PPC440x5 CPU Core

User’s Manual

Preliminary

SA14-2613-03
July 15, 2003

PowerPC’

© Copyright International Business Machines Corporation 2003

All Rights Reserved
Printed in the United States of America July 2003

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM IBM Logo

CoreConnect

PowerPC PowerPC logo

PowerPC Architecture

RISCTrace RISCWatch

Other company, product, and service names may be trademarks or service marks of others.

The information contained in this document is subject to change or withdrawal at any time without notice and is
being provided on an "AS IS" basis without warranty or indemnity of any kind, whether express or implied,
including without limitation, the implied warranties of non-infringement, merchantability, or fitness for a
particular purpose. Any products, services, or programs discussed in this document are sold or licensed under
IBM's standard terms and conditions, copies of which may be obtained from your local IBM representative.
Nothing in this document shall operate as an express or implied license or indemnity under the intellectual
property rights of IBM or third parties.

Without limiting the generality of the foregoing, any performance data contained in this document was
determined in a specific or controlled environment and not submitted to any formal IBM test. Therefore, the
results obtained in other operating environments may vary significantly. Under no circumstances will IBM be
liable for any damages whatsoever arising out of or resulting from any use of the document or the information
contained herein.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the sampling and/or initial production phases of
development. This information is subject to change without notice. Verify with your IBM field applications
engineer that you have the latest version of this document before finalizing a design.

IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.ibm.com/chips

title.fm.
July 15, 2003

http://www.ibm.com
http://www.ibm.com/chips

T= User's Manual

Preliminary PPC440x5 CPU Core
Contents

FIQUIES .. 15

TADIES ..ot ie it ——————— 19

72N o o 11 A I 4T = = o T G 23

IO =Y - 27

PPCA40XE FEATUIESueiiieiiiiiiie ettt ettt e e ettt e e s e ettt e e e e ettt et e e eaaateeeaesasbeeeeesaaateeeeeeanteneeeans 27

The PPC440x5 as a PowerPC Implementationcccooeviiiiiiiiiiiiiieee e 29

PPCA40XS OrganiZationeeeiiiiiiiieiiiii ettt ettt e et e e b e e e e bt e e e e b e e e e e e aabeaee e 30

Superscalar INStruction Uit ... o e e e e e e e e e e e 30

EXECULION PIPEIINES ...ttt e e e e e e e e et e e e e e e e e e e e e e nnnnneees 31

Instruction and Data Cache CONMrOlIErScooiiiiiiiiiiiiii e eee e 31

Instruction Cache Controller (ICC)oooiiiiiiiee e e e e 31

Data Cache Controller (DCC)ooiiiieiee et 32

Memory Management Unit (MIMU) ... 32

B I 0= PP PP P UP S PPPPP 34

1Y o 8o = Vo 1 [SRS 34

(D=t oTUTo I 1Y oTo [PRSPPI 34

[DISAVZ o] o g g 1T o1 oY) IS TH1 o] o o] o (PP 35

1070 LI] (=Y o = o7 PRSP 35

Processor LoCal BUS (PLB)coooiiieeee ettt e e e e e e e e e e e e 36

Device Control Register (DCR) INtErfaceoooiiiiiiiiiii e 36

Auxiliary Processor Unit (APU) POrt ...ttt 36

Y 1 C N o] O SPPPPRR 37

280 e Yo T =T 1 1011 4 T TR e Yo = N 39

1 (o] = To (=Y AN (o | LY T o Vo SO PPPPPPRR 39

) (o] x=To (=IO 01T =T aTo £ PO PRPRPPP 39

Effective Address CalCUulationooiiiiiiiiiiiie e e e ee e e nneeas 41

Data Storage Addressing MOUESuiiiiiiiiie e 41

Instruction Storage Addressing MOUESuuiiiiiiiiiii e 41

23T SR @) o (1 o oo [PPSR 42

Structure Mapping EXAMPIEScooiiiiiiiiieee e a e e aaaaa s 43

INSrUCHION BYEE OrAErINGooiiiiiiiiiii it e e e e e e 44

(D= P= =Y (=@ (o [T o o PP PUPPPTRUUPPRR 45

Byte-Reverse INSIIUCHIONSoouuiiiiiiiiiitcie e e e e e e e e e e e e e eeeeees 46

LT 05 =T PSR 47

R=To 5] (=T N o1 PSPPSR PP 51

General PUrpoSe REGISIEISooiiiiiiiiiiii e 51

Special PUrPOSE REGISIEISooiiiiiiiiiiic e e e e e e eeeaae s 51

1070] a0 [1 o] AT A{=Te |11 (= SRRSO 52

Maching State REGISIENeiiiiiiiii e ee e 52

Device Control REGISIEISooiiiiiiie e 52

INSTFUCTION CIASSESeiiiiiiiiiiie ettt e e e ettt e e ettt e e s e bte e e e e abebeeeesabeeeeeeanntbeeeesaaneeeeaesane 52

Defined INSTIUCHION CIASScoiiiiiiiiiiiiiiiiie ettt et e e st e e e sttt e e e st e e e e ssaeeee e s nnneeas 53

P [foTor=1 (Yo I [1] (B o1 L] I O = T S 53

Preserved INStrUCtioN Classoooiiiiiiie e e e e e e e e e 54

ppcd40x5TOC.fm. Contents

July 15, 2003 Page 3 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary
Reserved INSrUCHION ClasSc..uiiiiiiiiiiii e e e e e e e e nree e e e nnee s 55
Implemented INStruction Set SUMMArY ... e 55
INtEGEr INSIFUCLIONS ...ttt ettt e e e e e e e as 56
Integer Storage ACCESS INSIIUCLIONSccooiiiiiieeeee e e e e e e e 56
Integer ArithmetiC INSIIUCHIONSoovvviee e e 57
Integer Logical INSIFUCLIONSuiiiiii e 58
Integer Compare INSIIUCHIONScooiiiiiiii e 58

Tal Yo =T I =T o BN [5 1 U T3 o] o T 58
Integer Rotate INSrUCHIONScoooiii e e e e e 58
Integer Shift INSTIUCHIONSoouiiii e 59
Integer Select INSIIUCTIONuiii e 59
Branch INSIFUCHIONSeeeiiiiiii ettt et e e e e e e e e e e s annees 59
Processor Control INSIIUCLIONSocoiiiiiiiiiie e e e e e e e 59
Condition Register Logical INSTrUCHONScooiuiiiiiiiiie e 60
Register Management INStIUCHIONSeeeiiiiiii e e e e e 60
System Linkage INSIrUCHIONScooiiiie e a e e e e e e s 60
Processor Synchronization INSTrUCHIONcoiiiiiiiiiii e 60
Storage Control INSIFUCHIONS ... 61
Cache Management INSITUCHIONSc.uuiiiiiiiiiie e e a e e e e s 61

TLB Management INSIIUCLIONScoooiiiiiiieeeeeee e e e e e e e e e e es 61
Storage Synchronization INSTrUCHIONScoooiiiiiiii e 61
Allocated INSIFUCLIONS ... it e e e e e et e e e e e e e e e e e e naeeeeeas 62

(2T L] e oot =T=T] o Vo 62
BranCh AdAreSSINgcccooiiiiiieiiieee e e e e e e e e e e e e e et et et e et e e e e ———— et ——————————————aaaaaas 62
Branch Instruction Bl Field ...t e e e e e 63
Branch Instruction BO Field ...t e e e e e e e e e 63
Branch PrediClion et e e e e e e 64
Branch Control REGISIETScooiiieee e e e e e e e e e e e e e e e e e e eeasannnes 65
LinK REGISEr (LR) ...ttt et e e e e e e e e rabe e e e e e 65
Count REGISLEr (CTR) .eeiiiiiiiiiiie ittt et et e e e bbb et e e nneee s 66
Condition REGISEr (CR) ...eveiiiiiieie et e e e e e e e e e e e e rbeneaaaaaeea s 66

] oo [T gl o e Ter 1] [T PO PUPPPUPUPPN: 69
General Purpose RegiSters (GPRS)uuiiiiiiiiiii it 69
Integer Exception Register (XER)ueiiii e 70
Summary OVerflow (SO) Fieldccooiiiiieeeee e eaa e 71
OVEITIOW (OV) FIEI ...ttt et e e ettt e e sttt e e e e e aae e e e e snnneeee s 71

107 14 oV (07 I =1 (o PP PRPOTPP 72

[foTe =TT) @ o] o1 (o SRR 72
Special Purpose Registers General (USPRGO, SPRGO-SPRG7)cccccoviiiiiiieeeeiiicinieeee e 73
Processor Version Register (PVR)ueeiiiiiiiiii ettt e e e e e e e e s sanrnees 73
Processor Identification Register (PIR) ... 74
Core Configuration Register 0 (CCRO)coiiiiiiiiiiiiee e 74
Core Configuration Register 1 (CCRT)uiiiiiiiiiiei it e e e e e e 76
Reset Configuration (RSTCFG)uiiiiiiiiiiii it e e e e e e e e e e e e e e e e e e e s e annnnes 77
User and SUPEIVISOr IMOGESoooiiiiiiiiiie ettt e e e e e e e e e e et eeeee e e e e e e s e nneneeeeeeaeaaeaaaaaannnns 78
Privileged INSIIUCHIONS ...t 78

e V71 L= =0 IS e P PUPERPRN 79
SPECUIALIVE ACCESSES .. iiiiiiii ittt et et ettt e e e e e e e e e e e e e ee e e e ee e e e e e e e e nnnneaneaaaaaaaaann 79
)Y alel 1 o] Tv.4= L[] o IRT PO PRSP PPPRP 79
Context SYNCArONIZAtIONoooiiii e 80
Contents ppcd440x5TOC.fm.

Page 4 of 573 July 15, 2003

ééé?é User’s Manual
Preliminary PPC440x5 CPU Core
Execution SYNChroNIZatioNcciiiiiiiie e e e e e e e e e e e e e e e ennnnneees 81
Storage Ordering and SYyNChroniZationc...iiiiiiiiiiii e 81

B [11 = 2 1T o 83
PPC440x5 Core State After ReSet ... e e 83
1= B Y o= TSRO 87
Y= AT 0 11] (oY PP 87
Initialization Software ReqQUIrEMENTESooooiiiiiiiiiie e e 87

4. Instruction and Data Caches ... s 93
Cache Array Organization and OPerationc.eeiiiiiiiiiei et e et e e e e e seeeeeesanneeeas 93
Cache Line Replacement POLICYcooiuiiiiiiiiiiee ettt e 94

Cache Locking and Transient MEeChaniSMcooiiiiiiiiiiiiie e e 96
INStruction Cache CONTIOIIETeeiieiie et e et e e e s et e e e e snteeee e e sasaeeeeaeans 100
[0 O @] oT=1 = 110] o I PP TPP 101
Speculative Prefetch MechaniSm ... 102
Instruction Cache CONEIENCYcoo i 103
Self-MOIfYING COUE ...ttt e e b e e e e ananeeeas 103
INStruction Cache SYNONYMSuiiiiiiiiiii e e e e e e e e e e e s e e et b reeeeeaaeeeeeanannnes 104
Instruction Cache Control and DebUQg ..o 105
Instruction Cache Management and Debug Instruction Summaryccoccoviiiiiiniincnee 105

Core Configuration Register 0 (CCRO)oiiiuiiiiiiiiii et 105

Core Configuration RegiSter 1 (CCRM) ..ovviiiiiiiii ittt e e e 107

o o1 @] o =T =1 i o] o [N USSP PPPRRRRR 108

[[oT=T=To I @7 o T=T = 11 o ISP 109
Instruction Cache Parity Operationsocuuieiiiiiiiiiiiiiiie e 110
Simulating Instruction Cache Parity Errors for Software Testingcccccvvvieeiiiiiiiiiiiiieeeee, 111

Data Cache CONrOIIETt e e e e e e e e st eeee e e e e e e e e s enenenneeeeeeeaaaaaeas 112

[101 G2 @ o T=T = 1] 1SR 113

Load and Store AlIGNMENT ... et e e sb b e abeee e e 114

(o X To J @ o =T -1 i o] 1< TN U P PEPURRRR 115

) (o] (I @] 01T -1 i o] I TP 115

Line FIUSh OPEerationsooooiiiiiiiiiiie ittt e e et e e e e e e e e e e e e e e e eeaaaaeaaaeanns 117

Data Read PLB Interface REQUESESeiiiiiiiiiiii e 118

Data Write PLB Interface REQUESESueiiiiiiiiiiii et a e 119

) (o] = To (oY Aol ot T @ o [= T4 T o TSSO 120

Data Cache CONEIENCYcooiiiiiiiiiiit et e e e e e e e b e e e 120

Data Cache Control and DeDUQGoouuiiiiiiiii e 121

Data Cache Management and Debug Instruction Summaryccccccceveeieiiiiiiccciieeeeeeeeeee 121

Core Configuration RegisSter 0 (CCRO)ccieiiiiiiiiiiiiee et e e eeaaaa s 122

Core Configuration Register 1 (CORT)ciiiiiiiie it 122

dcbt and debtst Operationo 122

fo ol (=F=To I @ T=T = 11] o PRSP 123

Data Cache Parity OPErationsc...uuiiiiiieiii e e e e e e e e e e e e e e e e e aeanes 125
Simulating Data Cache Parity Errors for Software Testingccccceiiiiiiic e, 126

5. Memory Managementccccoeiiiiiiniire s 129
IMIMU OVEIVIEW ..ottt ettt e et e e e e oo e e e e e e eeeeaeeaeeaaeannensaeeeeeeaaeeeeeaaannnnsnnaneeaaaaaeeanaanns 129
Support for PowerPC Book-E MMU ArchiteCture ... 129
Translation Lookaside BUFFETcoouiiiiiiiiie e e 130
ppcd40x5TOC.fm. Contents

July 15, 2003 Page 5 of 573

User's Manual ====5=
PPC440x5 CPU Core Preliminary
Page [dentifiCationcoooiiiiiiiiice e e e e e e e e e e raaaaeeaaeaaaa 134
Virtual Address FOrmMation ... e 134
Address Space Identifier CONVENtIoNo e 134

B = = (o g T o oo Y 135
AdAress TranSIAtioNoooiiiii et e e e e e e e e e e e e e 136
o1 O 1 o S 138
=T o1 U | (= o o1 S 138
LT (= AN o= S 138
REAA ACCESS ...ttt ettt et e e e oot e et e e et e e e e e et e e aaa b e e et e e e e e e e e e e aanree 139
Access Control Applied to Cache Management INStructionscccccceeeeiiiiiiiiiiiieiee e, 139
Storage ALIDULESooiiiie et 140
WIE-TRIOUGN (W) ettt e ettt e e e et e e e e eanareee e 141

(02 Tot a1 o T a1 a1 071 (=Te I () TP OO PRPPRRR 141
Memory Coherence RequIred (M)eiiiiiiiiiieie e 141
LCTUE=] (o [=To N (€ PP PR 141

L gL L= T T (= PRSPPI 142
User-Definable (UO—UB)ooooiiiiiieeieee ettt e e e s e e e e e e e e e s e e s s eeareaaeaeeesanannes 142
Supported Storage Attribute CombinNatioNSooiiiii e 143
Storage Control REGISIEISuuiiiiiiiiiiie e e e e e e e e s e e sr e rereeeaaeas 143
Memory Management Unit Control Register (MMUCR)ccccoiiiiiieiiiiiceeeee e 143
PrOCESS ID (PID) ...eeiiiieiiiiiiee ettt ettt e e e e e e e e e e e e e e e ae e e s e e e ————araaaaeeeaeeannnnnrees 146
ShadOW TLB AITAYS ...ttt ettt e bt e s e e bt e e e e ab bt et e s e e bt et e e e e naabree e e e annee 147
TLB Management INSIIUCHIONSoooiiiiiiiiiiiii e e s s s e e e e e e e e e e e aeaeeeees 148
TLB Search Instruction (HIDSX[.]) wereeieeeeiiiii i e e e e e e e s eeeeae s 148
TLB Read/Write Instructions (HIOre/tIbwe)c..ooviiiiiiiiiii e 149
TLB Sync InStruction (HDSYNC) ..o 149
Page Reference and Change Status Managementoviiiiiiiiiiii e 150
TLB Parity OPErationSccciiiiiiiiiiiieeie et e e e e e e e e e e e e et e e aeeeaeaeeesassnnnnenrraeeeeeaeas 150
Reading TLB Parity Bits With tIoreoeeee e 151
Simulating TLB Parity Errors for Software Testingcccooviiiiiiiiiiii e 152

6. Interrupts and EXCePtiONS ... e e 153
L YT TS 153
11 (=T g U] o G =TS T OSSP 153
ASYNCIrONOUS INEITUPES ..o e 153
SYNCHIONOUS INTEITUPES ...vvviiiiiiie e e e a e e e e e e e e s e e rereaeaaeeeeeeaans 153
Synchronous, Precise INTEITUPLS ..o e eaa s 154
Synchronous, Imprecise INterrupts ... 154
Critical and Non-Critical INterrupts ...t e e 155
Machinge Check INTEITUPES ..o e e e e e e e e e e eas e 155
INEEITUPE PrOCESSING ...eiiiiiiiiiiiei ittt a et e e e bttt e e s bt e e e ebbe e e e e abbbe e e e e eanbeeeeeans 156
Partially Executed INSrUCHIONSooiiiiiiii e 158
Interrupt Processing REGISIEISuuue i s s ererennnnnes 159
Machine State Register (MSR)oeiiiiiiiiie e e e e e 159
Save/Restore Register 0 (SRRO)coooiiiiiiiiiiiiie e 161
Save/Restore Register 1 (SRRM) ... 161
Critical Save/Restore Register 0 (CSRRO)uoiiiiiiiiiieiiiie e 162
Critical Save/Restore Register 1 (CSRR1T) ...uiiiiiiiiii e 162
Machine Check Save/Restore Register 0 (MCSRRO)oooiiiiiiiiiiiiiiiee e 163
Machine Check Save/Restore Register 1 (MCSRRT)oeiiiiiiiiiii e 163
Contents ppcd440x5TOC.fm.

Page 6 of 573 July 15, 2003

é§_=?== User’s Manual
Preliminary PPC440x5 CPU Core
Data Exception Address Register (DEAR)ooi i 164
Interrupt Vector Offset Registers (IVORO—IVORTS) ..o 164
Interrupt Vector Prefix Register (IVPR) ..o 165
Exception Syndrome Register (ESR)cooiiiiiiiiiiiii e 166
Machine Check Status Register (MCSR)ooiiiiiiiiiieiie e e 168
INterrupt DEfinItiONSo e et e e et e et e e e e e e e e e e et e e e e e aa e e e e e nenneees 169
L0711 Tez= 1IN T aT o101 QN 1 (=Y 4 U o SRS 172
Maching ChecCK INTEITUPToooeiii e e e e e e e e e eaaaaeeeeeeaans 172
(D=1 e= IS (o] x=To [T 10 (=14 U] o) QP PPPPPPPRRR 175
Instruction Storage INTEITUPLoii e 178
External INPUt INtEITUPDL ...t e e e e e e e e e e e e e e e e e e enne 179

F [T [T =T a1 L1 (=T (U S 179
oo =T g TN] (T o U o PPN 180
Floating-Point Unavailable INterrupt ... 183
System Call INTEITUPLo e e e e e e e e s e st n s b e e e aaaeeeanaanns 184
Auxiliary Processor Unavailable INterrupt oo 184
Decrementer INErrUPLo ettt e ae e e e aaas 185
Fixed-Interval Timer INterrupt ...t e e e e e e e e e e e e 185

AT 1] e (oo T T g 1=l) (=5 (] o) U 186
Data TLB Error INTErTUPL ...t e e e e e s e e e e e e e aaaeaeeeees 186
Instruction TLB Error INTerrUPL e e e e e e e e e e e e e e e e e ennes 188

(D=t 10T I 1) (=T o (U] o) S PP PROPTPPPRR 188
Interrupt Ordering and MaSsKINGcoooiiiiiiii ittt e e sttt e e e e st e e e e sbbeee e e s anreeeaeans 192
Interrupt Ordering Software ReqUIrEmMENtSccuuiiiiiiiiiiie e 193

[a1 Y AU o A0 (o =T S PP PRSP 194

L (oT=T o[TN o To T 41 {1 S 195
Exception Priorities for Integer Load, Store, and Cache Management Instructions 196
Exception Priorities for Floating-Point Load and Store Instructionsccccoociiiiiiiiniiiinn, 196
Exception Priorities for Allocated Load and Store Instructionsccccoooiiiiiiiiiiiiiie 197
Exception Priorities for Floating-Point Instructions (Other) ..., 197
Exception Priorities for Allocated Instructions (Other) ..o 198
Exception Priorities for Privileged INSTrUCHIONScoiiiiiiiiiiee e 199
Exception Priorities for Trap INStrUCLIONS ..o 199
Exception Priorities for System Call INStruction ... 200
Exception Priorities for Branch INSIrUCHONSooouiiiiiiiii e 200
Exception Priorities for Return From Interrupt INStructionscccoooiiii i 200
Exception Priorities for Preserved InStructions ..., 200
Exception Priorities for Reserved InStructions ..., 201
Exception Priorities for All Other INStructionsoiiiiiiiiiie e 201

A L4 (= = e 1 1 4= TN 203
THME BASE ittt e e e e e e e bbbt e e e e e e e e e e b rees 204
Reading the TiMe Bas@cooiiiiiii e e 204
WIriting the TIimMe Bas@ ...t 205
DeCremeEnter (DEC)ooiiiiiiiiii ettt et e et e e e e e e annae s 205
Fixed INterval TIMEI (FIT) ..ottt e e e e e e e e e e e e eee e e e e s s bt e e e aereaaaaeeeanaanns 206
LAY = 1] e (oo TN I T o 1= PR 207
Timer Control REGISTEr (TCR)uiiiiiiiiiiie e e e e e e e e 209
Timer Status Register (TSR) ... e 210
Freezing the TiMer FACIlILIEScccooiiiiiii et e e e e et e as 211
ppcd40x5TOC.fm. Contents

July 15, 2003 Page 7 of 573

User's Manual ====5=
PPC440x5 CPU Core Preliminary
Selection of the TIMer CIOCK SOUICEocuuuiiiiiiiiiii ettt e e e e e e e e 21
8. Debug FaCilities ... - 213
Support for DeVEIOPMENT TOOISeiiiiiiiiii it e e e e e e e s e e eaeaaeeseeeeabenraeeeeeeaeas 213
DEDUQG MOAES ...ttt e et e e e oo e s bbb e et e et e e e e e e e e e e b e bre e e e eeaeeaaeaaaa 213
Internal DebUG MOE ...t e e e e e e e s 213
External DebUg MOGE ...ttt e e e e e e e e et e e e e e e e e e e e e nneees 214

[1T o 18 o IR = 1 1Y o T RS 214
Trace DeDUG MOGEot e e e e e e e eeeeeas 215
DEDUG EVENLS ...ttt e e sttt e e et et e e et e e e e e s 215
Instruction Address Compare (IAC) Debug EVENntcoooiiiiiiiii e 216
IAC Debug EVENt FIEIAScooiuiiiiiiiiiee e 216

IAC Debug EVENE PrOCESSING ...uuviiiiiiiieii it e e e e e e e e s ennraeeae s 219

Data Address Compare (DAC) Debug EVentoooiiiiiiiii e 220
DAC Debug EVENE FIEIASoeiiiiiiiiiieiee e 220

DAC Debug EVENE ProCESSINGuvuiiiiiiiiiie ettt e e e e e e e e e are e e eeaeeeeeeaans 223

DAC Debug Events Applied to Instructions that Result in Multiple Storage Accesses 224

DAC Debug Events Applied to Various Instruction Typesccccoiiiiiiiiiiiiiiieeeee e 224

Data Value Compare (DVC) Debug EVENt ... 225
DVC Debug EVENE FIIASocceeiiiieeieeee et e e e e e e st e e eaaa e e e e aaas 226

DVC Debug EVENE ProCESSINGuvuiiiiiiiiie ettt e e e e e e e e e eaae e e e e eaans 227

DVC Debug Events Applied to Instructions that Result in Multiple Storage Accesses 227

DVC Debug Events Applied to Various Instruction Typesccccooiiiiiiiiiiiiiiieeee e 227
Branch Taken (BRT) DebUgQ EVENLcooiiieee e 228
Trap (TRAP) DEBUG EVENL ... e e e e e s eaeaae s 228
Return (RET) DebUQG EVENL ...t 229
Instruction Complete (ICMP) Debug EVENLccuuiiiiiiiiii e 229
Interrupt (IRPT) DEBUG EVENTooeeeeiiiieeee e 230
Unconditional Debug EVent (UDE)ooiiiiiiiiiieeee ettt a e e 231
DebUg EVENt SUMIMAIYooiiiiiiiiii ettt e e e e e e e e 231
01T o1 8T T == SR 232
(1Y o1 UL I T 1= gl o oY= Y PRSP 232
DEDUG REGISIEIS ...ttt ettt e e e e e et e e e b e e e e e e aabnbe e e e e nneas 232
Debug Control Register 0 (DBCRO)coiiiiiiiiiiiiiiiiee ettt 233
Debug Control Register 1 (DBCRM)uiiiiiiiiiieieiiee et 234
Debug Control Register 2 (DBCR2)ooiiiiiiiii ettt e e e e e e e e e e 237
Debug Status RegiSter (DBSR) uuiiiiiiiiiii ittt e e e e e e e e e e e e e e e e e e e narnaree s 238
Instruction Address Compare Registers (IACT—IACA) ... 239
Data Address Compare Registers (DACT—DAC2)ccooiiiiiiiiiiiiie e 240
Data Value Compare Registers (DVC1—DVC2)ouuiiiiiiiiieiieceieeeee e 240
Debug Data Register (DBDR)uuuiiiiiiiiie et e e e e e e s e s e e e e e e e e e s s naneees 241

9. INSLrUCHION Set ... s 243
INStruction Set Portabilitycoooiiiiiii e a e e e e e 244
INSTIUCHION FOMMALS ...ttt s e s e seeeeeeeaaaeaeeseeeeesssesesnnnnns 244
PSEUAOCOTE ... e 245
L@ 07=T = (o] gl o Yo=Y [T oo OSSR 247
LT 5] (T g U 7= Vo 1 UPPUPPR 247
Alphabetical INStruCtion LiStINGcooiiiiiiii e 247
= o [[SRR 248
Contents ppcd440x5TOC.fm.

Page 8 of 573 July 15, 2003

ppcd40x5TOC.fm.
July 15, 2003

(o]t 2 (o TR

ACDZ e
(o [eoo; IR T

IVW e

User's Manual

PPC440x5 CPU Core

Contents
Page 9 of 573

User’'s Manual

PPC440x5 CPU Core

MACCRAW ...t
MACCRWS ...

macchwsu

01T) S USSP
MUICAW e
MUICAWU ...
MUINAW e,

Contents
Page 10 of 573

Preliminary

ppcd440x5TOC.fm.
July 15, 2003

10T R
Y o o R
FIWINM e
FIWNIM e

HDrE e,

ppcd40x5TOC.fm.
July 15, 2003

NMACINW .o

User's Manual

PPC440x5 CPU Core

Contents
Page 11 of 573

User’s Manual ééé?é
PPC440x5 CPU Core Preliminary
11101537/ 2 oSS 428
L1011 PO PP 429
L0 PP PPPPPTP 430

10,7 S 433
(LT EPPPPPRP PR 435

{T LT PP PP 436
(o] T PP P PP TPPPPTTP 437
(o] PP PP 438

D (o] 1 PP OO 439
10. RegiSter SUMMATIY ... s n e annn e 441
T o[£ (=T G021 (=Yo (o] 41T PSS PRPRRPR 441
RESEIVEA FIEIAS ..ottt e e e e e e ettt e e e et e e e e e e e ab e b e e e e e eeeaeeeeas 445
Device Control REGISIEIS ... et e e e b 445
Alphabetical Register LiStINGcccoooiiiiiiii s eeee e annnnnnnns 447
O 07 LSRR 448

O 07 SRS 450

O o USRS 452
O] SRS 453
O] o SRR 454

O I USRS 455

[N @t B N SRS 456

)] =T 0 SRS 457

3] =1 0 o USRS 459

] =T 0 USRS 461
)= D PP UUPT PP 463

] 2T SRR 464

[10 I o o USSR 466
10 5 I USRS 467
) o PP UUPT PP 468

3 = SRR 469

[= 7 o USSR 470
DINVO—DINV G ettt e oottt et e e e e e e e e s s h bbb ettt e ee e e e e e e e e aab s e te et e e e e e e e e e anannees 471

D IV 0 I Y T PO PP UUPPPP RSO 472

[LY g B I SRR 473
LAY Y PP UUPT PP 474
] o SRR 475

€T 0] o i SRR 477

N Ot B Y USSR 478
107 = USSR 479
107 = I o USSR 480
107 = I] PRSP 481

L YA A A PP PTPT PRSP 482
Y0 I Y TP PPUPT PRSPPI 483
Y PP PP PPP PP 484
IVORO-IVORTS ..ttt e et e e e ettt e e st e e e e ssbe e e e e s neeeeeeansnaeeeannnneeas 485
Y4 o o PP PP 486
PP PP UUPT PP 487
L2 T USSR 488
102 T {0 SRS 489
L2 Ty PR SR 490
Contents ppcd440x5TOC.fm.

Page 12 of 573 July 15, 2003

ééé?é User’s Manual
Preliminary PPC440x5 CPU Core
IMIIMIUGCKR ...ttt et e ettt e e ettt e e e s nt et e e e e ant bt e e e e ensbe e e e e anntbeee e e nbeeeaeeanssaeaeennnnes 491

] PRSP 492

e |0 PRSP 494
P PSRR 495

Y PRSP 496
LS I RSO RRR 497

T B G0 ST o (PSR 498

T {0 PR SRR 499

ST PRSP 500

L= PP OPRSRSPPPRIN 501

LI = RSP RSRSPPPRIN 502

L1 R OPRSRSPPPRIN 503

LI5S 2 R OPRSRSPRPRIN 504
USPRGO ... eeiiiie e ettt e ettt e sttt e e s sttt e e sse e e e e s nseeeee e nsaeeeeeaaneteeaeeannareae e anreeaeeannrreeeeeannes 505

XE R ettt e e et ——eeeeeah———ee e e et ——eee e et h—eeeeeatteeeeeattteeeesataeeeeeantraeeeaaanraeaeeans 506
Appendix A. INStruction SUMMArY ... e 507
INSTFUCHION FOIMALS ...t e e e e e e e et e e e e e e e e e e e e e anaae 507
INSTFUCHION FIEIAS ... e e e e e e e e 508
Instruction Format DIagramSooiueiiiiiiiiie e e 509

L O I e ettt et ettt oot oo oo ettt e e ——— e ————— e eeaeeeeeaeeaeaaaaeatetreeetera————————————————— 510

= o] o PSP P PP PPPPPP 510

ST O o T o PRSP 510

Do O I e e e e e e e e e e e et e e et ——— b ————————————aaaaaaans 510

Ko O Nl ettt oo e ettt et eaeeeeeaeaaaeaeaeeeeeteer——— b ———————— 511

Do o4 o PP PEPP T PRSPPI 512
DG o T o 1 PRSP 512

KO O et e e e e e e e e e e e e e e e e e ee e e e e e ——— b ————— 512

| o]y o o T STUPP 512
Alphabetical Summary of Implemented INStrUCLIONScooiiiiiiiiiiiie e 512
Allocated INSruCtion OPCOAESciiiiiiiiii e e et e e e e e e e e e e e e e e e ee e e e e eeeeeesresanaans 543
Preserved INStruction OPCOAESooiiiii it e e e e e e e e e e e neeeeeeeeaaeeeean 543
Reserved INStruCtion OPCOAESoiiiiiiiiiiiccie et e e e e e e e e e e e e e et rraeeaaaaens 544
Implemented Instructions Sorted by OPCOAEcoooiiiiiiiiieeeee e 544
Appendix B. PPC440x5 Core Compiler Optimizationsccccccevei i ccicccccccrrccrcc e, 553
g o =) PRSP PRPRRTRS 555
LAY E=T o o T I o T S 573
ppcd40x5TOC.fm. Contents

July 15, 2003

Page 13 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Contents ppcd440x5TOC.fm.
Page 14 of 573 July 15, 2003

é;'é_??: User’'s Manual
Preliminary PPC440x5 CPU Core
Figures

Figure 1-1. PPCA440x5 Core BIOCK Diagramccoiiiiiiiiiiiiieeeiiee ettt 30
Figure 2-1. User Programming Model REGISIErSoiiiiiiiiiiii e 47
Figure 2-2. Supervisor Programming Model ReGISIErScc.uuvviiiiiiiiiiiiiiieeeee e 49
Figure 2-3. LINK REGIStEr (LR) oot et 65
Figure 2-4. Count REGISTEr (CTR) ...eiiiiiiiiiiii ittt e e e b e e 66
Figure 2-5. Condition ReGIStEr (CR)ciiiiiiiiii i e e e e e e e e e e s rreeaaaaeeas 66
Figure 2-6. General Purpose Registers (RO-R31) ..o 69
Figure 2-7. Integer Exception Register (XER)coooiiiiiiii e 70
Figure 2-8. Special Purpose Registers General (USPRGO, SPRGO-SPRG7)ccccvvveeeeeiiiiiiiiiieeeeeeenn 73
Figure 2-9. Processor Version ReGIStEr (PVRY)cooiiiiiiiii ittt e e e e e e s 74
Figure 2-10. Processor Identification Register (PIR)oooiiiiiiiii e 74
Figure 2-11. Core Configuration Register 0 (CCRO)ccoiiiiiiiiiiiiiie e a e 75
Figure 2-12. Core Configuration Register 1 (CCRT) ...ooioiiiiiiieeeeee et 76
Figure 2-13. Reset Configurationooi it e e e 77
Figure 4-1. Instruction Cache Normal Victim Registers (INVO—=INV3)cccoiimiiiiiiiiiiiceee e, 95
Figure 4-1. Instruction Cache Transient Victim Registers (ITVO—=ITV3)ccccciiiriiiiiiieiieeceeee e 95
Figure 4-1. Data Cache Normal Victim Registers (DNVO—DNV3)coocoiiiiiiiiiiiiiiee e 95
Figure 4-1. Data Cache Transient Victim Registers (DTVO-DTV3)cooiciiiiiiiiieee e 95

Figure 4-2. Instruction Cache Victim Limit (IVLIM)oooiiiiiie e 97
Figure 4-2. Data Cache Victim Limit (DVLIM)ooiiiii e 97
Figure 4-3. Cache Locking and Transient Mechanism (Example 1)1ccccooiiiiiiieiei e 99

Figure 4-4. Cache Locking and Transient Mechanism (EXample 2)occcoviiiiieeiee e 100

Figure 4-5. Core Configuration Register 0 (CCRO)coiiiiiiiiiiiiiiee e 106
Figure 4-6. Core Configuration Register 1 (CCRT) ..oooiiiiiiiiiie e 107
Figure 4-7. Instruction Cache Debug Data Register (ICDBDR)ccccoiiiiiiiiiiiiiiiieeee e 109
Figure 4-8. Instruction Cache Debug Tag Register High (ICDBTRH)ooiviiiiiiiiiiie e, 110
Figure 4-9. Instruction Cache Debug Tag Register Low (ICDBTRL)ccoooiiiiiiiiiiiiiee e, 110
Figure 4-10. Data Cache Debug Tag Register High (DCDBTRH)ccooiiiiiiiiiiiieeeeeee e 124
Figure 4-11. Data Cache Debug Tag Register Low (DCDBTRL)coiiiiiiiiiiiiiiiiie e 124
Figure 5-1. Virtual Address to TLB Entry MatCh ProCessoovviiiiiiiiiiiiiiirrrrr e ea e 136
Figure 5-2. Effective-to-Real Address Translation FIOWcccuveiiiiiiiiiiiiiieeee e 137
Figure 5-3. Memory Management Unit Control Register (MMUCR) ..o 143
Figure 5-4. ProCesS ID (PID)euuiiiiiiiiiie ettt e e e e e e e e e e e et e e e e e e e e s e e s r e rnraaaaaaas 147
Figure 5-5. TLB Entry Word Definitionscoocuiiiiiiiiieeee ettt e e e raaeaeea s 149
Figure 6-1. Machine State Register (MSR)oooiiiiii e 159
Figure 6-2. Save/Restore Register 0 (SRRO)cooiiiiiiiiiiiiiiiie et e e 161

Figure 6-3. Save/Restore Register 1 (SRRT)uooiiiiiiiie e 162
Figure 6-4. Critical Save/Restore Register 0 (CSRRO)cooiiiiiiiiiiiiie e 162
ppc440x5LOF.fm. Figures

July 15, 2003

Page 15 of 573

User’'s Manual

PPC440x5 CPU Core

Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.

Figures
Page 16 of 573

Preliminary
Critical Save/Restore Register 1 (CSRR1) ...uuiviiiiiiiieeiee e 163
Machine Check Save/Restore Register 0 (MCSRRO)cccvviiiiiiiiiiieiiiiiiiee e 163
Machine Check Save/Restore Register 1 (MCSRR1)oooiiiiiiiiiiiiiii e 164
Data Exception Address Register (DEAR)ooiiiiiiiii it 164
Interrupt Vector Offset Registers (IVORO=IVORT5) ... 165
Interrupt Vector Prefix Register (IVPR) ... 166
Exception Syndrome Register (ESR)c.uviiiiiiiiieii e 166
Machine Check Status Register (MCSR)coviiiiiiiiiieeee e 168
Relationship of Timer Facilities to the Time Base ..., 203
TimeE BaSE LOWET (TBL) ...uvuiiiiiiiieeiii ittt e e ettt e e e e e e s e e st e e e e e e e e e e e e ennssnsnenneeas 204
Time Base UPPEr (TBU) ...oouieiiiiiie ittt e e e e e e e e e e e e e e s ennnreaeneeas 204
Decrementer (DEC)oiiiiiiii et e e 206
Decrementer Auto-Reload (DECAR) ... 206
Watchdog State MacChiNgccooiiiiiiiii e e e e e 209
Timer Control Register (TCRY)viiiiiiiiiee e 210
Timer Status Register (TSR) ..o 211
Debug Control Register 0 (DBCRO)uuuiiiiiiieeiie e a e e e 233
Debug Control Register 1 (DBCRM) ..ooiiiiiiiiiiiie et 234
Debug Control Register 2 (DBCR2)cocuuiiiiiiiiiee et 237
Debug Status Register (DBSR)ccoiiiiiiiiiiiee et e e e e e e e e 238
Instruction Address Compare Registers (IAC1—IACA4)ocouieiiiiiiiiiiiiie e 240
Data Address Compare Registers (DACT—DAC2)coiiiiiiiiiiiiiiiiee e 240
Data Value Compare Registers (DVC1-DVC2)ooooiiiiiiiiiiee e 240
Debug Data Register (DBDR)c.uuiiiiiiiiiiiee ettt e e 241
Core Configuration Register 0 (CCRO)cuuviiiiiiiiiii it 448
Core Configuration Register 1 (CCRT) ..o e 450
Condition ReGiSter (CR) ...oeiiiiiiiiii it 452
Critical Save/Restore Register 0 (CSRRO)cooiiiiiiiiiiiiiiieeiieee e 453
Critical Save/Restore Register 1 (CSRRM)uiiiiiiiiiiiiiie e 454
Count RegiSter (CTR) ...t e e e 455
Data Address Compare Registers (DACT—DAC2)cc.cooiiiiiiiiiiiiiiee e 456
Debug Control Register 0 (DBCRO)uuiiiiiiiieiiee et e e e 457
Debug Control Register 1 (DBCRM) ..ooiiiieiiiiieeee e 459
Debug Control Register 2 (DBCR2)cocuueiiiiiieiee ettt 461
Debug Data Register (DBDR)ccooiiiiiiiiiiieiie ettt e e e e e e e e e e e e eanernaees 463
Debug Status Register (DBSR)uuiiiiiiiiiiiie ettt 464
Data Cache Debug Tag Register High (DCDBTRH)coiiiiiiiiiiiiiiiie e 466
Data Cache Debug Tag Register LOW (DCDBTRL)ovvviiiiieeieiieiiiiiieeeeeee e 467
Data Exception Address Register (DEAR)ocuuiiiiiiiiiii e 468
ppc440x5LOF .fm.

July 15, 2003

é;'é_??: User’'s Manual
Preliminary PPC440x5 CPU Core
Figure 10-16. Decrementer (DEC)oooiiiiiiiiiie et e e e e e e e e e e s s b e e e e e eaaaeaeean 469
Figure 10-17. Decrementer Auto-Reload (DECAR)ooiiiiiiiiiiee et 470
Figure 10-18. Data Cache Normal Victim Registers (DNVO—DNV3)occoiiiiiiiiiiiiiiiiee e 471
Figure 10-19. Data Cache Transient Victim Registers (DTVO-DTV3)ccoooiiiiiiiiiiiiiieeee e 472
Figure 10-20. Data Value Compare Registers (DVC1-DVC2)oeeuiiiieeeiiiiiiiiieiieeee e 473
Figure 10-21. Data Cache Victim Limit (DVLIM)oooiiiiii e 474
Figure 10-22. Exception Syndrome RegiSter (ESR)ccoviiiiiiiiiiiiiiiie e 475
Figure 10-23. General Purpose Registers (RO-R31)oooiiiiiiiiiiiieeee et 477
Figure 10-24. Instruction Address Compare Registers (IAC1—IACA4)ocoiiiiiiiiiiiiiiiiie e 478
Figure 10-25. Instruction Cache Debug Data Register (ICDBDR)cccoiiiiiiiiiiiiiieiiieee e 479
Figure 10-26. Instruction Cache Debug Tag Register High (ICDBTRH)cccocviiiiiiiiiiieieeeeeee e, 480
Figure 10-27. Instruction Cache Debug Tag Register Low (ICDBTRL)ceoveiiiiiiiiiiiiiieeeiieee e 481
Figure 10-28. Instruction Cache Normal Victim Registers (INVO-INV3)ccccoiiiiiiiiiiieeeee 482
Figure 10-29. Instruction Cache Transient Victim Registers (ITVO—=ITV3)ccoooiiiiiiieie e, 483
Figure 10-30. Instruction Cache Victim Limit (IVLIM) ..o 484
Figure 10-31. Interrupt Vector Offset Registers (IVORO—IVORTS)ooiiiiiiiiiiiiiii e 485
Figure 10-32. Interrupt Vector Prefix Register (IVPR)ooooiiii e 486
Figure 10-33. LiNk ReGIStEr (LR) ..cciiiiieiii ittt e e e e e 487
Figure 10-34. Machine Check Status Register (MCSR)cooiiiiiiiiiiii e 488
Figure 10-35. Machine Check Save/Restore Register 0 (MCSRRO)ccviiiiiiiiiiieiiiiiie e 489
Figure 10-36. Machine Check Save/Restore Register 1 (MCSRR1)coooiiiiiiiiiiiiiiii e 490
Figure 10-37. Memory Management Unit Control Register (MMUCR)ccooiiiiiiiiiiiiiee e 491
Figure 10-38. Machine State Register (MSR)uuiiiiiiiiie i aeeae s 492
Figure 10-39. ProCess ID (PID)ccooiiiiiiiiiiiie ettt sttt e ettt e e e ab et e e e e ab b e ee e s e nnneeeaeaas 494
Figure 10-40. Processor Identification Register (PIR)oooiiiiiiiii e 495
Figure 10-41. Processor Version ReGIStEr (PVR)uuiiiiiiiii ittt e e 496
Figure 10-42. Reset Configurationooo it 497
Figure 10-43. Special Purpose Registers General (SPRGO-SPRGT7)ccceeeiiiiiiiiiiiiiiiiiiee e 498
Figure 10-44. Save/Restore Register 0 (SRRO)cooiiiiiiiiiiiiiiiee e reeee e 499
Figure 10-45. Save/Restore Register 1 (SRRT) ... 500
Figure 10-46. Time Base LOWET (TBL)coiiiiiiiiiiiiiiiii sttt e s s 501
Figure 10-47. Time Base UPPEr (TBU) ...ocooiiiiiiiee ettt e e e e e e e e e e e e e ee e e eeaaeaeean 502
Figure 10-48. Timer Control Register (TCR)ooiiiiiiiiiiie e 503
Figure 10-49. Timer Status Register (TSR)coiiiiiiii e 504
Figure 10-50. User Special Purpose Register General (USPRGO)ccooviiiiiiiiiiiiiiiiiiie e 505
Figure 10-51. Integer Exception Register (XER)oooiiiiiii e 506
Figure A-1. 1 InStruction FOrMaALtooiii e e e 510
Figure A-2. B INStrUCtioN FOIMALoeiiiiii ereeeereees 510
Figure A-3. SC INStruction FOrMAtoouiiiiiiii e 510
ppc440x5LOF.fm. Figures

July 15, 2003

Page 17 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary
Figure A-4. D InStruction FOrMaAtoooeiiiiei e e e e e e e e e e e aaae e 510
Figure A-5. X INStrUCtioN FOIMAtooiiiiiiiieieii e e e e e e e e e e e e e aaaeans 511
Figure A-6. XL InStruCtion FOrM@Atcooo it e e 512
Figure A-7. XFX INStrUCtiON FOIMALoueiiiiiiiecee e s e e e e e e e e e e e eeaenaeeeeeees 512
Figure A-8. XO INStruction FOrMAtcoiiiiiiiiiee et e e e e e eeaaaae s 512
Figure A-9. M INSLruCtion FOMMALcooiiiiiiii e e e 512
Figures ppc440x5LOF .fm.

Page 18 of 573 July 15, 2003

é;'é_??: User’'s Manual
Preliminary PPC440x5 CPU Core
Tables

Table 2-1. Data Operand DefinitioNSoooiiiiiii e e 40
Table 2-2. Alignment Effects for Storage Access INStructions ..o, 40
Table 2-3. oI5 (=T g O (=Yo [o] (1= PR URRRRR 50
Table 2-4. INSIIUCHION CatEOrIES ..eiiiiiiiii et e e e ee e 56
Table 2-5. Integer Storage Access INSIrUCHIONSooiiiiiiiiiiii e 57
Table 2-6. Integer Arithmetic INSIIUCHIONS ... 57
Table 2-7. Integer Logical INSIFUCIONScooiiiiiiiie e 58
Table 2-8. Integer Compare INSIIUCHIONSooouiiiiiiiie e 58
Table 2-9. Integer Trap INSIIUCHIONSvviiiiicecec e e e e e e e e e e e e e e e eeeees 58
Table 2-10. Integer Rotate INSIrUCHIONSoooiiiiiieee e e 58
Table 2-11. Integer Shift INSrUCHIONSooiiii e 59
Table 2-12. Integer Select INSIIUCLIONoiiiiiiii e a e e e e e e e e 59
Table 2-13. Branch INSIIUCLIONS ... et e e e 59
Table 2-14. Condition Register Logical INSTrUCHIONSueiiiiiiiiiii e 60
Table 2-15. Register Management INStrUCHIONSouviiiiiiiiii e s 60
Table 2-16. System Linkage INStIUCLIONScoiiiiiiiii e 60
Table 2-17. Processor Synchronization INSrUCIONcooiiiiiiiiiiii e 60
Table 2-18. Cache Management INStrUCLIONS ... 61
Table 2-19. TLB Management INSIrUCLIONSoooiiiiiiiiiie e e 61
Table 2-20. Storage Synchronization INSTTUCHIONScoiiiiiiiiii e 62
Table 2-21. Allocated INSIFUCLIONS ... e e e e e 62
Table 2-22. BO Field Definitionooieiiiiiiiiiii et e et e e e e e e e e anneeeas 63
Table 2-23. BO Field EXamMPIES ...ttt e nnnneees 64
Table 2-24. CR Updating INSIrUCLIONSooiiiiiiiiiiiie e e e e e e e e 67
Table 2-25. XER[SO,0V] Updating INStruCtioNScccuuiiiiiiiiieie e 71
Table 2-26. XER[CA] Updating INStrUCtIONScoi i 71
Table 2-27. Privileged INSIIUCHIONSccooiiiiiieeeeee e e ae e e e eeeas 78
Table 3-1. Reset Values of Registers and Other PPC440x5 Facilitiesccccccccoeevviiiiiiiiiee e 84
Table 4-1. Instruction and Data Cache Array Organizationcccocuuuieiiiiiiiiei e 94
Table 4-2. Cache Sizes and Parametersoooceiiiiiiiiiiieiiie et e e e e e seeeaeeas 94
Table 4-3. Victim Index Field SEIECONuoiiiiiii e 96
Table 4-4. Icread and dcread Cache Line Selectionccooiiiiiiiiiiiiiii e 109
Table 4-5. Data Cache Behavior 0N StOre ACCESSESuuiiiiiiiiiiieiiiiie e 117
Table 5-1. TLB ENMIY FI€lASeeeiiiiie et e e e e e e e e e e ae e e e e 131
Table 5-2. Page Size and Effective Address to EPN Comparisonccccooeiiiiiiiiiiiiiiineeeee e 136
Table 5-3. Page Size and Real Address FOrmationcccccccooiiiiiiiiiiiieee e 137
Table 5-4. Access Control Applied to Cache Management INStructionsccccccvvveeeeeeeeeiccccciinnee, 140
Table 6-1. Interrupt Types Associated with each IVOR ... 165
ppc440x5LOT.fm. Tables

July 15, 2003

Page 19 of 573

User’'s Manual

PPC440x5 CPU Core

Table 6-2.
Table 7-1.
Table 7-2.
Table 7-3.
Table 8-1.
Table 8-2.
Table 8-3.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.
Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 9-19.
Table 9-20.
Table 9-21.
Table 9-22.
Table 9-23.
Table 9-24.
Table 9-25.
Table 9-26.
Table 9-27.
Table 9-28.
Table 9-29.
Table 9-30.
Table 9-31.
Table 9-32.

Tables
Page 20 of 573

Preliminary
Interrupt and EXCEPION TYPES ...uiiiii it e e e e e e e e e e e e e e e e e raaare 169
Fixed Interval Timer Period Selectioncooiuiiiiiiiiiiiie e 207
Watchdog Timer Period Selectioncoooiiiiiiiiiiii e 207
Watchdog Timer EXception BENAVIOLccoooiiiiiiiiieeeeee e 208
=Y o1 Lo T Y=Y | (USRI 215
IAC Range Mode Auto-TOggle SUMMANYoceiiiiiiiiiiiiiieiie e 219
Debug EVENT SUMMEAIYuuiiiiiiiiei ittt e e e e e e e e ee e e e e e e e e e s e e e aeeenaees 231
[aTS 0o (o] g OF= | (=T (o] 4 =T PSP PRR 243
Allocated INSIrUCIONSo e e e e e e e 244
OPErator PrECEUEBNCEoiiiiiieiii ittt e e e e e s e e e e e e e e e e s e s rerareeeaaaaeeas 247
Extended MnemoniCs fOr @ddic..ueiiiiiiiiiie e 251
Extended Mnemonics for @ddiCoooiiii e 252
Extended Mnemonics for addiC.oooieiiiii e 253
Extended MNemoniCs fOr @ddiSuiii i 254
Extended Mnemonics for bc, bca, bel, bClaoeeiiiii e 263
Extended Mnemonics for beCtr, DCCEreeeeee e 268
Extended Mnemonics for bClr, DCIFT ... 272
Extended MNemoOnNiCS fOr CMP ..ot e e e e 275
Extended MNemoniCs fOr CMPI ..ooii it e e e 276
Extended MNemoniCs TOr CMPLooooiiiii e e e 277
Extended MNemoniCs fOr CMPlioooiiiii et e e 278
Extended MNemONICS fOF CrEQVeoiiiiiiii it e e e e e e e e e eeneenes 282
Extended MNemONICS fOr CINOTuuiiiiii et e et e e e eaaeeeeeeaes 284
Extended MNemONICS fOF CrOFoii it e e e e e e 285
Extended MNemONICS fOr CIXOT ..ot e e e e e e 287
Extended MNemoniCs fOr MDAooiiiiiii e e 348
Extended MnemoniCs for MISPIot 356
FXM Bit Field COrreSPONAENCEcoooieiiiiiieieiie e e e e e et e e e e e e e e e e e enneenes 359
Extended Mnemonics fOr MECITeiii i 359
Extended MNemoniCs fOr MESPI ..ot e e e 363
Extended MNemoniCs fOr NOK, NOK.oooiee e e 383
Extended MNemONICS fOr OF, OF.uuiiiiiiiiie ettt e e e ereeeeeeenes 384
Extended MNemONICS FOF OFiooiiiiiiieii e e e 386
Extended Mnemonics for riwimi, fwWimi. ... 391
Extended Mnemonics for riwinm, FIWINM. ... 392
Extended Mnemonics for rlwnm, FIWNM. ... 394
Extended Mnemonics for subf, subf., subfo, suUbfo.cccooiiiiiiii i 419
Extended Mnemonics for subfc, subfc., subfco, subfco.ccciiiiiiiiiiii 420
Extended MNemONICS fOr tWo i e e e 431
ppc440x5LOT.fm.

July 15, 2003

é;'é?é User’s Manual
Preliminary PPC440x5 CPU Core
Table 9-33. Extended MNemONICS fOF tWiooiiiiiiiiiiiiiiie e e 434
Table 10-1. Register CategoriEsccccuiiiiiiiiiiie e e e e e e e e e s e e e e e e aaaeeeeeeeannnes 441
Table 10-2. Special Purpose Registers Sorted by SPR NUMDbErcccviiiiiiiiiiiiee e 443
Table 10-3. Interrupt Types Associated with each IVOR ... 485
Table A-1. PPC440x5 Instruction Syntax SUMMAIYccooiiiiiiiiiiiiiiiiiice e 513
L] o) [Y | ToTor= 1 (= To I @ o Yoo Yo [T PR 543
Table A-3. Preserved OPCOUESccoiiuiiiiiiiiiii ettt e e e e e e e e et eeeaeeaeseseesasssnreeeeeeaaeseeaanannnes 543
Table A-4. ReServed-NOP OPCOUESuuiiiiiiiiiee it e e e e e e e e e e e e e e e s e esberaeaaeeaaaaeeesaaasnnnnnes 544
Table A-5. PPC440x5 Instructions by OPCOAEcooiiiiiiiiiiiiiiii e 545
ppc440x5LOT.fm. Tables

July 15, 2003

Page 21 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Tables ppc440x5LOT.fm.
Page 22 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

About This Book

This user’'s manual provides the architectural overview, programming model, and detailed information about
the instruction set, registers, and other facilities of the IBM™ Book-E Enhanced PowerPC™ 440x5
(PPC440x5™) 32-bit embedded controller core.
The PPC440x5 embedded controller core features:

» Book-E Enhanced PowerPC Architecture™

* Dual-issue superscalar pipeline with dynamic branch prediction

» Separate, configurable (up to 32KB each) instruction and data caches, with cache line locking

» DSP acceleration with 24 new integer multiply-accumulate (MAC) instructions

* Memory Management Unit (MMU) with 64-entry TLB and support for page sizes of 1TKB-256MB

* 64GB (36-bit) physical address capability

» 128-bit PLB interface, part of the IBM CoreConnect™ on-chip system bus architecture

« JTAG debug interface with extensive integrated debug facilities, including real-time trace

Who Should Use This Book

This book is for system hardware and software developers, and for application developers who need to
understand the PPC440x5. The audience should understand embedded system design, operating systems,
RISC microprocessing, and computer organization and architecture.

preface.fm. About This Book
July 15, 2003 Page 23 of 573

User’'s Manual

PPC440x5 CPU Core

How to Use This Book

Preliminary

This book describes the PPC440x5 device architecture, programming model, registers, and instruction set.
This book contains the following chapters:

Overview on page 27

Programming Model on page 39
Initialization on page 83

Instruction and Data Caches on page 93
Memory Management on page 129
Interrupts and Exceptions on page 153
Timer Facilities on page 203

Debug Facilities on page 213

Instruction Set on page 243

Register Summary on page 441

This book contains the following appendixes:

To help readers find material in these chapters, this book contains:

Instruction Summary on page 507
PPC440x5 Core Compiler Optimizations on page 553

Contents on page 3.
Figures on page 15.
Tables on page 19.
Index on page 555.

About This Book
Page 24 of 573

preface.fm.
July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Notation

The manual uses the following notational conventions:
+ Active low signals are shown with an overbar (Active_Low)
* All numbers are decimal unless specified in some special way.
» Obnnnn means a number expressed in binary format.

« 0Oxnnnn means a number expressed in hexadecimal format.

Underscores may be used between digits.

RA refers to General Purpose Register (GPR) RA.

(RA) refers to the contents of GPR RA.

(RA|0) refers to the contents of GPR RA, or to the value 0 if the RA field is 0.

+ Bits in registers, instructions, and fields are specified as follows.

+ Bits are numbered most-significant bit to least-significant bit, starting with bit 0.

Note: This document differs from the Book-E architecture specification in the use of bit numbering
for architected registers. Book-E defines the full, 64-bit instruction set architecture, and all registers
are shown as having bit numbers from 0 to 63, with bit 63 being the least significant. This manual
describes a 32-bit subset implementation of the architecture. Architected registers are described as
being 32 bits long, with bits numbered from 0 to 31, and with bit 31 being the least significant. When
this document refers to register bits 0 to 31, they actually correspond to bits 32 to 63 of the same reg-
ister in the Book-E architecture specification.

. Xp means bit p of register, instruction, or field X
. Xp:q means bits p through q of register, instruction, or field X
. Xp’q,m means bits p, q,... of register, instruction, or field X
* X[p] means a named field p of register X.
» X[p:q] means named fields p through q of register X.
* X[p,q,...] _ means named fields p, q,... of register X.
« X means the ones complement of the contents of X.

» A period (.) as the last character of an instruction mnemonic means that the instruction records status
information in certain fields of the Condition Register as a side effect of execution, as described in
Chapter 9, “Instruction Set.”

+ The symbol || is used to describe the concatenation of two values. For example, 0b010 ||0b111 is the
same as 0b010111.

« x" means x raised to the n power.

+ "x means the replication of x, n times (that is, x concatenated to itself n — 1 times). "0 and "1 are special
cases:

+ N0 means a field of n bits with each bit equal to 0. Thus S0is equivalent to 0b00000.
+ "1 means a field of n bits with each bit equal to 1. Thus 51is equivalent to Ob11111.
« /.1, 1ll, ... denotes a reserved field in an instruction or in a register.

» ? denotes an allocated bit in a register.

preface.fm. About This Book
July 15, 2003 Page 25 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

* A shaded field denotes a field that is reserved or allocated in an instruction or in a register.

Related Publications

The following book describes the Book-E Enhanced PowerPC Architecture:
* Book E: PowerPC Architecture Enhanced for Embedded Applications (www.chips.ibm.com/techlib/prod-
ucts/powerpc/manuals/)

The following CD-ROM contains publications describing the IBM PowerPC 400 family of embedded control-
lers, including this manual PowerPC PPC440x5 User’s Manual, and application and technical notes.

* IBM PowerPC Embedded Processor Solutions (Order Number SC09-3032)

About This Book preface.fm.
Page 26 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

1. Overview

The IBM™ PowerPC™ 440x5 32-bit embedded processor core, referred to as the PPC440x5 core, imple-
ments the Book-E Enhanced PowerPC Architecture.
This chapter describes:
+ PPC440x5 core features
+ The PPC440x5 core as an implementation of the Book-E Enhanced PowerPC Architecture
» The organization of the PPC440x5 core, including a block diagram and descriptions of the functional units
+ PPC440x5 core interfaces

1.1 PPC440x5 Features

The PPC440x5 core is a high-performance, low-power engine that implements the flexible and powerful
Book-E Enhanced PowerPC Architecture.

The PPC440x5 contains a dual-issue, superscalar, pipelined processing unit, along with other functional
elements required by embedded ASIC product specifications. These other functions include memory
management, cache control, timers, and debug facilities. Interfaces for custom co-processors and floating
point functions are provided, along with separate instruction and data cache array interfaces which can be
configured to various sizes (optimized for 32KB). The processor local bus (PLB) system interface has been
extended to 128 bitsand is fully compatible with the IBM CoreConnect on-chip system architecture, providing
the framework to efficiently support system-on-a-chip (SOC) designs.

In addition, the PPC440x5 core is a member of the PowerPC 400 Series of advanced embedded processors
cores, which is supported by the PowerPC Embedded Tools Program. In this program, IBM and many third-
party vendors offer a full range of robust development tools for embedded applications. Among these are
compilers, debuggers, real-time operating systems, and logic analyzers.
PPC440x5 features include:
» High performance, dual-issue, superscalar 32-bit RISC CPU
» Superscalar implementation of the full 32-bit Book-E Enhanced PowerPC Architecture
» Seven stage, highly-pipelined micro-architecture
+ Dual instruction fetch, decode, and out-of-order issue
» Out-of-order dispatch, execution, and completion
» High-accuracy dynamic branch prediction using a Branch History Table (BHT)
» Reduced branch latency using Branch Target Address Cache (BTAC)
» Three independent pipelines
+ Combined complex integer, system, and branch pipeline
« Simple integer pipeline
» Load/store pipeline

+ Single cycle multiply

Single cycle multiply-accumulate (DSP instruction set extensions)

overview.fm. Overview
July 15, 2003 Page 27 of 573

User’'s Manual

PPC440x5 CPU Core

9-port (6-read, 3-write) 32x32-bit General Purpose Register (GPR) file
Hardware support for all CPU misaligned accesses
Full support for both big and little endian byte ordering

Extensive power management designed into core for maximum performance/power efficiency

* Primary caches

Independently configurable instruction and data cache arrays

Array size offerings: 32KB, 16KB, and 8KB

Single-cycle access

32-byte (eight word) line size

Highly-associative (64-way for 32KB/16KB, 32-way for 8KB)

Write-back and write-through operation

Control over whether stores will allocate or write-through on cache miss

Extensive load/store queues and multiple line fill/flush buffers

Non-blocking with up to four outstanding load misses

Cache line locking supported

Caches can be partitioned to provide separate regions for “transient” instructions and data
» High associativity permits efficient allocation of cache memory

Critical word first data access and forwarding

Cache tags and data are parity protected against soft errors.

* Memory Management Unit

Separate instruction and data shadow TLBs

64-entry, fully-associative unified TLB array

Variable page sizes (1KB-256MB), simultaneously resident in TLB
4-bit extended real address for 36-bit (64 GB) addressability
Flexible TLB management with software page table search

Storage attibute controls for write-through, caching inhibited, guarded, and byte order (endianness)

Four user-definable storage attribute controls (for controlling CodePack™ code compression and

transient data, for example)

TLB tags and data are parity protected against soft errors.

* Debug facilities

Extensive hardware debug facilities incorporated into the IEEE 1149.1 JTAG port
« Multiple instruction and data address breakpoints (including range)
» Data value compare
» Single-step, branch, trap, and other debug events

Non-invasive real-time software trace interface

« Timer facilities

Overview
Page 28

64-bit time base

of 573

Preliminary

User's Manual

Preliminary PPC440x5 CPU Core

* Decrementer with auto-reload capability

» Fixed Interval Timer (FIT)

+ Watchdog Timer with critical interrupt and/or auto-reset

« Multiple core Interfaces defined by the IBM CoreConnect on-chip system architecture

+ PLB interfaces
« Three independent 128-bit interfaces for instruction reads, data reads, and data writes
* Glueless attachment to 32-, 64-, or 128-bit CoreConnect system environments
* Multiple CPU:PLB frequency ratios supported (N:1, N:2, N:3)
* 6.4 GB/sec maximum data rate to CPU
* On-chip memory (OCM) integration capability over the PLB interface

* Auxiliary Processor Unit (APU) Port
» Provides functional extensions to the processor pipelines, including GPR file operations
+ 128-bit load/store interface (direct access between APU and the primary data cache)
* Interface can support APU execution of all PowerPC floating point instructions
» Attachment capability for DSP co-processing such as accumulators and SIMD computation
» Enables customer-specific instruction enhancements for multimedia applications

» Device Control Register (DCR) interface for independent access to on-chip control registers
* Avoids contention for high-bandwidth PLB system bus

Clock and power management interface
JTAG debug interface

1.2 The PPC440x5 as a PowerPC Implementation

The PPC440x5 core implements the full, 32-bit fixed-point subset of the Book-E Enhanced PowerPC Archi-
tecture. The PPC440x5 core fully complies with these architectural specifications. The 64-bit operations of
the architecture are not supported, and the core does not implement the floating point operations, although a
floating point unit (FPU) may be attached (using the APU interface). Within the core, the 64-bit operations and
the floating point operations are trapped, and the floating point operations can be emulated using software.

See Appendix A of the Book-E Enhanced PowerPC Architecture specification for more information on 32-bit
subset implementations of the architecture.

Note: This document differs from the Book-E architecture specification in the use of bit numbering for archi-
tected regqisters. Specifically, Book-E defines the full, 64-bit instruction set architecture, and thus all registers
are shown as having bit numbers from 0 to 63, with bit 63 being the least significant. On the other hand, this
document describes the PPC440x5 core, which is a 32-bit subset implementation of the architecture. Accord-
ingly, all architected registers are described as being 32 bits in length, with the bits numbered from 0 to 31,
and with bit 31 being the least significant. Therefore, when this document makes reference to register bit
numbers from 0 to 31, they actually correspond to bits 32 to 63 of the same register in the Book-E architec-
ture specification.

overview.fm. Overview
July 15, 2003 Page 29 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

1.3 PPC440x5 Organization

The PPC440x5 core includes a seven-stage pipelined PowerPC core, which consists of a three stage, dual-
issue instruction fetch and decode unit with attached branch unit, together with three independent, 4-stage
pipelines for complex integer, simple integer, and load/store operations, respectively. The PPC440x5 core
also includes a memory management unit (MMU); separate instruction and data cache units; JTAG, debug,
and trace logic; and timer facilities.

Figure 1-1 illustrates the logical organization of the PPC440x5 core:

Figure 1-1. PPC440x5 Core Block Diagram

1%?_'3“ Instruction Cache Data Cache 1%?_‘3“
(Size Configurable) (Size Configurable)
v t. v
m
I-Cache Controller |3 MMU = | Load/Store Queues
[64-entry n
¢ D-Cache Controller
Instruction Branch 7y
Unit Unit » 4KB
(7]
Target BHT 3 -
Issue | Issue Addr x© 38
Cache <2
0 1 O ofC
| o >0 F
E o
ET o
E5E
Complex Simple Load g F
Integer < ?:ﬁs Integer Nl Cla:ﬁs_’ Store
Pipe Pipe Pipe -
2.5
ST
MAC o§%
o 3
| a

1.3.1 Superscalar Instruction Unit

The instruction unit of the PPC440x5 core fetches, decodes, and issues two instructions per cycle to any
combination of the three execution pipelines and/or the APU interface (see “Execution Pipelines” below, and
Auxiliary Processor Unit (APU) Port on page 36). The instruction unit includes a branch unit which provides
dynamic branch prediction using a branch history table (BHT), as well as a branch target address cache
(BTAC). These mechanisms greatly improve the branch prediction accuracy and reduce the latency of taken
branches, such that the target of a branch can usually be executed immediately after the branch itself, with no
penalty.

Overview overview.fm.
Page 30 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

1.3.2 Execution Pipelines

The PPC440x5 core contains three execution pipelines: complex integer, simple integer, and load/store.
Each pipeline consists of four stages and can access the nine-ported (six read, three write) GPR file. In order
to improve performance and avoid contention for the GPR file, there are two identical copies of it. One is dedi-
cated to the complex integer pipeline, while the other is shared by the simple integer and the load/store pipe-
lines.

The complex integer pipeline handles all arithmetic, logical, branch, and system management instructions
(such as interrupt and TLB management, move to/from system registers, and so on). This pipeline also
handles multiply and divide operations, and 24 DSP instructions that perform a variety of multiply-accumulate
operations. The complex integer pipeline multiply unit can perform 32-bit x 32-bit multiply operations with
single-cycle throughput and three-cycle latency;16-bit x 32-bit multiply operations have only two-cycle
latency. Divide operations take 33 cycles.

The simple integer pipeline can handle most arithmetic and logical operations which do not update the Condi-
tion Register (CR).

The load/store pipeline handles all load, store, and cache management instructions. All misaligned opera-
tions are handled in hardware, with no penalty on any operation which is contained within an aligned 16-byte
region. The load/store pipeline supports all operations to both big endian and little endian data regions.

Appendix B, “PPC440x5 Core Compiler Optimizations,” provides detailed information on instruction timings
and performance implications in the PPC440x5 core.

1.3.3 Instruction and Data Cache Controllers

The PPC440x5 core provides separate instruction and data cache controllers and arrays, which allow concur-
rent access and minimize pipeline stalls. The storage capacity of the cache arrays, which can range from
8KB-32KB each, depends upon the implementation. Both cache controllers have 32-byte lines, and both are
highly-associative, with 64-way set-associativity for 32KB and 16KB sizes, and 32-way set-associativity for
the 8KB size. Both caches support parity checking on the tags and data in the memory arrays, to protect
against soft errors. If a parity error is detected, the CPU will cause a machine check exception.

The PowerPC instruction set provides a rich set of cache management instructions for software-enforced
coherency. The PPC440x5 implementation also provides special debug instructions that can directly read the
tag and data arrays. See Chapter 4, “Instruction and Data Caches,” for detailed information about the instruc-
tion and data cache controllers.

The cache controllers connect to the PLB for connection to the IBM CoreConnect system-on-a-chip environ-
ment.

1.3.3.1 Instruction Cache Controller (ICC)

The ICC delivers two instructions per cycle to the instruction unit of the PPC440x5 core. The ICC also
handles the execution of the PowerPC instruction cache management instructions for coherency. The ICC
includes a speculative pre-fetch mechanism which can be configured to automatically pre-fetch a burst of up
to three additional lines upon any fetch request which misses in the instruction cache. These speculative pre-
fetches can be abandoned if the instruction execution branches away from the original instruction stream.

overview.fm. Overview
July 15, 2003 Page 31 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

The ICC supports cache line locking, at either an 8-line or 16-line granularity, depending on cache size (16-
line for 32KB, 8-line for 8KB and 16KB). In addition, the notion of a “transient” portion of the cache is
supported, in which the cache can be configured such that only a limited portion is used for instruction cache
lines from memory pages that are designated by a storage attribute from the MMU as being transient in
nature. Such memory pages would contain code which is unlikely to be reused once the processor moves on
to the next series of instruction lines, and thus performance may be improved by preventing each series of
instruction lines from overwriting all of the “regular” code in the instruction cache.

1.3.3.2 Data Cache Controller (DCC)

The DCC handles all load and store data accesses, as well as the PowerPC data cache management instruc-
tions. All misaligned accesses are handled in hardware, with those accesses that are contained within a half-
line (16 bytes) being handled as a single request. Load and store accesses which cross a 16-byte boundary
are broken into two separate accesses by the hardware.

The DCC interfaces to the APU port to provide direct load/store access to the data cache for APU load and
store operations. Such APU load and store instructions can access up to 16 bytes (one quadword) in a single
cycle.

The data cache can be operated in a store-in (copy-back) or write-through manner, according to the write-
through storage attribute specified for the memory page by the MMU. The DCC also supports both “store-
with-allocate” and “store-without-allocate” operations, such that store operations that miss in the data cache
can either “allocate” the line in the cache by reading it in and storing the new data into the cache, or alterna-
tively bypassing the cache on a miss and simply storing the data to memory. This characteristic can also be
specified on a page-by-page basis by a storage attribute in the MMU.

The DCC also supports cache line locking and “transient” data, in the same manner as the ICC (see Instruc-
tion Cache Controller (ICC) on page 31).

The DCC provides extensive load, store, and flush queues, such that up to three outstanding line fills and up
to four outstanding load misses can be pending, and the DCC can continue servicing subsequent load and
store hits in an out-of-order fashion. Store-gathering can also be performed on caching inhibited, write-
through, and “without-allocate” store operations, for up to 16 contiguous bytes. Finally, each cache line has
four separate “dirty” bits (one per doubleword), so that the amount of data flushed on cache line replacement
can be minimized.

1.3.4 Memory Management Unit (MMU)

The PPC440x5 supports a flat, 36-bit (64GB) real (physical) address space. This 36-bit real address is gener-
ated by the MMU, as part of the translation process from the 32-bit effective address, which is calculated by
the processor core as an instruction fetch or load/store address.

The MMU provides address translation, access protection, and storage attribute control for embedded appli-
cations. The MMU supports demand paged virtual memory and other management schemes that require
precise control of logical to physical address mapping and flexible memory protection. Working with appro-
priate system level software, the MMU provides the following functions:

» Translation of the 32-bit effective address space into the 36-bit real address space
* Page level read, write, and execute access control
» Storage attributes for cache policy, byte order (endianness), and speculative memory access

» Software control of page replacement strategy

Overview overview.fm.
Page 32 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

The translation lookaside buffer (TLB) is the primary hardware resource involved in the control of translation,
protection, and storage attributes. It consists of 64 entries, each specifying the various attributes of a given
page of the address space. The TLB is fully-associative; the entry for a given page can be placed anywhere
in the TLB. The TLB tag and data memory arrays are parity protected against soft errors; if a parity error is
detected, the CPU will cause a machine check exception.

Software manages the establishment and replacement of TLB entries. This gives system software significant
flexibility in implementing a custom page replacement strategy. For example, to reduce TLB thrashing or
translation delays, software can reserve several TLB entries for globally accessible static mappings. The
instruction set provides several instructions for managing TLB entries. These instructions are privileged and
the processor must be in supervisor state in order for them to be executed.

The first step in the address translation process is to expand the effective address into a virtual address. This
is done by taking the 32-bit effective address and appending to it an 8-bit Process ID (PID), as well as a 1-bit
“address space” identifier (AS). The PID value is provided by the PID register (see Chapter 5, “Memory
Management”). The AS identifier is provided by the Machine State Register (MSR, see Chapter 6, “Interrupts
and Exceptions,” which contains separate bits for the instruction fetch address space (MSR[IS]) and the data
access address space (MSR[DS]). Together, the 32-bit effective address, the 8-bit PID, and the 1-bit AS form
a 41-bit virtual address. This 41-bit virtual address is then translated into the 36-bit real address using the
TLB.

The MMU divides the address space (whether effective, virtual, or real) into pages. Eight page sizes (1KB,
4KB, 16KB, 64KB, 256KB, 1MB, 16MB, 256MB) are simultaneously supported, such that at any given time
the TLB can contain entries for any combination of page sizes. In order for an address translation to occur, a
valid entry for the page containing the virtual address must be in the TLB. An attempt to access an address
for which no TLB entry exists causes an Instruction (for fetches) or Data (for load/store accesses) TLB Error
exception.

To improve performance, both the instruction cache and the data cache maintain separate “shadow” TLBs.
The instruction shadow TLB (ITLB) contains four entries, while the data shadow TLB (DTLB) contains eight.
These shadow arrays minimize TLB contention between instruction fetch and data load/store operations. The
instruction fetch and data access mechanisms only access the main 64-entry unified TLB when a miss occurs
in the respective shadow TLB. The penalty for a miss in either of the shadow TLBs is three cycles. Hardware
manages the replacement and invalidation of both the ITLB and DTLB; no system software action is required.

Each TLB entry provides separate user state and supervisor state read, write, and execute permission
controls for the memory page associated with the entry. If software attempts to access a page for which it
does not have the necessary permission, an Instruction (for fetches) or Data (for load/store accesses)
Storage exception will occur.

Each TLB entry also provides a collection of storage attributes for the associated page. These attributes
control cache policy (such as cachability and write-through as opposed to copy-back behavior), byte order
(big endian as opposed to little endian), and enabling of speculative access for the page. In addition, a set of
four, user-definable storage attributes are provided. These attributes can be used to control various system-
level behaviors, such as instruction compression using IBM CodePack technology. They can also be config-
ured to control whether data cache lines are allocated upon a store miss, and whether accesses to a given
page should use the “normal’ or “transient” portions of the instruction or data cache (see Chapter 4, “Instruc-
tion and Data Caches,” for detailed information about these features).

Chapter 5, “Memory Management,” describes the PPC440x5 MMU functions.

overview.fm. Overview
July 15, 2003 Page 33 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

1.3.5 Timers

The PPC440x5 contains a Time Base and three timers: a Decrementer (DEC), a Fixed Interval Timer (FIT),
and a Watchdog Timer. The Time Base is a 64-bit counter which gets incremented at a frequency either
equal to the processor core clock rate or as controlled by a separate asynchronous timer clock input to the
core. No interrupt is generated as a result of the Time Base wrapping back to zero.

The DEC is a 32-bit register that is decremented at the same rate at which the Time Base is incremented.
The user loads the DEC register with a value to create the desired interval. When the register is decremented
to zero, a number of actions occur: the DEC stops decrementing, a status bit is set in the Timer Status
Register (TSR), and a Decrementer exception is reported to the interrupt mechanism of the PPC440x5 core.
Optionally, the DEC can be programmed to reload automatically the value contained in the Decrementer
Auto-Reload register (DECAR), after which the DEC resumes decrementing. The Timer Control Register
(TCR) contains the interrupt enable for the Decrementer interrupt.

The FIT generates periodic interrupts based on the transition of a selected bit from the Time Base. Users can
select one of four intervals for the FIT period by setting a control field in the TCR to select the appropriate bit
from the Time Base. When the selected Time Base bit transitions from 0 to 1, a status bit is set in the TSR
and a Fixed Interval Timer exception is reported to the interrupt mechanism of the PPC440x5 core. The FIT
interrupt enable is contained in the TCR.

Similar to the FIT, the Watchdog Timer also generates a periodic interrupt based on the transition of a
selected bit from the Time Base. Users can select one of four intervals for the watchdog period, again by
setting a control field in the TCR to select the appropriate bit from the Time Base. Upon the first transition
from 0 to 1 of the selected Time Base bit, a status bit is set in the TSR and a Watchdog Timer exception is
reported to the interrupt mechanism of the PPC440x5 core. The Watchdog Timer can also be configured to
initiate a hardware reset if a second transition of the selected Time Base bit occurs prior to the first Watchdog
exception being serviced. This capability provides an extra measure of recoverability from potential system
lock-ups.

The timer functions of the PPC440x5 core are more fully described in Chapter 7, “Timer Facilities.”

1.3.6 Debug Facilities

The PPC440x5 debug facilities include debug modes for the various types of debugging used during hard-
ware and software development. Also included are debug events that allow developers to control the debug
process. Debug modes and debug events are controlled using debug registers in the chip. The debug regis-
ters are accessed either through software running on the processor, or through the JTAG port.

The debug modes, events, controls, and interfaces provide a powerful combination of debug facilities for
hardware development tools, such as the RISCWatch™ debugger from IBM.

A brief overview of the debug modes and development tool support are provided below. Chapter 8, “Debug
Facilities,” provides detailed information about each debug mode and other debug resources.

1.3.6.1 Debug Modes

The PPC440x5 core supports four debug modes: internal, external, real-time-trace, and debug wait. Each
mode supports a different type of debug tool used in embedded systems development. Internal debug mode
supports software-based ROM monitors, and external debug mode supports a hardware emulator type of
debug. Real-time-trace mode uses the debug facilities to indicate events within a trace of processor execu-

Overview overview.fm.
Page 34 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

tion in real time. Debug wait mode enables the processor to continue to service real-time critical interrupts
while instruction execution is otherwise stopped for hardware debug. The debug modes are controlled by
Debug Control Register 0 (DBCRO) and the setting of bits in the Machine State Register (MSR).

Internal debug mode supports accessing architected processor resources, setting hardware and software
breakpoints, and monitoring processor status. In internal debug mode, debug events can generate debug
exceptions, which can interrupt normal program flow so that monitor software can collect processor status
and alter processor resources.

Internal debug mode relies on exception-handling software—running on the processor—along with an
external communications path to debug software problems. This mode is used while the processor continues
executing instructions and enables debugging of problems in application or operating system code. Access to
debugger software executing in the processor while in internal debug mode is through a communications port
on the processor board, such as a serial port or ethernet connection.

External debug mode supports stopping, starting, and single-stepping the processor, accessing architected
processor resources, setting hardware and software breakpoints, and monitoring processor status. In
external debug mode, debug events can architecturally “freeze” the processor. While the processor is frozen,
normal instruction execution stops, and the architected processor resources can be accessed and altered
using a debug tool (such as RISCWatch) attached through the JTAG port. This mode is useful for debugging
hardware and low-level control software problems.

1.3.6.2 Development Tool Support

The PPC440x5 provides powerful debug support for a wide range of hardware and software development
tools.

The OS Open real-time operating system debugger is an example of an operating system-aware debugger,
implemented using software traps.

RISCWatch is an example of a development tool that uses the external debug mode, debug events, and the
JTAG port to support hardware and software development and debugging.

The RISCTrace™ feature of RISCWatch is an example of a development tool that uses the real-time trace
capability of the PPC440x5.

1.4 Core Interfaces
Several interfaces to the PPC440x5 core support the IBM CoreConnect on-chip system architecture, which
simplifies the attachment of on-chip devices. These interfaces include:

* Processor local bus (PLB)

» Device configuration register (DCR) interface

+ Auxiliary processor unit (APU) port

« JTAG, debug, and trace ports

* Interrupt interface

» Clock and power management interface

Several of these interfaces are described briefly in the sections below.

overview.fm. Overview
July 15, 2003 Page 35 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

1.4.1 Processor Local Bus (PLB)

There are three independent 128-bit PLB interfaces to the PPC440x5 core. Each of these interfaces includes
a 36-bit address bus and a 128-bit data bus. One PLB interface supports instruction cache reads, while the
other two support data cache reads and writes, respectively. The frequency of each PLB interface can be
independently specified, allowing an IBM CoreConnect system in which the interfaces are not all connected
as part of the same PLB and in which each PLB subsystem operates at its own frequency. Each PLB inter-
face frequency can be configured to any value such that the ratio of the processor core frequency to the PLB
(core:PLB) is n:1, n:2, or n:3, where n is any integer greater than or equal to the denominator of the ratio.

Each of the PLB interfaces supports connection to a PLB subsystem of either 32, 64, or 128 bits. The instruc-
tion and data cache controllers handle any dynamic data bus resizing which is required when the subsystem
data width is less than the 128 bits of the PPC440x5 core PLB interfaces.

The data cache PLB interfaces make requests for 32-byte lines, as well as for 1 - 15 bytes within a 16-byte
(quadword) aligned region. A 16-byte line request is used for quadword APU load operations to caching
inhibited pages, and for quadword APU store operations to caching inhibited, write-through, or “without allo-
cate” pages.

The instruction cache controller makes 32-byte line read requests, and also presents quadword burst read
requests for up to three 32-byte lines (six quadwords), as part of its speculative line fill mechanism.

Each of the PLB interfaces fully supports the address pipelining capabilities of the PLB, and in fact can go
beyond the pipeline depth and minimum latency which the PLB supports. Specifically, each interface
supports up to three pipelined request/acknowledge sequences prior to performing the data transfers associ-
ated with the first request. For the data cache, if each of the requests must themselves be broken into three
separate transactions (for example, for a misaligned doubleword request to a 32-bit PLB slave), then the
interface actually supports up to nine outstanding request/acknowledge sequences prior to the first data
transfer. Furthermore, each PLB interface tolerates a zero-cycle latency between the request and the
address and data acknowledge (that is, the request, address acknowledge, and data acknowledge may all
occur in the same cycle).

1.4.2 Device Control Register (DCR) Interface

The DCR interface provides a mechanism for the PPC440x5 core to setup other on-chip facilities. For
example, programmable resources in an external bus interface unit may be configured for usage with various
memory devices according to their transfer characteristics and address assignments. DCRs are accessed
through the use of the PowerPC mfdcr and mtdcr instructions.

The interface is interlocked with control signals such that it may be connected to peripheral units that may be
clocked at different frequencies from the processor core. The design allows for future expansion of the non-
core facilities without changing the I/O on either the PPC440x5 core or the ASIC peripherals.

The DCR interface also allows the PPC440x5 core to communicate with peripheral devices without using the
PLB interface, thereby avoiding the impact to the primary system bus bandwidth, and without additional
segmentation of the useable address map.

1.4.3 Auxiliary Processor Unit (APU) Port

This interface provides the PPC440x5 core with the flexibility for attaching a tightly-coupled coprocessor-type
macro incorporating instructions which go beyond those provided within the processor core itself. The APU
port provides sufficient functionality for attachment of various coprocessor functions such as a fully-compliant

Overview overview.fm.
Page 36 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

PowerPC floating point unit (single or double precision), multimedia engine, DSP, or other custom function
implementing algorithms appropriate for specific system applications. The APU interface supports dual-issue
pipeline designs, and can be used with macros that contain their own register files, or with simpler macros
which use the CPU GPR file for source and/or target operands. APU load and store instructions can directly
access the PPC440x5 data cache, with operands of up to a quadword (16 bytes) in length.

The APU interface provides the capability for a coprocessor to execute concurrently with the PPC440x5 core
instructions that are not part of the PowerPC instruction set. Accordingly, areas have been reserved within
the architected instruction space to allow for these customer-specific or application-specific APU instruction
set extensions.

1.4.4 JTAG Port

The PPC440x5 JTAG port is enhanced to support the attachment of a debug tool such as the RISCWatch
product from IBM. Through the JTAG test access port, and using the debug facilities designed into the
PPC440x5 core, a debug workstation can single-step the processor and interrogate internal processor state
to facilitate hardware and software debugging. The enhancements comply with the IEEE 1149.1 specification
for vendor-specific extensions, and are therefore compatible with standard JTAG hardware for boundary-
scan system testing.

overview.fm. Overview
July 15, 2003 Page 37 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Overview overview.fm.
Page 38 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

2. Programming Model

The programming model of the PPC440x5 core describes how the following features and operations of the
core appear to programmers:

» Storage addressing (including data types and byte ordering), starting on page 39
* Registers, starting on page 47

 Instruction classes, starting on page 52

* Instruction set, starting on page 55

* Branch processing, starting on page 62

+ Integer processing, starting on page 69

* Processor control, starting on page 72

« User and supervisor state, starting on page 78

« Speculative access, starting on page 79

» Synchronization, starting on page 79

2.1 Storage Addressing

As a 32-bit implementation of the Book-E Enhanced PowerPC Architecture, the PPC440x5 core implements
a uniform 32-bit effective address (EA) space. Effective addresses are expanded into virtual addresses and
then translated to 36-bit (64GB) real addresses by the memory management unit (see Memory Management
on page 129 for more information on the translation process). The organization of the real address space into
a physical address space is system-dependent, and is described in the user’'s manuals for chip-level products
that incorporate a PPC440x5 core.

The PPC440x5 generates an effective address whenever it executes a storage access, branch, cache
management, or translation look aside buffer (TLB) management instruction, or when it fetches the next
sequential instruction.

2.1.1 Storage Operands

Bytes in storage are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Data storage operands accessed by the integer load/store instructions may be bytes, halfwords, words, or—
for load/store multiple and string instructions—a sequence of words or bytes, respectively. Data storage oper-
ands accessed by auxiliary processor (AP) load/store instructions can be bytes, halfwords, words, double-
words, or quadwords. The address of a storage operand is the address of its first byte (that is, of its lowest-
numbered byte). Byte ordering can be either big endian or little endian, as controlled by the endian storage
attribute (see Byte Ordering on page 42; also see Endian (E) on page 142 for more information on the endian
storage attribute).

prgmodel.fm. Programming Model
July 15, 2003 Page 39 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Operand length is implicit for each scalar storage access instruction type (that is, each storage access
instruction type other than the load/store multiple and string instructions). The operand of such a scalar
storage access instruction has a “natural” alignment boundary equal to the operand length. In other words,
the ‘natural’ address of an operand is an integral multiple of the operand length. A storage operand is said to
be aligned if it is aligned at its natural boundary: otherwise it is said to be unaligned.

Data storage operands for storage access instructions have the following characteristics.
Table 2-1. Data Operand Definitions

Storage Ac_T_ess Instruction Operand Addr[28:31] if aligned
ype Length
Byte (or String) 8 bits Obxxxx
Halfword 2 bytes Obxxx0
Word (or Multiple) 4 bytes 0bxx00
Doubleword (AP only) 8 bytes 0bx000
Quadword (AP only) 16 bytes 0b0000

Note: An “X” in an address bit position indicates that the bit can be 0 or 1 indepen-
dent of the state of other bits in the address.

The alignment of the operand effective address of some storage access instructions may affect performance,
and in some cases may cause an Alignment exception to occur. For such storage access instructions, the
best performance is obtained when the storage operands are aligned. Table 2-2 summarizes the effects of
alignment on those storage access instruction types for which such effects exist. If an instruction type is not
shown in the table, then there are no alignment effects for that instruction type.

Table 2-2. Alignment Effects for Storage Access Instructions

Storage Access

Instruction Type Alignment Effects

Broken into two byte accesses if crosses 16-byte boundary (EA[28:31] = 0b1111); otherwise

Integer load/store halfword no effect

Broken into two accesses if crosses 16-byte boundary (EA[28:31] > 0b1100); otherwise no

Integer load/store word effect

Broken into a series of 4-byte accesses until the last byte is accessed or a 16-byte boundary is
reached, whichever occurs first. If bytes remain past a 16-byte boundary, resume accessing 4
bytes at a time until the last byte is accessed or the next 16-byte boundary is reached, which-
ever occurs first; repeat.

Integer load/store multiple or string

AP load/store halfword Alignment exception if crosses 16-byte boundary (EA[28:31] = 0b1111); otherwise no effect

(see note)

AP load/store word Alignment exception if crosses 16-byte boundary (EA[28:31] > 0b1100); otherwise no effect
(see note)

AP load/store doubleword Alignment exception if crosses 16-byte boundary (EA[28:31] > 0b1000); otherwise no effect
(see note)

AP load/store quadword Alignment exception if crosses 16-byte boundary (EA[28:31] # 0b0000); otherwise no effect

Note: An auxiliary processor can specify that the EA for a given AP load/store instruction must be aligned at the operand-size
boundary, or alternatively, at a word boundary. If the AP so indicates this requirement and the calculated EA fails to meet it, the
PPC440x5 core generates an Alignment exception. Alternatively, an auxiliary processor can specify that the EA for a given AP
load/store instruction should be “forced” to be aligned, by ignoring the appropriate number of low-order EA bits and processing the
AP load/store as if those bits were 0. Byte, halfword, word, doubleword, and quadword AP load/store instructions would ignore 0, 1,
2, 3, and 4 low-order EA bits, respectively.

Programming Model prgmodel.fm.
Page 40 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Cache management instructions access cache block operands, and for the PPC440x5 core the cache block
size is 32 bytes. However, the effective addresses calculated by cache management instructions are not
required to be aligned on cache block boundaries. Instead, the architecture specifies that the associated low-
order effective address bits (bits 27:31 for PPC440x5) are ignored during the execution of these instructions.

Similarly, the TLB management instructions access page operands, and—as determined by the page size—
the associated low-order effective address bits are ignored during the execution of these instructions.

Instruction storage operands, on the other hand, are always four bytes long, and the effective addresses
calculated by Branch instructions are therefore always word-aligned.

2.1.2 Effective Address Calculation

For a storage access instruction, if the sum of the effective address and the operand length exceeds the
maximum effective address of 232—1 (that is, the storage operand itself crosses the maximum address
boundary), the result of the operation is undefined, as specified by the architecture. The PPC440x5 core
performs the operation as if the storage operand wrapped around from the maximum effective address to
effective address 0. Software, however, should not depend upon this behavior, so that it may be ported to
other implementations that do not handle this scenario in the same fashion. Accordingly, software should
ensure that no data storage operands cross the maximum address boundary.

Note that since instructions are words and since the effective addresses of instructions are always implicitly
on word boundaries, it is not possible for an instruction storage operand to cross any word boundary,
including the maximum address boundary.

Effective address arithmetic, which calculates the starting address for storage operands, wraps around from
the maximum address to address 0, for all effective address computations except next sequential instruction
fetching. See Instruction Storage Addressing Modes on page 41 for more information on next sequential
instruction fetching at the maximum address boundary.

2.1.2.1 Data Storage Addressing Modes

There are two data storage addressing modes supported by the PPC440x5 core:

+ Base + displacement (D-mode) addressing mode:

The 16-bit D field is sign-extended and added to the contents of the GPR designated by RA or to zero if
RA = 0; the low-order 32 bits of the sum form the effective address of the data storage operand.

+ Base + index (X-mode) addressing mode:

The contents of the GPR designated by RB (or the value 0 for Iswi and stswi) are added to the contents
of the GPR designated by RA, or to 0 if RA = 0; the low-order 32 bits of the sum form the effective
address of the data storage operand.

2.1.2.2 Instruction Storage Addressing Modes

There are four instruction storage addressing modes supported by the PPC440x5 core:

 |-form branch instructions (unconditional):

prgmodel.fm. Programming Model
July 15, 2003 Page 41 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

The 24-bit LI field is concatenated on the right with 0b00, sign-extended, and then added to either the
address of the branch instruction if AA=0, or to 0 if AA=1; the low-order 32 bits of the sum form the effec-
tive address of the next instruction.

« Taken B-form branch instructions:

The 14-bit BD field is concatenated on the right with Ob00, sign-extended, and then added to either the
address of the branch instruction if AA=0, or to 0 if AA=1; the low-order 32 bits of the sum form the effec-
tive address of the next instruction.

« Taken XL-form branch instructions:

The contents of bits 0:29 of the Link Register (LR) or the Count Register (CTR) are concatenated on the
right with 0b00 to form the 32-bit effective address of the next instruction.

» Next sequential instruction fetching (including non-taken branch instructions):

The value 4 is added to the address of the current instruction to form the 32-bit effective address of the
next instruction. If the address of the current instruction is OXFFFFFFFC, the PPC440x5 core wraps the
next sequential instruction address back to address 0. This behavior is not required by the architecture,
which specifies that the next sequential instruction address is undefined under these circumstances.
Therefore, software should not depend upon this behavior, so that it may be ported to other implementa-
tions that do not handle this scenario in the same fashion. Accordingly, if software wishes to execute
across this maximum address boundary and wrap back to address 0, it should place an unconditional
branch at the boundary, with a displacement of 4.

In addition to the above four instruction storage addressing modes, the following behavior applies to
branch instructions:

* Any branch instruction with LK=1:

The value 4 is added to the address of the current instruction and the low-order 32 bits of the result are
placed into the LR. As for the similar scenario for next sequential instruction fetching, if the address of the
branch instruction is OXFFFF FFFC, the result placed into the LR is architecturally undefined, although
once again the PPC440x5 core wraps the LR update value back to address 0. Again, however, software
should not depend on this behavior, in order that it may be ported to implementations which do not han-
dle this scenario in the same fashion.

2.1.3 Byte Ordering

If scalars (individual data items and instructions) were indivisible, there would be no such concept as “byte
ordering.” It is meaningless to consider the order of bits or groups of bits within the smallest addressable unit
of storage, because nothing can be observed about such order. Only when scalars, which the programmer
and processor regard as indivisible quantities, can comprise more than one addressable unit of storage does
the question of order arise.

For a machine in which the smallest addressable unit of storage is the 64-bit doubleword, there is no question
of the ordering of bytes within doublewords. All transfers of individual scalars between registers and storage
are of doublewords, and the address of the byte containing the high-order eight bits of a scalar is no different
from the address of a byte containing any other part of the scalar.

For the Book-E Enhanced PowerPC Architecture, as for most current computer architectures, the smallest
addressable unit of storage is the 8-bit byte. Many scalars are halfwords, words, or doublewords, which
consist of groups of bytes. When a word-length scalar is moved from a register to storage, the scalar occu-

Programming Model prgmodel.fm.
Page 42 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

pies four consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte addresses
with respect to the value of the scalar: which byte contains the highest-order eight bits of the scalar, which
byte contains the next-highest-order eight bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially arbitrary. There are 4! =
24 ways to specify the ordering of four bytes within a word, but only two of these orderings are sensible:

» The ordering that assigns the lowest address to the highest-order (“left-most”) eight bits of the scalar, the
next sequential address to the next-highest-order eight bits, and so on.

This ordering is called big endian because the “big end” (most-significant end) of the scalar, considered
as a binary number, comes first in storage. IBM RISC System/6000, IBM System/390, and Motorola
680x0 are examples of computer architectures using this byte ordering.

« The ordering that assigns the lowest address to the lowest-order (“right-most”) eight bits of the scalar, the
next sequential address to the next-lowest-order eight bits, and so on.

This ordering is called little endian because the “little end” (least-significant end) of the scalar, considered
as a binary number, comes first in storage. The Intel x86 is an example of a processor architecture using
this byte ordering.

PowerPC Book-E supports both big endian and little endian byte ordering, for both instruction and data
storage accesses. Which byte ordering is used is controlled on a memory page basis by the endian (E)
storage attribute, which is a field within the TLB entry for the page. The endian storage attribute is set to 0 for
a big endian page, and is set to 1 for a little endian page. See Memory Management on page 129 for more
information on memory pages, the TLB, and storage attributes, including the endian storage attribute.

2.1.3.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a character string. The
comments show the value assumed to be in each structure element; these values show how the bytes
comprising each structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; [* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /*'A''B''C''D'",'E','F','G" array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

}s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on desirable boundaries.
The structure mapping examples below show each scalar aligned at its natural boundary. This alignment
introduces padding of four bytes between a and b, one byte between d and e, and two bytes between e and f.
The same amount of padding is present in both big endian and little endian mappings.

prgmodel.fm. Programming Model
July 15, 2003 Page 43 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Big Endian Mapping

The big endian mapping of structure s follows (the data is highlighted in the structure mappings). Addresses,
in hexadecimal, are below the data stored at the address. The contents of each byte, as defined in structure
S, is shown as a (hexadecimal) number or character (for the string elements). The shaded cells correspond to
padded bytes.

11 12 13 14
0x00 O0x01 0x02 0x03 | 0x04 0x05 0x06 0x07
21 22 23 24 25 26 27 28
0x08 0x09 OxOA 0xOB 0xOC 0xOD OxOE OxOF

31 32 33 34 ‘A 'B' 'C’ 'D’
0x10 O0x11 O0x12 Ox13 | O0x14 & Ox15 | Ox16 = Ox17
'E'’ 'F* ‘G’ 51 52

0x18 | 0x19 | Ox1A | Ox1B | 0x1C Ox1D @ Ox1E Ox1F
61 62 63 64
0x20 0x21 0x22 0x23 | Ox24 0x25 Ox26 0x27

Little Endian Mapping

Structure s is shown mapped little endian.

14 13 12 11
0x00 0x01 0x02 O0x03 | 0x04 O0x05 O0x06 0x07
28 27 26 25 24 23 22 21
0x08 0x09 OxOA 0xOB 0xOC 0xOD OxOE OxOF

34 33 32 31 ‘A ‘B’ 'C’ 'D’
0x10 Ox11 0x12 O0x13 | Ox14 & Ox15 & Ox16 = Ox17
'E'’ 'F* ‘G’ 52 51

0x18 | 0x19 | Ox1A | Ox1B | O0x1C Ox1D & Ox1E Ox1F
64 63 62 61
0x20 0x21 0x22 0x23 | Ox24 0x25 Ox26 0x27

2.1.3.2 Instruction Byte Ordering

PowerPC Book-E defines instructions as aligned words (four bytes) in memory. As such, instructions in a big
endian program image are arranged with the most-significant byte (MSB) of the instruction word at the
lowest-numbered address.

Consider the big endian mapping of instruction p at address 0x00, where, for example, p = add r7, r7, r4:

MSB LSB
0x00 0x01 0x02 0x03

Programming Model prgmodel.fm.
Page 44 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

On the other hand, in a little endian mapping the same instruction is arranged with the least-significant byte
(LSB) of the instruction word at the lowest-numbered address:

LSB MSB
0x00 0x01 0x02 0x03

By the definition of PowerPC Book-E bit numbering, the most-significant byte of an instruction is the byte
containing bits 0:7 of the instruction. As depicted in the instruction format diagrams (see Instruction Formats
on page 244), this most-significant byte is the one which contains the primary opcode field (bits 0:5). Due to
this difference in byte orderings, the processor must perform whatever byte reversal is required (depending
on the particular byte ordering in use) in order to correctly deliver the opcode field to the instruction decoder.
In the PPC440x5, this reversal is performed between the memory interface and the instruction cache,
according to the value of the endian storage attribute for each memory page, such that the bytes in the
instruction cache are always correctly arranged for delivery directly to the instruction decoder.

If the endian storage attribute for a memory page is reprogrammed from one byte ordering to the other, the
contents of the memory page must be reloaded with program and data structures that are in the appropriate
byte ordering. Furthermore, anytime the contents of instruction memory change, the instruction cache must
be made coherent with the updates by invalidating the instruction cache and refetching the updated memory
contents with the new byte ordering.

2.1.3.3 Data Byte Ordering

Unlike instruction fetches, data accesses cannot be byte-reversed between memory and the data cache.
Data byte ordering in memory depends upon the data type (byte, halfword, word, and so on) of a specific data
item. It is only when moving a data item of a specific type from or to an architected register (as directed by the
execution of a particular storage access instruction) that it becomes known what kind of byte reversal may be
required due to the byte ordering of the memory page containing the data item. Therefore, byte reversal
during load or store accesses is performed between data cache (or memory, on a data cache miss, for
example) and the load register target or store register source, depending on the specific type of load or store
instruction (that is, byte, halfword, word, and so on).

Comparing the big endian and little endian mappings of structure s, as shown in Structure Mapping Examples
on page 43, the differences between the byte locations of any data item in the structure depends upon the
size of the particular data item. For example (again referring to the big endian and little endian mappings of
structure S):

+ The word a has its four bytes reversed within the word spanning addresses 0x00 — 0x03.
+ The halfword e has its two bytes reversed within the halfword spanning addresses 0x1C — 0x1D.
Note that the array of bytes d, where each data item is a byte, is not reversed when the big endian and little

endian mappings are compared. For example, the character 'A' is located at address 0x14 in both the big
endian and little endian mappings.

The size of the data item being loaded or stored must be known before the processor can decide whether,
and if so, how to reorder the bytes when moving them between a register and the data cache (or memory).
» For byte loads and stores, including strings, no reordering of bytes occurs, regardless of byte ordering.

» For halfword loads and stores, bytes are reversed within the halfword, for one byte order with respect to
the other.

prgmodel.fm. Programming Model
July 15, 2003 Page 45 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

» For word loads and stores (including load/store multiple), bytes are reversed within the word, for one byte
order with respect to the other.

» For doubleword loads and stores (AP loads/stores only), bytes are reversed within the doubleword, for
one byte order with respect to the other.

» For quadword loads and stores (AP loads/stores only), bytes are reversed within the quadword, for one
byte order with respect to the other.

Note that this mechanism applies independent of the alignment of data. In other words, when loading a multi-
byte data operand with a scalar load instruction, bytes are accessed from the data cache (or memory) starting
with the byte at the calculated effective address and continuing with consecutively higher-numbered bytes
until the required number of bytes have been retrieved. Then, the bytes are arranged such that either the byte
from the highest-numbered address (for big endian storage regions) or the lowest-numbered address (for
little endian storage regions) is placed into the least-significant byte of the register. The rest of the register is
filled in corresponding order with the rest of the accessed bytes. An analogous procedure is followed for
scalar store instructions.

For load/store multiple instructions, each group of four bytes is transferred between memory and the register
according to the procedure for a scalar load word instruction.

For load/store string instructions, the most-significant byte of the first register is transferred to or from memory
at the starting (lowest-numbered) effective address, regardless of byte ordering. Subsequent register bytes
(from most-significant to least-significant, and then moving into the next register, starting with the most-signif-
icant byte, and so on) are transferred to or from memory at sequentially higher-numbered addresses. This
behavior for byte strings ensures that if two strings are loaded into registers and then compared, the first
bytes of the strings are treated as most significant with respect to the comparison.

2.1.3.4 Byte-Reverse Instructions

PowerPC Book-E defines load/store byte-reverse instructions which can access storage which is specified as
being of one byte ordering in the same manner that a regular (that is, non-byte-reverse) load/store instruction
would access storage which is specified as being of the opposite byte ordering. In other words, a load/store
byte-reverse instruction to a big endian memory page transfers data between the data cache (or memory)
and the register in the same manner that a normal load/store would transfer the data to or from a little endian
memory page. Similarly, a load/store byte-reverse instruction to a little endian memory page transfers data
between the data cache (or memory) and the register in the same manner that a normal load/store would
transfer the data to or from a big endian memory page.

The function of the load/store byte-reverse instructions is useful when a particular memory page contains a
combination of data with both big endian and little endian byte ordering. In such an environment, the Endian
storage attribute for the memory page would be set according to the predominant byte ordering for the page,
and the normal load/store instructions would be used to access data operands which used this predominant
byte ordering. Conversely, the load/store byte-reverse instructions would be used to access the data oper-
ands which were of the other (less prevalent) byte ordering.

Software compilers cannot typically make general use of the load/store byte-reverse instructions, so they are
ordinarily used only in special, hand-coded device drivers.

Programming Model prgmodel.fm.
Page 46 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

2.2 Registers

This section provides an overview of the register categories and types provided by the PPC440x5. Detailed
descriptions of each of the registers are provided within the chapters covering the functions with which they
are associated (for example, the cache control and cache debug registers are described in Instruction and
Data Caches on page 93). An alphabetical summary of all registers, including bit definitions, is provided in
Register Summary on page 441

All registers in the PPC440x5 core are architected as 32 bits wide, although certain bits in some registers are
reserved and thus not necessarily implemented. For all registers with fields marked as reserved, these
reserved fields should be written as 0 and read as undefined. The recommended coding practice is to
perform the initial write to a register with reserved fields set to 0, and to perform all subsequent writes to the
register using a read-modify-write strategy: read the register; use logical instructions to alter defined fields,
leaving reserved fields unmodified; and write the register.

All of the registers are grouped into categories according to the processor functions with which they are asso-
ciated. In addition, each register is classified as being of a particular type, as characterized by the specific
instructions which are used to read and write registers of that type. Finally, most of the registers contained
within the PPC440x5 core are defined by the Book-E Enhanced PowerPC Architecture, although some regis-
ters are implementation-specific and unique to the PPC440x5.

Figure 2-1 illustrates the PPC440x5 registers contained in the user programming model, that is, those regis-
ters to which access is non-privileged and which are available to both user and supervisor programs.

Figure 2-1. User Programming Model Registers

Integer Processing Branch Control
General Purpose Condition Register
GPRO CR
GPR1 Count Register
GPR2 CTR

Link Register

LR

GPR31

Processor Control

Integer Exception Register SPR General 4—7

XER
SPRG4
Timer SPRG5

Time Base

SPRG5

TBL
SPRG7

TBU

User SPR General 0
USPRGO
prgmodel.fm. Programming Model

July 15, 2003 Page 47 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Figure 2-2 on page 49 illustrates the PPC440x5 registers contained in the supervisor programming model, to
which access is privileged and which are available to supervisor programs only. See User and Supervisor
Modes on page 78 for more information on privileged instructions and register access, and the user and
supervisor programming models.

Programming Model prgmodel.fm.
Page 48 of 573 July 15, 2003

Preliminary

Figure 2-2. Supervisor Programming Model Registers

Processor Control
Machine State Register

MSR
Processor Version Register
PVR

Processor ID Register

Core Configuration Registers

CCRO

CCR1

Reset Configuration

RSTCFG

SPR General

SPRGO

SPRG7

Interrupt Processing
Exception Syndrome Register

ESR

Machine Check Syndrome Register
MCSR

Data Exception Address Register
DEAR

Save/Restore Registers
SRRO

SRR1

Critical Save/Restore Registers
CSRRO

CSRR1

Machine Check Save/Restore Registers

MCSRRO

MCSRR1

Interrupt Vector Prefix Register

IVPR

Interrupt Vector Offset Registers
IVORO

IVOR15

prgmodel.fm.
July 15, 2003

Timer
Time Base

TBU

TBL

Timer Control Register

TCR
Timer Status Register
TSR
Decrementer
DEC
Decrementer Auto-Reload

DECAR

Cache Control
Instruction Cache Victim Limit

IVLIM

Instruction Cache Normal Victim

INVO

INV1

INV2

INV3

Instruction Cache Transient Victim

ITVO

ITV1

ITV2

ITV3
Data Cache Victim Limit

DVLIM
Data Cache Normal Victim

DNVO

DNV1

DNV2

DNV3

Data Cache Transient Victim

DTVO

DTV1

DTV2

DTV3

User's Manual

PPC440x5 CPU Core

Storage Control
Process ID

MMU Control Register
MMUCR

Debug
Debug Status Register

DBSR

Debug Data Register
DBDR

Debug Control Registers

DBCRO

DBCR1

DBCR2

Data Address Compares

DAC1

DAC2

Data Value Compares

DVC1

DVC2

Instruction Address Compares

IAC1

IAC2

IAC3

IAC4

Cache Debug
Instruction Cache Debug Data Register

ICDBDR

Instruction Cache Debug Tag Registers

ICDBTRH

ICDBTRL

Data Cache Debug Tag Registers

DCDBTRH

DCDBTRL

Programming Model
Page 49 of 573

User’'s Manual

PPC440x5 CPU Core

Preliminary

Table 2-3 lists each register category and the registers that belong to each category, along with their types
and a cross-reference to the section of this document which describes them more fully. Registers that are not
part of PowerPC Book-E, and are thus specific to the PPC440x5, are shown in italics in Table 2-3. Unless
otherwise indicated, all registers have read/write access.

Table 2-3. Register Categories

Register Category

Branch Control

Cache Control

Cache Debug

Debug

Device Control

Integer Processing

Interrupt Processing

Programming Model
Page 50 of 573

Register(s)
CR
CTR
LR
DNVO0-DNV3
DTV0O-DTV3
DVLIM
INVO-INV3
ITVO-ITV3
IVLIM
DCDBTRH, DCDBTRL
ICDBDR, ICDBTRH, ICDBTRL
DAC1-DAC2
DBCRO-DBCR2
DBDR
DBSR
DVC1-DVC2
IAC1-IAC4
Implemented outside core
GPRO-GPR31
XER
CSRR0O-CSRR1
DEAR
ESR
IVOR0-IVOR15
IVPR
MCSR
MCSRRO0-MCSRR1
SRR0O-SRR1

Model and Access

User

User

User

Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor, read-only
Supervisor, read-only
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor

User

User

Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor
Supervisor

Supervisor

Type
CR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
DCR
GPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR

Page
66
66
65
95
95
97
95
95
97
123
109
240
233
241
238
240
239

52

69

70
162
164
166
164
165
168
163
161

prgmodel.fm.
July 15, 2003

Preliminary

Table 2-3. Register Categories

Register Category

Processor Control

Storage Control

Timer

2.2.1 Register Types

Register(s)
CCRO
CCR1
MSR
PIR, PVR
RSTCFG
SPRG0-SPRG3
SPRG4-SPRG7
USPRGO
MMUCR
PID
DEC
DECAR
TBL, TBU
TCR
TSR

Model and Access
Supervisor
Supervisor
Supervisor
Supervisor, read-only
Supervisor, read-only
Supervisor
User, read-only; Supervisor
User
Supervisor
Supervisor
Supervisor
Supervisor, write-only
User read, Supervisor write
Supervisor

Supervisor

Type
SPR
SPR
MSR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR
SPR

User's Manual

PPC440x5 CPU Core

Page
105
105
159

73
77
73
73
73
143
146
205
205
204
209
210

There are five register types contained within and/or supported by the PPC440x5 core. Each register type is
characterized by the instructions which are used to read and write the registers of that type. The following
subsections provide an overview of each of the register types and the instructions associated with them.

2.2.1.1 General Purpose Registers

The PPC440x5 core contains 32 integer general purpose registers (GPRs); each contains 32 bits. Data from
the data cache or memory can be loaded into GPRs using integer load instructions; the contents of GPRs can
be stored to the data cache or memory using integer store instructions. Most of the integer instructions refer-
ence GPRs. The GPRs are also used as targets and sources for most of the instructions which read and write

the other register types.

Integer Processing on page 69 provides more information on integer operations and the use of GPRs.

2.2.1.2 Special Purpose Registers

Special Purpose Registers (SPRs) are directly accessed using the mtspr and mfspr instructions. In addition,
certain SPRs may be updated as a side-effect of the execution of various instructions. For example, the
Integer Exception Register (XER) (see Integer Exception Register (XER) on page 70) is an SPR which is
updated with arithmetic status (such as carry and overflow) upon execution of certain forms of integer arith-

metic instructions.

prgmodel.fm.
July 15, 2003

Programming Model
Page 51 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

SPRs control the use of the debug facilities, timers, interrupts, memory management, caches, and other
architected processor resources. Table 10-2 on page 443 shows the mnemonic, name, and number for each
SPR, in order by SPR number. Each of the SPRs is described in more detail within the section or chapter
covering the function with which it is associated. See Table 2-3 on page 50 for a cross-reference to the asso-
ciated document section for each register.

2.2.1.3 Condition Register

The Condition Register (CR) is a 32-bit register of its own unique type and is divided up into eight, indepen-
dent 4-bit fields (CRO—CR7). The CR may be used to record certain conditional results of various arithmetic
and logical operations. Subsequently, conditional branch instructions may designate a bit of the CR as one of
the branch conditions (see Branch Processing on page 62). Instructions are also provided for performing
logical bit operations and for moving fields within the CR.

See Condition Register (CR) on page 66 for more information on the various instructions which can update
the CR.

2.2.1.4 Machine State Register

The Machine State Register (MSR) is a register of its own unique type that controls important chip functions,
such as the enabling or disabling of various interrupt types.

The MSR can be written from a GPR using the mtmsr instruction. The contents of the MSR can be read into
a GPR using the mfmsr instruction. The MSR[EE] bit can be set or cleared atomically using the wrtee or
wrteei instructions. The MSR contents are also automatically saved, altered, and restored by the interrupt-
handling mechanism. See Machine State Register (MSR) on page 159 for more detailed information on the
MSR and the function of each of its bits.

2.2.1.5 Device Control Registers

Device Control Registers (DCRs) are on-chip registers that exist architecturally and physically outside the
PPC440x5 core, and thus are not specified by the Book-E Enhanced PowerPC Architecture, nor by this
user’s manual for the PPC440x5 core. Rather, PowerPC Book-E simply defines the existence of the DCR
address space and the instructions that access the DCRs, and does not define any particular DCRs. The
DCR access instructions are mtdcr (move to device control register) and mfdcr (move from device control
register), which move data between GPRs and the DCRs.

DCRs may be used to control various on-chip system functions, such as the operation of on-chip buses,
peripherals, and certain processor core behaviors.

2.3 Instruction Classes
PowerPC Book-E architecture defines all instructions as falling into exactly one of the following four classes,
as determined by the primary opcode (and the extended opcode, if any):

1. Defined

2. Allocated

3. Preserved

4. Reserved (-illegal or -nop)

Programming Model prgmodel.fm.
Page 52 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

2.3.1 Defined Instruction Class

This class of instructions consists of all the instructions defined in PowerPC Book-E. In general, defined
instructions are guaranteed to be supported within a PowerPC Book-E system as specified by the architec-
ture, either within the processor implementation itself or within emulation software supported by the system
operating software.

One exception to this is that, for implementations (such as the PPC440x5) that only provide the 32-bit subset
of PowerPC Book-E, it is not expected (and likely not even possible) that emulation of the 64-bit behavior of
the defined instructions will be provided by the system.

As defined by PowerPC Book-E, any attempt to execute a defined instruction will:

» cause an lllegal Instruction exception type Program interrupt, if the instruction is not recognized by the
implementation; or

» cause an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized by
the implementation and is not a floating-point instruction, but is not supported by the implementation; or

+ cause a Floating-Point Unavailable interrupt if the instruction is recognized as a floating-point instruction,
but floating-point processing is disabled; or

» cause an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized as
a floating-point instruction and floating-point processing is enabled, but the instruction is not supported by
the implementation; or

« perform the actions described in the rest of this document, if the instruction is recognized and supported
by the implementation. The architected behavior may cause other exceptions.

The PPC440x5 core recognizes and fully supports all of the instructions in the defined class, with a few
exceptions. First, because the PPC440x5 is a 32-bit implementation, those operations which are defined
specifically for 64-bit operation are not supported at all, and will always cause an lllegal Instruction exception
type Program interrupt.

Second, instructions that are defined for floating-point processing are not supported within the PPC440x5
core, but may be implemented within an auxiliary processor and attached to the core using the AP interface.
If no such auxiliary processor is attached, attempting to execute any floating-point instructions will cause an
lllegal Instruction exception type Program interrupt. If an auxiliary processor which supports the floating-point
instructions is attached, the behavior of these instructions is as defined above and as determined by the
implementation details of the floating-point auxiliary processor.

Finally, there are two other defined instructions which are not supported within the PPC440x5 core. One is a
TLB management instruction (tlbiva, TLB Invalidate Virtual Address) that is specifically intended for coherent
multiprocessor systems. The other is mfapidi (Move From Auxiliary Processor ID Indirect), which is a special
instruction intended to assist with identification of the auxiliary processors which may be attached to a partic-
ular processor implementation. Since the PPC440x5 core does not support mfapidi, the means of identifying
the auxiliary processors in a PPC440x5 core-based system are implementation-dependent. Execution of
either tibiva or mfapidi will cause an lllegal Instruction exception type Program interrupt.

2.3.2 Allocated Instruction Class

This class of instructions contains a set of primary opcodes, as well as extended opcodes for certain primary
opcodes. The specific opcodes are listed in Appendix A.3 on page 543.

prgmodel.fm. Programming Model
July 15, 2003 Page 53 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Allocated instructions are provided for purposes that are outside the scope of PowerPC Book-E, and are for
implementation-dependent and application-specific use.

PowerPC Book-E declares that any attempt to execute an allocated instruction results in one of the following
effects:

« Causes an lllegal Instruction exception type Program interrupt, if the instruction is not recognized by the
implementation

» Causes an Auxiliary Processor Unavailable interrupt if the instruction is recognized by the implementa-
tion, but allocated instruction processing is disabled

» Causes an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized
and allocated instruction processing is enabled, but the instruction is not supported by the implementa-
tion

» Perform the actions described for the particular implementation of the allocated instruction. The imple-
mentation-dependent behavior may cause other exceptions.

In addition to supporting the defined instructions of PowerPC Book-E, the PPC440x5 also implements a
number of instructions which use the allocated instruction opcodes, and thus are not part of the PowerPC
Book-E architecture. Table 2-21 on page 62 identifies the allocated instructions that are implemented within
the PPC440x5 core. All of these instructions are always enabled and supported, and thus they always
perform the functions defined for them within this document, and never cause lllegal Instruction, Auxiliary
Processor Unavailable, nor Unimplemented Instruction exceptions.

The PPC440x5 also supports the use of any of the allocated opcodes by an attached auxiliary processor,
except for those allocated opcodes which have been implemented within the PPC440x5 core, as mentioned
above. Also, there is one other allocated opcode (primary opcode 31, secondary opcode 262) that has been
implemented within the PPC440x5 core and is thus not available for use by an attached auxiliary processor.
This is the opcode which was used on previous PowerPC 400 Series embedded controllers for the icbt
(Instruction Cache Block Touch) instruction. The icbt instruction is now part of the defined instruction class
for PowerPC Book-E, and uses a new opcode (primary opcode 31, secondary opcode 22). The PPC440x5
implements the new defined opcode, but also continues to support the previous opcode, in order to support
legacy software written for earlier PowerPC 400 Series implementations. The icbt instruction description in
Instruction Set on page 243 only identifies the defined opcode, although Appendix A Instruction Summary on
page 507 includes both the defined and the allocated opcode in the table which lists all the instructions by
opcode. In order to ensure portability between the PPC440x5 and future PowerPC Book-E implementations,
software should take care to only use the defined opcode for icbt, and avoid usage of the previous opcode
which is now in the allocated class.

2.3.3 Preserved Instruction Class

The preserved instruction class is provided to support backward compatibility with the PowerPC Architecture,
and/or earlier versions of the PowerPC Book-E architecture. This instruction class includes opcodes which
were defined for these previous architectures, but which are no longer defined for PowerPC Book-E.

Any attempt to execute a preserved instruction results in one of the following effects:

« Performs the actions described in the previous version of the architecture, if the instruction is recognized
by the implementation

» Causes an lllegal Instruction exception type Program interrupt, if the instruction is not recognized by the
implementation.

Programming Model prgmodel.fm.
Page 54 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

The only preserved instruction recognized and supported by the PPC440x5 is the mftb (Move From Time
Base) opcode. This instruction was used in the the PowerPC Architecture to read the Time Base Upper
(TBU) and Time Base Lower (TBL) registers. PowerPC Book-E architecture instead defines TBU and TBL as
Special Purpose Registers (SPRs), and thus the mfspr (Move From Special Purpose Register) instruction is
used to read them. In order to enable legacy time base management software to be run on the PPC440x5,
the core also supports the preserved opcode of mftb. However, the mftb instruction is not included in the
various sections of this document that describe the implemented instructions, and software should take care
to use the currently architected mechanism of mfspr to read the time base registers, in order to guarantee
portability between the PPC440x5 and future implementations of PowerPC Book-E.

On the other hand, Appendix A Instruction Summary on page 507 does identify the mftb instruction as an
implemented preserved opcode in the table which lists all the instructions by opcode.

2.3.4 Reserved Instruction Class

This class of instructions consists of all instruction primary opcodes (and associated extended opcodes, if
applicable) which do not belong to either the defined, allocated, or preserved instruction classes.

Reserved instructions are available for future versions of PowerPC Book-E architecture. That is, future
versions of PowerPC Book-E may define any of these instructions to perform new functions or make them
available for implementation-dependent use as allocated instructions. There are two types of reserved
instructions: reserved-illegal and reserved-nop.

Any attempt to execute a reserved-illegal instruction will cause an lllegal Instruction exception type Program
interrupt on implementations (such as the PPC440x5) that conform to the current version of PowerPC Book-
E. Reserved-illegal instructions are, therefore, available for future extensions to PowerPC Book-E that would
affect architected state. Such extensions might include new forms of integer or floating-point arithmetic
instructions, or new forms of load or store instructions that affect architected registers or the contents of
memory.

Any attempt to execute a reserved-nop instruction, on the other hand, either has no effect (that is, is treated
as a no-operation instruction), or causes an lllegal Instruction exception type Program interrupt, on implemen-
tations (such as the PPC440x5) that conform to the current version of PowerPC Book-E. Because implemen-
tations are typically expected to treat reserved-nop instructions as true no-ops, these instruction opcodes are
thus available for future extensions to PowerPC Book-E which have no effect on architected state. Such
extensions might include performance-enhancing hints, such as new forms of cache touch instructions. Soft-
ware would be able to take advantage of the functionality offered by the new instructions, and still remain
backwards-compatible with implementations of previous versions of PowerPC Book-E.

The PPC440x5 implements all of the reserved-nop instruction opcodes as true no-ops. The specific reserved-
nop opcodes are listed in Appendix A.5 on page 544

2.4 Implemented Instruction Set Summary

This section provides an overview of the various types and categories of instructions implemented within the
PPC440x5. In addition, Instruction Set on page 243 provides a complete alphabetical listing of every imple-
mented instruction, including its register transfer language (RTL) and a detailed description of its operation.
Also, Appendix A Instruction Summary on page 507 lists each implemented instruction alphabetically (and by
opcode) along with a short-form description and its extended mnemonic(s).

prgmodel.fm. Programming Model
July 15, 2003 Page 55 of 573

User’'s Manual

PPC440x5 CPU Core

Preliminary

Table 2-4 summarizes the PPC440x5 instruction set by category. Instructions within each category are
described in subsequent sections.

Table 2-4. Instruction Categories

Category

Integer

Branch

Processor Control

Storage Control

Allocated

Subcategory
Integer Storage Access

Integer Arithmetic
Integer Logical

Integer Compare
Integer Select
Integer Trap
Integer Rotate

Integer Shift

Condition Register Logical

Register Management

System Linkage
Processor Synchronization
Cache Management

TLB Management

Storage Synchronization
Allocated Arithmetic

Allocated Logical

Allocated Cache Management

Allocated Cache Debug

2.4.1 Integer Instructions

Instruction Types
load, store
add, subtract, multiply, divide, negate

and, andc, or, orc, xor, nand, nor, xnor, extend sign, count lead-
ing zeros

compare, compare logical

select operand

trap

rotate and insert, rotate and mask

shift left, shift right, shift right algebraic

branch, branch conditional, branch to link, branch to count
crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor

move to/from SPR, move to/from DCR, move to/from MSR,
write to external interrupt enable bit, move to/from CR

system call, return from interrupt, return from critical interrupt,
return from machine check interrupt

instruction synchronize

data allocate, data invalidate, data touch, data zero, data flush,
data store, instruction invalidate, instruction touch

read, write, search, synchronize
memory synchronize, memory barrier

multiply-accumulate, negative multiply-accumulate, multiply
halfword

detect left-most zero byte

data congruence-class invalidate, instruction congruence-class
invalidate

data read, instruction read

Integer instructions transfer data between memory and the GPRs, and perform various operations on the
GPRs. This category of instructions is further divided into seven sub-categories, described below.

2.4.1.1 Integer Storage Access Instructions

Integer storage access instructions load and store data between memory and the GPRs. These instructions
operate on bytes, halfwords, and words. Integer storage access instructions also support loading and storing
multiple registers, character strings, and byte-reversed data, and loading data with sign-extension.

Table 2-5 shows the integer storage access instructions in the PPC440x5. In the table, the syntax “[u]” indi-
cates that the instruction has both an “update” form (in which the RA addressing register is updated with the
calculated address) and a “non-update” form. Similarly, the syntax “[x]” indicates that the instruction has both

prgmodel.fm.
July 15, 2003

Programming Model
Page 56 of 573

User's Manual

Preliminary PPC440x5 CPU Core
an “indexed” form (in which the address is formed by adding the contents of the RA and RB GPRs) and a
“base + displacement” form (in which the address is formed by adding a 16-bit signed immediate value (spec-

ified as part of the instruction) to the contents of GPR RA. See the detailed instruction descriptions in Instruc-
tion Set on page 243.

Table 2-5. Integer Storage Access Instructions

Loads Stores
Byte Halfword Word Multiple/String Byte Halfword Word Multiple/String
lha[u][x] Iwarx Imw sthu][x] stw[u][x] stmw
Ibz[u][x] lhbrx lwbrx Iswi stb[u][x] sthb stwbrx stswi
Ihz[u][x] lwz[u][x] Iswx rx stwex. stswx

2.4.1.2 Integer Arithmetic Instructions

Arithmetic operations are performed on integer or ordinal operands stored in registers. Instructions that
perform operations on two operands are defined in a three-operand format; an operation is performed on the
operands, which are stored in two registers. The result is placed in a third register. Instructions that perform
operations on one operand are defined in a two-operand format; the operation is performed on the operand in
a register and the result is placed in another register. Several instructions also have immediate formats in
which one of the source operands is a field in the instruction.

Most integer arithmetic instructions have versions that can update CR[CRO0] and/or XER[SO, OV] (Summary
Overflow, Overflow), based on the result of the instruction. Some integer arithmetic instructions also update
XER[CA] (Carry) implicitly. See Integer Processing on page 69 for more information on how these instruc-
tions update the CR and/or the XER.

Table 2-6 lists the integer arithmetic instructions in the PPC440x5. In the table, the syntax “[o]” indicates that
the instruction has both an “0” form (which updates the XER[SO,0V] fields) and a “non-0” form. Similarly, the
syntax “[.]” indicates that the instruction has both a “record” form (which updates CR[CRO0]) and a “non-
record” form.

Table 2-6. Integer Arithmetic Instructions

Add Subtract Multiply Divide Negate
addJo][.]
addclo][.] subflo][.]
adde|o][.] subfc[o][.] mulhwl[.]
addi subfe[o][.] mulhwul.] divwlo][.]
addic[] subfic mulli divwuo)) | 9Ll
addis subfme[o][.] muliw[o][.]
addme[o][.] subfze[o][.]
addze[o][.]
prgmodel.fm. Programming Model

July 15, 2003 Page 57 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

2.4.1.3 Integer Logical Instructions

Table 2-7 lists the integer logical instructions in the PPC440x5. See Integer Arithmetic Instructions on
page 57 for an explanation of the “[.]” syntax.

Table 2-7. Integer Logical Instructions

. . Count
And And with Nand Or Or with Nor Xor Equivalence Extend sign leading
complement complement
zeros
and[.] orl.] xorf[.]
andi. andcl.] nand[.] ori orc[.] nor[.] | xori eqv[.] ex:s:[.] cntlzw[.]
andis. oris xoris extshl.]

2.4.1.4 Integer Compare Instructions

These instructions perform arithmetic or logical comparisons between two operands and update the CR with
the result of the comparison.

Table 2-8 lists the integer compare instructions in the PPC440x5.

Table 2-8. Integer Compare Instructions
Arithmetic Logical

cmp cmpl
cmpi cmpli
2.4.1.5 Integer Trap Instructions
Table 2-9 lists the integer trap instructions in the PPC440x5.

Table 2-9. Integer Trap Instructions
Trap

tw
twi
2.4.1.6 Integer Rotate Instructions
These instructions rotate operands stored in the GPRs. Rotate instructions can also mask rotated operands.

Table 2-10 lists the rotate instructions in the PPC440x5. See Integer Arithmetic Instructions on page 57 for an
explanation of the “[.]” syntax.

Table 2-10. Integer Rotate Instructions

Rotate and Insert Rotate and Mask
.y rlwinm[.]
rlwimil.] riwnmL.]
Programming Model prgmodel.fm.

Page 58 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

2.4.1.7 Integer Shift Instructions

Table 2-11 lists the integer shift instructions in the PPC440x5. Note that the shift right algebraic insructions
implicitly update the XER[CA] field. See Integer Arithmetic Instructions on page 57 for an explanation of the
“[.]” syntax.

Table 2-11. Integer Shift Instructions

Shift Right

Shift Left Shift Right Algebraic

sraw[.]

slwl.] srwl.] srawil.]

2.4.1.8 Integer Select Instruction

Table 2-12 lists the integer select instruction in the PPC440x5. The RA operand is 0 if the RA field of the
instruction is 0, or is the contents of GPR[RA] otherwise.

Table 2-12. Integer Select Instruction

Integer Select

isel

2.4.2 Branch Instructions

These instructions unconditionally or conditionally branch to an address. Conditional branch instructions can
test condition codes set in the CR by a previous instruction and branch accordingly. Conditional branch
instructions can also decrement and test the Count Register (CTR) as part of branch determination, and can
save the return address in the Link Register (LR).The target address for a branch can be a displacement from
the current instruction address or an absolute address, or contained in the LR or CTR.

See Branch Processing on page 62 for more information on branch operations.

Table 2-13 lists the branch instructions in the PPC440x5. In the table, the syntax “[l]” indicates that the
instruction has both a “link update” form (which updates LR with the address of the instruction after the
branch) and a “non-link update” form. Similarly, the syntax “[a]” indicates that the instruction has both an
“absolute address” form (in which the target address is formed directly using the immediate field specified as
part of the instruction) and a “relative” form (in which the target address is formed by adding the specified
immediate field to the address of the branch instruction).

Table 2-13. Branch Instructions
Branch

b[l][a]

befl][a]

bectr(l]

belr[l]

2.4.3 Processor Control Instructions

Processor control instructions manipulate system registers, perform system software linkage, and synchro-
nize processor operations. The instructions in these three sub-categories of processor control instructions are
described below.

prgmodel.fm. Programming Model
July 15, 2003 Page 59 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

2.4.3.1 Condition Register Logical Instructions

These instructions perform logical operations on a specified pair of bits in the CR, placing the result in another
specified bit. The benefit of these instructions is that they can logically combine the results of several compar-
ison operations without incurring the overhead of conditional branching between each one. Software perfor-
mance can significantly improve if multiple conditions are tested at once as part of a branch decision.

Table 2-14 lists the condition register logical instructions in the PPC440x5.

Table 2-14. Condition Register Logical Instructions

crand crnor
crandc cror

creqv crorc
crnand crxor

2.4.3.2 Register Management Instructions
These instructions move data between the GPRs and control registers in the PPC440x5.
Table 2-15 lists the register management instructions in the PPC440x5.

Table 2-15. Register Management Instructions

CR DCR MSR SPR
mcrf mfmsr
mcrxr mfdcr mtmsr mfspr
mfcr mtdcr wrtee mtspr
mtcrf wrteei

2.4.3.3 System Linkage Instructions
These instructions invoke supervisor software level for system services, and return from interrupts.
Table 2-16 lists the system linkage instructions in the PPC440x5.

Table 2-16. System Linkage Instructions

rfi
rfci
rfmci
sc

2.4.3.4 Processor Synchronization Instruction

Tne processor synchronization instruction, isync, forces the processor to complete all instructions preceding
the isync before allowing any context changes as a result of any instructions that follow the isync. Addition-
ally, all instructions that follow the isync will execute within the context established by the completion of all
the instructions that precede the isync. See Synchronization on page 79 for more information on the
synchronizing effect of isync.

Table 2-17 shows the processor synchronization instruction in the PPC440x5.

Table 2-17. Processor Synchronization Instruction

isync

Programming Model prgmodel.fm.
Page 60 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

2.4.4 Storage Control Instructions

These instructions manage the instruction and data caches and the TLB of the PPC440x5 core. Instructions
are also provided to synchronize and order storage accesses. The instructions in these three sub-categories
of storage control instructions are described below.

2.4.4.1 Cache Management Instructions

These instructions control the operation of the data and instruction caches. Instructions are provided to fill,
flush, invalidate, or zero data cache blocks, where a block is defined as a 32-byte cache line. instructions are
also provided to fill or invalidate instruction cache blocks.

Table 2-18 lists the cache management instructions in the PPC440x5.

Table 2-18. Cache Management Instructions
Data Cache Instruction Cache

dcba
dcbf
dcbi
dcbst
dcbt
dcbtst
dcbz

icbi
icbt

2.4.4.2 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array, and search the TLB array for an
entry which will translate a given virtual address. There is also an instruction for synchronizing TLB updates
with other processors, but since the PPC440x5 core is intended for use in uni-processor environments, this
instruction performs no operation on the PPC440x5.

Table 2-19 lists the TLB management instructions in the PPC440x5. See Integer Arithmetic Instructions on
page 57 for an explanation of the “[.]” syntax.

Table 2-19. TLB Management Instructions

tibre
tibsx[.]

tibsync
tibwe

2.4.4.3 Storage Synchronization Instructions

The storage synchronization instructions allow software to enforce ordering amongst the storage accesses
caused by load and store instructions, which by default are “weakly-ordered” by the processor. “Weakly-
ordered” means that the processor is architecturally permitted to perform loads and stores generally out-of-
order with respect to their sequence within the instruction stream, with some exceptions. However, if a
storage synchronization instruction is executed, then all storage accesses prompted by instructions
preceding the synchronizing instruction must be performed before any storage accesses prompted by
instructions which come after the synchronizing instruction. See Synchronization on page 79 for more infor-
mation on storage synchronization.

prgmodel.fm. Programming Model
July 15, 2003 Page 61 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Table 2-17 shows the storage synchronization instructions in the PPC440x5.

Table 2-20. Storage Synchronization Instructions

msync
mbar

2.4.5 Allocated Instructions

These instructions are not part of the PowerPC Book-E architecture, but they are included as part of the
PPC440x5 core. Architecturally, they are considered allocated instructions, as they use opcodes which are
within the allocated class of instructions, which the PowerPC Book-E architecture identifies as being available
for implementation-dependent and/or application-specific purposes. However, all of the allocated instructions
which are implemented within the PPC440x5 core are “standard” for IBM’s family of PowerPC embedded
controllers, and are not unique to the PPC440x5.

The allocated instructions implemented within the PPC440x5 are divided into four sub-categories, and are
shown in Table 2-21. See Integer Arithmetic Instructions on page 57 for an explanation of the “[.]” and “[o]”
syntax.

Table 2-21. Allocated Instructions

Arithmetic Logical Mar?aagc:;ent gggzz
Multiply-Accumulate Mump'l\il‘fgitc'nfnulate Multiply Halfword
macchw(o][.]
macchws][o][.]
macchwsu(o][.]
macchwu(o][.] nmacchw(o][.] mulchwl.]
machhwlo][.] nmacchws|o][.] mulchwul.]
machhwsJo][.] nmachhw(o][.] mulhhw[.] dimzbl.] dccci dcread
machhwsu[o][.] nmachhws[o][.] mulhhwul[.] ’ iccci icread
machhwu[o][.] nmaclhwlo][.] mullhwl[.]
maclhw(o][.] nmaclhws[o][.] mullhwul.]
maclhws[o][.]
maclhwsulo][.]
maclhwulo][.]

2.5 Branch Processing

The four branch instructions provided by PPC440x5 are summarized in Table 2.4.2 on page 59. In addition,
each of these instructions is described in detail in Instruction Set on page 243. The following sections provide
additional information on branch addressing, instruction fields, prediction, and registers.

2.5.1 Branch Addressing

The branch instruction (b[l][a]) specifies the displacement of the branch target address as a 26-bit value (the
24-bit LI field right-extended with Ob00). This displacement is regarded as a signed 26-bit number covering an
address range of +32MB. Similarly, the branch conditional instruction (bcfl][a]) specifies the displacement as
a 16-bit value (the 14-bit BD field right-extended with 0b00). This displacement covers an address range of
+32KB.

Programming Model prgmodel.fm.
Page 62 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

For the relative form of the branch and branch conditional instructions (b[l] and bgc[l], with instruction field
AA = 0), the target address is the address of the branch instruction itself (the Current Instruction Address, or
CIA) plus the signed displacement. This address calculation is defined to “wrap around” from the maximum
effective address (OxFFFFFFFF) to 0x0000 0000, and vice-versa.

For the absolute form of the branch and branch conditional instructions (ba[l] and bea(l], with instruction field
AA = 1), the target address is the sign-extended displacement. This means that with absolute forms of the
branch and branch conditional instructions, the branch target can be within the first or last 32MB or 32KB of
the address space, respectively.

The other two branch instructions, belr (branch conditional to LR) and bcctr (branch conditional to CTR), do
not use absolute nor relative addressing. Instead, they use indirect addressing, in which the target of the
branch is specified indirectly as the contents of the LR or CTR.

2.5.2 Branch Instruction Bl Field

Conditional branch instructions can optionally test one bit of the CR, as indicated by instruction field BO[0]
(see BO field description below). The value of instruction field Bl specifies the CR bit to be tested (0-31). The
Bl field is ignored if BO[0] = 1. The branch (b[l][a]) instruction is by definition unconditional, and hence does
not have a Bl instruction field. Instead, the position of this field is part of the LI displacement field.

2.5.3 Branch Instruction BO Field

The BO field specifies the condition under which a conditional branch is taken, and whether the branch decre-
ments the CTR. The branch (b[l][a]) instruction is by definition unconditional, and hence does not have a BO
instruction field. Instead, the position of this field is part of the LI displacement field.

Conditional branch instructions can optionally test one bit in the CR. This option is selected when BO[0Q] = O; if
BOI[0] = 1, the CR does not participate in the branch condition test. If the CR condition option is selected, the
condition is satisfied (branch can occur) if the CR bit selected by the Bl instruction field matches BO[1].

Conditional branch instructions can also optionally decrement the CTR by one, and test whether the decre-
mented value is 0. This option is selected when BO[2] = 0; if BO[2] = 1, the CTR is not decremented and does
not participate in the branch condition test. If CTR decrement option is selected, BO[3] specifies the condition
that must be satisfied to allow the branch to be taken. If BO[3] = 0, CTR # 0 is required for the branch to
occur. If BO[3] = 1, CTR = 0 is required for the branch to occur.

Table 2-22 summarizes the usage of the bits of the BO field. BO[4] is further discussed in Branch Prediction
on page 64

Table 2-22. BO Field Definition
BO Bit Description

CR Test Control
BO[0] 0 Test CR bit specified by Bl field for value specified by BO[1]
1 Do not test CR

CR Test Value
BO[1] 0 If BO[0] = 0, test for CR[BI] = 0.
1 If BO[0] = 0, test for CR[BI] = 1.

CTR Decrement and Test Control

0 Decrement CTR by one and test whether the decremented CTR
satisfies the condition specified by BO[3].

1 Do not decrement CTR, do not test CTR.

BO[2]

prgmodel.fm. Programming Model
July 15, 2003 Page 63 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

Table 2-22. BO Field Definition (continued)
BO Bit Description

CTR Test Value
BO[3] 0 IfBO[2] = 0, test for decremented CTR % 0.
1 If BO[2] = 0, test for decremented CTR = 0.

Branch Prediction Reversal
BO[4] 0 Apply standard branch prediction.
1 Reverse the standard branch prediction.

Table 2-23 lists specific BO field contents, and the resulting actions; z represents a mandatory value of zero,
and y is a branch prediction option discussed in Branch Prediction on page 64

Table 2-23. BO Field Examples

BO Value Description
0000y Decrement the CTR, then branch if the decremented CTR # 0 and CR[BI]=0.
0001y Decrement the CTR, then branch if the decremented CTR = 0 and CR[BI] = 0.
001zy Branch if CR[BI] = 0.
0100y Decrement the CTR, then branch if the decremented CTR # 0 and CR[BI] = 1.
0101y Decrement the CTR, then branch if the decremented CTR=0 and CR[BI] = 1.
011zy Branch if CR[BI] = 1.
1z00y Decrement the CTR, then branch if the decremented CTR # 0.
1z01y Decrement the CTR, then branch if the decremented CTR = 0.
1212z Branch always.

2.5.4 Branch Prediction

Conditional branches might be taken or not taken; if taken, instruction fetching is re-directed to the target
address. If the branch is not taken, instruction fetching simply falls through to the next sequential instruction.
The PPC440x5 core attempts to predict whether or not a branch is taken before all information necessary to
determine the branch direction is available. This action is called branch prediction. The core can then prefetch
instructions down the predicted path. If the prediction is correct, performance is improved because the branch
target instruction is available immediately, instead of having to wait until the branch conditions are resolved. If
the prediction is incorrect, then the prefetched instructions (which were fetched from addresses down the
“‘wrong” path of the branch) must be discarded, and new instructions fetched from the correct path.

The PPC440x5 core combines the static prediction mechanism defined by PowerPC Book-E, together with a
dynamic branch prediction mechanism, in order to provide correct branch prediction as often as possible. The
dynamic branch prediction mechanism is an implementation optimization, and is not part of the architecture,
nor is it visible to the programming model. Appendix B PPC440x5 Core Compiler Optimizations on page 553
provides additional information on the dynamic branch prediction mechanism.

The static branch prediction mechanism enables software to designate the “preferred” branch prediction via
bits in the instruction encoding. The “default” static branch prediction for conditional branches is as follows:

Predict that the branch is to be taken if (BO[0] OBOI[2]) O s) = 1

where s is bit 16 of the instruction (the sign bit of the displacement for all bc forms, and zero for all belr and
bccetr forms). In other words, conditional branches are predicted taken if they are “unconditional” (i.e., they do
not test the CR nor the CTR decrement, and are always taken), or if their branch displacement is “negative”
(i.e., the branch is branching “backwards” from the current instruction address). The standard prediction for

Programming Model prgmodel.fm.
Page 64 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

this case derives from considering the relative form of bc, often used at the end of loops to control the number
of times that a loop is executed. The branch is taken each time the loop is executed except the last, so it is
best if the branch is predicted taken. The branch target is the beginning of the loop, so the branch displace-
ment is negative and s = 1. Because this situation is most common, a branch is taken if s = 1.

If branch displacements are positive, s = 0, then the branch is predicted not taken. Also, if the branch instruc-
tion is any form of bclr or beetr except the “unconditional” form, then s = 0, and the branch is predicted not
taken.

There is a peculiar consequence of this prediction algorithm for the absolute forms of be (bca and bcla). As
described in Branch Addressing on page 62, if s = 1, the branch target is in high memory. If s = 0, the branch
target is in low memory. Because these are absolute-addressing forms, there is no reason to treat high and

low memory differently. Nevertheless, for the high memory case the standard prediction is taken, and for the
low memory case the standard prediction is not taken.

Another bit in the BO field allows software further control over branch prediction. Specifically, BO[4] is the
prediction reversal bit. If BO[4] = 0, the default prediction is applied. If BO[4] = 1, the reverse of the default
prediction is applied. For the cases in Table 2-23 where BO[4] = y, software can reverse the default predic-
tion by setting y to 1. This should only be done when the default prediction is likely to be wrong. Note that for
the “branch always” condition, reversal of the default prediction is not allowed, as BO[4] is designated as z for
this case, meaning the bit must be set to 0 or the instruction form is invalid.

2.5.5 Branch Control Registers

There are three registers in the PPC440x5 which are associated with branch processing, and they are
described in the following sections.

2.5.5.1 Link Register (LR)

The LR is written from a GPR using mtspr, and can be read into a GPR using mfspr. The LR can also be
updated by the “link update” form of branch instructions (instruction field LK = 1). Such branch instructions
load the LR with the address of the instruction following the branch instruction (4 + address of the branch
instruction). Thus, the LR contents can be used as a return address for a subroutine that was entered using a
link update form of branch. The belr instruction uses the LR in this fashion, enabling indirect branching to any
address.

When being used as a return address by a belr instruction, bits 30:31 of the LR are ignored, since all instruc-
tion addresses are on word boundaries.

Access to the LR is non-privileged.

0 31

Figure 2-3. Link Register (LR)

0:31 Link Register contents Target address of belr instruction

prgmodel.fm. Programming Model
July 15, 2003 Page 65 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

2.5.5.2 Count Register (CTR)

The CTR is written from a GPR using mtspr, and can be read into a GPR using mfspr. The CTR contents
can be used as a loop count that gets decremented and tested by conditional branch instructions that specify
count decrement as one of their branch conditions (instruction field BO[2] = 0). Alternatively, the CTR
contents can specify a target address for the bectr instruction, enabling indirect branching to any address.

Access to the CTR is non-privileged.

0 31

Figure 2-4. Count Register (CTR)

Used as count for branch conditional with decre-
0:31 Count ment instructions, or as target address for bcctr
instructions

2.5.5.3 Condition Register (CR)

The CR is used to record certain information (“conditions”) related to the results of the various instructions
which are enabled to update the CR. A bit in the CR may also be selected to be tested as part of the condition
of a conditional branch instruction.

The CR is organized into eight 4-bit fields (CR0-CR7), as shown in Figure 2-5. Table 2-24 lists the instruc-
tions which update the CR.

Access to the CR is non-privileged.

CRO CR2 CR4 CR6

v v ! v

o 3]4 7]8 1]12 15[16 19] 20 23] 24 2728 31]

CR1 CR3 CR5 CR7

Figure 2-5. Condition Register (CR)

0:3 CRO Condition Register Field 0
4:7 CR1 Condition Register Field 1
8:11 CR2 Condition Register Field 2

12:15 CR3 Condition Register Field 3
16:19 CR4 Condition Register Field 4
20:23 CR5 Condition Register Field 5
24:27 CR6 Condition Register Field 6
28:31 CR7 Condition Register Field 7

Programming Model prgmodel.fm.
Page 66 of 573 July 15, 2003

Preliminary

Table 2-24. CR Updating Instructions

PPC440x5 CPU Core

User's Manual

Processor Storage Auxiliary
Integer Control Control Processor
CR-Logical . .
Storage TLB Arithmetic
Access Arithmetic Logical Compare Rotate Shift I?/Ind Register Mgmt. and Logical
anagement
macchw.[o]
macchws.[o]
macchwsu.[o]
hwu.
add.[o] and. macchwu.[o]
. machhw.[o]
addc.[o] andi.
. machhws.[o]
adde.[o] andis.
X machhwsu.[o]
addic.
machhwu.[o]
addme.[o] andc.
crand maclhw.[o]
addze.[o]
crandc maclhws.[o]
nand.
creqv maclhwsu.[o]
subf.[o]
slw. crnand maclhwu.[o]
subfc.[o] or. cmp -
. rlwimi. crnor
subfe.[o] orc. cmpi
Srw. cror nmacchw.[o]
stwcex. subfme.[o] . tibsx.
rlwinm. crorc nmacchws.[o]
subfze.[o] nor. cmpl
. rlwnm. sraw. crxor nmachhw.[o]
cmpli .
srawi. nmachhws.[o]
mulhw. XOr.
mcrf nmaclhw.[o]
mulhwu.
muliw.[o] cav mcrxr nmaclhws.[o]
’ Q- mtcrf
Ichw.
divw.[o] extsb. muichw
divwu.[o] extsh mulchwu.
’ ’ mulhhw.
neg.[o] cntlzw. mulhhwu.
9- ' mullhw.
mullhwu.
dimzb.

Instruction Set on page 243, provides detailed information on how each of these instructions updates the CR.
To summarize, the CR can be accessed in any of the following ways:

prgmodel.fm.
July 15, 2003

mfcr reads the CR into a GPR. Note that this instruction does not update the CR and is therefore not
listed in Table 2-24.

Conditional branch instructions can designate a CR bit to be used as a branch condition. Note that these
instructions do not update the CR and are therefore not listed in Table 2-24.

mtcrf sets specified CR fields by writing to the CR from a GPR, under control of a mask field specified as
part of the instruction.

mcrf updates a specified CR field by copying another specified CR field into it.
mcrxr copies certain bits of the XER into a specified CR field, and clears the corresponding XER bits.
Integer compare instructions update a specified CR field.

CR-logical instructions update a specified CR bit with the result of any one of eight logical operations on a
specified pair of CR bits.

Programming Model
Page 67 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

» Certain forms of various integer instructions (the “.” forms) implicitly update CR[CRO0], as do certain forms
of the auxiliary processor instructions implemented within the PPC440x5 core.

» Auxiliary processor instructions may in general update a specified CR field in an implementation-speci-
fied manner. In addition, if an auxiliary processor implements the floating-point operations specified by
PowerPC Book-E, then those instructions update the CR in the manner defined by the architecture. See
Book E: PowerPC Architecture Enhanced for Embedded Applications for details.

CR[CRO0] Implicit Update By Integer Instructions
Most of the CR-updating instructions listed in Table 2-24 implicitly update the CRO field. These are the

various “dot-form” instructions, indicated by a “.” in the instruction mnemonic. Most of these instructions
update CR[CRO] according to an arithmetic comparison of 0 with the 32-bit result which the instruction writes
to the GPR file. That is, after performing the operation defined for the instruction, the 32-bit result which is
written to the GPR file is compared to 0 using a signed comparison, independent of whether the actual oper-
ation being performed by the instruction is considered “signed” or not. For example, logical instructions such
as and., or., and nor. update CR[CRO0] according to this signed comparison to 0, even though the result of
such a logical operation is not typically interpreted as a signed value. For each of these dot-form instructions,

the individual bits in CR[CRO] are updated as follows:

CR[CRO]y — LT Less than 0; set if the most-significant bit of the 32-bit result is 1.

CR[CRO0]y — GT Greater than 0; set if the 32-bit result is non-zero and the most-significant bit
of the result is 0.

CR[CRO0], — EQ Equal to 0; set if the 32-bit result is 0.

CR[CR0]; — SO Summary overflow; a copy of XER[SO] at the completion of the instruction

(including any XER[SO] update being performed the instruction itself.

Note that if an arithmetic overflow occurs, the “sign” of an instruction result indicated in CR[CR0] might not
represent the “true” (infinitely precise) algebraic result of the instruction that set CRO. For example, if an add.
instruction adds two large positive numbers and the magnitude of the result cannot be represented as a twos-
complement number in a 32-bit register, an overflow occurs and CR[CRO]; is set, even though the infinitely
precise result of the add is positive.

Similarly, adding the largest 32-bit twos-complement negative number (0x80000000) to itself results in an
arithmetic overflow and 0x0000 0000 is recorded in the target register. CR[CRO], is set, indicating a result of
0, but the infinitely precise result is negative.

CRI[CRO0]3 is a copy of XER[SO] at the completion of the instruction, whether or not the instruction which is
updating CR[CRO] is also updating XER[SO]. Note that if an instruction causes an arithmetic overflow but is
not of the form which actually updates XER[SO], then the value placed in CR[CRO]; does not reflect the arith-
metic overflow which occurred on the instruction (it is merely a copy of the value of XER[SO] which was
already in the XER before the execution of the instruction updating CR[CRO0]).

There are a few dot-form instructions which do not update CR[CRO] in the fashion described above. These
instructions are: stwcx., tlbsx., and dimzb. See the instruction descriptions in Instruction Set on page 243 for
details on how these instructions update CR[CRO].

Programming Model prgmodel.fm.
Page 68 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

CR Update By Integer Compare Instructions

Integer compare instructions update a specified CR field with the result of a comparison of two 32-bit
numbers, the first of which is from a GPR and the second of which is either an immediate value or from
another GPR. There are two types of integer compare instructions, arithmetic and logical, and they are distin-
guished by the interpretation given to the 32-bit numbers being compared. For arithmetic compares, the
numbers are considered to be signed, whereas for logical compares, the numbers are considered to be
unsigned. As an example, consider the comparison of 0 with OXFFFFFFFF. In an arithmetic compare, 0 is
larger; in a logical compare, OxFFFFFFFF is larger.

A compare instruction can direct its result to any CR field. The BF field (bits 6:8) of the instruction specifies
the CR field to be updated. After a compare, the specified CR field is interpreted as follows:

CR[(BF)]o — LT The first operand is less than the second operand.
CR[(BF)]1 — GT The first operand is greater than the second operand.
CR[(BF)], —EQ The first operand is equal to the second operand.
CR[(BF)]s — SO Summary overflow; a copy of XER[SO].

2.6 Integer Processing

Integer processing includes loading and storing data between memory and GPRs, as well as performing
various operations on the values in GPRs and other registers (the categories of integer instructions are
summarized in Table 2-4 on page 56). The sections which follow describe the registers which are used for
integer processing, and how they are updated by various instructions. In addition, Condition Register (CR) on
page 66 provides more information on the CR updates caused by integer instructions. Finally, Instruction Set
on page 243 also provides details on the various register updates performed by integer instructions.

2.6.1 General Purpose Registers (GPRs)

The PPC440x5 contains 32 GPRs. The contents of these registers can be transferred to and from memory
using integer storage access instructions. Operations are performed on GPRs by most other instructions.

Access to the GPRs is non-privileged.

0 31

Figure 2-6. General Purpose Registers (RO-R31)

0:31 General Purpose Register data

prgmodel.fm. Programming Model
July 15, 2003 Page 69 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

2.6.2 Integer Exception Register (XER)

The XER records overflow and carry indications from integer arithmetic and shift instructions. It also provides
a byte count for string indexed integer storage access instructions (Iswx and stswx). Note that the term
exception in the name of this register does not refer to exceptions as they relate to interrupts, but rather to the
arithmetic exceptions of carry and overflow.

Figure 2-7 illustrates the fields of the XER, while Table 2-25 and Table 2-26 list the instructions which update
XER[SO,0V] and the XER[CA] fields, respectively. The sections which follow the figure and tables describe
the fields of the XER in more detail.

Access to the XER is non-privileged.

Sle) Cf TiC

v

[0][1]2]3 2425 31
ov

Figure 2-7. Integer Exception Register (XER)

Summary Overflow Can be Set by mtspr or by integer or auxiliary pro-
0 SO 0 No overflow has occurred. cessor instructions with the [o] option; can be
1 Overflow has occurred. reset by mtspr or by merxr.

Can be set by mtspr or by integer or allocated
instructions with the [o] option; can be reset by
mtspr, by merxr, or by integer or allocated instruc-
tions with the [o] option.

Overflow
1 ov 0 No overflow has occurred.
1 Overflow has occurred.

Can be Set by mtspr or by certain integer arith-
metic and shift instructions; can be reset by
mtspr, by mcrxr, or by certain integer arithmetic
and shift instructions.

Carry
2 CA 0 Carry has not occurred.
1 Carry has occurred.

3:24 Reserved

Used as a byte count by Iswx and stswx; written

25:31 TBC Transfer Byte Count by dimzb[.] and by mtspr.

Programming Model prgmodel.fm.
Page 70 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Table 2-25. XER[SO,OV] Updating Instructions

Processor Con-

Integer Arithmetic Auxiliary Processor trol
. - Multiply-Accumu- Negative Multi- Register Man-
Add Subtract Multiply Divide Negate late ply- Accumulate agement
macchwol.]
macchwsol[.]
macchwsuol.]
addol] subfo[.] macchwuol.] nmacchwol.]
machhwol.] nmacchwsol.]
addcol.] subfcol.] .
divwol.] machhwsol.] nmachhwol.] mtspr
addeol.] subfeo[.] mullwol.] . negol.]
divwuol.] machhwsuol.] nmachhwsol.] mcrxr
addmeol.] subfmeol.]
addzeo[] subfzeo[] machhwuol.] nmaclhwol.]
! ! maclhwol[.] nmaclhwsol[.]
maclhwsol.]
maclhwsuol.]
maclhwuol.]

Table 2-26. XER[CA] Updating Instructions

. . Integer Processor
Integer Arithmetic Shift Control
Shift Register
Add Subtract Right Manademe
Algebraic 9

addc[o][.] subfc[o][.]
adde[o][.] subfe[o][.]
addicl] subfic :xf[]] mtspr
addme[o][.] | subfme[o][.] ’
addze[o][.] subfze[o][.]

2.6.2.1 Summary Overflow (SO) Field

This field is set to 1 when an instruction is executed that causes XER[OV] to be set to 1, except for the case
of mtspr(XER), which writes XER[SO,0V] with the values in (RS)g.1, respectively. Once set, XER[SO] is not
reset until either an mtspr(XER) is executed with data that explicitly writes 0 to XER[SO], or until an mcrxr
instruction is executed. The mcrxr instruction sets XER[SO] (as well as XER[OV,CA]) to 0 after copying all
three fields into CR[CRO0]j., (and setting CR[CRO0]3 to 0).

Given this behavior, XER[SO] does not necessarily indicate that an overflow occurred on the most recent
integer arithmetic operation, but rather that one occurred at some time subsequent to the last clearing of
XER[SQO] by mtspr(XER) or mcrxr.

XER[SO] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, various integer
instructions copy XER[SO] into CR[CRO]; (see Condition Register (CR) on page 66).
2.6.2.2 Overflow (OV) Field

This field is updated by certain integer arithmetic instructions to indicate whether the infinitely precise result of
the operation can be represented in 32 bits. For those integer arithmetic instructions that update XER[OV]
and produce signed results, XER[OV] = 1 if the result is greater than 23! — 1 or less than —237; otherwise,

prgmodel.fm. Programming Model
July 15, 2003 Page 71 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

XER[OV] = 0. For those integer arithmetic instructions that update XER[OV] and produce unsigned results
(certain integer divide instructions and multiply-accumulate auxiliary processor instructions), XER[OV] = 1 if
the result is greater than 232_1; otherwise, XER[OV] = 0. See the instruction descriptions in Instruction Set on
page 243 for more details on the conditions under which the integer divide instructions set XER[OV] to 1.

The mtspr(XER) and mcerxr instructions also update XER[OV]. Specifically, merxr sets XER[OV] (and
XER[SO,CA]) to 0 after copying all three fields into CR[CRO0].» (and setting CR[CRO0]5 to 0), while
mtspr(XER) writes XER[OV] with the value in (RS);.

XER[OV] is read (along with the rest of the XER) into a GPR by mfspr(XER).

2.6.2.3 Carry (CA) Field

This field is updated by certain integer arithmetic instructions (the “carrying” and “extended” versions of add
and subract) to indicate whether or not there is a carry-out of the most-significant bit of the 32-bit result.
XER[CA] = 1 indicates a carry. The integer shift right algebraic instructions update XER[CA] to indicate
whether or not any 1-bits were shifted out of the least significant bit of the result, if the source operand was
negative (see the instruction descriptions in Instruction Set on page 243 for more details).

The mtspr(XER) and mcrxr instructions also update XER[CA]. Specifically, merxr sets XER[CA] (as well as
XER[SO,0V]) to 0 after copying all three fields into CR[CRO]y.» (and setting CR[CRO]3 to 0), while
mtspr(XER) writes XER[CA] with the value in (RS),.

XER[CA] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, the “extended”
versions of the add and subtract integer arithmetic instructions use XER[CA] as a source operand for their
arithmetic operations.

Transfer Byte Count (TBC) Field

The TBC field is used by the string indexed integer storage access instructions (Iswx and stswx) as a byte
count. The TBC field is updated by the dimzb].] instruction with a value indicating the number of bytes up to
and including the zero byte detected by the instruction (see the instruction description for dimzb in /nstruction
Set on page 243 for more details). The TBC field is also written by mtspr(XER) with the value in (RS)25.34.

XER[TBC] is read (along with the rest of the XER) into a GPR by mfspr(XER).

2.7 Processor Control

The PPC440x5 core provides several registers for general processor control and status. These include:
» Machine State Register (MSR)

Controls interrupts and other processor functions
» Special Purpose Registers General (SPRGs)

SPRs for general purpose software use

* Processor Version Register (PVR)

Indicates the specific implementation of a processor

* Processor Identification Register (PIR)

Programming Model prgmodel.fm.
Page 72 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core
Indicates the specific instance of a processor in a multi-processor system
» Core Configuration Register 0 (CCRO0)

Controls specific processor functions, such as instruction prefetch
» Reset Configuration (RSTCFG)

Reports the values of certain fields of the TLB as supplied at reset
Except for the MSR, each of these registers is described in more detail in the following sections. The MSR is
described in more detail in Interrupts and Exceptions on page 153.
2.7.1 Special Purpose Registers General (USPRGO0, SPRG0-SPRG?7)

USPRGO0 and SPRG0-SPRG?7 are provided for general purpose, system-dependent software use. One
common system usage of these registers is as temporary storage locations. For example, a routine might
save the contents of a GPR to an SPRG, and later restore the GPR from it. This is faster than a save/restore
to a memory location. These registers are written using mtspr and read using mfspr.

Access to USPRGO is non-privileged for both read and write.

Access to SPRG4-SPRG7 is non-privileged for read but privileged for write, and hence different SPR
numbers are used for reading than for writing.

Access to SPRG0-SPRG3 is privileged for both read and write.

0 31

Figure 2-8. Special Purpose Registers General (USPRGO, SPRG0O-SPRG7)

0:31 General data Software value; no hardware usage.

2.7.2 Processor Version Register (PVR)

The PVR is a read-only register typically used to identify a specific processor core and chip implementation.
Software can read the PVR to determine processor core and chip hardware features. The PVR can be read
into a GPR using mfspr.

Refer to PowerPC 440x5 Embedded Processor Data Sheet for the PVR value.

Access to the PVR is privileged.

prgmodel.fm. Programming Model
July 15, 2003 Page 73 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary
OWN
0 1112 31
PVN

Figure 2-9. Processor Version Register (PVR)

0:11 OWN Owner Ildentifier Identifies the owner of a core.
Implementation-specific value identifying the spe-

12:31 PVN Processor Version Number cific version and use of a processor core within a
chip.

2.7.3 Processor ldentification Register (PIR)

The PIR is a read-only register that uniquely identifies a specific instance of a processor core, within a multi-
processor configuration, enabling software to determine exactly which processor it is running on. This capa-
bility is important for operating system software within multiprocessor configurations. The PIR can be read
into a GPR using mfspr.

Because the PPC440x5 is a uniprocessor, PIR[PIN] = 0b0000.
Access to the PIR is privileged.

PIN

0 2728 31]

Figure 2-10. Processor Identification Register (PIR)
0:27 Reserved
28:31 PIN Processor Identification Number (PIN)

2.7.4 Core Configuration Register 0 (CCRO)

The CCRO controls a number of special chip functions, including data cache and auxiliary processor opera-
tion, speculative instruction fetching, trace, and the operation of the cache block touch instructions. The
CCRO is written from a GPR using mtspr, and can be read into a GPR using mfspr. Figure 2-11 illustrates
the fields of the CCRO, and gives a brief description of their functions. A cross reference after the bit-field
description indicates the section of this document which describes each field in more detail.

Access to the CCRO is privileged.

Programming Model prgmodel.fm.
Page 74 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core
PRE DSTG DTB GDCBT ICSLC
|0|1‘2 3‘4|5 9|10‘11‘12 15‘16|17|18|19 22|23‘24 27‘28 29|30 31|
CRPE DAPUIB GICBT FLSTA ICSLT

Figure 2-11. Core Configuration Register 0 (CCRO0)

0
1 PRE
2:3
4 CRPE
5:9
10 DSTG
11 DAPUIB
12:15
16 DTB
17 GICBT
18 GDCBT
19:22
23 FLSTA
24:27
prgmodel.fm.
July 15, 2003

Reserved

Parity Recoverability Enable

0 Semi-recoverable parity mode enabled for data
cache

1 Fully recoverable parity mode enabled for data
cache

Reserved

Cache Read Parity Enable
0 Disable parity information reads
1 Enable parity information reads

Reserved

Disable Store Gathering

0 Enabled; stores to contiguous addresses may be
gathered into a single transfer

1 Disabled; all stores to memory will be performed
independently

Disable APU Instruction Broadcast

0 Enabled.

1 Disabled; instructions not broadcast to APU for
decoding

Reserved

Disable Trace Broadcast
0 Enabled.
1 Disabled; no trace information is broadcast.

Guaranteed Instruction Cache Block Touch

0 icbt may be abandoned without having filled
cache line if instruction pipeline stalls.

1 icbt is guaranteed to fill cache line even if
instruction pipeline stalls.

Guaranteed Data Cache Block Touch

0 dcbt/dcbtst may be abandoned without having
filled cache line if load/store pipeline stalls.

1 dcbt/dcbtst are guaranteed to fill cache line
even if load/store pipeline stalls.

Reserved

Force Load/Store Alignment

0 No Alignment exception on integer storage
access instructions, regardless of alignment

1 An alignment exception occurs on integer
storage access instructions if data address is not
on an operand boundary.

Reserved

Must be set to 1 to guarantee full recoverability
from MMU and data cache parity errors.

When enabled, execution of icread, dcread, or
tibre loads parity information into the ICDBTRH,
DCDBTRL, or target GPR, respectively.

See Store Gathering on page 116.

This mechanism is provided as a means of reduc-
ing power consumption when an auxilliary pro-
cessor is not attached and/or is not being used.

See Initialization on page 83.

This mechanism is provided as a means of reduc-
ing power consumption when instruction tracing is
not needed.

See Initialization on page 83.

See icbt Operation on page 108.

See Data Cache Control and Debug on
page 121.

See Load and Store Alignment on page 114.

Programming Model
Page 75 of 573

User’'s Manual

PPC440x5 CPU Core

28:29

30:31

ICSLC

ICSLT

Instruction Cache Speculative Line Count

Instruction Cache Speculative Line Threshold

2.7.5 Core Configuration Register 1 (CCR1)

Preliminary

Number of additional lines (0-3) to fill on instruc-
tion fetch miss.

See Speculative Prefetch Mechanism on

page 102.

Number of doublewords that must have already
been filled in order that the current speculative

line fill is not abandoned on a redirection of the

instruction stream.

See Speculative Prefetch Mechanism on
page 102.

Bits 0:19 of CCR1 can cause all possible parity error exceptions to verify correct machine check exception
handler operation. Other CCR1 bits can force a full-line data cache flush, or select a CPU timer clock input
other than CPUClock. The CCR1 is written from a GPR using mtspr, and can be read into a GPR using
mfspr. Figure 2-12 illustrates the fields of the CCR1, and gives a brief description of their functions.

Access to the CCR1 is privileged.

ICDPEI

v

DCTPEI DCUPEI FCOM

vy

FFF

v

0

718 910 11[12[13[14]15]16

19]20] 21

23[24]25 31

ICTPEI DCDPEI DCMPEI

Figure 2-12. Core Configuration Register 1 (CCR1)

0:7

8:9

10:11

12

13

14

15

ICDPEI

ICTPEI

DCTPEI

DCDPEI

DCUPEI

DCMPEI

FCOM

Programming Model
Page 76 of 573

Instruction Cache Data Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Instruction Cache Tag Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Data Cache Tag Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Data Cache Data Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Data Cache U-bit Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Data Cache Modified-bit Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Force Cache Operation Miss
0 normal operation
1 cache ops appear to miss the cache

TCS

Controls inversion of parity bits recorded when the
instruction cache is filled. Each of the 8 bits corre-
sponds to one of the instruction words in the line.

Controls inversion of parity bits recorded for the tag
field in the instruction cache.

Controls inversion of parity bits recorded for the tag
field in the data cache.

Controls inversion of parity bits recorded for the
data field in the data cache.

Controls inversion of parity bit recorded for the U
fields in the data cache.

Controls inversion of parity bits recorded for the
modified (dirty) field in the data cache.

Force icbt , dcbt, dcbtst, dcbst, dcbf, dcbi, and
dcbz to appear to miss the caches. The intended
use is with icbt and dcbt only, which will fill a dupli-
cate line and allow testing of multi-hit parity errors.
See Section 4.2.4.7 Simulating Instruction Cache
Parity Errors for Software Testing on page 111 and
Figure 4.3.3.7 on page 126.

prgmodel.fm.
July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Memory Management Unit Parity Error Insert Controls inversion of parity bits recorded for the tag
16:19 MMUPEI 0 record even parity (normal) field in the MMU.
1 record odd parity (simulate parity error)

When flushing 32-byte (8-word) lines from the data
cache, normal operation is to write nothing, a dou-
ble word, quad word, or the entire 8-word block to

Force Full-line Flush the memory as required by the dirty bits. This bit
20 FFF 0 flush only as much data as necessary. ensures that none or all dirty bits are set so that
1 always flush entire cache lines either nothing or the entire 8-word block is written

to memory when flushing a line from the data
cache. Refer to Section 4.3.1.4 Line Flush Opera-
tions on page 117.

21:23 Reserved

Timer Clock Select
0 CPU timer advances by one at each rising edge

of the CPU input clock (CPMC440CLOCK). When TCS = 1, CPU timer clock input can toggle

24 TCS 1 CPU timer advances by one for each rising edge at up to half of the CPU clock frequency.
of the CPU timer clock
(CPMC440TIMERCLOCK).

25:31 Reserved

2.7.6 Reset Configuration (RSTCFG)
The read-only RSTCFG register reports the values of certain fields of TLB as supplied at reset.

Access to RSTCFG is privileged.

uo u2 E
0 15‘16‘17|18‘19‘20 23|24|25 27|28 31‘
u1 u3 ERPN

Figure 2-13. Reset Configuration
0:15 Reserved

U0 Storage Attribute
16 uo 0 UQ storage attribute is disabled See Table 5-1 on page 131.
1 UO storage attribute is enabled

U1 Storage Attribute
17 U1 0 U1 storage attribute is disabled See Table 5-1 on page 131.
1 U1 storage attribute is enabled

U2 Storage Attribute
18 u2 0 U2 storage attribute is disabled See Table 5-1 on page 131.
1 U2 storage attribute is enabled

U3 Storage Attribute
19 U3 0 U3 storage attribute is disabled See Table 5-1 on page 131.
1 U3 storage attribute is enabled

20:23 Reserved

prgmodel.fm. Programming Model
July 15, 2003 Page 77 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

E Storage Attribute
24 E 0 Accesses to the page are big endian.
1 Accesses to the page are little endian.

25:27 Reserved
This TLB field is prepended to the translated
address to form a 36-bit real address. See Table
28:31 ERPN Extended Real Page Number 5.4 Address Translation on page 136 and Table 5-3
Page Size and Real Address Formation on
page 137.

2.8 User and Supervisor Modes

PowerPC Book-E architecture defines two operating “states” or “modes,” supervisor (privileged), and user
(non-privileged). Which mode the processor is operating in is controlled by MSR[PR]. When MSR[PR] is 0,
the processor is in supervisor mode, and can execute all instructions and access all registers, including privi-
leged ones. When MSR[PR] is 1, the processor is in user mode, and can only execute non-privileged instruc-
tions and access non-privileged registers. An attempt to execute a privileged instruction or to access a
privileged register while in user mode causes a Privileged Instruction exception type Program interrupt to
occur.

Note that the name “PR” for the MSR field refers to an historical alternative name for user mode, which is
“problem state.” Hence the value 1 in the field indicates “problem state,” and not “privileged” as one might
expect.

2.8.1 Privileged Instructions
The following instructions are privileged and cannot be executed in user mode:

Table 2-27. Privileged Instructions
dcbi
dccci
dcread
iccci
icread
mfdcr
mfmsr
mfspr For any SPR Number with SPRN5 = 1. See Privileged SPRs on page 79.
mtdcr
mtmsr
mtspr For any SPR Number with SPRN5 = 1. See Privileged SPRs on page 79.
rfci
rfi
rfmci
tibre
tibsx
tibsync

Programming Model prgmodel.fm.
Page 78 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Table 2-27. Privileged Instructions (continued)
tibwe
wrtee

wrteei

2.8.2 Privileged SPRs

Most SPRs are privileged. The only defined non-privileged SPRs are the LR, CTR, XER, USPRGO0, SPRG4-
7 (read access only), TBU (read access only), and TBL (read access only). The PPC440x5 core also treats all
SPR numbers with a 1 in bit 5 of the SPRN field as privileged, whether the particular SPR number is defined
or not. Thus the core causes a Privileged Instruction exception type Program interrupt on any attempt to
access such an SPR number while in user mode. In addition, the core causes an lllegal Instruction exception
type Program interrupt on any attempt to access while in user mode an undefined SPR number with a 0 in
SPRNs. On the other hand, the result of attempting to access an undefined SPR number in supervisor mode
is undefined, regardless of the value in SPRNs.

2.9 Speculative Accesses

The PowerPC Book-E Architecture permits implementations to perform speculative accesses to memory,
either for instruction fetching, or for data loads. A speculative access is defined as any access that is not
required by the sequential execution model (SEM).

For example, the PPC440x5 speculatively prefetches instructions down the predicted path of a conditional
branch; if the branch is later determined to not go in the predicted direction, the fetching of the instructions
from the predicted path is not required by the SEM and thus is speculative. Similarly, the PPC440x5 executes
load instructions out-of-order, and may read data from memory for a load instruction that is past an undeter-
mined branch.

Sometimes speculative accesses are inappropriate, however. For example, attempting to access data at
addresses to which 1/O devices are mapped can cause problems. If the I/O device is a serial port, reading it
speculatively could cause data to be lost.

The architecture provides two mechanisms for protecting against errant accesses to such “non-well-behaved”
memory addresses. The first is the guarded (G) storage attribute, and protects against speculative data
accesses. The second is the execute permission mechanism, and protects against speculative instruction
fetches. Both of these mechanisms are described in Memory Management on page 129

2.10 Synchronization

The PPC440x5 supports the synchronization operations of the PowerPC Book-E architecture. There are
three kinds of synchronization defined by the architecture, each of which is described in the following
sections.

prgmodel.fm. Programming Model
July 15, 2003 Page 79 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

2.10.1 Context Synchronization

The context of a program is the environment in which the program executes. For example, the mode (user or
supervisor) is part of the context, as are the address translation space and storage attributes of the memory
pages being accessed by the program. Context is controlled by the contents of certain registers and other
resources, such as the MSR and the translation lookaside buffer (TLB).

Under certain circumstances, it is necessary for the hardware or software to force the synchronization of a
program’s context. Context synchronizing operations include all interrupts except Machine Check, as well as
the isync, sc, rfi, rfci, and rfmci instructions. Context synchronizing operations satisfy the following require-
ments:

1. The operation is not initiated until all instructions preceding the operation have completed to the point at
which they have reported any and all exceptions that they will cause.

2. Allinstructions preceding the operation must complete in the context in which they were initiated. That is,
they must not be affected by any context changes caused by the context synchronizing operation, or any
instructions after the context synchronizing operation.

3. If the operation is the sc instruction (which causes a System Call interrupt) or is itself an interrupt, then
the operation is not initiated until no higher priority interrupt is pending (see Interrupts and Exceptions on
page 153).

4. All instructions that follow the operation must be re-fetched and executed in the context that is estab-
lished by the completion of the context synchronizing operation and all of the instructions which preceded
it.

Note that context synchronizing operations do not force the completion of storage accesses, nor do they
enforce any ordering amongst accesses before and/or after the context synchronizing operation. If such

behavior is required, then a storage synchronizing instruction must be used (see Storage Ordering and
Synchronization on page 81).

Also note that architecturally Machine Check interrupts are not context synchronizing. Therefore, an instruc-
tion that precedes a context synchronizing operation can cause a Machine Check interrupt after the context
synchronizing operation occurs and additional instructions have completed. For the PPC440x5 core, this can
only occur with Data Machine Check exceptions, and not Instruction Machine Check exceptions.

The following scenarios use pseudocode examples to illustrate the effects of context synchronization. Subse-
quent text explains how software can further guarantee “storage ordering.”
1. Consider the following self-modifying code instruction sequence:
stw XYZ Store to caching inhibited address XYZ
isync
XYz fetch and execute the instruction at address XYZ

In this sequence, the isync instruction does not guarantee that the XYZ instruction is fetched after the
store has occurred to memory. There is no guarantee which XYZ instruction will execute; either the old
version or the new (stored) version might.

2. Now consider the required self-modifying code sequence:

stw Write new instruction to data cache
dcbst Push the new instruction from the data cache to memory
msync Guarantee that dcbst completes before subsequent instructions begin
icbi invalidate old copy of instruction in instruction cache
Programming Model prgmodel.fm.

Page 80 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core
msync Guarantee that icbi completes before subsequent instructions begin
isync force context synchronization, discard ed instructions and re-fetch, fetch of
OWN System-dependent | PVR[OWN] value (after reset and otherwise) is specified by core input signals
PVR
PVN System-dependent | PVR[PVN] value (after reset and otherwise) is specified by core input signals

stored instruction guaranteed to get new value

3. This final example illustrates the use of isync with context changes to the debug facilities
mtdbcrO Enable the instruction address compare (IAC) debug event
isync Wait for the new Debug Control Register 0 (DBCRO0) context to be established
XYZ This instruction is at the IAC address; an isync is necessary to guarantee that the
IAC event is recognized on the execution of this instruction; without the isync, the
XYZ instruction may be prefetched and dispatched to execution before
recognizing that the IAC event has been enabled.

2.10.2 Execution Synchronization

Execution synchronization is a subset of context synchronization. An execution synchronizing operation satis-
fies the first two requirements of context synchronizing operations, but not the latter two. That is, execution
synchronizing operations guarantee that preceding instructions execute in the “old” context, but do not guar-
antee that subsequent instructions operate in the “new” context. An example of a scenario requiring execu-
tion synchronization would be just before the execution of a TLB-updating instructions (such as tlbwe). An
execution synchronizing instruction should be executed to guarantee that all preceding storage access
instructions have performed their address translations before executing tlbwe to invalidate an entry which
might be used by those preceding instructions.

There are four execution synchronizing instructions: mtmsr, wrtee, wrteei, and msync. Of course, all
context synchronizing instruction are also implicitly execution synchronizing, since context synchronization is
a superset of execution synchronization.

Note that PowerPC Book-E imposes additional requirements on updates to MSR[EE] (the external interrupt
enable bit). Specifically, if a mtmsr, wrtee, or wrteei instruction sets MSR[EE] = 1, and an External Input,
Decrementer, or Fixed Interval Timer exception is pending, the interrupt must be taken before the instruction
that follows the MSR[EE]-updating is executed. In this sense, these MSR[EE]-updating instructions can be
thought of as being context synchronizing with respect to the MSR[EE] bit, in that it guarantees that subse-
quent instructions execute (or are prevented from executing and an interrupt taken) according to the new
context of MSR[EE].

2.10.3 Storage Ordering and Synchronization

Storage synchronization enforces ordering between storage access instructions executed by the PPC440x5
core. There are two storage synchronizing instructions: msync and mbar. PowerPC Book-E architecture
defines different ordering requirements for these two instructions, but the PPC440x5 core implements them in
an identical fashion. Architecturally, msync is the “stronger” of the two, and is also execution synchronizing,
whereas mbar is not.

mbar acts as a “barrier” between all storage access instructions executed before the mbar and all those
executed after the mbar. That is, mbar ensures that all of the storage accesses initiated by instructions
before the mbar are performed with respect to the memory subsystem before any of the accesses initiated by

prgmodel.fm. Programming Model
July 15, 2003 Page 81 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

instructions after the mbar. However, mbar does not prevent subsequent instructions from executing (nor
even from completing) before the completion of the storage accesses initiated by instructions before the
mbar.

msync, on the other hand, does guarantee that all preceding storage accesses have actually been
performed with respect to the memory subsystem before the execution of any instruction after the msync.
Note that this requirement goes beyond the requirements of mere execution synchronization, in that execu-
tion synchronization doesn’t require the completion of preceding storage accesses.

The following two examples illustrate the distinctive use of mbar vs. msync.

stw Store data to an 1/O device
msync Wait for store to actually complete
mtdcr Reconfigure the 1/0 device

In this example, the mtdcr is reconfiguring the 1/0 device in a manner which would cause the preceding store
instruction to fail, were the mtdcr to change the device before the completion of the store. Since mtdcr is not
a storage access instruction, the use of mbar instead of msync would not guarantee that the store is
performed before letting the mtdcr reconfigure the device. It only guarantees that subsequent storage
accesses are not performed to memory or any device before the earlier store.

Now consider this next example:

stb X Store data to an I/0O device at address X, causing a status bit at address Y to be reset
mbar Guarantee preceding store is performed to the device before any subequent

storage accesses are performed
Ibz'Y Load status from the I/O device at address Y

Here, mbar is appropriate instead of msync, because all that is required is that the store to the 1/O device
happens before the load does, but not that other instructions subsequent to the mbar won’t get executed
before the store.

Programming Model prgmodel.fm.
Page 82 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

3. Initialization

This chapter describes the initial state of the PPC440x5 core after a hardware reset, and contains a descrip-
tion of the initialization software required to complete initialization so that the PPC440x5 core can begin
executing application code. Initialization of other on-chip and/or off-chip system components may also be
needed, in addition to the processor core initialization described in this chapter.

3.1 PPC440x5 Core State After Reset

In general, the contents of registers and other facilities within the PPC440x5 core are undefined after a hard-
ware reset. Reset is defined to initialize only the minimal resources required such that instructions can be
fetched and executed from the initial program memory page, and so that repeatable, deterministic behavior
can be guaranteed provided that the proper software initialization sequence is followed. System software
must fully configure the rest of the PPC440x5 core resources, as well as the other facilities within the chip
and/or system.

The following list summarizes the requirements of the Book-E Enhanced PowerPC Architecture with regards
to the processor state after reset, prior to any additional initialization by software.

+ All fields of the MSR are set to 0, disabling all asynchronous interrupts, placing the processor in supervi-
sor mode, and specifying that instruction and data accesses are to the system (as opposed to applica-
tion) address space.

+ DBCRO[RST] is set to 0, thereby ending any previous software-initiated reset operation.

+ DBSR[MRR] records the type of the just ended reset operation (core, chip, or system; see Reset Types
on page 87).

+ TCR[WRC] is set to 0, thereby disabling the Watchdog timer reset operation.

+ TSR[WRS] records the type of the just ended reset operation, if the reset was initiated by the Watchdog
Timer (otherwise this field is unchanged from its pre-reset value).

+ The PVR is defined, after reset and otherwise, to contain a value that indicates the specific processor
implementation.

» The program counter (PC) is set to OXFFFFFFFC, the effective address (EA) of the last word of the
address space.

The memory management resources are set to values such that the processor is able to successfully fetch
and execute instructions and read (but not write) data within the 4KB program memory page located at the
end of the 32-bit effective address space. Exactly how this is accomplished is implementation-dependent. For
example, it may or may not be the case that a TLB entry is established in a manner which is visible to soft-
ware using the TLB management instructions. Regardless of how the implementation enables access to the
initial program memory page, instruction execution starts at the effective adddress of OxFFFFFFFC, the last
word of the effective address space. The instruction at this address must be an unconditional branch back-
wards to the start of the initialization sequence, which must lie somewhere within the initial 4KB program
memory page. The real address to which the initial effective address will be translated is also implementation-
or system-dependent, as are the various storage attributes of the initial program memory page such as the
caching inhibited and endian attributes.

Note: In the PPC440x5 core, a single entry is established in the instruction shadow TLB (ITLB) and data
shadow TLB (DTLB) at reset with the properties described in Table 3-1. It is required that initialization soft-
ware insert an entry into the UTLB to cover this same memory region before performing any context synchro-

init.fm. Initialization
July 15, 2003 Page 83 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

nizing operation (including causing any exceptions which would lead to an interrupt), since a context
synchronizing operation will invalidate the shadow TLB entries.

Initialization software should consider all other resources within the PPC440x5 core to be undefined after
reset, in order for the initialization sequence to be compatible with other PowerPC implementations. There
are, however, additional core resources which are initialized by reset, in order to guarantee correct and deter-
ministic operation of the processor during the initialization sequence. Table 3-1 shows the reset state of all
PPC440x5 core resources which are defined to be initialized by reset. While certain other register fields and
other facilities within the PPC440x5 core may be affected by reset, this is not an architectural nor hardware
requirement, and software must treat those resources as undefined. Likewise, even those resources which
are included in Table 3-1 but which are not identified in the previous list as being architecturally required,
should be treated as undefined by the initialization software.

During chip initialization, some chip control registers must be initialized to ensure proper chip operation.
Peripheral devices can also be initialized as appropriate for the system design.

Table 3-1. Reset Values of Registers and Other PPC440x5 Facilities

Resource Field Reset Value Comment

DAPUIB 0 Enable broadcast of instruction data to auxiliary processor interface

CeRO DTB 0 Enable broadcast of trace information
ICDPEI 0
ICTPEI 0
DCTPEI 0

Disable Parity Error Insertion (enabled only for s/w testing)

DCDPEI 0

CCR1 DCUPEI 0
DCMPEI 0
FCOM 0 Do not force cache ops to miss.
MMUPEI 0 Disable Parity Error Insertion (enabled only for s/w testing)
FFF 0 Flush only as much data from dirty lines as needed.
EDM 0 External Debug mode disabled
RST 0b00 Software-initiated debug reset disabled
ICMP 0 Instruction completion debug events disabled
BRT 0 Branch taken debug events disabled

DBCRO
IAC1 0 Instruction Address Compare 1 (IAC1) debug events disabled
IAC2 0 IAC2 debug events disabled
IAC3 0 IAC3 debug events disabled
IAC4 0 IAC4 debug events disabled

Initialization init.fm.

Page 84 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

Table 3-1. Reset Values of Registers and Other PPC440x5 Facilities

Resource Field Reset Value Comment
UDE 0 Unconditional debug event has not occurred

Indicates most recent type of reset as follows:

00 No reset has occurred since this field last cleared by software
MRR Reset-dependent | 01 Core reset

10 Chip reset

11 System reset

ICMP 0 Instruction completion debug event has not occurred
BRT 0 Branch taken debug event has not occurred
IRPT 0 Interrupt debug event has not occurred
TRAP 0 Trap debug event has not occurred
DBSR IAC1 0 IAC1 debug event has not occurred
IAC2 0 IAC2 debug event has not occurred
IAC3 0 IAC3 debug event has not occurred
IAC4 0 IAC4 debug event has not occurred
DAC1R 0 Data address compare 1 (DAC1) read debug event has not occurred
DAC1W 0 DAC1 write debug event has not occurred
DAC2R 0 DAC2 read debug event has not occurred
DAC2W 0 DAC2 write debug event has not occurred
RET 0 Return debug event has not occurred
ESR MCI 0 Synchronous Instruction Machine Check exception has not occurred
MCSR MCS 0 Asynchronous Instruction Machine Check exception has not occurred
WE 0 Wait state disabled
CE 0 Asynchronous critical interrupts disabled
EE 0 Asynchronous non-critical interrupts disabled
PR 0 Processor in supervisor mode
FP 0 Floating-point Unavailable interrupts disabledStorage
ME 0 Machine Check interrupts disabled
MSR
FEO 0 Floating-point Enabled interrupts disabled
DWE 0 Debug Wait mode disabled
DE 0 Debug interrupts disabled
FE1 0 Floating-point Enabled interrupts disabled
IS 0 Instruction fetch access is to system-level virtual address space
DS 0 Data access is to system level virtual address space
PC OxFFFFFFFC Initial reset instruction fetched from last word of effective addess space
OWN System-dependent | PVR[OWN] value (after reset and otherwise) is specified by core input signals
PR PVN System-dependent | PVR[PVN] value (after reset and otherwise) is specified by core input signals
init.fm. Initialization

July 15, 2003 Page 85 of 573

User’'s Manual

PPC440x5 CPU Core

Preliminary

Table 3-1. Reset Values of Registers and Other PPC440x5 Facilities

Resource Field

uo
u1

U2
RSTCFG
u3

EPRN

TCR WRC

EPNo:1g

TS
SIZE

TID
RPNg:24

ERPN

uo-u3

TLBentry1

m o 2

SwW
SR

TSR WRS

Reset Value
System-dependent
System-dependent
System-dependent
System-dependent
System-dependent
System-dependent

0b00
OXFFFFF

1
0
0b0001

0x00
OXFFFFF ||oboo

System-dependent

System-dependent

0
1
0
1
System-dependent
1
0
1
Copy of TCR[WRC]
Unchanged
Undefined

Comment

All RSTCFG fields are specified by core input signals

Watchdog Timer reset disabled

Match EA of initial reset instruction (EPN5q.o4 are undefined, as they are not
compared to the EA because the page size is 4KB).

Translation table entry for the initial program memory page is valid.
Initial program memory page is in system-level virtual address space.
Initial program memory page size is 4KB.

Initial program memory page is globally shared; no match required against PID
register.

Initial program memory page mapped effective=real.

Extended real page number of the initial program memory page is specified by
core input signals.

Reset value of user-definable storage attributes are specified by core input sig-
nals

Write-through storage attribute disabled.

Caching inhibited storage attribute enabled.

Memory coherent storage attribute disabled.

Guarded storage attribute enabled.

Reset value of endian storage attribute is specified by a core input signal.
Supervisor mode execution access enabled.

Supervisor mode write access disabled.

Supervisor mode read access enabled.

If reset caused by Watchdog Timer

If reset not caused by Watchdog Timer

After power-up

Note: “TLBentry” refers to an entry in the shadow instruction and data TLB arrays that is automatically configured by the PPC440x5
core to enable fetching and reading (but not writing) from the initial program memory page. This entry is not architecturally visible to
software, and is invalidated upon any context synchronizing operation. Software must initialize a corresponding entry in the main

unified TLB array before executing any operation which could lead to a context synchronization. See Initialization Software Require-
ments on page 87 for more information.

Initialization
Page 86 of 573

init.fm.
July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

3.2 Reset Types

The PPC440x5 core supports three types of reset: core, chip, and system. The type of reset is indicated by a
set of core input signals. For each type of reset, the core resources are initialized as indicated in Table 3-1 on
page 84. Core reset is intended to reset the PPC440x5 core without necessarily resetting the rest of the on-
chip logic. The chip reset operation is intended to reset the entire chip, but off-chip hardware in the system is
not informed of the reset operation. System reset is intended to reset the entire chip, and also to signal the
rest of the off-chip system that the chip is being reset.

3.3 Reset Sources

A reset operation can be initiated on the PPC440x5 core through the use of any of four separate mecha-
nisms. The first is a set of three input signals to the core, one for each of the three reset types. These signals
can be asserted asynchronously by hardware outside the core to initiate a reset operation. The second reset
source is the TCR[WRC] field, which can be setup by software to initiate a reset operation upon certain
Watchdog Timer expiration events. The third reset source is the DBCRO[RST] field, which can be written by
software to immediately initiate a reset operation. The fourth reset source is the JTAG interface, which can be
used by a JTAG-attached debug tool to initiate a reset operation asynchronously to program execution on the
PPC440x5 core.

3.4 Initialization Software Requirements

After a reset operation occurs, the PPC440x5 core is initialized to a minimum configuration to enable the
fetching and execution of the software initialization code, and to guarantee deterministic behavior of the core
during the execution of this code. Initialization software is necessary to complete the configuration of the
processor core and the rest of the on-chip and off-chip system.

The system must provide non-volatile memory (or memory initialized by some mechanism other than the
PPC440x5 core) at the real address corresponding to effective address OxFFFFFFFC, and at the rest of the
initial program memory page. The instruction at the initial address must be an unconditional branch back-
wards to the beginning of the initialization software sequence.

The initialization software functions described in this section perform the configuration tasks required to
prepare the PPC440x5 core to boot an operating system and subsequently execute an application program.

The initialization software must also perform functions associated with hardware resources that are outside
the PPC440x5 core, and hence that are beyond the scope of this manual. This section makes reference to
some of these functions, but their full scope is described in the user’s manual for the specific chip and/or
system implementation.

Initialization software should perform the following tasks in order to fully configure the PPC440x5 core. For
more information on the various functions referenced in the initialization sequence, see the corresponding
chapters of this document.

1. Branch backwards from effective address OxFFFFFFFC to the start of the initialization sequence

2. Invalidate the instruction cache (iccci)

init.fm. Initialization
July 15, 2003 Page 87 of 573

User’'s Manual

PPC440x5 CPU Core Preliminary

3.
4.

10.

Invalidate the data cache (dccci)

Synchronize memory accesses (msync)

This step forces any data PLB operations that may have been in progress prior to the reset operation to
complete, thereby allowing subsequent data accesses to be initiated and completed properly.

Clear DBCRO register (disable all debug events)

Although the PPC440x5 core is defined to reset some of the debug event enables during the reset oper-
ation (as specified in Table 3-1 on page 84), this is not required by the architecture and hence the initial-

ization software should not assume this behavior. Software should disable all debug events in order to
prevent non-deterministic behavior on the trace interface to the core.

Clear DBSR register (initialize all debug event status)
Although the PPC440x5 core is defined to reset the DBSR debug event status bits during the reset oper-
ation (as specified in Table 3-1 on page 84), this is not required by the architecture and hence the initial-

ization software should not assume this behavior. Software should clear all such status in order to
prevent non-deterministic behavior on the JTAG interface to the core.

Initialize CCRO register
1. Enable/disable broadcast of instructions to auxiliary processor (save power if no AP attached)
Enable/disable broadcast of trace information (save power if not tracing)
Enable/configure or disable speculative instruction cache line prefetching
Specify behavior for icbt and dcbt/dcbtst instructions
Enable/disable gathering of separate store accesses

Enable/disable hardware support for misaligned data accesses

N o o kDb

Enable/disable parity error recoverability (recoverability lowers load/store performance marginally.)

8. Enable/disable cache read of parity bits depending on s/w compatibility requirements

. Initialize CCR1 register

1. enable/disable full-line flushes as desired.
2. disable force cache-op miss (FCOM) and various parity error insertion (xxxPEl).

3. Users may wish to initialize CCR1[TCS] here, or in the timer facilities section.

. Configure instruction and data cache regions

These steps must be performed prior to enabling the caches by setting the caching inhibited storage
attribute of the corresponding TLB entry to 0.

1. Clear the instruction and data cache normal victim index registers (INVO—-INV3, DNV0O-DNV3)
2. Clear the instruction and data cache transient victim index registers (ITVO-ITV3, DTV0-DTV3)

3. Set the instruction and data cache victim limit registers (IVLIM and DVLIM) according to the desired
size of the normal, locked, and transient regions of each cache

Setup TLB entry to cover initial program memory page
Since the PPC440x5 core only initializes an architecturally-invisible shadow TLB entry during the reset

operation, and since all shadow TLB entries are invalidated upon any context synchronization, special
care must be taken during the initialization sequence to prevent any such context synchronizing opera-

Initialization init.fm.
Page 88 of 573 July 15, 2003

User's Manual

Preliminary PPC440x5 CPU Core

tions (such as interrupts and the isync i