identified by the inout direction mode and
THREE_STATE=TRUE without defined TRI_I, TRI_0, and TRI_T keywords. In this case, the
abstract inout port name must share a common basename across the basename_1I,
basename_0, and basename_T ports on the port interface of the hardware module or entity.
In Figure 3-1, the basename is 1p10. Platgen expands the inout port in the MPD file to _1,
_0, and _T ports in the port interface declaration of the HDL file. This method does not
allow the individual ports that construct the abstract port to be listed in the MPD.

Platform Specification Format Reference Manual = www.xilinx.com 85
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

In the MPD file, an abstract inout port is identified by the inout or output (tri-output)
direction mode and THREE_STATE=TRUE with defined TRI_I, TRI_0, and TRI_T keywords.
In this case, the abstract inout port name allows free connection to the individual ports that
construct the abstract port. The abstract inout port or output (tri-output) is freely named.
This method does allow the individual ports that construct the abstract port to be listed in
the MPD.

Tri-state (InOut) With Single-Bit Enable

The following examples include a tri-state port with a single-bit enable.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (
-- tri-state signal
IPIO_TI: in std_logic_vector (0 to C_WIDTH-1);
IPIO_O: out std_logic_vector(0 to C_WIDTH-1);
IPIO_T: out std_logic);

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPIO = “”, DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=SINGLE,
THREE_STATE=TRUE
END

Tri-state (InOut) With Multi-Bit Enable

The following examples include a tri-state port with a multi-bit enable.

VHDL Example

entity tri_state_multi is
generic (C_WIDTH: integer:= 9);
port (
-- tri-state signal
IPIO_TI: in std_logic_vector (0 to C_WIDTH-1);
IPIO_O: out std_logic_vector(0 to C_WIDTH-1);
IPIO_T: out std_logic_vector(0 to C_WIDTH-1));
end entity tri_state_multi;

MPD Example

BEGIN tri_state_multi
OPTION IPTYPE=IP
PARAMETER C_WIDTH = 9, DT=integer

PORT IPIO = “”, DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=MULTI,
THREE_STATE=TRUE
END

86 www.xilinx.com Platform Specification Format Reference Manual

UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Design Considerations

Tri-state (In/Out) With Single-Bit Enable With Freely Named Ports

The following examples include a tri-state port with a single-bit enable with freely named
ports.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

ITRI: in std_logic_vector (0 to C_WIDTH-1);
OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic);

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPIO="“", DIR=IO,VEC=[0:C_WIDTH-1],THREE_STATE=TRUE, TRI_I=ITRT,
TRI_O=0TRI, TRI_T=TTRI

PORT ITRI="", DIR=I, VEC=[0:C_WIDTH-1]

PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]

PORT TTRI="", DIR=I

END

Tri-state (InOut) With Multi-Bit Enable With Freely Named Ports

These examples show a tri-state port with a multi-bit enable with freely-named ports.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

ITRI: in std_logic_vector (0 to C_WIDTH-1);
OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic(0 to C_WIDTH-1));

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_W=9, DT=integer

PORT IPIO="“", DIR=IO, VEC=[0:C_WIDTH-1], ENABLE=MULTI, TRI_I=ITRT,
TRI_O=0TRI, TRI_T=TTRI

PORT ITRI="", DIR=I, VEC=[0:C_WIDTH-1]

PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]

PORT TTRI="", DIR=I, VEC=[0:C_WIDTH-1]

END

Tri-state (Output) With Single-Bit Enable

These examples include a tri-state output port with a single-bit enable.

Platform Specification Format Reference Manual = www.xilinx.com 87
UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD) & XILINX.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

IPO_O: out std_logic_vector(0 to C_WIDTH-1);
IPO_T: out std_logic);

end entity tri_state_output_single;

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPO = “”, DIR=0, VEC=[0:C_WIDTH-1], ENABLE=SINGLE,
THREE_STATE=TRUE
END

Tri-state (Output) With Multi-Bit Enable

These examples include a tri-state output port with a multi-bit enable.

VHDL Example

entity tri_state_output_multi is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

IPO_O: out std_logic_vector (0 to C_WIDTH-1);
IPO_T: out std_logic_vector (0 to C_WIDTH-1));
end entity tri_state_output_multi;

MPD Example

BEGIN tri_state_output_multi

OPTION IPTYPE=IP

PARAMETER C_WIDTH = 9, DT=integer

PORT IPO = “”, DIR=0, VEC=[0:C_WIDTH-1], ENABLE=MULTI, THREE_STATE=TRUE
END

Tri-state (Output) With Single-Bit Enable With Freely Named Ports

These examples include a tri-state output port with a single-bit enable and with freely
named ports.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic);

end entity tri_state_output_single;

88 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Design Considerations

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPO="“", DIR=0O,VEC=[0:C_WIDTH-1],THREE_STATE=TRUE, TRI_O=O0TRI,
TRI_T=TTRI

PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]

PORT TTRI="", DIR=I

END

Tri-state (Output) With Multi-Bit Enable With Freely Named Ports

These examples show a tri-state output port with a multi-bit enable and with freely named
ports.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

OTRI: out std_logic_vector(0 to C_WIDTH-1);
TTRI: out std_logic(0 to C_WIDTH-1));

end entity tri_state_output_single;

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_W=9, DT=integer

PORT IPO=“”, DIR=0, VEC=[0:C_WIDTH-1], ENABLE=MULTI, TRI_O=0TRI,
TRI_T=TTRI
PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]
PORT TTRI="", DIR=I, VEC=[0:C_WIDTH-1]
END
Platform Specification Format Reference Manual = www.xilinx.com 89

UG642 September 21, 2010

http://www.xilinx.com

Chapter 3: Microprocessor Peripheral Definition (MPD)

& XILINX.

90 www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Chapter 4

Peripheral Analyze Order (PAO)

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis and defines the analyze order for compilation.

If the STYLE option in the MPD file has a value of MIX or HDL, the core has a PAO file.
This chapter contains the following sections:

¢ PAO Format
e Verilog Include Directories
¢ PAO Example

PAO Format

Format

Use the following format:

tooltarget libraryname <relative path from library>/filenamel[.v|.vhd]
hdlang

* The tooltarget specifies the tool target. Valid values are 1ib, simlib, synlib,
and vigincdir. Files specified with 11ib are used for both synthesis and simulation.
Files specified with simlib are for behavioral simulation only. The vigincdir
defines the relative path of the Verilog Include directories. Files specified with
synlib are only for synthesis.

e The libraryname specifies the library that contains the file. All of the files for the IP
should use the IP as the library name. The library name is given with the version
appended. For example, for version 1.00.a the library name is
libraryname_v1_00_a. The name is in lower case.

e The filename specifies the file name. The filename optionally can have a file
extension. If the file extension is omitted, then for VHDL, the .vhd extension is
added; for Verilog, the . v extension is added. If the MPD file specifies OPTION
HDL=BOTH, then extensions may not be specified.

The £ilename can specify the keyword a1l in place of a file name. This causes all the
files from the given library to be included. Do not use the keyword al1l if you are
referring to the same library to which the PAO belongs. Any sub-library that is
referenced using the all keyword must have a valid PAO file associated with it. The
name is in lower-case.

Note: The filename can optionally specify subfolders relative to the path of the hdl/verilog or hdl/vhdl
folder.

Platform Specification Format Reference Manual = www.xilinx.com 91
UG642 September 21, 2010

http://www.xilinx.com

Chapter 4: Peripheral Analyze Order (PAO) & XILINX.

¢ The hdllang specifies the language of the file name. Valid values are verilog and
vhdl. This field is required when OPTION HDL=MIXED is used. If the language is not
specified, the OPTION HDL value determines the value of this field.
This field cannot be specified for OPTION HDL=BOTH. This field is ignored if the
keyword all is used. In that particular case, the PAO of the sub-library determines
the language of each of the files included from that library.

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

* Precede comments with the pound sign (¥#)
e Comments can continue to the end of the line

e Comments can be anywhere on the line

Verilog Include Directories

Format

You must use relative paths to allow project maneuverability from development platform
to development platform. Use the " include compiler directive in your Verilog HDL files
to insert the contents of an entire file.

The following is an example Verilog HDL file:

“include “global_consts.v”
“include “pcore_vl_00_a/hdl/verilog/consts.v"

By default, all known EDK repositories are automatically included to the calls that process
Verilog:

<proj_dir>/pcores
SXILINX_EDK/hw/XilinxBFMinterface/pcores
SXILINX_EDK/hw/XilinxProcessorIPLib/pcores$XILINX_EDK/hw/
XilinxReferenceDesigns/pcores

You need only specify include paths that are not default. User-specified paths have a
higher precedence over the default paths.

Use the following format:

vlgincdir <library> <relative path from library>

92

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

PAO Example

PAO Example

The following is an example of a VHDL PAO file:

1lib common_vl1_00_a common_types_pkg.vhd
1ib common_vl_00_a pselect.vhd

1lib opb_gpio_vl_00_a gpio_core

1lib opb_gpio_vl1_00_a opb_gpio

The following is an example of a MIXED PAO file:

1lib libname_v2_00_a mysubfolderl/filel.vhd vhdl
1lib ipname_vl_00_a file2.v verilog

1lib ipname_vl_00_a file3.vhd vhdl

simlib ipname_v1_00_a simfile.v verilog

synlib ipname_v1_00_a synfile.vhd vhdl

Platform Specification Format Reference Manual = www.xilinx.com
UG642 September 21, 2010

93

http://www.xilinx.com

Chapter 4: Peripheral Analyze Order (PAO)

& XILINX.

94

www.Xxilinx.com

Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Chapter 5

Black-Box Definition (BBD)

The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

The STYLE option in the MPD with the values of MIX, or BLACKBOX, identify the core as
having a BBD file.

This chapter contains the following sections:

¢ BBD Format
e BBD Examples

BBD Format

The BBD format is a look-up table that lists netlist files. The first line is the header of the
look-up table. There can be as many entries as necessary in the header to make a selection.
Header entries are available only if defined as MPD parameters. The last column of the
table must be the FILES column.

The netlist directory in the IP directory can have its own underlying directory structure
because the BBD file manages the relative file locations.

Each file is listed with the file extension of the hardware implementation netlist. Since
implementation netlists have multiple file extensions (such as .edn, .edf, .edo, .ngo), it is
important to identify the format.

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

* Precede comments with the pound sign (#).
e Comments can continue to the end of the line.

¢ Comments can be anywhere on the line.

Lists
If you have multiple hardware implementation netlists, then use a comma to separate each
individual netlist in the list.
Platform Specification Format Reference Manual = www.xilinx.com 95

UG642 September 21, 2010

http://www.xilinx.com

Chapter 5: Black-Box Definition (BBD) & XILINX.

Common Repository Library

Support for relative paths to a common repository library is specified with the (:) syntax.
For example, ddr_common is used to release netlists for the DDR for both opb_ddr and
plb_ddr.

BBD Examples

File Selection Without Options

The following is an example of a file selection without options. The NGC netlist is copied
into your implementation directory, regardless of specific options set on the core.

FILES
blackbox.ngc

Multiple File Selections Without Options

The following is an example of multiple file selections without options. The set of NGC
netlists are copied into the your implementation directory regardless of specific options set
on the core.

FILES
blackboxl.ngc, blackbox2.ngc, blackbox3.edn

File Selection With Options

The following is an example of a file selection with options. The specific EDIF netlist is
copied into your implementation directory dependent on the C_FAMILY and
C_BUS_CONFIG parameters set on the core.

C_FAMILY C_BUS_CONFIG FILES
virtex 1 virtex/ipl.edf

virtex 2 virtex/ip2.edf
spartan2 1 virtex/ipl.edf
spartan?2 2 virtex/ip2.edf
virtexe 1 virtex/ipl.edf
virtexe 2 virtex/ip2.edf
spartanle 1 virtex/ipl.edf
spartanle 2 virtex/ip2.edf
virtex2 1 virtex2/ipl.edf
virtex?2 2 virtex2/ip2.edf
virtex2p 1 virtex2/ipl.edf
virtex2p 2 virtex2/ip2.edf

File Selection With Common Repository Library

The following is an example of a file selection with a common repository library. The
following example illustrates that the netlist ddr_v1_00_b_virtex2_async_fifo.edn
is delivered from ddr_v1_00_b repository library.

C_FAMILY FILES
virtex2 ddr_vl_00_b:ddr_vl_00_b_virtex2_async_fifo.edn
virtex2p ddr_vl_00_b:ddr_vl_00_b_virtex2_async_fifo.edn

96 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Chapter 6

Microprocessor Software Specification
(MSS)

This chapter describes the Microprocessor Software Specification (MSS) format.
This chapter contains the following sections:

e Overview

* Additional Resources

e MSS Format

* Global Parameters

* Instance-Specific Parameters

Overview

You supply an MSS file as an input to the Library Generator (Libgen). The MSS file
contains directives for customizing operating systems (OSs), libraries, and drivers.

Note: RevUp tool provides a way to convert the old MSS format to the new one used in this version
of the EDK tools. For more information see Chapter 9, “Format Revision Tool,” in the Embedded
System Tools Reference Manual.

Additional Resources

Embedded System Tools Reference Manual: http://www.xilinx.com/ise/embedded/
edk_docs.htm

MSS Format

You supply an MSS file as an input to the Library Generator (Libgen). An MSS file is case
insensitive and any reference to a file name or instance name in the MSS file is also case
sensitive.

Comments can be specified anywhere in the file. A pound (#) character denotes the
beginning of a comment, and all characters after it, right up to the end of the line, are
ignored. All white spaces are also ignored and carriage returns act as sentence delimiters.

Platform Specification Format Reference Manual = www.xilinx.com 97
UG642 September 21, 2010

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

Chapter 6: Microprocessor Software Specification (MSS) & XILINX.

MSS Keywords

The keywords that are used in an MSS file are as follows:

BEGIN

The keyword begins a driver, processor, or file system definition block. BEGIN should be
followed by the driver, processor or filesys keywords.

END

This keyword signifies the end of a definition block.

PARAMETER

The MSS file has a simple name = value format for most statements. The PARAMETER
keyword is required before all such NAME, VALUE pairs. The format for assigning a value to
a parameter is parameter name = value. If the parameter is within a BEGIN-END block, it
is a local assignment; otherwise it is a global (system level) assignment.

Requirements

The MSS file has a dependency on the MHS file. This dependency has to be specified as a
command line option to Libgen using the -mhs option. Refer to the “Library Generator”
chapter in the Embedded System Tools Reference Manual for more information. (For a link to
the manual, see the Additional Resources, page 97.) There is a resulting dependency on
hardware for the software flow. Refer to Chapter 2, Microprocessor Hardware
Specification (MHS) for more information on hardware configuration.

Prior to the EDK 6.1 release, this dependency was specified in the MSS file as parameter
HW_SPEC_FILE = file_name.mhs. This parameter will be deprecated for the EDK®6.1
release, since the MHS file is given as a command line option to the Libgen tool, and will
eventually be removed for future releases.

The syntax of various files that the embedded development tools use is described by the
Platform Specification Format (PSF). The current PSF version is 2.1.0. The MSS file should
also contain version information in the form of parameter vVersion = 2.1.0, which
represents the PSF version 2.1.0.

98

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. MSS Format
MSS Example
An example MSS file is given below:
parameter VERSION = 2.1.0
BEGIN 0OS
parameter PROC_INSTANCE = my_microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my uartlite_1
parameter STDOUT = my_uartlite_1
END
BEGIN PROCESSOR
parameter HW_INSTANCE = my_microblaze
parameter DRIVER_NAME = cpu
parameter DRIVER_VER = 1.00.a
parameter XMDSTUB_PERIPHERAL = my_jtag
END
BEGIN 0OS
parameter PROC_INSTANCE = my_ppcC
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my_uartlite_2
parameter STDOUT = my_uartlite_2
END
BEGIN PROCESSOR
parameter HW_INSTANCE = my_ppcC
parameter DRIVER_NAME = cpu_ppc405
parameter DRIVER_VER = 1.00.a
END
BEGIN DRIVER
parameter HW_INSTANCE = my_ intc
parameter DRIVER_NAME = intc
parameter DRIVER_VER = 1.00.a
END
BEGIN DRIVER
parameter HW_INSTANCE = my uartlite_1
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter INT_HANDLER = uart_1_handler, INT_ PORT = Interrupt
END
BEGIN DRIVER
parameter HW_INSTANCE = my uartlite_2
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = uartlite
parameter INT_HANDLER = uart_2_handler, INT_PORT = Interrupt
END
BEGIN DRIVER
parameter HW_INSTANCE = my_timebase_wdt
parameter DRIVER_VER = 1.00.a
parameter DRIVER_NAME = timebase_wdt
Platform Specification Format Reference Manual = www.xilinx.com 99

UG642 September 21, 2010

http://www.xilinx.com

Chapter 6: Microprocessor Software Specification (MSS) & XILINX.

parameter INT_HANDLER=my_timebase_hndl, INT_PORT = Timebase_Interrupt
parameter INT_HANDLER=my_ timebase_hndl, INT_ PORT = WDT_ Interrupt
END

BEGIN LIBRARY

parameter LIBRARY NAME = XilMfs
parameter LIBRARY_VER = 1.00.a
parameter NUMBYTES = 100000
parameter BASE_ADDRESS = 0x80£00000
END

BEGIN DRIVER

parameter HW_INSTANCE = my_jtag

parameter DRIVER_NAME = uartlite

parameter DRIVER_VER = 1.00.a

parameter INT_HANDLER = jtag_uart_handler, INT_PORT = Interrupt
END

Global Parameters

These parameters are system-specific parameters and do not relate to a particular driver,
file system, or library.

PSF Version

This option specifies the PSF version of the MSS file. This option is mandatory for versions
2.1.0 and above, and is formatted as:

parameter VERSION = 2.1.0

Parameter INT_HANDLER

This option defines the interrupt handler software routine for an external interrupt port
given in the MHS file, and is formatted as:

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The external interrupt port that raises the interrupt is specified after the attribute as shown
above with the INT_PORT keyword. This port should match the port name (not the signal
name) specified in the MHS file as a global external port.

Instance-Specific Parameters

These parameters are OS-, processor-, driver-, or library-specific. The parameters must be
within a BEGIN and END block.

100 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Instance-Specific Parameters

OS, Diriver, Library, and Processor Block Parameters Summary

The following list shows the parameters that can be used in OS, driver, library and
processor blocks.

PROC_INSTANCE DRIVER_VER
HW_INSTANCE INT_HANDLER
OS_NAME LIBRARY_NAME
OS_VER LIBRARY_VER
DRIVER_NAME

OS, Diriver, Library, and Processor Block Parameters Definitions

PROC_INSTANCE

This option is required for the OS associated with a processor instances specified in the
MHS file, and is formatted as:

parameter PROC_INSTANCE = instance_name
All OSs in EDK require processor instances to be associated with the OSs. The instance

name that is given must match the name specified in the MHS file.

HW_INSTANCE

This option is required for drivers associated with peripheral instances specified in the
MHS file and is formatted as:

parameter HW_INSTANCE = instance_name

All drivers in EDK require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given
must match the name specified in the MHS file.

OS_NAME

This option is needed for processor instances that have OSs associated with them and is
formatted as:

parameter OS_NAME = standalone

Library Generator copies the OS directory specified to OUTPUT_DIR/
processor_instance_name/libsrc directory and compiles the OS sources using
makefiles provided. See the “Library Generator” chapter in the Embedded System Tools
Reference Manual for more information. For a link to the manual, see the Additional
Resources, page 97.

OS_VER
The OS version is set using the 0SVER option and is formatted as:
parameter OS_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, y and z are digits, and
a is a character. This is translated to the OS directory searched by Libgen as follows:

USER_PROJECT/bsp/0OS_NAME_VvX_Vyz_a

XILINX_EDK/sw/lib/bsp/0S_NAME_vx_vyz_a

Platform Specification Format Reference Manual = www.xilinx.com 101
UG642 September 21, 2010

http://www.xilinx.com

Chapter 6: Microprocessor Software Specification (MSS) & XILINX.

The MLD (Microprocessor Library Definition) files Libgen needs for each OS should be
named OS_NAME_v2_1_0.mld and should be present in a subdirectory data/ within the
driver directory. Refer to Chapter 7, Microprocessor Library Definition (MLD) for more
information.

DRIVER_ NAME

This option is needed for peripherals that have drivers associated with them and is
formatted as:

parameter DRIVER_NAME = uartlite

Library Generator copies the driver directory specified to ouTPUT_DIR/
processor_instance_name/libsrc directory and compiles the drivers using makefiles
provided. Refer to the “Library Generator” chapter in the Embedded System Tools Reference
Manual, for more information.

DRIVER_VER

The driver version is set using the DRIVER_VER option, and is formatted as:
parameter DRIVER_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, y and z are digits, and
a is a character. This is translated to the driver directory searched by Libgen as follows:

USER_PROJECT/drivers/DRIVER_NAME_vVX_ yzZ_a
USER_PROJECT/pcores/DRIVER_NAME_vVX_Vyz_a
XILINX_ EDK/sw/XilinxProcessorIPLib/drivers/DRIVER_NAME_vVX_VyzZ_a

The MDD (Microprocessor Driver Definition) files needed by Libgen for each driver
should be named DRIVER _NAME_v2_1_0.mdd and should be present in a subdirectory
data/ within the driver directory. Refer to Chapter 8, Microprocessor Driver Definition
(MDD), for more information.

INT HANDLER

This option defines the interrupt handler software routine for an interrupt port of the
peripheral and is formatted as:

parameter INT_HANDLER = my_int_handl, INT_ PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with the INT_PORT keyword. This port should match the port
name (and not the signal name) specified in the MHS file for that peripheral instance.

LIBRARY_ NAME

This option is needed for libraries, and is formatted as:
parameter LIBRARY_NAME = xilmfs

Library Generator copies the library directory specified in the oUTPUT_DIR/
processor_instance_name/libsrc directory and compiles the libraries using makefiles
provided. See the “Library Generator” chapter in the Embedded System Tools Reference
Manual, for more information.

102

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Instance-Specific Parameters

LIBRARY VER

The library version is set using the LIBRARY_VER option and is formatted as:
parameter LIBRARY_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, y and z are digits, and
a is a character. This is translated to the library directory searched by Libgen as follows:

USER_PROJECT/sw_services/LIBRARY_NAME_VvX_Vyz_a
XILINX _EDK/sw/lib/sw_services/LIBRARY_NAME_ vx_vVvzZ_a

The MLD (Microprocessor Library Definition) files needed by Libgen for each library
should be named LIBRARY_NAME v_2_1_ 0.mld and should be present in a subdirectory
data/ within the library directory. See Chapter 7, Microprocessor Library Definition
(MLD) for more information.

MDD/MLD Specific Parameters

Parameters specified in the MDD /MLD file can be overwritten in the MSS file and
formatted as

parameter PARAM NAME = PARAM _VALUE

See Chapter 7, Microprocessor Library Definition (MLD) and Chapter 8, Microprocessor
Driver Definition (MDD) for more information.

OS-Specific Parameters Summary

The following list identifies all the parameters that can be specified only in an OS
definition block.

STDIN

Identify the standard input device with the STDIN option, which is formatted as:.

parameter STDIN = instance name

STDOUT

Identify the standard output device with the sSTDOUT option, which is formatted as:

parameter STDOUT = instance_name

Example: MSS Snippet Showing OS Options

BEGIN 0OS

parameter PROC_INSTANCE = my microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a

parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1

END

Platform Specification Format Reference Manual = www.xilinx.com 103
UG642 September 21, 2010

http://www.xilinx.com

Chapter 6: Microprocessor Software Specification (MSS) & XILINX.

Processor-Specific Parameter Summary

Following is a list of all of the parameters that can be specified only in a processor
definition block.

XMDSTUB_PERIPHERAL
COMPILER

ARCHIVER
COMPILER_FLAGS
EXTRA_COMPILER_FLAGS

Processor-Specific Parameter Definitions

XMDSTUB_PERIPHERAL

The peripheral that is used to handle the XMDStub should be specified in the
XMDSTUB_PERIPHERAL option. This is useful for the MicroBlaze™ processor only, and is
formatted as follows:

parameter XMDSTUB_PERIPHERAL = instance_name

COMPILER

This option specifies the compiler used for compiling drivers and libraries. The compiler
defaults to mb-gcc or powerpc-eabi-gce depending on whether the drivers are part of the
MicroBlaze processor or PowerPC® processor instance. Any other compatible compiler
can be specified as an option, and should be formatted as follows:

parameter COMPILER = dcc

This example denotes the Diab compiler as the compiler to be used for drivers and
libraries.

ARCHIVER

This option specifies the utility to be used for archiving object files into libraries. The
archiver defaults to mb-ar or powerpc-eabi-ar depending on whether or not the drivers
are part of the MicroBlaze or PowerPC processor instance. Any other compatible archiver
can be specified as an option, and should be formatted as follows:

parameter ARCHIVER = ar

This example denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS

This option specifies compiler flags to be used for compiling drivers and libraries. If the
option is not specified, Libgen automatically uses platform and processor-specific options.
This option should not be specified in the MSS file if the standard compilers and archivers
in EDK are used. The COMPILER_FLAGS option can be defined in the MSS if there is a need
for custom compiler flags that override Libgen-generated flags. The
EXTRA_COMPILER_FLAGS option is recommended if compiler flags must be appended to the
ones Libgen already generates. Format this option as follows:

parameter COMPILER_FLAGS = ““

104

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Instance-Specific Parameters

EXTRA_COMPILER_FLAGS

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags, and should be formatted as follows:

parameter

EXTRA_COMPILER_FLAGS = -g

This example specifies that the drivers and libraries must be compiled with debugging
symbols in addition to the Libgen generated COMPILER_FLAGS.

Example MSS Snippet Showing Processor Options

BEGIN PROCESSOR

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
END

HW_INSTANCE = my microblaze
DRIVER_NAME = cpu

DRIVER_VER = 1.00.a
DEFAULT_INIT = xmdstub
XMDSTUB_PERIPHERAL = my_Jjtag
STDIN = my_uartlite_1

STDOUT = my_uartlite_1
COMPILER = mb-gcc

ARCHIVER = mb-ar
EXTRA_COMPILER_FLAGS = -g -00
0S = standalone

Platform Specification Format Reference Manual = www.xilinx.com 105

UG642 September 21, 2010

http://www.xilinx.com

Chapter 6: Microprocessor Software Specification (MSS) & XILINX.

106 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Chapter 7

Microprocessor Library Definition

(MLD)

Overview

Requirements

This chapter describes the Microprocessor Library Definition (MLD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

e Overview

* Requirements

e Additional Resources

e Library Definition Files

e MLD Format Specification

e MLD Parameter Description Section
® Design Rule Check (DRC) Section

* Library Generation (Generate) Section

An MLD file contains directives for customizing software libraries and generating Board
Support Packages (BSP) for Operating Systems (OS). This document describes the MLD
format and the parameters that can be used to customize libraries and OSs. It is
recommended that you read this document to become familiar with user-written libraries
and OSs that must be configured by the Libgen tool.

Each OS and library has an MLD file and a Tcl (Tool Command Language) file associated
with it. The MLD file is used by the Tcl file to customize the OS or library, depending on
different options in the MSS file. For more information on the MSS file format, see ading

The OS and library source files and the MLD file for each OS and library must be located at
specific directories if Libgen is to find the files and libraries. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual, for a list of directories to
be searched for OSs and libraries. A link to the Embedded System Tools Reference Manual is
provided in the following section.

Additional Resources

Embedded System Tools Reference Manual: http://www.xilinx.com /ise/embedded /

Platform Specification Format Reference Manual = www.xilinx.com 107
UG642 September 21, 2010

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

edk_docs.htm

Library Definition Files

Library Definition involves defining Data Definition (MLD) and a Data Generation (Tcl)
files.

Data Definition File

The MLD file (named as <Iibrary_name>_v2_1_0.mldor <os_name>_v2_1_0.mld)
contains the configurable parameters. A detailed description of the various parameters
and the MLD format is described in MLD Parameter Description Section, page 112.

Data Generation File

The second file (named as <library_name>_v2_1_0.tcl or
<os_name>_v2_1_0.tcl, with the filename being the same as the MLD filename) uses
the parameters configured in the MSS file for the OS or library to generate data. Data
generated includes, but is not limited to, generation of header files, C files, running DRCs
for the OS or library and generating executables. The Tcl file includes procedures that are
called by the Libgen tool at various stages of its execution. Various procedures in a Tcl file
include: DRC (the name of the DRC given in the MLD file); generate (Libgen defined
procedure) called after OS and library files are copied; post_generate (Libgen defined
procedure) called after generate has been called on all OSs, drivers, and libraries; and
execs_generate (a Libgen-defined procedure) called after the BSPs, libraries, and
drivers have been generated. For more information on the workings of the Libgen tool
refer to the “Library Generator” chapter in the Embedded System Tools Reference Manual. A
link to this book is provided in the Additional Resources section, above.

Note: An OS/library need not have the data generation file (Tcl file).

MLD Format Specification

The MLD format specification involves the MLD file Format specification and the Tcl file
Format specification. These are described below.

MLD File Format Specification

The MLD file format specification involves the description of parameters defined in the
Parameter Description section.

Parameter Description Section

This data section describes configurable parameters in an OS/library. The format used to
describe this section is discussed in MLD Parameter Description Section, page 112.

Tcl File Format Specification

Each OS and library has a Tcl file associated with the MLD file. This Tcl file has the
following sections:

DRC Section

This section contains Tcl routines that validate your OS and library parameters for
consistency.

108

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

& XILINX. MLD Format Specification

Generation Section

This section contains Tcl routines that generate the configuration header and C files based
on the library parameters.

Examples

This section explains the MLD format through an example MLD file and its corresponding
Tcl file.

Example: MLD File for a Library

An example of an MLD file for the xilmfs library is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN LIBRARY construct now.

BEGIN LIBRARY xilmfs

The BEGIN LIBRARY construct defines the start of a library named xilmfs.

OPTION DRC = mfs_drc ;
OPTION COPYFILES = all;

The COPYFILES option indicates the files to be copied for the library. The DRC option
specifies the name of the Tcl procedure that the tool invokes while processing this library.
Here mfs_drc is the Tcl procedure in the xi1mfs_v2_1_0. tcl file that would be
invoked by Libgen while processing the xilmfs library.

PARAM NAME = numbytes, DESC = "Number of Bytes", TYPE = int, DEFAULT =
100000, DRC = drc_numbytes ;

PARAM NAME = base_address, DESC = "Base Address", TYPE = int, DEFAULT =
0x10000, DRC = drc_base_address ;
PARAM NAME = init_type, DESC = "Init Type", TYPE = enum, VALUES = ("New

file system"=MFSINIT_NEW, "MFS Image"=MFSINIT_ IMAGE, "ROM
Image"=MFSINIT_ROM_IMAGE), DEFAULT = MFSINIT NEW ;

PARAM NAME = need_utils, DESC = "Need additional Utilities?", TYPE =
bool, DEFAULT = false ;

PARAM defines a library parameter that can be configured. Each PARAM has the following
properties associated with it, whose meaning is self-explanatory: NAME, DESC, TYPE,
DEFAULT, RANGE, DRC. The property VALUES defines the list of possible values associated
with an ENUM type.

Platform Specification Format Reference Manual = www.xilinx.com 109
UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

BEGIN INTERFACE file
PROPERTY HEADER="xilmfs.h"
FUNCTION NAME=-open, VALUE=mfs_file_open ;
FUNCTION NAME=close, VALUE=mfs_file_close ;
FUNCTION NAME=read, VALUE=mfs_file_ read ;
FUNCTION NAME=-write, VALUE=mfs_file_ write ;
FUNCTION NAME=1seek, VALUE=mfs_file_lseek ;
END INTERFACE

An Interface contains a list of standard functions. A library defining an interface should
have values for the list of standard functions. It must also specify a header file where all the
function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. Here HEADER is a property with value “xilmfs.h”, defined by the file
interface. FUNCTION defines a function supported by the interface. The open, close,
read, write, and 1seek functions of the £ile interface have the values
mfs_file_open,mfs_file close,mfs_file read, mfs_file write, and
mfs_file lseek. These functions are defined in the header file xilmfs.h.

BEGIN INTERFACE filesystem

BEGIN INTERFACE defines an interface the library supports. Here £ile is the name of
the interface.

PROPERTY HEADER="xilmfs.h"

FUNCTION NAME=cd, VALUE=mfs_change_dir ;
FUNCTION NAME=opendir, VALUE=mfs_dir_open ;
FUNCTION NAME=closedir, VALUE=mfs_dir_close ;
FUNCTION NAME=readdir, VALUE=mfs dir_read ;
FUNCTION NAME=deletedir, VALUE=mfs_delete_dir ;
FUNCTION NAME=pwd, VALUE=mfs_get_current_dir_name ;
FUNCTION NAME-rename, VALUE=mfs_rename_file ;
FUNCTION NAME=exists, VALUE=mfs_exists_file ;
FUNCTION NAME=delete, VALUE=mfs_delete_file ;
END INTERFACE

END LIBRARY

END is used with the construct name that was used in the BEGIN statement. Here END is
used with INTERFACE and LIBRARY constructs to indicate the end of each of INTERFACE
and LIBRARY constructs.

Example: Tcl File of a Library

The following is the xilmfs_v2_1_0. tcl file corresponding the xilmfs_v2_1_0.mld
file described in the previous section. The mfs_drc procedure would be invoked by
Libgen for the xilmfs library while running DRCs for libraries. The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc mfs_drc {lib_handle} {
puts "MFS DRC ..."
}
proc mfs_open_include_file {file_name} {
set filename [file join "../../include/" $file_name]
if {[file exists S$filename]} {
set config inc [open $filename al]

110 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. MLD Format Specification

Example: MLD File for an OS

An example of an MLD file for the standalone OS is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN OS construct at this time.

BEGIN OS standalone
The BEGIN 0S construct defines the start of an OS named standalone.

OPTION DESC = “Generate standalone BSP”;
OPTION COPYFILES = all;

The DESC option gives a description of the MLD. The COPYFILES option indicates the files

to be copied for the OS.
PARAM NAME = stdin, DESC = "stdin peripheral ", TYPE =
peripheral_instance, REQUIRES_INTERFACE = stdin, DEFAULT = none;
PARAM NAME = stdout, DESC = "stdout peripheral ", TYPE =
peripheral_instance, REQUIRES INTERFACE = stdout, DEFAULT = none ;
PARAM NAME = need_xilmalloc, DESC = "Need xil_malloc?", TYPE = bool,
DEFAULT = false ;

PARAM defines an OS parameter that can be configured. Each PARAM has the following,
associated properties: NAME, DESC, TYPE, DEFAULT, RANGE, DRC. The property VALUES
defines the list of possible values associated with an ENUM type.

END OS

END is used with the construct name that was used in the BEGIN statement. Here END is
used with 0S to indicate the end of OS construct.

Example: Tcl File of an OS

The following is the standalone_v2_1_0. tcl file corresponding to the
standalone_v2_1_0.mld file described in the previous section.The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc generate {os_handle} {
global env

set need_config file "false"

#Copy over the right set of files as src based on processor type
set prochandle [xget_processor]
set proctype [xget_value S$prochandle "OPTION" "IPNAME"]
set mbsrcdir "./src/microblaze"
set ppcsrcdir "./src/ppcd05"
switch S$proctype {
"microblaze" {
foreach entry [glob -nocomplain [file join Smbsrcdir *]] {
file copy -force Sentry "./src/"
}

set need_config file "true”

Platform Specification Format Reference Manual = www.xilinx.com 111
UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

}

nppc405u {
foreach entry [glob -nocomplain [file join S$ppcsrcdir *]]1 {
file copy -force S$entry "./src/"

}
}
"default" {puts "unknown processor type\n"}

}

Remove microblaze and ppc405 directories...
file delete -force $mbsrcdir
file delete -force S$ppcsrcdir

Handle stdin and stdout
xhandle_stdin $os_handle
xhandle_stdout $os_handle

Create config file for microblaze interrupt handling

if {[string compare -nocase S$need_config file "true"] == 0} {
xhandle_mb_interrupts

}

Generate xil_malloc.h if required

set xil_malloc [xget_value $os_handle "PARAMETER" "need_xil_malloc"]

if {[string compare -nocase $xil_malloc "true"] == 0} {
xcreate_xil_malloc_config_file

}

MLD Parameter Description Section

This section gives a detailed description of the constructs used in the MLD file.

Conventions
[1 Denotes optional values.

<>Value substituted by the MLD writer.

Comments

Comments can be specified anywhere in the file. A “#” character denotes the beginning of
a comment and all characters after the “#” right up to the end of the line are ignored. All
white spaces are also ignored and semi-colons with carriage returns act as sentence
delimiters.

OS or Library Definition

The OS or library section includes the OS or library name, options, dependencies, and
other global parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN LIBRARY/OS <library/os name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]
[OPTION requires_interface = <list of interface names>]

112

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MLD Parameter Description Section

PARAM <parameter description>
[BEGIN CATEGORY <name of category>
<category description>
END CATEGORY]
BEGIN INTERFACE <interface name>
END INTERFACE]
END LIBRARY/OS

MLD or MDD Keyword Summary

The keywords that are used in an MLD or MDD file are as follows:

BEGIN APP_LINKER_FLAGS PARAM
END OS_STATE PROPERTY
PSF_VERSION BSP NAME
DRC REQUIRES_INTERFACE DESC
OPTION REQUIRES_OS TYPE
COPYFILES HELP DEFAULT
DEPENDS DEP GUI_PERMIT
SUPPORTED_PERIPHERALS INTERFACE ARRAY
LIBRARY_STATE HEADER
APP_COMPILER_FLAGS FUNCTION

CATEGORY

MLD or MDD Keyword Definitions

The keywords that are used in an MLD or MDD file are as follows:
Note: The keyword ARRAY can only be used in MLD files. It is not allowed for MDD files.
BEGIN

The BEGIN keyword begins one of the following: os, 1ibrary, driver, block,
category, interface, array.

END

The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by
the GUI configuration tool or the command-line Libgen tool. This DRC function is
called once you enter all the parameters and MLD or MDD writers can verify that a
valid OS, library, or driver can be generated with the given parameters.

Platform Specification Format Reference Manual = www.xilinx.com 113
UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

OPTION

Specifies that the name following the keyword option is an option to the Libgen or
GUI tools.

COPYFILES

Specifies the files to be copied for the OS, library, or driver. If ALL is used, then Libgen
copies all the OS, library, or driver files.

DEPENDS

Specifies the list of directories that needs to be compiled before the OS or library is

built.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the OS. The values of this option can be
specified as a list, or as a regular expression. For example,

option supported_peripherals = (ppc405)

Indicates that the OS supports all versions of ppc_405. Regular expressions can be
used in specifying the peripherals and versions. The regular expression (RE) is
constructed as follows:

Single-character REs

Any character that is not a special character (to be defined) matches itself.

A backslash (followed by any special character) matches the literal character
itself. That is, this “escapes” the special character.

The special characters are: + * 2 . [] ~ $

The period (.) matches any character except the new line. For example,
.umpty matches either "Humpty" or "Dumpty."

A set of characters enclosed in brackets ([]) is a one-character RE that
matches any of the characters in that set. For example, [akm] matches either
an "a", "k", or "m". A range of characters can be indicated with a dash. For
example, [a-z] matches any lower-case letter. However, if the first character
of the set is the caret ("), then the RE matches any character except those in
the set. It does not match the empty string. Example: [~akm] matches any

character except "a", "k", or "m". The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

A single-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Thus, [a-z]* matches zero or more lower-case
characters.

A single-character RE followed by a plus (+) matches one or more occurrences
of the RE. Thus, [a-z] + matches one or more lower-case characters.

A question mark (?) is an optional element. The preceeding RE can occur zero
or once in the string -- no more. Thus, xy?z matches either xyz or xz.

The concatenation of REs is a RE that matches the corresponding
concatenation of strings. For example, [A-Z] [a-z] * matches any
capitalized word.

114

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MLD Parameter Description Section

- For example, the following matches an version of the ppc405 and
ppcd05_virtexd:

OPTION supported_peripherals = (ppcd05_v[0-9]+_[1-9]1[0-9]_[a-z]
ppc405_virtex4) ;

LIBRARY_ STATE

Specifies the state of the library. Following is the list of values that can be assigned to
LIBRARY_STATE

ACTIVE

An active library. By default the value of LIBRARY_STATE is ACTIVE.
DEPRECATED

This library is deprecated and will be removed from the release soon.
OBSOLETE

This library is obsolete and will not be recognized by any tools. Tools error out on an
obsolete library and a new library should be used instead.

APP_COMPILER_FLAGS

This option specifies what compiler flags must be added to the application when using
this library. For example:

OPTION APP_COMPILER_FLAGS = "-D MYLIBRARY"

The GUI tools can use this option value to automatically set compiler flags
automatically for an application.

APP_LINKER_ FLAGS

This option specifies that linker flags must be added to the application when using a
particular library or OS. For example:

OPTION APP_LINKER_FLAGS = "-lxilkernel"

The GUI tools can use this value to set linker flags automatically for an application.

BSP

Specifies a boolean keyword option that can be provided in the MLD file to identify
when an OS component is to be treated as a third partyBSP. For example

OPTION BSP = true;

This indicates that the SDK tools will offer this OS component as a board support
package. If set to false, the component is handled as a native embedded software
platform.

OS_STATE

Specifies the state of the operating system (OS). Following is the list of values that can be
assigned to OS_STATE:

ACTIVE
This is an active OS. By default the value of 0S_STATE is ACTIVE.

DEPRECATED

Platform Specification Format Reference Manual = www.xilinx.com 115

UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

This OS is deprecated and will be removed from a future release.
OBSOLETE

This OS is obsolete and will not be recognized by the tools. Tools error out on an
obsolete OS and a new OS must be specified.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other OSs, libraries, or drivers in the
system.

REQUIRES_OS

Specifies the list of OSs with which the specified library will work. For example:

OPTION REQUIRES_OS = (standalone xilkernel_v4_[0-9]1[0-9]_T[a-z])

The GUI tools use this option value to determine which libraries are offered for a given
operating system choice. The values in the list can be regular expressions as shown in
the example.

Note: This option must be used on libraries only.

HELP

Specifies the HELP file that describes the OS, library, or driver.

DEP

Specifies the condition that must be satisfied before processing an entity. For example
to include a parameter that is dependent on another parameter (defined as a DEP, for
dependent, condition), the DEP condition should be satisfied. Conditions of the form
(operandl OP operand2) are the only supported conditions.

INTERFACE

Specifies the interfaces implemented by this OS, library, or driver. It describes the
interface functions and header files used by the library/driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of
library/driver implementation> ;
END INTERFACE

HEADER

Specifies the HEADER file in which the interface functions would be defined.

FUNCTION

Specifies the FUNCTION implemented by the interface. This is a name-value pair in
which name is the interface function name and value is the name of the function
implemented by the OS, library, or driver.

116 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. MLD Parameter Description Section

CATEGORY

Defines an unconditional block. This block gets included based on the default value of
the category or if included in the MSS file.

BEGIN CATEGORY <category name>

PARAM name = <category name>, DESC=<param description>,
TYPE=<category type>, DEFAULT=<default>, GUI_PERMIT=<value>, DEP =
<condition>

OPTION DEPENDS=<list of dependencies>, DRC=<drc name>, HELP=<help
file>;

< parameters or categories description>
END CATEGORY

Nested categories are not supported through the syntax that specifies them. A
category is selected in a MSS file by specifying the category name as a parameter with
a boolean value TRUE. A category must have a PARAM with category name.

PARAM

The MLD file has a simple name = valueformatfor most statements. The PARAM
keyword is required before every such NAME, VALUE pairs. The format for
assigning a value to a parameter is param name = <name>, default =
value. The PARAM keyword specifies that the parameter can be overwritten in the
MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined. (Examples: param and
property.)

DESC

Describes the entity in which it was defined. (Examples: param and property.)

TYPE

Specifies the type for the entity in which it was defined. (Example: param.) The
following types are supported:

bool

Boolean (true or false).
int

Integer
string

String value within " "

enum

Platform Specification Format Reference Manual = www.xilinx.com 117
UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

List of possible values that a parameter can take.
library

Specify other library that is needed for building the library/driver.
peripheral instance

Specify other hardware drivers that is needed for building the library.

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:
NONE

The value cannot be modified at all.
ADVANCED_USER

The value can be modified by all. The SDK GUI does not display this value by
default. This is displayed only for the advanced option in the GUIL

ALL_USERS

The value can be modified by all. The SDK GUI displays this value by default. This
is the default value for all the values. If GUI_PERMIT = NONE, the category is
always active.

ARRAY

BEGIN ARRAY <array name>

PROPERTY desc = <array description> ;

PROPERTY size = <size of the array>;

PROPERTY default = <List of Values for each element based on the size
of the array>

array field description as parameters

PARAM name = <name of parameter>, desc = "description of param", type
= <type of param>, default = <default value>

END ARRAY

ARRAY can have any number of PARAMS, and only PARAMs. It cannot have CATEGORY
as one of the fields of an array element. The size of the array can be defined as one of
the properties of the array. An array with default values specified in the default
property leads to its size property being initialized to the number of values. If there is
no size property defined, a size property is created before initializing it with the
default number of elements. Each parameter in the array can have a default value. In
cases in which size is defined with an integer value, an array of size elements would be
created wherein the value of each element would be the default value of each of the
parameters.

118 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Design Rule Check (DRC) Section

Design Rule Check (DRC) Section

proc mydrc { handle } {

}

The DRC function could be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (which
Libgen builds using the MHS and the MSS files) to read the parameter values that you set.
The handleis associated with the current library in the database. The DRC procedure can
get the OS and library parameters from this handle. It can also get any other parameter

from the database by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures call the Tcl error command error "error msg" that displays
in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures return without any value.

Library Generation (Generate) Section

proc mygenerate { handle } {

}

Generate could be any Tcl code that reads your parameters and generates configuration
files for the OS or library. The configuration files can be C files, Header files, Makefiles, etc.
The generate procedures can access (read-only) the Platform Specification Format
database (which Libgen builds using the MHS and the MSS files) to read the parameter
values of the OS or library that you set. The handle is a handle to the current OS or library
in the database. The generate procedure can get the OS or library parameters from this
handle. It can also get any other parameter from the database by first requesting a handle
and using the handle to get the parameter.

Platform Specification Format Reference Manual = www.xilinx.com 119
UG642 September 21, 2010

http://www.xilinx.com

Chapter 7: Microprocessor Library Definition (MLD) & XILINX.

120 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Chapter 8

Microprocessor Driver Definition

(MDD)

Overview

Requirements

This chapter describes the Microprocessor Driver Definition (MDD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

e Overview

* Requirements

e Additional Resources

e Driver Definition Files

e MDD Format Specification

e MDD Parameter Description

® Design Rule Check (DRC) Section

e Driver Generation (Generate) Section

An MDD file contains directives for customizing software drivers. This document
describes the MDD format and the parameters that can be used to customize drivers. For
more information on drivers, refer to the Driver Reference Guide (xilinx_drivers.htm) and/
or the Device Driver Programmer Guide (xilinx_drivers_guide.pdf), both contained in your
EDK installation directory under docs/usenglish. It is recommended that you refer to
these documents to gain an understanding of user-written drivers that must be configured
by the Libgen tool.

Each device driver has an MDD file and a Tcl (Tool Command Language) file associated
with it. The MDD file is used by the Tcl file to customize the driver, depending on different
options configured in the MSS file. For more information on the MSS file format, refer to
Chapter 6, Microprocessor Software Specification (MSS).

The driver source files and the MDD file for each driver must be located at specific
directories in order for Libgen to find the files and the drivers. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual for a list of directories
that is searched for drivers. A link to the manual is provided in the section below.

Platform Specification Format Reference Manual = www.xilinx.com 121
UG642 September 21, 2010

http://www.xilinx.com

Chapter 8: Microprocessor Driver Definition (MDD) & XILINX.

Additional Resources

¢ Embedded System Tools Reference Manual: http:/ /www.xilinx.com/ise/embedded/
edk_docs.htm

e Driver Reference Guide (xilinx_drivers.htm): contained in your EDK installation
directory under docs/usenglish

® Device Driver Programmer Guide (xilinx_drivers_guide.pdf): contained in your EDK
installation directory under docs/usenglish

Driver Definition Files

Driver Definition involves defining a Data Definition file (MDD) and a Data Generation
file (Tcl file).

e Data Definition File - The MDD file (<driver_name>_v2_1_0.mdd) contains the
configurable parameters. A detailed description of the parameters and the MDD
format is described in MDD Parameter Description, section of this chapter.

e Data Generation File - The second file (<driver_name>_v2_1_0.tcl, with the
filename being the same as the MDD filename) uses the parameters configured in the
MSS file for the driver to generate data. Data generated includes but not limited to
generation of header files, C files, running DRCs for the driver and generating
executables. The Tcl file includes procedures that are called by the Libgen tool at
various stages of its execution. Various procedures in a Tcl file includes: the DRC
(name of the DRC given in the MDD file), generate (Libgen defined procedure)
called after driver files are copied, post_generate (Libgen defined procedure)
called after generate has been called on all drivers and libraries, and
execs_generate (Libgen defined procedure) called after the libraries and drivers
have been generated. For more information on the working of the Libgen tool, refer to
the “Library Generator” chapter in the Embedded System Tools Reference Manual. (A link
to the document is provided in the Additional Resources section)

Note: A driver need not have the data generation file (Tcl file).

MDD Format Specification

The MDD format specification involves the MDD file Format specification and the Tcl file
Format specification. These are described below.

MDD File Format Specification

The MDD file format specification describes the parameters defined in the Parameter
Description section. This data section describes configurable parameters in a driver. The
format used to describe these parameters is discussed in the MDD Parameter Description,
section of this chapter.

122

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm

& XILINX. MDD Format Specification

Tcl File Format Specification

Each driver has a Tcl file associated with the MDD file. This Tcl file has the following
sections:

DRC Section

This section contains Tcl routines that validate your driver parameters for consistency.

Generation Section

This section contains Tcl routines that generate the configuration header and C files based
on the driver parameters

Example

This section explains the MDD format through an example of an MDD file and its
corresponding Tcl file.

MDD: File Example

An example of an MDD file for the uartlite driver is given below:
OPTION psf_version = 2.1;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MDD file is defined as 2.1. This is the only option that can occur
before a BEGIN DRIVER construct.

BEGIN DRIVER uartlite
The BEGIN DRIVER construct defines the start of a driver named vartlite.

PARAM NAME = level, DESC = "Driver Level", TYPE = int, DEFAULT = O,
RANGE = (0, 1);

PARAM defines a driver parameter that can be configured. Each PARAM has the following
properties associated with it: NAME, DESC, TYPE, DEFAULT, RANGE.

BEGIN BLOCK, DEP = (level = 0)

BEGIN BLOCK, DEP allows conditional inclusion of a set of parameters subject to a
condition fulfillmen. The condition is given by the DEP construct. Here the set of
parameters defined inside the BLOCK would be processed by Libgen tool only when
“level” parameter has a value 0.

OPTION DEPENDS = (common_vl_00_a);
OPTION COPYFILES = (xuartlite_l.c xuartlite_1.h Makefile);
OPTION DRC = uartlite_drc;

The DEPENDS option specifies that the driver depends on the sources of a directory named
common_v1_00_a. The area for searching the dependent directory is decided by the
Libgen tool. The COPYFILES option indicates the files to be copied for a “level” 0 uartlite
driver. The DRC option specifies the name of the Tcl procedure that the tool invokes while
processing this driver. The uartlite_drc is the Tcl procedure in the
uartlite_v2_1_0.tcl file that would be invoked by Libgen while processing the
uartlite driver.

BEGIN INTERFACE stdin

Platform Specification Format Reference Manual = www.xilinx.com 123
UG642 September 21, 2010

http://www.xilinx.com

Chapter 8: Microprocessor Driver Definition (MDD) & XILINX.

BEGIN INTERFACE defines an interface the driver supports. The interface nameis stdin.

PROPERTY header = xuartlite_1.h;
FUNCTION name = inbyte, value = XUartLite_RecvByte;
END INTERFACE

An Interface contains a list of standard functions. A driver defining an interface should
have values for the list of standard functions. It must also specify a header file in which all
the function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. The header is a property with the value xuartlite_1.h, defined by the
stdin interface. FUNCTION defines a function supported by the interface. The inbyte
function of the stdin interface has the value XUartLite_RecvByte. This function is
defined in the header file xuartlite_1.h.

BEGIN INTERFACE stdout

PROPERTY header = xuartlite_1.h;

FUNCTION name = outbyte, value = XUartLite_SendByte;
END INTERFACE

BEGIN INTERFACE stdio
PROPERTY header = xuartlite_1.h;
FUNCTION name = inbyte, value = XUartLite_RecvByte;
FUNCTION name = outbyte, value = XUartLite_SendByte;
END INTERFACE

BEGIN ARRAY interrupt_handler
PROPERTY desc = "Interrupt Handler Information";
PROPERTY size = 1, permit = none;
PARAM name = int_handler, default = XIntc_DefaultHandler, desc =
"Name of Interrupt Handler", type = string;

PARAM name = int_port, default = Interrupt, desc = "Interrupt pin
associated with the interrupt handler", permit = none;
END ARRAY

The ARRAY construct defines an array of parameters. The interrupt_handler is the
name of the array. The description (DESC) of the array and the size (SIZE) are defined as
properties of the array interrupt_handler. The construct GUI_PERMIT is a directive to
the tool that you cannot change the size of the array. The array defines int_handler and
int_port as parameters of an element of the array.

END BLOCK
BEGIN BLOCK, dep = (level = 1)
OPTION depends = (common_vl_00_a uartlite_vxworks5_4_v1_00_a);

OPTION copyfiles = all;
BEGIN ARRAY interrupt_handler
PROPERTY desc = "Interrupt Handler Information";
PROPERTY size = 1, permit = none;
PARAM name = int_handler, default = XUartLite_InterruptHandler,

desc = "Name of Interrupt Handler", type = string;

PARAM name = int_port, default = Interrupt, desc = "Interrupt pin
associated with the interrupt handler", permit = none;

END ARRAY
PARAM name = connect_to, desc = "Connect to operationg system", type =
enum, values = {"VxWorks5_4" = VxWorks5_4, "None" = none}, default =
none;
END BLOCK

END DRIVER

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. MDD Parameter Description

END is used with the construct name that was used in the BEGIN statement. Here END is
used with BLOCK and DRIVER constructs to indicate the end of each BLOCK and DRIVER
construct.

Example: Tcl File

The following is the uartlite_v2_1_0.tcl file corresponding to the uartlite_v2_1_0.mdd file
described in the previous section. The “uartlite_drc” procedure would be invoked by
Libgen for the uartlite driver while running DRCs for drivers. The generate routine
generates constants in a header file and a c file for uartlite driver, based on the driver
definition segment in the MSS file.

proc uartlite_drc {drv_handle} {
puts “UartLite DRC”
}

proc generate {drv_handle} {
set level [xget_value S$drv_handle "PARAMETER" "level"]
if {Slevel == 0} {
xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR"
}
if {$Slevel == 1} {
xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR" "DEVICE_ID" "C_BAUDRATE"
"C_USE_PARITY" "C_ODD_PARITY"
xdefine_config_file $drv_handle "xuartlite_g.c" "XUartLite"
"DEVICE_ID" "C_BASEADDR" "C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY"
}
}

MDD Parameter Description

This section gives a detailed description of the constructs used in the MDD file.

Conventions

[1 - Denotes optional values.

<> - Value substituted by the MDD writer.

Comments

Comments can be specified anywhere in the file. A pound (#) character denotes the
beginning of a comment, and all characters after it, right up to the end of the line, are
ignored. All white spaces are also ignored and semicolons with carriage returns act as
sentence delimiters.

Platform Specification Format Reference Manual = www.xilinx.com 125
UG642 September 21, 2010

http://www.xilinx.com

Chapter 8: Microprocessor Driver Definition (MDD)

& XILINX.

Driver Definition

The driver section includes the driver name, options, dependencies, and other global

parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN DRIVER <driver name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]

[OPTION requires_interface = <list of interface names>]

PARAM <parameter description>
[BEGIN BLOCK,dep = <condition>
END BLOCK]
[BEGIN INTERFACE <interface name>
END INTERFACE]

END DRIVER

MDD Keyword Summary

BEGIN REQUIRES_INTERFACE NAME

END HELP DESC
PSF_VERSION DEP TYPE

DRC BLOCK DEFAULT
OPTION INTERFACE GUI_PERMIT
COPYFILES HEADER

DEPENDS FUNCTION

SUPPORTED_PERIPHERALS PARAM

DRIVER_STATE PROPERTY

MDD Keyword Definitions

BEGIN

The BEGIN keyword begins with one of the following: 1ibrary, drive, block,
category, or interface.

END
The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by the
GUI configuration tool or the command line Libgen tool. This DRC function will be called
once you enter all the parameters and MLD or MDD writers can verify that a valid library
or driver can be generated with the given parameters.

Platform Specification Format Reference Manual
UG642 September 21, 2010

126 www.Xxilinx.com

http://www.xilinx.com

& XILINX. MDD Parameter Description

OPTION

Specifies the name following the keyword OPTION is an option to the tool Libgen. The
following five Libgen options are supported: COPYFILES, DEPENDS,
SUPPORTED_PERIPHERALS, and DRIVER_STATE. These are described below.

COPYFILES

Specifies the list of files to be copied for the driver. If ALL is specified as the value, Libgen
copies all the driver files.

DEPENDS

Specifies the list of directories on which a driver depends for compilation.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the driver. The values of this option can
be specified as a list or as a regular expression. The following example indicates that
the driver supports all versions of opb_Jjtag_uart and the
opb_uartlte_vl_00_b version:

option supported_peripherals = (xXps_uartlite_v1_00_a, xXps_uartl6550)

Regular expressions can be used in specifying the peripherals and versions. The
regular expression (RE) is constructed as follows:

Single-character REs
Any character that is not a special character (to be defined) matches itself.

A backslash (followed by any special character) matches the literal character itself.
That is, it escapes the special character.

The special characters are: + * 2 . [] ~ $

The period matches any character except the newline. For example, . umpty matches
either Humpty or Dumpty.

A set of characters enclosed in brackets ([]) is a one-character RE that matches any of
the characters in that set. For example, [akm] matches an a, k, or m. A range of
characters can be indicated with a dash. For example, [a-z] matches any lower-case
letter. However, if the first character of the setis the caret (~), then the RE matches any
character except those in the set. It does not match the empty string. Example: [~akm]
matches any character except a, k, or m. The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

A single-character RE followed by an asterisk (*) matches zero or more occurrences
of the RE. Therefore, [a-z] * matches zero or more lower-case characters.

A single-character RE followed by a plus (+) matches one or more occurrences of the
RE. Therefore, [a-z] + matches one or more lower-case characters.

A question mark (?) is an optional element. The preceding RE can occur zero or once
in the string -- no more. For example, xy?z matches either xyz or xz.

The concatenation of REs is an RE that matches the corresponding concatenation of
strings. For example, [A-Z] [a-z] * matches any capitalized word.

Platform Specification Format Reference Manual = www.xilinx.com 127
UG642 September 21, 2010

http://www.xilinx.com

Chapter 8: Microprocessor Driver Definition (MDD) & XILINX.

The following example matches any version of xps_uartlite, xps_uart16550
and mdm.

OPTION supported_peripherals = (xps_uartlite_v[0-9]+_[1-9][0-9]_[a-z]
xps_uartl6550 mdm) ;

DRIVER_STATE

Specifies the state of the driver. The following are the list of values that can be assigned to
DRIVER_STATE:

ACTIVE

This is an active driver. By default the value of DRIVER_STATE is ACTIVE.
DEPRECATED

This driver is deprecated and would be removed from the release soon.
OBSOLETE

This driver is obsolete and is not recognized by any tools. Tools error out on an

obsolete driver, and a new driver should be used instead.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other libraries or drivers in the system.

HELP

Specifies the help file that describes the library or driver.

DEP

Specifies the condition that needs to be satisfied before processing an entity. For example to
enter into a BLOCK, the DEP condition should be satisfied. Conditions of the form
(operandl OP operand2) are supported.

BLOCK

Specifies the block is to be entered into when the DEP condition is satisfied. Nested blocks
are not supported.

INTERFACE

Specifies the interfaces implemented by this library or driver and describes the interface
functions and header files used by the library or driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of
library/driver implementation> ;
END INTERFACE

128

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MDD Parameter Description

HEADER

Specifies the header file in which the interface functions would be defined.

FUNCTION

Specifies the function implemented by the interface. This is a name-value pair where name
is the interface function name and value is the name of the function implemented by the
library or driver.

PARAM

The MLD /MDD file has a simple name = value format for most statements. The PARAM
keyword is required before every such NAME, VALUE pair. The format for assigning a
value to a parameter is param name = <name>, default= value. The PARAM
keyword specifies that the parameter can be overwritten in the MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined (example: PARAM, PROPERTY).

DESC

Describes the entity in which it was defined (example: PARAM, PROPERTY).

TYPE

Specifies the type for the entity in which it was defined (example: PARAM). The following
are the supported types:

bool

Boolean (true or false)
int

Integer

string

String value within " "

enum

List of possible values, that this parameter can take

library

Specify other library that is needed for building the library or driver.
peripheral_ instance

Specify other hardware drivers needed for building the library or driver. Regular
expressions can be used to specify the peripheral instance. Refer to the section
SUPPORTED_PERIPHERALS, page 127 for more details on regular expressions.

Platform Specification Format Reference Manual = www.xilinx.com 129
UG642 September 21, 2010

http://www.xilinx.com

Chapter 8: Microprocessor Driver Definition (MDD) & XILINX.

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:
NONE
The value cannot be modified at all
ADVANCED_USER

The value can be modified by all. The SDK GUI does not display this value by default.
It is displayed only as an advanced option in the GUL

ALL_USERS

The value can be modified by all. The SDK GUI displays this value by default. This is
the default value for all the values.

If GUI_PERMIT = NONE, the category is always active.

Design Rule Check (DRC) Section

proc mydrc { handle }

The DRC function can be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (built
by the Libgen tool using the MHS and the MSS files) to read the parameter values you set.
The "handle" is a handle to the current driver in the database. The DRC procedure can get
the driver parameters from this handle. It can also get any other parameter from the
database, by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures would call the Tcl error command error "error msg" that
displays in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures just return without any value.

Driver Generation (Generate) Section

proc mygenerate { handle }

Generate could be any Tcl code that reads your parameters and generates configuration
files for the driver. The configuration files can be C files, Header files, or Makefiles. The
generate procedures can access (read-only) the Platform Specification Format database
(built by the Libgen tool using the MHS and the MSS files) to read the parameter values of
the driver that you set. The handle is a handle to the current driver in the database. The
generate procedure can get the driver parameters from this handle. It can also get any
other parameters from the database by requesting a handle and then using the handle to
get the parameter.

130

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Chapter 9

Xilinx Board Description (XBD) Format

Overview

The Xilinx® Board Description (XBD) file defines the contents of a particular board and
how it interfaces with the FPGA devices on the board.

The Base System Builder uses XBD files as documented in this chapter for PLBv46 based
system creation only.

An XBD file has the following characteristics:

Blocks that define the FPGA interfaces supported by the board
Each block has list of attributes, parameters and ports
Connectivity information between different ports or modules

UCF Constraints information for each FPGA pin

This chapter includes the following sections:

Overview

XBD Syntax

Global Attribute Commands
Local Attribute Commands

Local Parameter Commands
Local Parameter Subproperties
Local Port Commands

Local Port Subproperties
Associating IPs with IO_INTERFACE in XBD
Bridging IP with IO_INTERFACE
XBD Load Path

BSB Restrictions

Existing Xilinx 10 Types

Platform Specification Format Reference Manual = www.xilinx.com 131

UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

XBD Syntax

XBD file syntax is case insensitive.

Note: The current XBD version is 2.2.0. The version number is reflected in the names of the XBD
files read by the EDK tools.

Comments in XBD

You can insert comments in the XBD file without disrupting processing. Use the following
guidelines:

* Precede comments with the pound sign (#).
e Comments continue to the end of the line.

¢ Comments can be anywhere on the line.

Module Definitions

Use the following format at the beginning of a module definition:
BEGIN <block_type keyword>

The BEGIN keyword signifies the beginning of a new module. There are three block types
currently identified in XBD files:

IO_INTERFACE

An IO_INTERFACE specifies a physical module on the board. This does not include the
FPGA itself. Each T10_INTERFACE also has a reference to soft IPs that you can use on the
FPGA to interface with that module on the board.

IO_ADAPTER

An I0_ADAPTER specifies any soft glue-logic that might be needed to bridge any
IO_INTERFACE pins with the ports of the soft-IP used for that 10_INTERFACE.

FPGA
An FPGA block represents the FPGA itself.

Use the following format to end a module definition:

END

132

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. XBD Syntax

Assignment Commands

Each BEGIN-END block contains multiple assignment commands. An assignment
command is a name-value pair and can have one of more subproperty name-value pairs
associated with it.

Use the following format for assignment commands:
<command> <name> = <value> {, <subproperty_ name> = <subproperty value>}

There are three assignment commands:

ATTRIBUTE

Names of all the ATTRIBUTEs are keywords. EDK tools perform certain actions or use the
value of the attribute in a particular manner. You can use the ATTRIBUTE assignment
command both inside or outside a BEGIN-END block.

PARAMETER

You can use any name for a PARAMETER. PARAMETER names specify values of PARAMETERS on
the IPs connected to the T0_INTERFACE. A PARAMETER can be specified inside
IO_INTERFACE blocks only.

PORT

Any name can be used for a PORT. PORT names specify connectivity between modules
(including the FPGA) on the board. A PORT can be specified only inside I0_INTERFACE and
IO_ADAPTER blocks.

Both PARAMETERS and PORTs can have subproperties associated with them. Each
subproperty is a name-value pair. You must specify subproperties on the same line as the
PARAMETER or the PORT. Subproperties must be comma-separated.

XBD Example
Your EDK installation directory contains XBD files shipped with EDK.

The board files can be found at:

SXILINX_ EDK/board/Xilinx/boards/<board_ _name>/data/<board name>
<version>.xbd

In the example path above, <board_name> might be Xxilinx_ML505, for example. The
current XBD version is 2.2.0, therefore, <version> would be 2_2_0.

Platform Specification Format Reference Manual = www.xilinx.com 133
UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

Global Attribute Commands

Global Attribute Command Summary

VENDOR

NAME

REVISION
CONTACT_INFO_URL
SPEC_URL

DESC

LONG_DESC

The Global Attribute command has the following syntax:

ATTRIBUTE <name> = <value>

Global Attribute Command Definitions

VENDOR

Specifies the name of the vendor. Tools use this attribute to sort various board files based
on vendor name, using the following format:

ATTRIBUTE VENDOR= Xilinx

NAME

The NaME attribute is a string representing the name of the board. This is the name the tools
display for you when they select a board. It is expressed in the following format:

ATTRIBUTE NAME= AFX Virtex-II Pro fg456 Proto Board

REVISION

The rREVISION attribute identifies the revision number of the board that the XBD file
represents. You must associate every board revision with an XBD file that is dedicated to
that board revision alone. Use the following format to specify the revision:

ATTRIBUTE REVISION = C

CONTACT_INFO_URL

Displays a web URL link that you can use to contact Xilinx if you need assistance. The
CONTACT_INFO_URL attribute is expressed in the following format:

ATTRIBUTE CONTACT_INFO_URL = http://www.xilinx.com/support/techsup/
tappinfo.htm

SPEC_URL

Displays a URL that takes you to the Xilinx website. The SPEC_URL attribute is expressed in
the following format:

ATTRIBUTE SPEC_URL = http://www.xilinx.com

134

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Local Attribute Commands

DESC

Provides a short text description of the board. Base System Builder uses the DESC attribute
value and displays it in the GUIL The DESC attribute is expressed in the following format:

ATTRIBUTE DESC = some text

LONG_DESC

Specifies a long text description for the board. Base System Builder uses the LONG_DESC
attribute value and displays it in the GUL. If the description string contains embedded
commas, it must be enclosed in single quotes because the comma is a name-value delimiter.
The LONG_DESC attribute is expressed using the following format:

ATTRIBUTE TEXT= ‘'some long text which gives an idea to user about the
board’

Local Attribute Commands

Local Attribute Command Summary

A local attribute is defined between a BEGIN-END block and expressed in the following
format:

ATTRIBUTE <name> = <value>

INSTANCE
CORENAME
VERSION
IOTYPE
EXCLUSIVE
JTAG_POSITION

Local Attribute Command Definitions

INSTANCE

Distinguishes one module from another. The INSTANCE attribute is expressed in the
following format:

ATTRIBUTE INSTANCE = clk_module

CORENAME

Identifies the pcore that is instantiated in the MHS to represent the 10_aDAPTER. Use the
CORENAME attribute only with 10_ADAPTER blocks. The CORENAME attribute is expressed in
the following format:

ATTRIBUTE CORENAME = mypcore

Platform Specification Format Reference Manual = www.xilinx.com 135
UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

VERSION

Specifies the HW_VER of the pcore to be instantiated in the MHS file. Use the VERSION
attribute only with T0_aDAPTER blocks. The VERSION attribute is expressed in the following
format:

ATTRIBUTE VERSION= 1.00.a

IOTYPE

Specifies what type of 10_INTERFACE block is being used. Use the TI0TYPE attribute to
match the pcore instantiated in the MHS. There are no versions for the I0_INTERFACE type.
Any version information must be embedded in the TOTYPE string itself. Use the IOTYPE
attribute with 10_INTERFACE blocks only. The TIOTYPE attribute is expressed in the
following format:

ATTRIBUTE IOTYPE = XIL_GPIO_V1

EXCLUSIVE

Represents a group of T0_INTERFACESs that are exclusive to each other. If you use one
IO_INTERFACE in this group, you cannot use others, mainly because they share the same
ports with the FPGA on the board. The EXCLUSIVE attribute is expressed in the following
format:

ATTRIBUTE EXCLUSIVE = excl_group

JTAG_POSITION

Determines the position of the FPGA in the JTAG chain. Base System Builder uses this
information while creating the etc/download.cmd file for the project. The JTAG_POSITION
attribute is expressed in the following format:

ATTRIBUTE JTAG_POSITION = 1

Local Parameter Commands

A module can have any number of parameters. Parameters have a subproperty called
I0_IS. You can use the string value of the 10_15s subproperty to match the parameter
whose value is the same value of the XBD local parameter. This parameter is expressed in
the following format:

PARAMETER <name> = <value> {, <subprop_name> = <subprop_value>}

Note: The c_BASEADDR and C_HIGHADDR are normally used to define the location of a peripheral
in the processor memory map, as well as the size of the peripheral memory space. When used in an
XBD file, only the size of the peripheral memory space is used. The absolute location of the
peripheral in the processor memory map is specified by Base System Builder.

Local Parameter Subproperties

A subproperty on a local parameter is a name-value pair. A local parameter can have any
number of subproperty name-value pairs associated with it. All the subproperties have to
be specified on the same line as the parameter itself. Each name-value pair is separated by
a comma.

136

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Local Port Commands

The value of the 10_1s subproperty matches parameters on the IP with the parameters on
the hardware component on the board. The 10_1Is subproperty is expressed in the
following format:

PARAMETER MYPARAM = 3, IO_IS = myparam

MEMORY_TYPE

The only allowed value of the MEMORY_TYPE subproperty is FLASH. Use the MEMORY_TYPE
subproperty on the c_BASEADDR parameter of a flash memory module only. The following
is an example of MEMORY_TYPE:

PARAMETER C_BASEADDR = 0x00000000, IO_IS=C_BASEADDR, MEMORY_TYPE=FLASH
PARAMETER C_HIGHADDR = Ox0003FFFF, IO_IS=C_HIGHADDR

RANGE

The value of the RANGE subproperty is a comma-separated list of integers, intended for use
only on the clock module. These integers specify a list of possible clock frequencies on the
board. The following example shows a board with two clock frequencies of 66 and 100
MHz. The default frequency that BSB will use is 100 Mhz.

PARAMETER CLK_FREQ = 100000000, IO_IS=clk_freqg, RANGE=(66000000,
100000000) # 66 Mhz or 100 Mhz

VALUE_NOTE

The value of the VALUE_NOTE subproperty provides a short text description of values
associated with this parameter. It is expressed in the following format:

PARAMETER RST_POLARITY = 0, IO_IS = polarity, VALUE_NOTE = Active LOW

Local Port Commands

Alocal port is defined between the BEGIN-END block of a module. XBD supports local ports
only; global ports are not supported. There are no reserved PORT names. You can specify
local ports in all three block types. Local port commands are formatted as follows:

PORT <name> = <connector_name> {,<subprop_name> = <subprop_value>}

Local Port Subproperties

Local Port Subproperty Summary

You can associate a local port with any number of subproperty name-value pairs. All the
subproperties must be specified on the same line as the port itself. Each name-value pair is
separated by a comma. The following list contains links to the local port subproperty
definitons.

DIR SIGIS
INTERRUPT_PRIORITY UCF_NET_STRINGS
I0_IS INITIALVAL
SENSITIVITY
Platform Specification Format Reference Manual = www.xilinx.com 137

UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

Local Port Subproperty Definitions

DIR

Specifies the FPGA port direction. The allowed value is 10, which designates the port as an
IO port.

INTERRUPT_ PRIORITY

The value of the INTERRUPT_PRIORITY subproperty defines the priority of an interrupt
source. This affects the order in which various interrupts are connected to the interrupt
controller (and, consequently, their priority). Use the INTERRUPT_PRIORITY subproperty
only for those signals that are marked as SIGIS=INTERRUPT. The INTERRUPT_PRIORITY
subproperty is formatted as follows:

PORT Intr = CONN_Intr, IO_IS=intr, SIGIS=INTERRUPT,
INTERRUPT_PRIORITY=HIGH

IO_IS

The value of the 10_Is subproperty matches ports on the FPGA to ports of peripherals
instantiated in the MHS file. If the value of T10_Is on a port matches that on a port in the
MPD file of the IP which, in turn, matches the 10_1IF, it is considered a match. If there is a
match, that particular port of the instantiated IP is defined as a global port in the MHS file
and connected to this port on the board. The 10_1s value is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, VALUE=net_vcc

SENSITIVITY

For a signal of type SIGIS=INTERRUPT, the SENSITIVITY subproperty defines the signal
type to which this interrupt is sensitive. The global port created in MHS that corresponds
to this signal is marked with the SENSITIVITY property. This subproperty is formatted as
follows:

PORT Intr = CONN_Intr, SIGIS=INTERRUPT, SENSITIVITY=LEVEL_HIGH

SIGIS

SIGIS is a subproperty of PORT and designates a port as an interrupt port.

UCF_NET_STRINGS

Specifies the constraints associated with the NET for this PORT. The UCF_NET_STRINGS
subproperty takes as value a comma separated list of strings. Each string in the list creates
a separate line in the UCEF file related to that net. This subproperty is formatted as follows:

PORT SDRAM_BAQ = CONN_SDRAM_8Mx32BAl, UCF_NET_STRINGS=("LOC = L4",
"IOSTANDARD=LVDCI_25")

The above line in an XBD file would lead to the following lines in the UCF file:

NET “CONN_SDRAM_8Mx32BAl” LOC = L4
NET “CONN_SDRAM_8Mx32BAl” IOSTANDARD=LVDCI_25

138

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Associating IPs with IO_INTERFACE in XBD

INITIALVAL

A subproperty of VALUE, INITIALVAL specifies the value to which a port must be driven if
there is no corresponding port on the IP core connected to the device. In this case, a
top-level output port for the system is created and driven with this constant value. This
subproperty is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, INITIALVAL = net_vcc

Associating IPs with IO_INTERFACE in XBD

As previously described, an XBD file contains a number of BEGIN-END blocks, each
corresponding to a hardware module on the board. The type of the module is specified
using the attribute I0TYPE, as in the following example:

BEGIN <iotype>

The 10TYPE string is used to match an IP that can communicate with this module. Refer to
Chapter 3, Microprocessor Peripheral Definition (MPD) for more information. An MPD
file describes the behavior of an IP. Each IP can have a number of 10_INTERFACEs. Each
IO_INTERFACE has a subproperty called 10TYPE. The value of this subproperty determines
whether or not an IP can communicate with a particular hardware module on the board.

For example, consider the following line in the MPD file for IP xps_ethernetlite:
IO_INTERFACE NAME = Ethernet_0, iotype = XIL_Ethernet_V1

This 10_INTERFACE indicates that this particular IP can communicate with a module of
type Ethernet. Similarly, the XBD file for any board that has an Ethernet module should
define a block as follows:

BEGIN IO_INTERFACE
ATTRIBUTE INSTANCE = myEthernet
ATTRIBUTE IOTYPE = XIL_Ethernet_V1
PARAMETER ...
PORT ...

END

When tools try to find an IP that can communicate with this module on the board, they
search for MPDs that have an T0_INTERFACE with I0TYPE and that match the T0TYPE of the
I0_INTERFACE module in the XBD file. If there are several such IPs, users can select any of
them.

Once an IP has been selected for communicating with that particular module on the board,
tools use the 10_Is subproperty to connect ports of the IP to the module on the board.

Generally, an IP is designed to be parametric (in terms of VHDL, the IP has generics).
When used with a particular board, you can specify some parameter values based on
board characteristics. The matching of parameters in the XBD module with that of
parameters on the IP is also done using the 10_1s block.

For example, consider the MPD snippet for xps_gpio:
#####44## MPD Snippet ###########

BEGIN xps_gpio

Peripheral Options
OPTION ...

IO_INTERFACE NAME = gpio_0, iotype = XIL_GPIO_V1

Platform Specification Format Reference Manual = www.xilinx.com 139
UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

Bus Interfaces
BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog

PARAMETER C_GPIO_WIDTH = 32, DT=integer, IO_IF=gpio_0, IO_IS=num_bits
PARAMETER C_ALL_INPUTS 0, DT=integer, IO_IF=gpio_0, IO_IS=all_inputs
PARAMETER

Ports
PORT GPIO_IO = "", DIR = INOUT, IO_IF = gpio_0, IO_IS = gpio_io,
PORT

END

The MPD file defines an IO interface, gpio_0 of IOTYPE XIL_GPIO_V1. The gpio_0IO
interface has two parameters associated with it, C_GP10_wIDTH and ¢_aLL_INPUTS. This
parameter-1O interface association is specified with the 10_IF subproperty on the
parameter. Similarly, PORT GPIO_IO is also associated with the gpio_0 IO interface, using
the TO_IF subproperty.

Consider the following XBD snippet from a hypothetical board that includes LEDs. These
LEDs are of TOTYPE GPIO:

XBD Snippet #H#######H#E#H

BEGIN IO_INTERFACE
ATTRIBUTE INSTANCE = LEDs_4Bit
ATTRIBUTE IOTYPE= XIL_GPIO_V1
PARAMETER num_bits =4, IO_IS=num bits
PARAMETER all_inputs =0, IO_IS=all_inputs# All outputs

PORT LED1 = CONN_LED1, IO_IS=gpio_io[0], VALUE = net_vcc,

UCF_NET_STRINGS = (“N1”)

PORT LED2 = CONN_LED2, IO_IS=gpio_iol[l], VALUE=net_vcc,
UCF_NET_STRINGS = (“N2”)

PORT LED3 = CONN_LED3, IO_IS=gpio_io[2], VALUE=net_vcc,
UCF_NET_STRINGS = (“P1l”)

PORT LED4 = CONN_LED4, IO_IS=gpio_io[3], VALUE=net_vcc,
UCF_NET_STRINGS = (“P2")
END

As explained above, the T0TYPE XIL_GPIO_V1 of the I0_INTERFACE in the MPD file is
matched with the ToTYPE XIL_GPIO_V1 of the module LEDs_4Bit in the XBD file. As a
result, the T10_IS subproperty on ports in the MPD file and ports in the XBD file determine
which ports connect to which. The following MHS instantiation results:

MHS File Snippet

Global Ports
PORT LEDs_4Bit_GPIO_IO = LEDs_4Bit_GPIO_IO, VEC = [0:3], DIR = INOUT

GPIO instance
BEGIN xps_gpio
ATTRIBUTE INSTANCE = LEDs_4Bit
PARAMETER HW_VER = 1.00.a
PARAMETER C_GPIO_WIDTH = 4 ## IO_IS num_bits
PARAMETER C_ALL_INPUTS = 0 ## IO_IS = all_inputs

140

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX. Bridging IP with 10_INTERFACE

PORT GPIO_IO = LEDs_4Bit_GPIO_IO ## IO_IS = gpio_io
END
The output UCF snippet is as follows:
#HH####HHAHE UCF Snippet ########

Net LEDs_4Bit_GPIO_IO<0> LOC=N1;
Net LEDs_4Bit_GPIO_IO<1> LOC=N2;
Net LEDs_4Bit_GPIO_IO<2> LOC=P1;
Net LEDs_4Bit_GPIO_IO<3> LOC=P2;

Bridging IP with IO_INTERFACE

Each IP that communicates with modules outside the FPGA (on the board) has its ports
connected to pins on the FPGA. The FPGA, in turn, is connected to the pins on the board
module. For standard IPs and modules, there is usually a one-to-one correspondence
between ports on the IP and the pins on the external modules. However, on some boards,
the external modules might have slightly different requirements. In such cases, a small
amount of logic might need to be used before the IP ports can be connected to the external
module. XBD allows you to specify such glue logic in the board file.

When creating the XBD file, you must be aware of parameter and port connection
requirements for the board module. You must also associate at least one compatible soft-IP
with that external module. (This is done by using the specific I0OTYPE in TO_INTERFACE
block.) If there is any mismatch, users can specify 10_aADAPTER in the XBD file to map the
IO_INTERFACE on the board with the desired soft IP on the FPGA.

XBD Load Path

Refer to Figure 9-1 for an illustration of the library directory structure. The SDK tools
search the PSF files across libraries, and they search in the <l1ibrary name>/boards
directory for boards.

Each of these libraries contains the /boards directory, which identifies where various
boards are located. This is equivalent to the /pcores directory in the IP search mechanism.

The directory name for a board must be the same as the name of the board itself. Each
board directory should contain a /data directory. The XBD file must reside in this data
directory and must be called <board _name>_v2_2_0.xbd.

The directory called edk_user_repository appears at the same level as the EDK
installation ($XILINX_EDK) and is automatically searched by all EDK tools for libraries.
This feature is deprecated in in EDK 10.1. It is recommended that you explicitly specify
repositories that apply to projects. You can do this in SDK using

Edit >Preferences >Application Preferences >Global Peripheral Repository.

For example, to make a hypothetical board called myboard “visible” to the EDK tools,
create a library of boards, for example, MyEDKBoards, in a library search directory. Your
directory structure must appear as follows:

<Peripheral Repository Directory>/MyEDKBoards/boards/myboard_revl/data/
myboard_revl_v2_2_0.xbd

Platform Specification Format Reference Manual = www.xilinx.com 141
UG642 September 21, 2010

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

-Ip <library_path>

<Library Name>

boards drivers pcores Sw_services

X10066

Figure 9-1: Library Directory Structure

The $XILINX_EDK/board directory is added as a default library search path for board files.
Each library contains several boards. In SDK, you can specify a library search path that
enables tools to locate additional board files.

Board-specific IP Constraints

Some IP have board-specific constraints. BSB can pick up the constraints when it delivers
the IP on the board. The constraint file needs to have a naming path of

<instance name>_<core name>.ucf. This file must be in the same directory as the
board XBD file. BSB does not modify the content of this file but copies it into the final
system.ucft file.

BSB Restrictions

While most of the BSB is data-driven, there are some exceptions. Special processing is done
inside the BSB for these. Some of the restrictions are listed below:

* BSB clock module generation is not data-driven. BSB can only handle certain input
clock frequencies and can only produce certain multiples of the input clocks. BSB does

not support multiple DDR and PCI™ interfaces because they require special clock
generation.

e The parameter customization of instantiated pcores is not data-driven. For each
known type of IO interface, BSB presents certain selectable parameters. If there is an
IO_INTERFACE in the XBD file but no matching soft IP, BSB does not display the
configuration of parameters on that IP.

¢ The following DDR?2 timing parameters on the Virtex-5 “fxt” design have no mapping
parameters on DDR2 controller core; instead they are on the PPC440_Virtex5 core:

PARAMETER C_DDR_BANK_MASK = <some value>,
IO_IS=C_PPC440MC_BANK_CONFLICT_MASK
PARAMETER C_DDR_ROW_MASK = <some value>
I0O_IS=C_PPC440MC_ROW_CONFLICT_MASK
PARAMETER C_PPC440MC_CONTROL = <some value>
IO_IS =C_PPC440MC_CONTROL

142

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Existing Xilinx 10 Types

Existing Xilinx 10 Types

Establishing a match between an MPD 10_INTERFACE and an 10TYPE module in XBD is
accomplished solely through string comparison. The table below shows a list of IO
interfaces implemented by various Xilinx IPs. For a new board that includes a module that
communicates with the FPGA using a Xilinx-provided IP, module and IO interface names
must be the same. This is required to enable automatic connection between the board

module and IP.

Table 9-1: List of IO INTERFACES Supported by Xilinx IPs
IOTYPE/]
IO_INTERFACE Supporting IPs

XIL_CPUDEBUG_V1

ppcd05, ppcddo

XIL_EMC_V1

xps_mch_emc

XIL_EPC_V1

Xps_epc

XIL_Ethernet_V1

xps_ethernetlite

XIL_GPIO_V1 xXps_gpio
XIL_IIC_V1 xps_iic
XIL_MEMORY mpme (supports DDR/DDR?2)

ppcd40mc_ddr2 (DDR2)

XIL_MGT_PROTECTOR_V1

mgt_protector

XIL_PCI32_V1

plbv46_pci

XIL_PCI_ARBITER_V1

pci_arbiter

XIL_PCIE_V1 plbv46_pcie
XIL_PS2_V1 XpS_ps2
XIL_SPI_V1 xXps_spi

XIL_SYSACE_V1

Xps_sysace

XIL_TEMAC_V1

Xps_11_temac

XIL_TFT V1

xps_tft

XIL_TRACE_V1

ppcd405, ppcd4o

XIL_UART V1

xps_uartlite

xps_uartns550

XIL_CLOCK_V1

None. Used by tools internally.

XIL_RESET_V!

None. Used by tools internally.

Platform Specification Format Reference Manual
UG642 September 21, 2010

www.Xxilinx.com

143

http://www.xilinx.com

Chapter 9: Xilinx Board Description (XBD) Format & XILINX.

144 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.
Appendix A

Glossary

A

AXI
Advanced eXtensible Interface (AXI).

BBD file

Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.

BFL

Bus Functional Language.

BFM

Bus Functional Model.

BIT File

Xilinx® Integrated Software Environment (ISE™) Bitstream file.

BitInit

The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
blockRAMs in the FPGA.

block RAM (BRAM)

A block of random access memory built into a device, as distinguished
from distributed, LUT based random access memory.

BMM file

Block Memory Map file. A BMM file is a text file that has syntactic
descriptions of how individual block RAMs constitute a contiguous
logical data space. Data2MEM uses BMM files to direct the translation
of data into the proper initialization form. Since a BMM file is a text
file, it is directly editable.

Platform Specification Format Reference Manual = www.xilinx.com 145
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

BSB

BSP

CFI

DCM

DCR

DLMB

DMA

DOPB

DRC

DSPLB

EDIF file

Base System Builder. A wizard for creating a complete design in Xilinx
Platform Studio (XPS). BSB is also the file type used in the Base System
Builder.

See Standalone BSP.

Common Flash Interface

Digital Clock Manager

Device Control Register.

Data-side Local Memory Bus. See also: LMB.

Direct Memory Access.

Data-side On-chip Peripheral Bus. See also: OPB.

Design Rule Check.

Data-side Processor Local Bus. See also: ISPLB.

Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.

146

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

EDK

ELF file

EMC

EST

Xilinx Embedded Development Kit.

Executable and Linkable Format file.

External Memory Controller.

Embedded System Tools.

FATfs (XilFATfs)

Flat View

FPGA

FSL

GDB

GPIO

LibXil FATFile System. The XilFATfs file system access library
provides read /write access to files stored on a Xilinx System ACE
CompactFlash or IBM microdrive device.

Flat view provides information in the Name column of the IP Catalog
and System Assembly Panel as directly visible and not organized in
expandable lists.

Field Programmable Gate Array.

MicroBlaze™ processor Fast Simplex Link. Unidirectional
point-to-point data streaming interfaces ideal for hardware
acceleration. The MicroBlaze processor has FSL interfaces directly to
the processor.

GNU Debugger.

General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.

Platform Specification Format Reference Manual = www.xilinx.com 147
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

Hardware Platform

HDL

Xilinx FPGA technology allows you to customize the hardware logic
in your processor subsystem. Such customization is not possible using
standard off-the-shelf microprocessor or controller chips. Hardware
platform is a term that describes the flexible, embedded processing
subsystem you are creating with Xilinx technology for your
application needs.

Hardware Description Language.

Hierarchical View

IBA

IDE

ILA

ILMB

IOPB

IPIC

IPIF

This is the default view for both the IP Catalog and System Assembly
panel, grouped by IP instance. The IP instance ordering is based on
classification (from top to bottom: processor, bus, bus bridge,
peripheral, and general IP). IP instances of the same classification are
ordered alphabetically by instance name. When grouped by IP, it is
easier to identify all data relevant to an IP instance. This is especially
useful when you add IP instances to your hardware platform.

Integrated Bus Analyzer.

Integrated Design Environment.

Integrated Logic Analyzer.

Instruction-side Local Memory Bus. See also: LMB.

Instruction-side On-chip Peripheral Bus. See also: OPB.

Intellectual Property Interconnect.

Intellectual Property Interface.

148

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

ISA

ISC

ISE File

ISPLB

ISS

ISOCM

JTAG

Libgen

LMB

MDD File

MDM

Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.

Interrupt Source Controller.

Xilinx ISE Project Navigator project file.

Instruction-side Peripheral Logical Bus. See also: DSPLB.

Instruction Set Simulator.

Instruction-side On-Chip Memory.

Joint Test Action Group.

Library Generator sub-component of the Xilinx Platform Studio
technology.

Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.

Microprocessor Driver Description file.

Microprocessor Debug Module.

Platform Specification Format Reference Manual = www.xilinx.com 149

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

MFS File

MHS File

MLD File

MPD File

MSS file

MVS file

MOST®

MPD File

MSS File

NGC file

NGD file

NCF file

LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.

Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.

Microprocessor Library Definition file.

Microprocessor Peripheral Definition file. The MPD file contains all
the available ports and hardware parameters for a peripheral.

Microprocessor Software Specification file.

Microprocessor Verification Specification file.

Media Oriented Systems Transport. A developing standard in
automotive network devices.

Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.

Microprocessor Software Specification file.

The NGC file is a netlist file that contains both logical design data and
constraints. This file replaces both EDIF and NCF files.

Native Generic Database file. The NGD file is a netlist file that
represents the entire design.

Netlist Constraints file.

150

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

NGO File

NPI

NPL File

OCM

OoPB

PACE

PAO file

PBD file

Platgen

PLB

PROM

PSF

A Xilinx-specific format binary file containing a logical description of
the design in terms of its original components and hierarchy.

Native Port Interface.

Xilinx® Integrated Software Environment (ISE®) Project Navigator
project file.

On Chip Memory.

On-chip Peripheral Bus.

Pinout and Area Constraints Editor.

Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.

Processor Block Diagram file.

Hardware Platform Generator sub-component of the Platform Studio
technology.

Processor Local Bus.

Programmable ROM.

Platform Specification Format. The specification for the set of data
files that drive the EDK tools.

Platform Specification Format Reference Manual = www.xilinx.com 151

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

SDF file

SDK

SDMA

Simgen

Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.

Software Development Kit.

Soft Direct Memory Access

The Simulation Generator sub-component of the Platform Studio
technology.

Software Platform

SPI

A software platform is a collection of software drivers and, optionally,
the operating system on which to build your application. Because of
the fluid nature of the hardware platform and the rich Xilinx and
Xilinx third-party partner support, you may create several software
platforms for each of your hardware platforms.

Serial Peripheral Interface.

Standard C Libraries

EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.

Standalone Library

SVF File

UART

UCF

Standalone library. A set of software modules that access
processor-specific functions.

Serial Vector Format file.

Universal Asynchronous Receiver-Transmitter.

User Constraints File.

152

www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

\'/
VHDL

XBD File

XCL

Xilkernel

XMD

XMP File

XPS

XST

ZBT

VHSIC Hardware Description Language.

Xilinx Board Definition file.

Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.

The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.

Xilinx Microprocessor Debugger.

Xilinx Microprocessor Project file. This is the top-level project file for
an EDK design.

Xilinx Platform Studio. The environment in which you can develop
the hardware portion of your embedded design.

Xilinx Synthesis Technology.

Zero Bus Turnaround™.

Platform Specification Format Reference Manual = www.xilinx.com 153

UG642 September 21, 2010

http://www.xilinx.com

& XILINX.

154 www.xilinx.com Platform Specification Format Reference Manual
UG642 September 21, 2010

http://www.xilinx.com

	Platform Specification Format Reference Manual
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Documents

	Table of Contents
	1 Introduction
	Files
	BBD - Black Box Definition
	MDD - Microprocessor Driver Definition
	MHS - Microprocessor Hardware Specification
	MPD - Microprocessor Peripheral Definition
	MSS - Microprocessor Software Specification
	MLD - Microprocessor Library Definition
	PAO - Peripheral Analyze Order
	XBD - Xilinx Board Definition

	File and IP Naming Rules
	Version Scheme
	Version Setting for MHS and MSS
	Version Setting for BBD, MPD, and PAO

	Load Path
	Peripheral and pcore Directory Structures
	Using Versions

	Creating Your IP
	Is Your IP Pure HDL?
	Is Your IP Only a Black-Box Netlist?
	Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog?

	Creating HDL Libraries for Your IP
	Primary Library
	Resource Library
	Library File Locations

	Verilog Include Directories
	Format
	Restrictions

	2 Hardware Specification (MHS)
	MHS Syntax
	About the Syntax
	Comments
	Format
	MHS Example

	Bus Interface
	Definition
	Example
	Bus Interface Keyword(s)

	Global Parameter
	Definition
	Global Parameter

	Local Parameter
	Definition
	Local Parameters

	Global Port
	Global Port Keyword Summary
	Global Port Keyword Definitions

	Local Port
	Design Considerations
	Defining Memory Size
	Power Signals (net_gnd/net_vcc)
	Unconnected Ports
	Constant Assignments
	Concatenation
	Internal vs. External Signals
	External Interrupt Signals

	AXI Systems

	3 Microprocessor Peripheral Definition (MPD)
	MPD Syntax
	Definition
	Comments
	Format
	MPD Example

	Bus Interface
	Definition
	Bus Interface Keyword Summary
	Bus Interface Keyword Definitions
	Bus Interface Naming Conventions

	IO Interface
	Definition
	IO Interface Keywords

	Option
	Definition
	Option Keyword Summary
	Option Keyword Definitions

	Parameter
	Definition
	Parameter Keyword Summary
	Parameter Keyword Definitions
	Parameter Naming Conventions
	Required Parameters for AXI Peripherals
	Optional HDL Parameters for AXI Peripherals
	Reserved Parameters

	Ports
	Definition
	Port Keyword Summary
	Port Keyword Definitions
	Port Naming Conventions
	Reserved Port Connections

	Design Considerations
	Unconnected Ports
	Scalable Data Path

	4 Peripheral Analyze Order (PAO)
	PAO Format
	Format
	Comments

	Verilog Include Directories
	Format

	PAO Example

	5 Black-Box Definition (BBD)
	BBD Format
	Comments
	Lists
	Common Repository Library

	BBD Examples
	File Selection Without Options
	Multiple File Selections Without Options
	File Selection With Options
	File Selection With Common Repository Library

	6 Microprocessor Software Specification (MSS)
	Overview
	Additional Resources
	MSS Format
	MSS Keywords
	Requirements
	MSS Example

	Global Parameters
	PSF Version
	Parameter INT_HANDLER

	Instance-Specific Parameters
	OS, Driver, Library, and Processor Block Parameters Summary
	OS, Driver, Library, and Processor Block Parameters Definitions
	MDD/MLD Specific Parameters
	OS-Specific Parameters Summary
	Processor-Specific Parameter Summary
	Processor-Specific Parameter Definitions

	MLD Parameter Description Section
	Conventions
	Comments
	OS or Library Definition
	MLD or MDD Keyword Summary
	MLD or MDD Keyword Definitions

	Design Rule Check (DRC) Section
	Library Generation (Generate) Section

	7 Microprocessor Library Definition (MLD)
	Overview
	Requirements
	Additional Resources
	Library Definition Files
	MLD Format Specification
	MLD File Format Specification
	Tcl File Format Specification
	Examples

	8 Microprocessor Driver Definition (MDD)
	Overview
	Requirements
	Additional Resources
	Driver Definition Files
	MDD Format Specification
	MDD File Format Specification
	Tcl File Format Specification
	Example

	MDD Parameter Description
	Conventions
	Comments
	Driver Definition
	MDD Keyword Summary
	MDD Keyword Definitions

	Design Rule Check (DRC) Section
	Driver Generation (Generate) Section

	9 Xilinx Board Description (XBD) Format
	Overview
	XBD Syntax
	Comments in XBD
	Format
	XBD Example

	Global Attribute Commands
	Global Attribute Command Summary
	Global Attribute Command Definitions

	Local Attribute Commands
	Local Attribute Command Summary
	Local Attribute Command Definitions

	Local Parameter Commands
	Local Parameter Subproperties
	Local Port Commands
	Local Port Subproperties
	Local Port Subproperty Summary
	Local Port Subproperty Definitions

	Associating IPs with IO_INTERFACE in XBD
	Bridging IP with IO_INTERFACE
	XBD Load Path
	Board-specific IP Constraints
	BSB Restrictions
	Existing Xilinx IO Types

	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

