Platform Specification
Format Reference
Manual

Embedded Development Kit
EDK

EDK 10.1, Service Pack 3

S XILINX®

2 XILINX®

© Copyright 2002 — 2008 Xilinx, Inc. All Rights Reserved.

XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.

The PowerPC name and logo are registered trademarks of IBM Corp., and used under license. All other trademarks are the property of their
respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. THE DOCUMENTATION IS DISCLOSED TO
YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY
CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST
PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Platform Specification Format Reference Manual = www.xilinx.com EDK 10.1, Service Pack 3

http://www.xilinx.com

Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

The following table shows the revision history for this document.

Date

Revision

08/20/04

Initial release for EDK 6.3i.

02/15/05

EDK 7.1i release.

04/28/05

EDK 7.1i Service Pack 1 release.

07/05/05

EDK 7.1i Service Pack 2 release.

10/24/05

EDK 8.1i release.

01/16/06

EDK 8.1 Service Pack 1 release. Updated to note obsolete cores.

06/23/06

EDK 8.2i release.

01/08/07

EDK 9.1i release.

09/05/07

EDK 9.2i release.

01/14/07

EDK 10.1 release.

09/19/08

EDK 10.1 Service Pack 3 release.

EDK 10.1, Service Pack 3

www.Xxilinx.com

Platform Specification Format Reference Manual

http://www.xilinx.com

Platform Specification Format Reference Manual = www.xilinx.com EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®
Preface

About This Guide

Guide Contents

This manual contains the following chapters:

e Chapter 1, “Introduction”

e Chapter 2, “Microprocessor Hardware Specification (MHS)”
e Chapter 3, “Microprocessor Peripheral Definition (MPD)”
e Chapter 4, “Peripheral Analyze Order (PAO)”

e Chapter 5, “Black-Box Definition (BBD)”

e Chapter 6, “Microprocessor Software Specification (MSS)”
e Chapter 7, “Microprocessor Library Definition (MLD)”

e Chapter 8, “Microprocessor Driver Definition (MDD)”

e Chapter 9, “Xilinx Board Description (XBD) Format”

e Appendix A, “Glossary”

Additional Resources

To find additional documentation, see the Xilinx website:

http:/ /www.xilinx.com/support/documentation/index.htm.

The following table lists some of the resources you can access from this website. You can
also directly access these resources using the provided URLs.

Resource Description/URL
EDK Home Embedded Development Kit home page, FAQ, and tips.
http:/ /www.xilinx.com/ise/embedded_design_prod /platform_st
udio.htm

EDK Examples A set of complete EDK examples.
http:/ /www.xilinx.com/ise/embedded /edk_examples.htm

Tutorials Tutorials covering Xilinx design flows from design entry to
verification and debugging

http:/ /www.xilinx.com/support/techsup/tutorials/index.htm

Platform Specification Format Reference Manual = www.xilinx.com 5
EDK 10.1, Service Pack 3

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com/support/techsup/tutorials/index.htm

SUXILINX®

Preface: About This Guide

Resource

Description/URL

Answer Browser

To search the Answer Database of silicon, software, and IP questions
and answers, or to create a technical support WebCase, see the Xilinx
website at:

http:/ /www.xilinx.com/support/mysupport.htm

Application
Notes

For descriptions of device-specific design techniques and
approaches, click the Doc Type tab on the following web page:

http:/ /www.xilinx.com/support/documentation/index.htm

Data Sheets

For device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging, click the Doc Type tab on the following web page:

http:/ /www.xilinx.com/support/documentation/index.htm

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues:

http:/ /www.xilinx.com/support/troubleshoot/psolvers.htm

GNU Manuals

The entire set of GNU manuals may be found at:

http:/ /www.gnu.org/manual

Conventions
This document uses the following conventions. An example illustrates each convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system | speed grade: - 100
displays
Courier bold L1tera} command.s that you ngdbuild design_name
enter in a syntactical statement
fComrnands that you select File - Open
Helvetica bold romamenu
Keyboard shortcuts Ctrl+C
6 www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.gnu.org/manual

Conventions

SUXILINX®

Convention Meaning or Use Example
Variables in a syntax
statement for which you must | ngdbuild design_name
supply values
See the Development System
Italic font References to other manuals | Reference Guide for more

information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { }

A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |

Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has
been omitted

IOB #1: Name
IOB #2: Name

QOUT’
CLKIN'

Horizontal ellipsis ...

Repetitive material that has

allow block block name

Online Documents

been omitted locl loc2 locn;
The following conventions are used in this document:
Convention Meaning or Use Example
) See the section “Additional
Cross-reference link to a Resources” for details.
Blue text location in the current

document

Refer to “Title Formats” in
Chapter 1 for details.

Blue, underlined text

Hyperlink to a website (URL)

Go to http:/ /www.xilinx.com
for the latest speed files.

Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

www.Xxilinx.com

http://www.xilinx.com
http://www.xilinx.com

SXILINX® Preface: About This Guide

8 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Table of Contents

Preface: About This Guide

Guide Contents e 5
Additional ReSOUICeSottt 5
CONVENLIONSottt e e 6
Typographical. 6
Online Documents oot 7

Chapter 1: Introduction

Files 15
BBD - Black Box Definition............. o i 15
MDD - Microprocessor Driver Definition 15
MHS - Microprocessor Hardware Specification 15
MPD - Microprocessor Peripheral Definition 16
MSS - Microprocessor Software Specification 16
MLD - Microprocessor Library Definition.................................... 16
PAO - Peripheral Analyze Order.................. i 16
XBD - Xilinx Board Definition o o i 16

Fileand IP Naming Rules 17
VersionScheme 17
Version Setting for MHSand MSSl 17
Version Setting for BBD, MPD,and PAO....................... 17

Load Path....... 18
Peripheral and pcore Directory Structures. 18
Using Versions 19

Creating Your IP 19
IsYour IPPure HDL? 19
Is Your IP Only a Black-Box Netlist?................ ... oo ool 19
Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog? 19

Creating HDL Libraries for YourIP......... 19
Primary Library 19
Resource Librarycoiiiiiii 20

Resource Librariesand PAOFiles. i 20
Library File Locations 20

Verilog Include Directories. 21
Format 21
Restrictions 21

Chapter 2: Microprocessor Hardware Specification (MHS)

MHS Syntax 23
AbouttheSyntax 23
GO ONES .« . oottt e e e 24
Format 24
MHS Example. 25

Bus Interface. 27

Platform Specification Format Reference Manual = www.xilinx.com
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Definition. 27
Example. 28
Local Bus Interface........... ... i 28
Local Bus Interface Keyword(s)o i 28
Global Parameter i 28
Definition. 28
Global Parameter Keyword(s) ... 28
Local Parameter i 29
Definition.ottt e 29
Local Parameter Keyword(s) i 29
Global Port 29
Global Port Keyword Summary i 29
Global Port Keyword Definitions 29
Local Port 31
Design Considerations 31
Defining Memory Size............ ... i 31
Power Signals (net_gnd/net_vcc) o 32
Unconnected POrts.ottt 32
Constant Assignments. 32
Concatenationttt 32
Internal vs. External Signals................ol 33
External Interrupt Signals............... 33

Chapter 3: Microprocessor Peripheral Definition (MPD)

MPD Syntax ... 35
Definition. 35
Comments 36
Format 36

Assignment Commands 36
Signal DIrectionouiinii i 36
MPD Example. 37

Bus Interface... 39
Definition.o 39
Bus Interface Keyword Summary oo 40
Bus Interface Keyword Definitions 40
Bus Interface Naming Conventions 42

IO Interface. 42
Definition. 42
IO Interface Keywords 43

Option. 43
Definition.o e 43
Option Keyword Summary 43
Option Keyword Definitions 44

Parameter..... 51
Definition. 51
Parameter Keyword Summary i 51
Parameter Keyword Definitions 51
Parameter Naming Conventions 56

POt . . 57
Definition.o 57

10 www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Port Keyword Summary 57

Port Keyword Definitions. 58

Port Naming Conventions, 63
Global POTtS . o vttt e e e e e 63

SIave DCR POIES &« o o v vttt et et e e e e e e e e e e e e e 63

Slave LMB POItS . o oottt ettt e e e e e 64

Master PLB POItS . ..ttt ettt e e 64

SIave PLB POTtS. . o o v vttt et e e e e e e e e e e 65
Reserved Parameters 67
Reserved Parameter Names Summaryooiiiiiiii. ... 67
Reserved Parameter Descriptions i 67
Reserved Port Connections i, 69
Clock and Reset Portso e e e 69
Slave LMB POrtsot e 70
Master PLB POTtSottt e 70
Slave PLB POTts.ot e 71
Design Considerations 71
Unconnected PortS. . ..ottt e 71
Scalable Data Path e 72
MPD Example.o 72
InterruptSignals. 72
Tri-state (InOut and Output) Signals 72
Tri-state (InOut) With Single-BitEnable............. 74

Tri-state (InOut) With Multi-BitEnable 74

Tri-state (In/Out) With Single-Bit Enable With Freely Named Ports 75

Tri-state (InOut) With Multi-Bit Enable With Freely Named Ports. 75

Tri-state (Output) With Single-Bit Enable. 76

Tri-state (Output) With Multi-BitEnable 76

Tri-state (Output) With Single-Bit Enable With Freely Named Ports. 76

Tri-state (Output) With Multi-Bit Enable With Freely Named Ports 77

Chapter 4: Peripheral Analyze Order (PAO)

PAO Format. 79
Format ... e 79
COMIMIEINES .« . ottt e e e 80

Verilog Include Directories. 80
Format ... e 80
ReStriCtioNS . .o oo e 80

PAO Example 81

Chapter 5: Black-Box Definition (BBD)

BBD Format.......... 83
Comments o 83
Lasts Lo 83
Common Repository Libraryo 84
BBD Examples 84
File Selection Without Options 84
Multiple File Selections Without Options 84
File Selection With Options 84
File Selection With Common Repository Library 84
Platform Specification Format Reference Manual = www.xilinx.com 11

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 6: Microprocessor Software Specification (MSS)

OV I VICW . . oottt 85
Additional Resourcesii i 85
TMSS Format e 85
MSSKeywords 86
Requirements 86
MSSExample 86
Global Parameters i 88
PSE VerSiOn . . . oottt e e e e 88
Parameter INT _HANDLER e e 88
Instance-Specific Parameters 88
OS, Driver, Library, and Processor Block Parameters Summary 88
OS, Driver, Library, and Processor Block Parameters Definitions 88
MDD/MLD Specific Parameters oo oo oo 91
OS-Specific Parameters Summary 91
Processor-Specific Parameter Summary L 91
Processor-Specific Parameter Definitions. 92

Chapter 7: Microprocessor Library Definition (MLD)

OV I VICW . . oot 95
Requirements. 95
Additional Resources i 96
Library Definition Files 9
MLD Format Specification 9
MLD File Format Specification 96
Parameter Description Section i i 96

Tcl File Format Specification 96

DRC SeCHOM &« v v vttt ettt ettt et e 97
Generation SECHOM . . v v vttt ettt e 97
Examples 97
Example: MLD Filefora Library, 97

Example: TclFileofaLibraryoo i e 98

Example: MLD Fileforan OS.......... i 99

Example: TclFileof an OSo i 99

MLD Parameter Description Section................. 100
CONVENTIONS . .ottt e e e e 100
COMIMENES . . .ottt e 100
OSor Library Definition 100
MLD or MDD Keyword Summary ... 101
MLD or MDD Keyword Definitions, 101
Design Rule Check (DRC) Section.. 106
Library Generation (Generate) Section. 106

Chapter 8: Microprocessor Driver Definition (MDD)

OV OIVIOW . ..o 107
Requirements......... 107
Additional Resources 108
Driver Definition Files 108

12 www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

MDD Format Specification.............. L 108
MDD File Format Specification oo oo 108

Tcl File Format Specification o o oo oo 109
DRCSECHON . ..o vttt 109
Generation SeCtion oot 109

Example. ... 109
MDD: File Example. o 109

Example: Tcl File.o 111

MDD Parameter Description 111
CoNVENtIONS . ..ottt e e e 111
COMIMENLES . . o ottt e e e e e e e e e 111
Driver Definitiont 112
MDD Keyword Summary. ... 112
MDD Keyword Definitions 112
Design Rule Check (DRC) Section.. 117
Driver Generation (Generate) Section 117

Chapter 9: Xilinx Board Description (XBD) Format

OVerVIeW 119
XBD Syntax. ... 120
Commentsin XBD 120
Format o 120
Module Definitions.o vttt e 120
Assignment Commandst 121
XBD Example 121
Global Attribute Commands i 122
Global Attribute Command Summary 122
Global Attribute Command Definitions................ 122
Local Attribute Commands............ 123
Local Attribute Command Summary L 123
Local Attribute Command Definitionscooiiiii it ... 123
Local Parameter Commands i 124
Local Parameter Subproperties oL 124
Local Port Commandst 125
Local Port Subproperties 125
Local Port Subproperty Summary...................l 125
Local Port Subproperty Definitions oL 126
Associating IPs with IO_INTERFACEin XBD 127
Bridging IP with IO_INTERFACE............... 129
XBD Load Path. ... 129
BSB Restrictions 130
Existing Xilinx IO Types 131
Appendix A: Glossary.cciiiiinnnnnnnrnrnnnnns 133
Platform Specification Format Reference Manual = www.xilinx.com 13

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

14 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®
Chapter 1

Introduction

EDK tools are designed to operate in a data-driven manner. There are various meta-data
files that capture information, for example, about various IPs, drivers, and software
libraries being used in the EDK tools. Files are also used to capture both hardware and
software aspects of your design information. These are ASCII files. The set of all these
meta-data formats is referred to as the Platform Specification Format or PSF.

This chapter contains the following sections:
o “Files”

e “File and IP Naming Rules”

e “Load Path”

e “Creating Your IP”

e “Creating HDL Libraries for Your IP”

e “Verilog Include Directories”
Files

BBD - Black Box Definition

The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

Refer to Chapter 5, “Black-Box Definition (BBD),” for more information.

MDD - Microprocessor Driver Definition
An MDD file contains directives for customizing software drivers.

Refer to Chapter 8, “Microprocessor Driver Definition (MDD),” for more information.

MHS - Microprocessor Hardware Specification

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
You supply an MHS file as an input to the Platform Generator (Platgen) tool.

Refer to Chapter 2, “Microprocessor Hardware Specification (MHS),” for more
information.

Platform Specification Format Reference Manual = www.xilinx.com 15
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 1: Introduction

MPD - Microprocessor Peripheral Definition

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

Refer to Chapter 3, “Microprocessor Peripheral Definition (MPD),” for more information.

MSS - Microprocessor Software Specification

You supply an MSS file as an input to the Library Generator (Libgen). The MSS file
contains directives for customizing libraries, drivers, and file systems.

Refer to Chapter 6, “Microprocessor Software Specification (MSS),” for more information.

MLD - Microprocessor Library Definition
An MLD file contains directives for customizing software libraries and operating systems.

Refer to Chapter 7, “Microprocessor Library Definition (MLD)” for more information.

PAO - Peripheral Analyze Order

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis and defines the analyze order for compilation.

Refer to Chapter 4, “Peripheral Analyze Order (PAO),” for more information.

XBD - Xilinx Board Definition

An XBD file contains a definition of logical interfaces present on a board and how they are
connected to the FPGA. Refer to Chapter 9, “Xilinx Board Description (XBD) Format,” for
more information.

16 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

File and IP Naming Rules S XILINX®

File and IP Naming Rules

File and IP names must be all lower-case to ensure consistency across the following:

e OS: UNIX (case-sensitive) vs. Win (case-insensitive)

e HDL: Verilog (case-sensitive) vs. VHDL (case-insensitive)

A lower-case naming convention is used to deal with the above combinations. For
example: MYCORE_v2_1_0 and mycore_v2_1_0 would mean two different files in
UNIX, whereas in Windows, they would be the same.

Assembly of lower-level cores into the top-level are merged by name reference. Therefore,
it is important that names match.

Version Scheme
Form of the version level is X.Y.Z
e X -major revision
e Y- minor revision

e 7 -patchlevel

Version Setting for MHS and MSS
In the body of the MHS and MSS file, add the following statement:

PARAMETER VERSION = 2.1.0

The version is specified as a literal of the form 2.1.0.

Version Setting for BBD, MPD, and PAO

The version level is concatenated to the base name of the data files. The literal form of the
version level is vX_Y_ 7.

o <ipname>_vX_Y_7Z.mpd
e <ipname>_vX_Y_7.bbd
o <ipname>_vX_Y_7.pao

e <ipname>_vX_Y_7.mdd

Platform Specification Format Reference Manual = www.xilinx.com 17
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 1: Introduction

Load Path

Peripheral and pcore Directory Structures

To specify additional directories, use one of the following options:

e Current directory

e Set the EDK tool -1p option.

EDK tools use a search priority mechanism to locate peripherals, as follows:
1. Search the pcores directory in the project directory.

2. Search <library_path>/<Library Name>/pcores as specified by the -1p
option. The following figure shows the peripheral directory structure.

-Ip<library_path>

<Library Name>

Yy

boards drivers pcores bsp sSw_services

X10133

Figure 1-1: Peripheral Directory Structure

3. Search XILINX EDK/hw/<Library Name>/pcores. The following figure shows
the pcore directory structure.

pcores

A

<mycore_v1_00_a>

(data) hdl

DG GG
<«

Figure 1-2: pcore Directory Structure

change_log.html

X11000

18 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Creating Your IP S XILINX®

Using Versions

You can create multiple versions of your peripheral. The version is specified as a literal of
the form 1.00.a. The version is always specified in lower case.

At the MHS level, use the HW_VER parameter to set the hardware version. The Platform
Generator concatenates a _v and translates periods to underscores. The peripheral name
and HW_VER are joined together to form a name for a search level in the load path. For
example, if your peripheral is version 1. 00 . a, then the MPD, BBD, and PAO files are
found in the following location:

<repository_dir>/pcores/<ipname>_v1l_00_a/data (UNIX)

<repository_dir>\pcores\<ipname>_vl_00_a\data (PC)

Creating Your IP

How you build your own reference depends on the characteristics of your design.

Is Your IP Pure HDL?
Read about MPD and PAO files in the following chapters:

e Chapter 3, “Microprocessor Peripheral Definition (MPD)”
e Chapter 4, “Peripheral Analyze Order (PAO)”

Is Your IP Only a Black-Box Netlist?
Read about MPD and BBD files in the following chapters:

e Chapter 3, “Microprocessor Peripheral Definition (MPD)”
e Chapter 5, “Black-Box Definition (BBD)”

Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog?
Read about the MPD, BBD, and PAO files in the following chapters:

e Chapter 3, “Microprocessor Peripheral Definition (MPD)”
e Chapter 5, “Black-Box Definition (BBD)”
e Chapter 4, “Peripheral Analyze Order (PAO)”

Creating HDL Libraries for Your IP

There are two classes of design libraries: primary libraries and resource libraries.

Primary Library

The library into which the library unit resulting from the analysis of an IP is placed. A
primary library contains all the primary HDL files for the IP, and is referenced in the PAO
as <ipname>_v1_00_a.

Only primary libraries contain an MPD file; resource libraries do not.

Platform Specification Format Reference Manual = www.xilinx.com 19
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 1: Introduction

Resource Library

A resource library contains library units that are referenced within the IP being analyzed.
A resource library contains all the resource HDL files for the IP and is referenced in the
PAO file as <resource_name>_v1l_00_a.

Resource libraries must contain a PAO file to enable primary libraries access to the PAO file
set from the resource library. To accomplish this from the primary library PAO, use the all
keyword. For example:

primary_core PAO
1lib reference_lib_v1l_00_a all

Resource Libraries and PAO Files

If a resource library defines a PAO, the language field must be present. Please refer to
Chapter 4, “Peripheral Analyze Order (PAO)” for complete details.

For example:

reference_lib PAO
1ib reference_lib vl _00_a file2.vhd vhdl
1lib reference_lib v1l_00_a filel.vhd vhdl

Library File Locations

Primary and resource libraries are physically located in <repository_dir>/pcores.

Resource HDL File Locations

For VHDL:
<repository_dir>/pcores/<resource_name>_vl_00_a/hdl/vhdl

For Verilog;:

<repository_ _dir>/pcores/<resource_name>_vl1_00_a/hdl/verilog

Primary HDL File Locations

For VHDL:
<repository_dir>/pcores/<ipname>_vl_00_a/hdl/vhdl

For Verilog;:

<repository_dir>/pcores/<ipname>_vl_00_a/hdl/verilog

20 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Verilog Include Directories S XILINX®

Verilog Include Directories

Format

You must use relative paths to allow project maneuverability from development platform
to development platform. Use the * include compiler directive in your Verilog HDL files
to insert the contents of an entire file.

The following is an example Verilog HDL file:

“include "global_consts.v"
“include "pcore_vl_00_a/hdl/verilog/consts.v"

By default, all known EDK repositories are automatically included to the calls that process
Verilog:

<proj_dir>/pcores

SXILINX_ EDK/hw/XilinxBFMinterface/pcores
SXILINX_EDK/hw/XilinxProcessorIPLib/pcores$XILINX_EDK/hw/XilinxReferen
ceDesigns/pcores

You need only specify include paths that are not default. User-specified paths have a
higher precedence over the default paths.

Use the following format:

vlgincdir <library> <relative path from library>

Restrictions

If you intend to define a library file of text macros, you must give each text macro a unique
name. The IEEE document 1364-2006 Section 3.12 defines the Verilog name space.

The text macro name space is global. The text macro names are defined in the linear order
of appearance in the set of input files that make up the description of the design unit.

Subsequent definitions of the same name override the previous definitions for the balance
of the input files.

Use unique names, as shown below:
“define PCORE_V1_00_A_MASKVAL 2'b10
(Do not use “define MASKVAL 2'b10.)

When multiple vlgincdir options are in use, it is possible for the compiler to read an
unwanted included file. The preferred use of text inclusion within Verilog files is to include
the relative path of the pcore library in use, as shown in the example below:

“include "pcore_vl_00_a/hdl/verilog/consts.v"

Platform Specification Format Reference Manual = www.xilinx.com 21

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 1: Introduction

22 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®
Chapter 2

Microprocessor Hardware Specification
(MHS)

The Microprocessor Hardware Specification (MHS) file defines the hardware component.
An MHS file defines the configuration of the embedded processor system and includes the
following:

e Bus architecture
e DPeripherals

e Processor

¢ Connectivity

e Address space

This chapter contains the following sections:
e “MHS Syntax”

e “Bus Interface”

e “Local Bus Interface”

e “Global Parameter”

e “Local Parameter”

e “Global Port”

e “Local Port”

e “Design Considerations”

MHS Syntax

About the Syntax

MHES file syntax is case insensitive. The current version is 2.1.0.

MHS parameter, component, instance, and signal names must be HDL, VHDL, and Verilog
compliant. VHDL and Verilog have certain naming rules and conventions that must be
followed.

Because the MHS stands as a neutral format on top of HDL, VHDL, and Verilog, it is
possible to generate illegal VHDL or Verilog, even if the MHS is syntactically correct. You
might, therefore, be violating syntax rules in either VHDL or Verilog in the downstream
HDL compliant synthesis and simulation tools.

Platform Specification Format Reference Manual = www.xilinx.com 23
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 2: Microprocessor Hardware Specification (MHS)

For example, it is illegal in VHDL to use an instance name that already exists as a
component name. Consider the following example:

microblaze : microblaze
port map (<snip>);

However, Verilog allows such a declaration:
microblaze microblaze (<snip>);

It is also illegal in VHDL to declare an object (parameter, component, instance, or signal)
name that already exists as the name of another object. For example, it is illegal to declare
in VHDL a signal name, MYTESTNAME, and also declare an instance name of
MYTESTNAME.

signal MYTESTNAME : std_logic;
MYTESTNAME : microblaze
port map (<snip>);

However, this is legal in Verilog.

It is your responsibility to recognize the output format and comply with the rules of the
HDL language.

Comments

Format

You can insert comments in the MHS file without disrupting processing. The following are
guidelines for inserting comments:

e Precede comments with the pound sign (#).
e Comments can continue to the end of the line.

e Comments can be anywhere on the line.

Use the following format at the beginning of a component definition:
BEGIN peripheral_name
The BEGIN keyword signifies the beginning of a new peripheral.
Use the following format for assignment commands:
command name = value
Use the following format to end a peripheral definition:
END
There are three assignment commands:
e BUS_INTERFACE

e PARAMETER
e PORT

24

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MHS Syntax

SUXILINX®

MHS Example
The following is an example MHS file:

Parameters
PARAMETER VERSION = 2.1.0

Global Ports

Assign power signals

PORT wvcc_out = net_vcc, DIR=OUTPUT

PORT gnd_out = net_gnd, DIR=0UT

PORT gnd_out6 = net_gnd, DIR=OUTPUT, VEC=[0:5]

PORT intrl = intr_1, DIR=IN, SENSITIVITY=EDGE_RISING, SIGIS=INTERRUPT
PORT intr2 = intr2, DIR=INPUT, SENSITIVITY=LEVEL_HIGH, SIGIS=INTERRUPT

Assign constant signals
PORT constl = 0b1010, DIR=OUTPUT, VEC=[0:3]
PORT const2 = 0xC, DIR=OUTPUT, VEC=[0:3]

PORT sys_rst = sys_rst, DIR=IN
PORT sys_clk sys_clk, DIR=IN, SIGIS=CLK, CLK_FREQ=100000000
PORT gpio_io gpio_io, DIR=INOUT, VEC=[0:31]

Sub Components

HHHFF AR HHHHFAA ARG HHHHFFAAA A SHHHFFA A S HHHFFA AR HHHFHAA S H
BEGIN 1mb_v10

PARAMETER INSTANCE = ilmb_v10

PARAMETER HW_VER = 1.00.a

PORT LMB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HHEFFF AR HHHHFFAAAA S SR HHFFAAA SR HHFFAAAA S HHHFHA AR HHHHAA A H
BEGIN 1lmb_v10

PARAMETER INSTANCE = dlmb_v10

PARAMETER HW_VER = 1.00.a

PORT LMB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HHFFH AR HHHHFAA ARG HHHHFFAA A HHHHFHAAA A S HHFH A A A S S HHHHAA S H
BEGIN opb_v20

PARAMETER INSTANCE = myopb_bus

PARAMETER HW_VER = 1.10.c

PARAMETER C_PROC_INTRFCE = 0

PORT OPB_Clk = sys_clk

PORT SYS_Rst = sys_rst

END

HAFHHA SR H AR H AR HASH AR H AR H A S H SRS H AR H AR H AR AR SRR SRS H AR H S H

Platform Specification Format Reference Manual = www.xilinx.com 25

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 2: Microprocessor Hardware Specification (MHS)

BEGIN opb_gpio

PARAMETER INSTANCE = mygpio

PARAMETER HW_VER = 1.00.a

PARAMETER C_GPIO_WIDTH = 32

PARAMETER C_BASEADDR = Oxffff£f0100

PARAMETER C_HIGHADDR = Oxffff0lff

PORT GPIO_IO = gpio_io

BUS_INTERFACE SOPB = myopb_bus

END

HAFHHA R H AR H A HH A H A H AR H AR AR A R R R
BEGIN bram_block

PARAMETER INSTANCE = braml

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE PORTA = ilmbl_porta

BUS_INTERFACE PORTB = dlmbl_portb

END

HEFHH AR H AR H SRR R R R R
BEGIN lmb_bram if cntlr

PARAMETER INSTANCE =
PARAMETER HW_VER = 1.
PARAMETER C_BASEADDR
PARAMETER C_HIGHADDR
BUS_INTERFACE SLMB =

my_ilmb_cntlrl
00.b

= 0x00000000

= 0x00000fff
ilmb_v10

BUS_INTERFACE BRAM_PORT = ilmbl_porta

END

HARHHA SR H AR RS R AR AR S AR R R H HH HH R H R H
BEGIN 1lmb_bram if_cntlr
PARAMETER INSTANCE = my_dlmb_cntlrl

PARAMETER HW_VER = 1.
PARAMETER C_BASEADDR
PARAMETER C_HIGHADDR
BUS_INTERFACE SLMB =

00.b

= 0x00000000
= 0x00000fff
dlmb_v10

BUS_INTERFACE BRAM_PORT = dlmbl_portb

END

HHAHHH AR R R R R

BEGIN microblaze

PARAMETER INSTANCE = mblaze
PARAMETER HW_VER = 4.00.a
BUS_INTERFACE DLMB = dlmb_v10
BUS_INTERFACE ILMB = ilmb_v10
BUS_INTERFACE DOPB = myopb_bus

PORT Interrupt = mblaze_intr

END

FH R S R S R

26 www.Xxilinx.com

Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Bus Interface

SUXILINX®

Bus Interface

Definition

Priorities are numbered N downto 1, where 1 is the highest priority
BEGIN opb_intc

PARAMETER INSTANCE = opb_intc_1

PARAMETER HW_VER = 1.00.c

PARAMETER C_HIGHADDR = 0xC800001F

PARAMETER C_BASEADDR = 0xC8000000

PARAMETER C_HAS_IPR = 1 # Interrupt Pending Register present
PARAMETER C_HAS_SIE = 0 # Set Interrupt Enable bits not present
PARAMETER C_HAS_CIE = 0 # Clear Interrupt Enable bits not present
PARAMETER C_HAS_IVR = 0 # Interrupt Vector Register not present
BUS_INTERFACE SOPB = myopb_bus

PORT Intr = intr2 & intr_1 # intr_1 has highest priority

PORT Irg = mblaze_intr

END

A bus interface is a grouping of interconnecting signals that are related.

Several components often have many of the same ports, requiring redundant port
declarations for each component. Every component connected to an OPB bus, for example,
must have the same ports defined and connected together.

A bus interface provides a high level of abstraction for the component connectivity of a
common interface. Components can use a bus interface as if it were a single port. In its
simplest form, a bus interface can be considered a bundle of signals.

The table below lists recommendations for bus labels.

Table 2-1: Bus Labels

Bus Name Description
SDCR Slave DCR interface
SLMB Slave LMB interface
MOPB Master OPB interface
MSOPB Master-slave OPB interface
SOPB Slave OPB interface
MPLB Master PLB interface
MSPLB Master-slave PLB interface
SPLB Slave PLB interface

For components that have more than one bus interface, refer to the MPD file for a
definition of listed bus interface labels. For example, the data-side OPB and instruction-
side OPB are named DOPB and IOPB, respectively.

A bus interface is assigned by name to an instance of the bus in your system.

Platform Specification Format Reference Manual = www.xilinx.com 27

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 2: Microprocessor Hardware Specification (MHS)

Example

For example, the OPB bus instance is named “myopb”, and a connection to the OPB slave
interface of the OPB Uart Lite is made with the bus_interface command.

BEGIN opb_uartlite

PARAMETER HW_VER = 1.00.b
PARAMETER INSTANCE = myuartlite
PARAMETER C_HIGHADDR = OxXFFFF80FF
PARAMETER C_BASEADDR = OxFFFF8000
BUS_INTERFACE SOPB = myopb

PORT RX = rxl

PORT TX = tx1

PORT Interrupt = uart_intr

END

Local Bus Interface

Local Bus Interface Keyword(s)

POSITION

Use the POSITION keyword to set the position of the bus interface on the bus. For
example, use to define master request priority, or DCR slave rank, in the following format:

BUS_INTERFACE MOPB=opb_bus_inst, POSITION=N
Where v is a positive integer. Order is defined from 1 to .
The order of assignment is retained as listed in the MHS in top-to-bottom order.

Note: When specifying bus interfaces of master-slave like MSPLB or MSOPB, there is a possibility
that Platgen will error out when you have more masters than slaves on the bus. The reason is that the
MSPLB or MSOPB is assigned a position. This means the master interface and the slave interface
must reside at the same position. There is a possibility that the assigned position of the slave
interface is out of range to the number of slaves on the bus.

Global Parameter

Definition

A global parameter is defined outside of an instance BEGIN-END block.

Global Parameter Keyword(s)

VERSION
Use the VERSION keyword to set the MHS version in the following format:
PARAMETER VERSION = 2.1.0

The version is specified as a literal of the form 2.1.0.

28 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Local Parameter S XILINX®

Local Parameter

Definition

A local parameter is defined between an instance BEGIN-END block.

Local Parameter Keyword(s)

A local parameter can have the keywords listed below:

HW_VER
Use the HW_VER keyword to set the hardware version in the following format:
PARAMETER HW_VER = 1.00.a

The version is specified as a literal of the form 1.00.a.

INSTANCE

Use the INSTANCE keyword to set the instance name of the peripheral. This keyword is
mandatory, and the instance name must be specified in lower-case, in the following format:

PARAMETER INSTANCE = my_uart0

Global Port

Global Port Keyword Summary

A global port outside of a BEGIN-END block can have the keywords listed below:

BUFFER_TYPE
CLK_FREQ

DIR
RST_POLARITY
SENSITIVITY
SIGIS

VEC

Global Port Keyword Definitions

BUFFER_TYPE

Selects the type of buffer to be inserted on the input port using the BUFFER_TYPE keyword
in the following format:

PORT CLK = "", DIR=I, BUFFER_TYPE=IBUF
The available values are the following: bufgdll, ibufg, bufgp, ibuf, bufr, and none.

If the BUFFER_TYPE exists on the MPD port, Platgen raises the property up to the top-level
port that is directly connected. If the BUFFER_TYPE exists on the top-level MHS port, it
overrides any MPD port definition of BUFFER_TYPE.

The BUFFER_TYPE is translated into an XST pragma resident in the top-level <system>
HDL.

Platform Specification Format Reference Manual = www.xilinx.com 29
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 2: Microprocessor Hardware Specification (MHS)

Note: This constraint selects the type of buffer to be inserted on the input port or internal net. In
general, it is best to avoid using this constraint and allow XST to infer the proper buffer. Avoidance of
this constraint allows for flexibility across device migration or synthesis tool selection.

For an EDK submodule flow, XST does not infer the buffer as defined by the
BUFFER_TYPE. This is correct behavior since it is not expected that IO buffers will be
present for a submodule flow.

CLK_FREQ

The frequency of the top-level clock port of the system can be specified in the MHS using
the CLK_FREQ keyword, as in the following format:

PORT sys_clk = sys_clk, DIR = IN, SIGIS = CLK, CLK_FREQ = 100000000

This keyword should only be used with the top-level clock ports. For the tools to read the
clock frequency specified using the CLK_FREQ keyword, the port must have the
SIGIS=CLK sub-property.

DIR

The driver direction of a signal is specified by the DIR keyword in the following format:
PORT mysignal = "", DIR=direction

In this example, direction is either I, O, or IO.

RST_POLARITY

The reset polarity of the top-level reset port in the system can be specified in the MHS
using the RST_POLARITY keyword, as in the following format:

PORT sys_rst = sys_rst, DIR = IN, SIGIS = RST, RST_POLARITY=1

SENSITIVITY

The sensitivity of an interrupt signal is specified by the SENSITIVITY keyword. This
keyword supersedes the EDGE and LEVEL keywords in the following format:

PORT interrupt = "", DIR=0, SENSITIVITY=value, SIGIS=INTERRUPT

In this example, the value is either EDGE_FALLING, EDGE_RISING, LEVEL_HIGH or
LEVEL_LOW.

SIGIS
The class of a signal is specified by the SIGIS keyword in the following format:

PORT mysig = "", DIR=0, SIGIS=value

In this example, the value is either CLK, INTERRUPT, or RST. The table below describes
SIGIS usage.

30

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Local Port S XILINX®

Table 2-2: SIGIS Usage

SIGIS Usage

CLK e XPS
Displays all clock signals.

e Platgen

For all bus components, the clock signals are automatically
connected to the clock input of the peripherals on the bus.

INTERRUPT e XPS
Displays all interrupt signals.
¢ Platgen

Encodes the priority interrupt vector.

RST o XPS

Displays all reset signals.

VEC
The vector width of a signal is specified by the VEC keyword in the following format:
PORT mysignal = "", DIR=I, VEC=[A:B]

In this example, A and B are positive integer expressions.

Local Port

A local port is a port defined between an instance BEGIN-END block. A local port does not
have keywords.

Design Considerations

This section identifies general design considerations.

Defining Memory Size

Memory sizes are based on C_BASEADDR and C_HIGHADDR settings. Use the following
format when defining memory size:

PARAMETER C_HIGHADDR= OxFFFFOOFF
PARAMETER C_BASEADDR= OxFFFF0000

All memory sizes must be 2N, where N is a positive integer and 2N boundary overlaps are
not allowed.

The range specified by C_BASEADDR and C_HIGHADDR must comprise a complete,
contiguous power-of-two range, such that range = 2N and the N least significant bits of
C_BASEADDR must be zero.

Platform Specification Format Reference Manual = www.xilinx.com 31
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 2: Microprocessor Hardware Specification (MHS)

Power Signals (net_gnd/net_vcc)

Power signals are constantly driven with either GND (net_gnd) or VCC (net_vcc) in the
following format:

PORT mysignal = power_signal

In this example, power_signalis either net_vcc or net_gnd. Platgen expands net_vcc
or net_gnd to the appropriate vector size. Therefore, it is not legal to use net_vcc or
net_gnd in a concatenation construct because the number of bits that are consumed is
unknown.

Unconnected Ports

Unconnected output ports are assigned open, and unconnected input ports are either set to
GND (net_gnd) or VCC (net_vcc).

An unconnected output port is identified as an empty double-quote (“*) string.

Platgen resolves the driver value on unconnected input ports with the INITIALVAL
keyword, as defined in the MPD in the following format:

PORT mysignal = "", INITIALVAL=VCC

Constant Assignments

Use the 0b denotation to define a binary constant, or 0x for a hex constant. An underscore
(L) can be used for readability in the following format:

PORT mysignal = 0b1010_0101 # mysignal is 8-bits
Or

PORT mysignal = 0xA5 # mysignal is 8-bits

In general, use the 0b syntax for bitwidths that are not evenly divided by 4. Use the 0x
syntax for bitwidths that are multiples of 4.

Concatenation

Concatenation is performed with the ampersand (&) operator and allows you to group
signals together. It is not legal to use net_vcc or net_gnd in a concatenation construct
because the number of bits that are consumed is unknown.

Concatenation combines signals in their bit order. Note, for example, the following top-
level port declarations:

PORT A = A, DIR=INPUT

PORT B = B, DIR=INPUT, VEC[1:0]

PORT C = C, DIR=INPUT

PORT D = D, DIR=INPUT, VEC[0:3]

PORT Y = A & B & C & D, DIR=OUTPUT, VEC=[7:0]

Concatenation is accomplished on A, B, C, and D connecting to port Y of [7:0]. This maps
to the following: Y[71=A,Y[61=B[1],Y[5]1=B[0], Y[4]=C,Y[3]1=D[0],Y[2]=D[1],
Y[1]=D[2],and Y[0]=D[3].

Concatenation is also useful for extending the length of a vector. Use the 0b denotation to
define a binary constant, or the 0x for a hex constant. An underscore (_) can be used for
readability. Note, for example, the following top-level port:

32 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Considerations S XILINX®

PORT E = E, DIR=INPUT, VEC=[1:0]
PORT Z = 0b00 & E, DIR=OUTPUT, VEC=[0:3]

In this example, the ampersand (&) operator is used to extend the signal E to 4 bits. This
maps to the following: Z[0]=0b0, Z[1]=0b0, Z[2]=E[1],and Z[3]=E[0].

Note: MHS syntax does not support vector indexing. For example, the following syntax is
unsupported. The usage of B[1] and B[0] is unsupported.

PORT Y = A & B[1l] & B[0O] & C & D, DIR=OUTPUT, VEC=[7:0]

Internal vs. External Signals

By default, all signals defined between a BEGIN-END block are internal signals.

External signals are available through the port-declaration of the top-level module. Use the
PORT command outside of a BEGIN-END block to declare the external signal.

External Interrupt Signals

For internal interrupts, each interruptible, peripheral instance defines an interrupt signal
locally.

For external interrupts, use the PORT command outside of a BEGIN-END block to declare
the external signal and define the interrupt sensitivity in the following format:

PORT my_intl = my_intl, LEVEL=HIGH, DIR=I

Platform Specification Format Reference Manual = www.xilinx.com 33
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 2: Microprocessor Hardware Specification (MHS)

34 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®
Chapter 3

Microprocessor Peripheral Definition
(MPD)

The Microprocessor Peripheral Definition (MPD) file defines the interface of the
peripheral.

An MPD file has the following characteristics:
e Lists ports and default connectivity for bus interfaces
e Lists parameters and default values

e Any MPD parameter is overwritten by the equivalent MHS assignment. Refer to
Chapter 2, “Microprocessor Hardware Specification (MHS)” for additional
information.

Individual peripheral documentation contains information on all MPD file keywords.
This chapter contains the following sections:

e “MPD Syntax”

e “Bus Interface”

o “IO Interface”

e “Option”

e “Parameter”

e “Port”

e “Reserved Parameters”

e “Reserved Port Connections”

e “Design Considerations”

MPD Syntax

Definition
MPD file syntax is case insensitive. The current version is 2.1.0.

The MPD parameter or signal name must be Hardware Description Language (HDL)
compliant. VHDL and Verilog have certain naming rules and conventions that must be
followed.

The MPD file is supplied by the IP provider and provides peripheral information. This file
lists ports and default connectivity to the bus interface. Parameters that you set in this file

Platform Specification Format Reference Manual = www.xilinx.com 35
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

are mapped to generics for VHDL, or to parameters for Verilog (with the exception of
NON_HDL parameters, which you should specify with the TypPE=NON_HDL keyword).

Comments

Format

You can insert comments in the MPD file without disrupting processing. The following are
guidelines for inserting comments:

e Precede comments with the pound sign (#).
¢ Comments continue to the end of the line.

e Comments can be anywhere on the line.

Use the following format at the beginning of a component definition:
BEGIN peripheral_name

The BEGIN keyword signifies the beginning of a new peripheral.

Use the following format for assignment commands:
command name = value

Use the following format to end a peripheral definition:

END

Assignment Commands

There are five assignment commands:

1. BUS_INTERFACE
2 IO_INTERFACE
3. OPTION

4 PARAMETER

5 PORT

Signal Direction

Signals have three modes. The three modes and their accepted values are as follows:
e input-[1]

e output-[0]

e inout-[10]

Signal mode indicates its driver direction, and whether the port can be read from within
the peripheral.

36

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MPD Syntax

SUXILINX®

MPD Example

The following is an example MPD file:

BEGIN xps_gpio

Peripheral Options

OPTION IPTYPE = PERIPHERAL

OPTION IMP_NETLIST = TRUE

OPTION HDL = VHDL

OPTION LAST_UPDATED = 9.2

OPTION USAGE_LEVEL = BASE_USER

OPTION DESC = XPS General Purpose IO

OPTION LONG_DESC = General Purpose Input/Output (GPIO) core for the
PLBV46 bus.

OPTION IP_GROUP = General Purpose IO:MICROBLAZE:PPC

OPTION ARCH_SUPPORT_MAP = (spartan3=PREFERRED, virtex4lx=PREFERRED,
virtex4sx=PREFERRED, virtex4fx=PREFERRED, spartan3e=PREFERRED,
virtex51x=PREFERRED, virtex5sx=PREFERRED, spartan3a=PREFERRED,
spartan3adsp=PREFERRED)

IO_INTERFACE IO_IF = gpio_0, IO_TYPE = XIL_GPIO_V1

Bus Interfaces
BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog

PARAMETER C_BASEADDR = Oxffffffff, DT = std _logic_vector(0 to 31),
BUS = SPLB, ADDRESS = BASE, PAIR = C_HIGHADDR, MIN_SIZE = 0x200,
ASSIGNMENT = REQUIRE

PARAMETER C_HIGHADDR = 0x00000000, DT = std_logic_vector(0 to 31),

BUS = SPLB, ADDRESS = HIGH, PAIR = C_BASEADDR, ASSIGNMENT = REQUIRE

PARAMETER C_SPLB_AWIDTH = 32, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_SPLB_DWIDTH = 32, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_P2P = 0, DT INTEGER, BUS = SPLB

PARAMETER C_SPLB_MID_WIDTH = , DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_NUM_MASTERS 1, DT = INTEGER, BUS = SPLB

PARAMETER C_SPLB_NATIVE_DWIDTH = 32, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_SPLB_SUPPORT_BURSTS = 0, DT = INTEGER, BUS = SPLB,
ASSIGNMENT = CONSTANT

PARAMETER C_FAMILY = virtex5, DT = STRING

PARAMETER C_GPIO _WIDTH = 32, DT = INTEGER, RANGE = (1:32),
PERMIT = BASE_USER, DESC = GPIO Data Width, IO_IF = gpio_0,
IO_IS = num_bits

=

PARAMETER C_ALL_INPUTS = 0, DT = INTEGER, RANGE = (0,1),
PERMIT = BASE_USER, DESC = Data pins are all inputs, IO_IF = gpio_0,
IO_IS = all_inputs, VALUES = (0= FALSE , 1= TRUE)
PARAMETER C_INTERRUPT_PRESENT = 0, DT = INTEGER, RANGE = (0,1)
PARAMETER C_IS_BIDIR = 1, DT = INTEGER, RANGE = (0,1),
PERMIT = BASE_USER, DESC = Data pins are bi-directional,
IO_IF = gpio_0, IO_IS = is_bidir, VALUES = (0= FALSE , 1= TRUE)

PARAMETER C_DOUT_DEFAULT = 0x00000000, DT = std_logic_vector
PARAMETER C_TRI_DEFAULT = Oxffffffff, DT = std_logic_vector
PARAMETER C_IS_DUAL = 0, DT = INTEGER, RANGE = (0,1),

DESC = Use Dual GPIO, IO_IF = gpio_0, IO_IS = is_dual

PARAMETER C_ALL_INPUTS_2 = 0, DT = INTEGER, RANGE = (0,1), DESC = GPIO2

Data All Inputs, IO_IF = gpio_0, IO_IS = all_inputs_2,

Platform Specification Format Reference Manual = www.xilinx.com

EDK 10.1, Service Pack 3

37

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

VALUES = (0=FALSE, 1=TRUE)
PARAMETER C_IS_BIDIR 2 = 1, DT =

INTEGER, RANGE = (0,1),

DESC = Use GPIO2 Bidir IO Pin, IO_IF = gpio_0, IO_IS = is_bidir_2,

VALUES = (0=FALSE, 1=TRUE)

PARAMETER C_DOUT_DEFAULT 2 = 0x00000000, DT = std_logic_vector
PARAMETER C_TRI_DEFAULT_ 2 = Oxffffffff, DT = std_logic_vector

Ports

PORT SPLB_Clk = ““, DIR = I, SIGIS = Clk, BUS = SPLB

PORT SPLB_Rst

SPLB_Rst, DIR = I, SIGIS = Rst, BUS = SPLB

PORT PLB_ABus = PLB_ABus, DIR = I, VEC = [0:31], BUS = SPLB

PORT PLB_UABus = PLB_UABus, DIR =

I, VEC = [0:31], BUS = SPLB

PORT PLB_PAValid = PLB_PAValid, DIR = I, BUS = SPLB

PORT PLB_SAValid
PORT PLB_rdPrim = PLB_rdPrim, DIR
PORT PLB_wrPrim = PLB_wrPrim, DIR
PORT PLB_masterID = PLB_masterID,

VEC = [0:(C_SPLB_MID WIDTH-1)],
PORT PLB_abort = PLB_abort, DIR =

PLB_SAValid, DIR = I, BUS = SPLB

I, BUS = SPLB
= I, BUS = SPLB

I, BUS = SPLB

PORT PLB_busLock = PLB_busLock, DIR = I, BUS = SPLB

PORT PLB_RNW = PLB_RNW, DIR = I, BUS = SPLB
PORT PLB_BE = PLB_BE, DIR = I, VEC = [0:((C_SPLB_DWIDTH/8)-1)1]1,
BUS = SPLB
PORT PLB_MSize = PLB MSize, DIR = I, VEC = [0:1], BUS = SPLB
PORT PLB_size = PLB_size, DIR = I, VEC = [0:3], BUS = SPLB
PORT PLB_type = PLB_type, DIR = I, VEC = [0:2], BUS = SPLB
PORT PLB_lockErr = PLB_lockErr, DIR = I, BUS = SPLB
PORT PLB_wrDBus = PLB_wrDBus, DIR = I, VEC = [0:(C_SPLB_DWIDTH-1)],

BUS = SPLB

PORT PLB_wrBurst = PLB_wrBurst, DIR = I, BUS = SPLB
PORT PLB_rdBurst = PLB_rdBurst, DIR = I, BUS = SPLB

PORT PLB_wrPendReq = PLB_wrPendReq, DIR = I, BUS = SPLB

PORT PLB_rdPendReq = PLB_rdPendReq, DIR = I, BUS = SPLB

PORT PLB_wrPendPri = PLB_wrPendPri, DIR = I, VEC = [0:1], BUS = SPLB
PORT PLB_rdPendPri = PLB_rdPendPri, DIR = I, VEC = [0:1], BUS = SPLB
PORT PLB_reqgPri = PLB_reqgPri, DIR = I, VEC = [0:1], BUS = SPLB

PORT PLB_TAttribute = PLB_TAttribute, DIR = I, VEC = [0:15], BUS = SPLB

PORT S1_addrAck = Sl1_addrAck, DIR
PORT S1_SSize = S1_SSize, DIR = O

= O, BUS = SPLB
, VEC = [0:1], BUS = SPLB

PORT Sl_wait = Sl_wait, DIR = O, BUS = SPLB
PORT S1_rearbitrate = Sl_rearbitrate, DIR = O, BUS = SPLB

PORT S1_wrDAck = S1_wrDAck, DIR =
PORT S1_wrComp = S1_wrComp, DIR =
PORT S1_wrBTerm = S1_wrBTerm, DIR

O, BUS = SPLB
O, BUS = SPLB
= O, BUS = SPLB

PORT S1_rdDBus = S1_rdDBus, DIR = O, VEC = [0:(C_SPLB_DWIDTH-1)],
BUS = SPLB
PORT S1_rdwdaddr = S1_rdwdaddr, DIR = O, VEC = [0:3], BUS = SPLB

PORT S1_rdDAck = S1_rdDAck, DIR =

PORT S1_rdComp = S1_rdComp, DIR =

PORT S1_rdBTerm = Sl1_rdBTerm, DIR

PORT S1_MBusy = S1_MBusy, DIR = O
BUS = SPLB

PORT S1_MWrErr = S1_MWrErr, DIR
BUS = SPLB

PORT S1_MRdAErr = S1_MRdErr, DIR
BUS = SPLB

PORT S1_MIRQ = S1_MIRQ, DIR = O, VEC

BUS = SPLB
PORT IP2INTC_Irpt = “%, DIR = O,

0, BUS = SPLB

0, BUS = SPLB

= O, BUS = SPLB

, VEC = [0:(C_SPLB_NUM_MASTERS-1)],

O, VEC [0: (C_SPLB_NUM_MASTERS-1)1,

O, VEC = [0:(C_SPLB_NUM_ MASTERS-1)],

[0: (C_SPLB_NUM_MASTERS-1)1],

SIGIS = INTERRUPT,

38

www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

Bus Interface S XILINX®

SENSITIVITY = LEVEL_HIGH, INTERRUPT_PRIORITY = MEDIUM
PORT GPIO_IO = ““, DIR = IO, VEC = [0:(C_GPIO_WIDTH-1)],

THREE_STATE = TRUE, TRI_I = GPIO_IO_I, TRI_O = GPIO_IO_O,

TRI_T = GPIO_IO_T, ENABLE = MULTI, PERMIT = BASE_USER,

DESC = ‘GPIOl Data IO’, IO_IF = gpio_0, IO_IS = gpio_io

PORT GPIO_IO_I = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)]

PORT GPIO_IO_O = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]

PORT GPIO IO T = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]

PORT GPIO_in = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl Data In’, IO_IF = gpio_0,
IO_IS = gpio_data_in

PORT GPIO_d_out = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl Data Out’, IO_IF = gpio_0,
IO_IS = gpio_data_out

PORT GPIO_t_out = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)],
PERMIT = BASE_USER, DESC = ‘GPIOl TriState Out’, IO_IF = gpio_0,
IO_IS = gpio_tri_out

PORT GPIO2_IO = “%, DIR = IO, VEC = [0:(C_GPIO_WIDTH-1)],

THREE_STATE = TRUE, TRI_TI = GPIO2_IO_I, TRI_O = GPIO2_IO_O,
TRI_T = GPIO2_IO_T, ENABLE = MULTI, PERMIT = BASE_USER,

DESC = ‘GPIO2 Data IO’, IO_IF = gpio_0, IO_IS = gpio_io_2
PORT GPIO2_IO_I = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)]
PORT GPIO2_IO_O = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]
PORT GPIO2_IO_T = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)]
PORT GPIO2_in = “%, DIR = I, VEC = [0:(C_GPIO_WIDTH-1)]1,

PERMIT = BASE_USER, DESC = ‘GPIO2 Data In’, IO_IF = gpio_0,

IO_IS = gpio_data_in_2
PORT GPIO2_d_out = “%, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)1,

PERMIT = BASE_USER, DESC = ‘GPIO2 Data Out’, IO_IF = gpio_0,

IO_IS = gpio_data_out_2
PORT GPIO2_t_out = ““, DIR = O, VEC = [0:(C_GPIO_WIDTH-1)1,

PERMIT = BASE_USER, DESC = ‘GPIO2 TriState Out’, IO_IF = gpio_0,

IO_IS = gpio_tri_out_2

END

Bus Interface

Definition
A bus interface is a grouping of interface ports that are related.

Several components often have many of the same ports, requiring redundant port
declarations for each component. Every component connected to a PLB v4.6 bus, for
example, must have the same ports defined and connected.

A bus interface provides a high level of abstraction for the component connectivity of a
common interface. Components can use a bus interface as if it were a single port. In its
simplest form, a bus interface can be considered a bundle of signals.

Platform Specification Format Reference Manual = www.xilinx.com 39
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

Bus Interface Keyword Summary

A bus interface can have the following keywords:

BUS
BUS_STD
BUS_TYPE
EXCLUDE_BUSIF
GENERATE_BURSTS
ISVALID
SHARES_ADDR

Bus Interface Keyword Definitions

BUS

The label of a bus interface is specified by the Bus keyword. It is expressed in the following
format in which bus_label is a string;:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

BUS_STD

The bus standard for a bus interface is specified by the Bus_sTp keyword. It is expressed in
the following format:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

The Xilinx-known BUS_STD values are DCR, LMB, OPB, PLB, DSOCM, ISOCM, FSL. You can also
define your own bus standards.

Note: BUS_STD = TRANSPARENT is deprecated. It should be replaced with a user-defined
“compatibility” string for any point-to-point connections.

BUS_TYPE

The bus type for a bus interface is specified by the Bus_TvPE keyword. It represents the
relationship of the interface to the connection. The Bus_TYPE keyword is expressed in the
following format:

BUS_INTERFACE BUS=bus_label, BUS_STD=bus_std, BUS_TYPE=bus_type

For centrally connected buses (for example, PLB v4.6), valid values of BUS_TYPE are
MASTER, MASTER_SLAVE, SLAVE, and MONITOR.

For point-to-point connected bus_interfaces, valid values are INITIATOR, TARGET.

EXCLUDE_BUSIF

The ExcLUDE_BUSIF keyword defines all BUS_INTERFACE connections when other
BUS_INTERFACE connections are present. Supports a colon-separated list of elements, but
can also take a single element.

For example, if two interfaces are defined for an IP as master-slave, or as a slave interface,
then only one of them can be used to connect the IP. This keyword is expressed in the
following format:

40

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Bus Interface S XILINX®

BUS_INTERFACE BUS=MSPLB, BUS_STD=PLB, BUS_TYPE=MASTER_SLAVE,
EXCLUDE_BUSIF=SPLB

BUS_INTERFACE BUS=SPLB, BUS_STD=PLB, BUS_TYPE=SLAVE,
EXCLUDE_BUSIF=MSPLB

GENERATE_BURSTS

GENERATE_BURSTS specifies that a non-bridge master generates bursts. This is only valid
for Bus_INTERFACEs of BUS_TYPE=MASTER. The keyword is expressed in the following
format:

BUS_INTERFACE BUS = MPLB, BUS_STD = PLBV46, BUS_TYPE = MASTER,
GENERATE_BURSTS = [FALSE|TRUE]

EDK tools observe all masters and slaves that could communicate through a given bridge.
If there is at least one master that has the GENERATE BURSTS=TRUE, and if there is at least
one slave that can support bursts, the bridge is configured to support bursts. To determine
whether a slave can support bursts, the EDK tools use the following method:

e If slave does not have the C_<busif>_SUPPORT_BURSTS parameter, the slave
BUS_INTERFACE does not support bursts. This means any slave that always supports
bursts must also have the parameter.

e Ifaslave has the c_<busif>_ SUPPORT_BURSTS parameter, it is assumed that it can
support bursts.

ISVALID

The 1svALID keyword defines the validity of a BUS_INTERFACE to an expression. If the
expression evaluates true, the BUS_INTERFACE is included in the list of valid
BUS_INTERFACEs for the defined system. If false, the BUS_INTERFACE is notincluded. Itis
expressed in the following format:

BUS_INTERFACE BUS = SPLBO, BUS_STD = PLBV46, BUS_TYPE = SLAVE, ISVALID
= (C_NUM_PORTS > 0 && C_PIMO_BASETYPE == 2)

SHARES_ADDR

The sHARES_ADDR keyword defines all BUS_INTERFACE address space regions that need to
be checked against one another. The default is ALL. This keyword supports a colon-
separated list of elements, but can also take a single element.

For example, the LMB and OPB memory mapped peripherals of a MicroBlaze™ processor
must not conflict. Also, the PLB and OCM address spaces for a PowerPC® 405 processor
must not conflict. This keyword is expressed in the following format:

BUS_INTERFACE BUS=DOPB, BUS_STD=0OPB, BUS_TYPE=MASTER, SHARES_ADDR=DLMB
BUS_INTERFACE BUS=IOPB, BUS_STD=0OPB, BUS_TYPE=MASTER, SHARES_ADDR=ILMB
BUS_INTERFACE BUS=DLMB, BUS_STD=LMB, BUS_TYPE=MASTER, SHARES_ADDR=DOPB
BUS_INTERFACE BUS=ILMB, BUS_STD=LMB, BUS_TYPE=MASTER, SHARES_ADDR=IOPB

Platform Specification Format Reference Manual = www.xilinx.com 4
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

Bus Interface Naming Conventions

10 Interface

Definition

The table below lists recommendations for bus labels.

Table 3-1: Recommended Bus Labels

Bus Label Description

SDCR Slave DCR interface

SLMB Slave LMB interface

MOPB Master OPB interface

MSOPB Master-slave OPB interface
SOPB Slave OPB interface

MPLB Master PLB interface

MSPLB Master-slave PLB interface
SPLB Slave PLB interface

For the MSpPLB bus interface, you should separate the master interface and slave interface as
MPLB and SPLB, respectively, because the MSPLB is assigned its own position. This means
that the master interface and the slave interface must reside at the same position. If given
as separate interfaces for MPLB and SPLB, then each interface can have its own position
assignment.

An T0_INTERFACE defines an interface between the IP and some external off-chip device.
Associated with each IO Interface are sets of ports that the Base System Builder (BSB)
Wizard defines as the systems top-level ports, and a set of parameters that BSB
characterizes from the off-chip device. In an MPD file, you can define an I0_INTERFACE by
assigning it a unique 10_IF name and an IO type (10_TYPE). You can then specify which
ports and parameters are associated with this interface by adding the 10_1F and 10_15
tags to those ports and parameters.

The tools in conjunction use the 10_INTERFACE with information from the Xilinx® Board
Description (XBD) files in order to make intelligent decisions for the user regarding system
connectivity and parameterization. The T0_INTERFACE declaration and associated tags are
not required for core functionality.

42

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Option

SUXILINX®

IO Interface Keywords

An IO interface can have the following keywords:

IO_IF

A unique, user-defined label assigned an 10_INTERFACE. All ports and parameters
declared in an MPD file that are associated with the name I10_INTERFACE have the same
10_1F value assigned to them. This keyword is expressed in the following format, in which
io_label is the name of the IO_INTERFACE. This is a user-defined string;:

IO_INTERFACE IO_IF=io_label,

IO_TYPE

IO_TYPE=io_type

The IO type of an IO interface is specified by the 10_TvPE keyword, which is expressed in

the following format:

IO_INTERFACE IO_IF=io_label,

IO_TYPE=io_type

Here, io_type is one of the following values: XIL_DDR_V1, XIL_EMC_V1,
XIL_Ethernet_Vi1,XIL_GPIO_V1,XIL_IIC_V1,XIL_PCI_ARBITER_V1,XIL_PCI32_V1,
XIL_SDRAM V1, XIL_SPI_V1,XIL_SYSACE V1, or XIL_UART V1.

Option

Definition

An option defines a tool directive.

Option Keyword Summary

An option can have the following keywords:

ALERT
ARCH_SUPPORT
ARCH_SUPPORT_MAP
BUS_STD
CLK_FREQ_RATIOS
CORE_STATE

DESC
EARLY_ACCESS_ARCH_SUPPORT
HDL

IMP_NETLIST
IP_GROUP
IPLEVEL_DRC_PROC
IPTYPE

LAST_UPDATED
LONG_DESC
MAX_MASTERS
MAX_SLAVES

PAY_CORE
PLATGEN_SYSLEVEL_UPDATE_PROC
RUN_NGCBUILD

SPECIAL

STYLE
SYSLEVEL_DRC_PROC
SYSLEVEL_UPDATE_PROC
TCL_FILE

USAGE_LEVEL

Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

www.Xxilinx.com 43

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

Option Keyword Definitions

ALERT

A message alert for the IP core is specified with the ALERT keyword in the following
format:

OPTION ALERT = “This belongs to Xilinx”

ARCH_SUPPORT

Deprecated. Subsumed by ARCH_SUPPORT_MAP.

ARCH_SUPPORT is a list of supported FPGA architectures. Valid values are the various
FPGA architectures supported by EDK including (but not limited to): all, spartan2,
spartan2e, spartan3, spartan3e, virtex, virtexe, virtex2, virtex2p, virtex4,
virtex5. The defaultis ALL. This keyword supports a colon-separated list of elements, but
can also take a single element, as in the following format:

OPTION ARCH_SUPPORT = virtex2:spartanle

ARCH_SUPPORT_MAP

This is a list of supported FPGA architectures. Valid values are the various FPGA
architectures supported by EDK.

The keys of the map are the architecture names. The architecture names are composed of
a concatenation of c_FaMILY and c_SUBFAMILY. The parameter C_FAMILY contains
VIRTEX4 and VIRTEX5 as valid values. The c_SUBFAMILY has an FX, LX, or SX designation
for VIRTEX4, an LX or SX designation for VIRTEX5, and an empty “” for other architectures.

The table below lists ARCH_SUPPORT_MAP values.

Table 3-2: ARCH_SUPPORT_MAP Values

ARCH_SUPPORT_MAP Definition
PREFERRED Core is active (full uninhibited use) by EDK.
AVATLABLE Core is available (full uninhibited use) by EDK and info
message is given to that user.
BETA Core is in beta stage and a warning is issued to the user
DEPRECATED Core is deprecated. EDK tools allow use of core, but

issues a warning that the core is deprecated.

DEVELOPMENT Core is in development and will be synthesized each time
Platgen is executed (no cache of synthesis results).

EARLY_ACCESS Coreis in early access stage and a warning is issued to the
user.

OBSOLETE Core is obsolete. EDK tools issue an error that this core is

no longer valid.

The key is the primary family name, and value is the core state. It is followed by a comma-
separated list of devices. The format is <key name>=<key value>, <key name>=<key
value>, as in the following format:

44

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Option

SUXILINX®

OPTION ARCH_SUPPORT_MAP = (virtex2p=PREFERRED, virtex4=PREFERRED,
spartan3a=AVAILABLE, spartan3e=AVAILABLE, virtex5fx=EARLY_ACCESS,
spartan2=0BSOLETE)

You can use OTHERS as a key name that expands to all undefined architectures with a
common core state, as illustrated in the following examples:

OPTION ARCH_SUPPORT_MAP = (virtex2p = PREFERRED, others = AVAILABLE)
OPTION ARCH_SUPPORT_MAP = (others = DEVELOPMENT)

Note: Parentheses enclose the beginning and ending of the mapping section. Due to current MPD
parse rules, this must be done within one line of the MPD file. You do not have the option to cross
multiple lines. However, for descriptive purposes, examples are shown to cross multiple lines.

BUS_STD
This keyword defines the bus standard of BUS or BUS_ARBITER cores, as in the following
format:

OPTION BUS_STD = value

In this example, value is one of the following Xilinx-supported bus standards: DCR, DsOCM,
FSL, ISOCM, LMB, OPB, PLBV46, or PLB. You can also define your own bus standard. There is
no default.

CLK_FREQ_ RATIOS

This option specifies the allowed ratios between clocks in an IP. Its value is a list of comma-
separated, name-value pairs. Each such pair has a name that describes:

e The ports whose ratio must be computed

e A value that is the actual ratio allowed

The value can include multiple ratios and is therefore expressed as a comma-separated list.
The syntax to specify the value for this option is as follows :

OPTION CLK_FREQ _RATIOS = (P1/P2 = (N1/D2, [N2:N3]/D2, N4/[D3:D4],
N5), (P1,P2)/P3 = (N6, [N7:N8]/[D5:D6]))

In the expression above, P1, P2, and p3 are the clock ports in the IP. N is the numerator in the
ratio, and D is the denominator. The syntax rules to specify the ratio are given below.

e The whole value of the CLK_FREQ_RATIOS option must be specified in parentheses.

e The value of the option is a comma-separated list of name-value pairs, where name is
the ratio of ports and value is the list of supported ratios with the syntax
Name = (list of wvalues).

o The list of values must be enclosed in parentheses, even if the list has only one
element.

e A ratio must be specified as N/D, where N is the numerator and D is the denominator.

e Arange (in the numerator or denominator) is only allowed in the list of values

section, and it must be specified by using square brackets and a colon. Otherwise, it is
considered illegal syntax.

e Arange, if specified, cannot contain fractions. Both bounds must be positive integers.
If this option is specified in the MPD of the IP, the tools perform a design rule check (DRC)

to verify that the clocks satisfy the ratio requirements in this option. The DRC passes at the
first ratio in the list that matches the computed ratio.

Platform Specification Format Reference Manual = www.xilinx.com 45

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

CORE_STATE
Deprecated. Subsumed by ARCH_SUPPORT_MAP.

The corRE_STATE keyword specifies the state of the IP core, as in the following format:
OPTION CORE_STATE = ACTIVE

The table below lists CORE_STATE values.

Table 3-3: CORE_STATE Values

CORE_STATE Definition
ACTIVE Core is active (full uninhibited use) by EDK (default).
DEPRECATED Core is deprecated. EDK tools allow use of core, but issues a

warning that the core is deprecated.

DEVELOPMENT Core is in development and will be synthesized each time
Platgen is executed (no cache of synthesis results).

OBSOLETE Core is obsolete. EDK tools issue an error that this core is no
longer valid.

DESC

This keyword allows a short description of the core to be displayed by the GUI tools. The
short description replaces the core name in the display field of the core, as in the following
format:

OPTION DESC = “XPS GPIO”

EARLY ACCESS_ ARCH_SUPPORT
Deprecated. Subsumed by ARCH_SUPPORT_MAP.

This keyword is a list of FPGA architectures that the core supports in an early access form.
There is no default value. It supports a colon-separated list of elements, but can also take a
single element, as in the following formats:

OPTION EARLY ACCESS_ARCH_SUPPORT
And:

OPTION EARLY_ACCESS_ARCH_SUPPORT = virtex5

virtex5:spartan3e

46

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Option

SUXILINX®

HDL

Deprecated. The HDL availability of the IP is specified with the HDL keyword, as in the
following format:

OPTION HDL = VERILOG
The table below lists HDL values.

Table 3-4: HDL Values

HDL Definition

BOTH The design is completely written both in Verilog and VHDL.
This means that the HDL code is available as Verilog and VHDL
files. When you select Verilog as the top-level HDL language,
the EDK tools release only the Verilog files for use. When you
select VHDL, the EDK tools release only the VHDL files. The
use of both is deprecated.

MIXED The design is written as a mixture of Verilog and VHDL.

VERILOG The design is completely written in Verilog.

VHDL The design is completely written in VHDL.

IMP_NETLIST

The 1Mp_NETLIST keyword directs Platgen to write an implementation netlist file for the
peripheral, as in the following format:

OPTION IMP_NETLIST = TRUE

The default is FALSE. If FALSE, Platgen does not generate an implementation netlist (NGC)
file. You must provide a mechanism to synthesize your IP.

IP_GROUP

The 1p_GroOUP keyword defines the IP group classification. The keyword is expressed in
the following format, in which ipgroup_label is a string:

OPTION IP_GROUP = ipgroup_label

If you have more than one IP group sharing the parameter, then use a colon to separate
each IP group in the list.

IPLEVEL_DRC_PROC

The IPLEVEL_DRC_PROC keyword defines the Tcl entry point for the IP-level DRC routine.
DRCs are based only on IP-level settings. The IPLEVEL_DRC_PROC keyword is expressed
following format:

OPTION IPLEVEL_DRC_PROC = proc_name

Platform Specification Format Reference Manual = www.xilinx.com 47

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

IPTYPE

The 1pTYPE keyword defines the type of the component, as in the following format:
OPTION IPTYPE = PERIPHERAL

The table below lists IPTYPE values.

Table 3-5: 1pTYPE Values

IPTYPE Definition
BUS Bus component
PERIPHERAL Component that is address-mapped to a bus
PROCESSOR Processor component

Note: The values BRIDGE, IB, and BUS_ARBITER for IPTYPE have been deprecated. The following
conventions are used to model them:

e TIPTYPE=IPis now modeled as IPTYPE=PERIPHERAL, and the IP has no address
parameters.

e TIPTYPE=BUS_ARBITER is now modeled as 1PTYPE=BUS, and the IP has address
parameters.

e IPTYPE=Bridge is now modeled at the ADDRESS parameter level using
ADDR_TYPE=BRIDGE and BRIDGE_TO tags.

LAST UPDATED

This keyword indicates the release for which an IP was last updated. It includes the HDL,
MPDs, and Tcl files for each IP. The syntax is as follows:

OPTION LAST_UPDATED = <edk release_number>

The edk_release_number is expressed as a version number, for example, 9. 2.

LONG_DESC

This keyword allows a long description of the core to be displayed by the GUI tools. The
long description allows the GUI tools to display a floating text box that contains additional
help information. There is no default, as in the following format:

OPTION LONG_DESC = "XPS GPIO - IO only, GPIO"

MAX MASTERS

Define maximum number of masters allowed for cores marked as IPTYPE=BUS or
IPTYPE=BUS_ARBITER. No default, as in the following format:

OPTION MAX_MASTERS = 8

MAX SLAVES

This keyword defines the maximum number of slaves allowed for cores marked as
IPTYPE=BUS Or IPTYPE=BUS_ARBITER. There is no default, as in the following format:

OPTION MAX_SLAVES = 8

48

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Option S XILINX®
PAY CORE
This keyword identifies a core as being free or purchased. paY_coRE is Xilinx IP-specific
and should be used only by Xilinx IPs. PAY_CORE allows a sub-property, ISVALID, which
the tools use internally to identify the license status of the core.
PLATGEN_SYSLEVEL_UPDATE_PROC
The PLATGEN_SYSLEVEL_UPDATE_PROC keyword defines the Tcl entry point for the system-
level update routine. This procedure is run after Platgen completes the merge of MPD and
MHS descriptions, and it is suitable for use in Icl to generate UCF entries. The updates are
based only on system-level settings and are expressed in the following format:
OPTION PLATGEN_SYSLEVEL_UPDATE_PROC = proc_name
RUN_NGCBUILD
The RUN_NGCBUILD keyword directs Platgen to execute NGCBUILD to merge multiple
hardware netlists into a single deliverable hardware netlist. It is also required to include
UCEF constraints in the generated netlist.
The flow, as implemented in Platgen, is as follows:
e Run TCL to generate IP level UCF file (referred to as NCF).
¢ Run XST to generate netlist from the HDL referred to in the Peripheral Analyze Order
(PAO,) file.
Run NCGBUILD to create a new IP-level netlist that combines the output from the two
previous bullets.
RUN_NGCBUILD is required when the TCL generates constraints, or when
edk_generatecore is used. It is intuited when a Black Box Definition (BBD) file is present.
The RUN_NGCBUILD keyword is expressed in the following format:
OPTION RUN_NGCBUILD = TRUE
The default is FALSE.
SPECIAL
This keyword is reserved for internal use only.
The spEcIAL keyword defines a class of components that require special handling, as in
the following format:
OPTION SPECIAL = BRAM CNTLR
STYLE
The sTYLE keyword defines the design composition of the peripheral.
If you have only optimized hardware netlists, you must specify the BLACKBOX value within
the MPD file. In this case, only the BBD file is read by the EDK tools.
OPTION STYLE = BLACKBOX
If you have a mix of optimized hardware netlists and HDL files, you must specify the MIx
value within the MPD file. In this case, the PAO and BBD files are read by the EDK tools.
OPTION STYLE = MIX
Platform Specification Format Reference Manual = www.xilinx.com 49

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

If you have only HDL files, you must specify the HDL value within the MPD file. In this
case, only the PAO file is read by the EDK tools.

OPTION STYLE = HDL

The table below lists STYLE values.

Table 3-6: STYLE Values

STYLE Definition
BLACKBOX Only optimized hardware netlists
HDL Only HDL files (default)
MIX Mix of optimized hardware netlists and HDL files

SYSLEVEL_DRC_PROC

The sYsLEVEL_DRC_PROC keyword defines the Tcl entry point for the system-level DRC
routine. DRCs are based only on system-level settings. The sYSLEVEL_DRC_PROC keyword
is expressed in the following format:

OPTION SYSLEVEL_DRC_PROC = proc_name

SYSLEVEL_UPDATE_PROC

The sYSLEVEL_UPDATE_PROC keyword defines the Tcl entry point for the system-level
update routine. The updates are based only on system-level settings. The keyword is
expressed in the following format:

OPTION SYSLEVEL_UPDATE_PROC = proc_name

TCL_FILE

Deprecated. The TcL_FILE keyword defines the Tcl file name. The keyword is expressed in
the following format:

OPTION TCL_FILE = opb_gpio_v2_1_0.tcl

USAGE_LEVEL

The usaGE_LEVEL keyword defines a tool option BSB uses to determine whether or not BSB
should configure this IP module. It is expressed in the following format:

OPTION USAGE_LEVEL = BASE_USER

The table below lists USAGE_LEVEL values.

Table 3-7: USAGE_LEVEL Values

USAGE_LEVEL Definition
ADVANCED_USER IP cannot be configured by BSB.
BASE_USER IP can be configured by BSB.

50

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Parameter S XILINX®

Parameter

Definition

A parameter defines a constant that is passed into the entity (VHDL) or module (Verilog)
declaration.

Parameter Keyword Summary

A parameter can have the following keywords:

ADDRESS DESC MIN_SIZE

ADDR_TYPE DT PAIR

ASSIGNMENT IO_IF PERMIT

BRIDGE_TO 10_IS RANGE

BUS IPLEVEL_DRC_PROC SYSLEVEL_DRC_PROC
CACHEABLE IPLEVEL_UPDATE_VALUE_PROC SYSLEVEL_UPDATE_VALUE_PROC
CLK_PORT ISVALID TYPE

CLK_UNIT LONG_DESC VALUES

Parameter Keyword Definitions

ADDRESS

The ADDRESS keyword identifies a named parameter as a valid address parameter. The
keyword is expressed in the following format:

PARAMETER C_BASEADDR=0XFFFFFFFF, MIN_SIZE=0x2000, ADDRESS=BASE

The table below lists ADDRESS values.

Table 3-8: ADDRESS Values

ADDRESS Definition
BASE Identify base address (default for c_BASEADDR)
HIGH Identify high address (default for C_HIGHADDR)
SIZE Deprecated. Identify size of address (paired with
ADDRESS=HIGH Or ADDRESS=BASE)
NONE Disable identification of address parameter
ADDR_TYPE

The ApDR_TYPE keyword identifies an address parameter of a defined memory class. The
keyword is expressed in the following format:

PARAMETER C_BASEADDR=0xFFFFFFFF, MIN_SIZE=0x2000, ADDR_TYPE=REGISTER

Platform Specification Format Reference Manual = www.xilinx.com 51
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

The table below lists ADDR_TYPE values.

Table 3-9: ADDR_TYPE Values

ADDR_TYPE Definition

BRIDGE Address window on the bridge. An address of this type

is forwarded to the bus which is slave to the bridge.

MEMORY Address window on the memory controller. An address

of this type points to a storage memory, such as SDRAM,
DDR, FLASH, or BRAM.

REGISTER Address of its own registers. An address of this type points
to registers in the peripheral. These could be status,
control, data registers, or some FIFO registers in the
peripheral. This is the default.

ASSIGNMENT

The AsSIGNMENT keyword defines the assignment usage level. The keyword is expressed

in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, ASSIGNMENT=OPTIONAL

The table below lists ASSIGNMENT values.

Table 3-10: ASSIGNMENT Values

ASSIGNMENT Definition
CONSTANT This value is a constant. You cannot modify it.
OPTIONAL If you do not specify a value, the EDK batch tools use the

default.

OPTIONAL_UPDATE

You can specify an MHS value for any parameter associated
with a Tcl procedure. The MHS value has precedence over the
Tcl-calculated value, as called through
IPLEVEL_UPDATE_VALUE_PROC OF
SYSLEVEL_UPDATE_VALUE_PROC.

REQUIRE You must specify a value.
UPDATE You cannot specify a value. It is computed by the EDK batch
tools.
Examples:

e MPD example of ASSIGNMENT=OPTIONAL_UPDATE :

SYSLEVEL_UPDATE_VALUE_PROC
PARAMETER C_MASK=0x00800000, SYSLEVEL_UPDATE_VALUE_PROC =
update_syslevel _mask, ASSIGNMENT = OPTIONAL_UPDATE

It is recommended that the IP developer also provide a DRC procedure to validate the
user-specified MHS value. Use the SYSLEVEL_DRC_PROC to define the name of the DRC

entry point.

e MPD example pairing SYSLEVEL_UPDATE_VALUE_PROC and SYSLEVEL_DRC_PROC
(ASSIGNMENT=OPTIONAL_UPDATE inferred):

52

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Parameter

SUXILINX®

PARAMETER C_MASK=0x00800000, SYSLEVEL_UPDATE_VALUE_PROC =
update_syslevel_mask, SYSLEVEL_DRC_PROC = check_syslevel_mask

In the example above, the ASSIGNMENT=0PTIONAL_UPDATE is not listed because it is
inferred from the pairing of the SYSLEVEL_UPDATE_VALUE_PROC and
SYSLEVEL_DRC_PROC subproperties.

The pairing of IPLEVEL_UPDATE_VALUE_PROC and IPLEVEL_DRC_PROC Or
SYSLEVEL_UPDATE_VALUE_PROC and SYSLEVEL_DRC_PROC infers the
ASSIGNMENT=0OPTIONAL_UPDATE.

BRIDGE_TO

The BRIDGE_TO keyword allows an address to be visible through the bridge. The keyword
is expressed in the following format:

PARAMETER C_BASEADDR=0xFFFFFFFF, BRIDGE_TO=SOPB

BUS

The bus interface of a parameter is specified by the Bus keyword. It is expressed in the
following format in which bus_1label is a string:

PARAMETER C_SPLB_AWIDTH = 32, DT=datatype, BUS=bus_label

If you have more than one bus interface sharing the parameter, then use the colon to
separate each bus interface in the list. The first item in the list is the default setting.

CACHEABLE

The cacuecaBLE keyword identifies a cacheable address. The keyword is expressed in the
following format:

PARAMETER C_BASEADDR=0xXFFFFFFFF, CACHEABLE=TRUE

CLK_PORT

The cLk_PORT keyword can be used to specify the clock port to which this parameter is
related. It is specified in the following format:

PARAMETER C_CLK_IN = 20, CLK_PORT = CLK_IN, CLK_UNIT=NS

CLK_UNIT

The cLk_UNIT keyword can be used to specify the units in which the parameter value is
specified. Allowed values for units are: Hz, KHz, MHz, S, MS, US, NS and ps. If the CLK_PORT
keyword is specified for a parameter, then the cLk_UNIT keyword must be specified.

DESC

The DESC keyword allows a short description of a parameter to be displayed by the GUI
tools. The short description replaces the parameter name in the display field. The DESC
keyword is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, DESC="HAS XIN"

Platform Specification Format Reference Manual = www.xilinx.com 53

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

DT

The data type for a parameter is specified by the DT keyword, which is expressed in the

following format:

PARAMETER C_SPLB_AWIDTH = 32, DT=datatype,

BUS=bus_label

In this example, datatype can be assigned the values shown in the table below. The table
also describes how the DT value is translated in the appropriate language.

Table 3-11: DT Values

DT Value VHDL Type Verilog Type
bit bit bit
bit_vector bit_vector bit vector
integer integer integer
real real real
string string string
std_logic std_logic bit
std_logic_vector std_logic_vector bit vector

IO_IF

The IO interface association name is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_RCLK=0, IO_IF=uart_0, IO_IS=has_ext_rclk

IO_IS

The 10_15s keyword defines an XBD relationship marker. 10_1s implies that the parameter
value can be dictated by a feature on the external hardware to which this IP is connected.
Without a corresponding XBD value the tag has no effect.

A parameter that has an 10_IS must also have an T0_IF association with a particular
IO_INTERFACE in the MPD. There are special values of 10_15s that do not have an 10_IF
association. This occurs when those values are not specific to a particular T0_INTERFACE.
These special values are c1k_freq and polarity.

An MPD could have more than one 10_INTERFACE. Therefore, a parameter with an 10_Is
must be associated with only one of them. This keyword is expressed in the following
format:

PARAMETER C_FAMILY=virtex, IO_IF=uart_0, IO_IS=C_FAMILY

IPLEVEL_DRC_PROC

The 1PLEVEL_DRC_PROC keyword defines the Tcl entry point for the IP-level DRC routine.
A DRC based only on IP-level settings is done. The IPLEVEL_DRC_PROC keyword is
expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, IPLEVEL_DRC_PROC = proc_name

54

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Parameter

SUXILINX®

IPLEVEL_ UPDATE_VALUE_PROC

The IPLEVEL_UPDATE_VALUE_PROC keyword defines the Tcl entry point for the IP-level
update routine on parameters. An update based on only IP-level settings is done. The
IPLEVEL_UPDATE_VALUE_PROC keyword is expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, IPLEVEL_UPDATE_VALUE_PROC = proc_name

ISVALID

The 1svaLID keyword defines the validity of a parameter to an expression. If the
expression evaluates true, the PARAMETER is included in the list of valid PARAMETERS of the
defined system for DRC processing. If false, the PARAMETER is not included, and no DRC is
performed. However, the PARAMETER remains listed in the HDL. The 1svaLID keyword is
expressed in the following format:

PARAMETER C_BASEADDR = OxFFFFFFFF, ISVALID = (C_PROC_INTRFCE==1)

If the 1SVALID expression includes a string comparison, it cannot be specified using the ==
operator. Instead, the following Tcl procedure and syntax should be used.

PARAMETER C_MEM_PART_DATA_DEPTH = 0, DT = INTEGER,
ISVALID = ([xstrncmp C_MEM_PARTNO CUSTOM])

In this example, the expression is valid when the value of the parameter cC_MEM_PARTNO is
CUSTOM.

LONG_DESC

This keyword allows a long description of the parameter to be displayed by the GUI tools.
The long description allows the GUI tools to display a hover help. There is no default, and
LONG_DESC is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, LONG_DESC="XIN? What XIN?”

MIN_SIZE
The minimum size for an address window is specified by the MIN_s1zE keyword, which is

expressed in the following format:

PARAMETER C_BASEADDR = OxFFFFFFFF, DT=std_logic_vector, MIN_SIZE=0x100

PAIR

The pAIR keyword tags unidentified BASEADDR-HIGHADDR pairs. If non-standard names are
used instead of *_BASEADDR and *_HIGHADDR, address parameters must identify pairs that
define the BASE and HIGH. You must use the ADDRESS keyword to identify the parameter as
BASE address or HIGH address. It is expressed in the following format:

PARAMETER C_HIGH=0x00000000, PAIR=C_BASE, ADDRESS=HIGH
PARAMETER C_BASE=0xFFFFFFFF, PAIR=C_HIGH, ADDRESS=BASE

PERMIT

This keyword specifies whether BSB should display and lets users edit the parameter.
Allowed values are ADVANCED_USER (default) and BASE_USER. Only parameters that are
tagged as BASE_USER are shown in BSB. PERMIT is expressed in the following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, PERMIT = BASE_USER,

Platform Specification Format Reference Manual = www.xilinx.com 55

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

RANGE

RANGE defines a range of allowed valid values. It covers sequences like 8,16,24,32, or breaks
in ranges, for example: RANGE= (1:4, 8,16) . The RANGE keyword is expressed in the
following format:

PARAMETER C_HAS_EXTERNAL_XIN=0, DT=integer, RANGE=(0:1)

SYSLEVEL_DRC_PROC

The sYsLEVEL_DRC_PROC keyword defines the Tcl entry point for the system level DRC
routine. A DRC based on only system-level settings is done. The SYSLEVEL_DRC_PROC
keyword is expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, SYSLEVEL_DRC_PROC = proc_name

SYSLEVEL_UPDATE_VALUE_PROC

The SYSLEVEL_UPDATE_VALUE_PROC keyword defines the Tcl entry point for the system-
level update routine on parameters. The updates are based only on system-level settings
and are expressed in the following format:

PARAMETER C_SPLB_AWIDTH = 32, SYSLEVEL_UPDATE_VALUE_PROC = proc_name

TYPE

The value of the TYPE keyword defines the kind of parameter. Allowed values are:

e HDL
correlates to a generic for VHDL, or to a parameter for Verilog.

e NON_HDL
this parameter is not present in the HDL of the IP, and it is tools specific.

If the TYPE keyword is not specified, the default is assumed to be HDL.

Note: The TYPE keyword was introduced to support NON_HDL parameters. Previously, there was a
requirement that all parameters of an IP in the MHS and MPD files must be present in the HDL for the
IP. However, there were cases in which the tools need user input (specified using parameters) for
configuring the IP. Dummy parameters were therefore introduced in the HDL. You can now avoid this
workaround by specifying those parameters as NON_HDL using the TYPE keyword.

VALUES

This keyword is a list of name-value pairs. The name is a parameter value in the range of
allowed valid values. The value is a GUI-representable display string. The VALUES
keyword is expressed in the following format:

PARAMETER C_ODD_PARITY=1, RANGE=(0:1), VALUES=(0=Even, 1=0dd)

Parameter Naming Conventions

An MPD parameter correlates to a generic for VHDL, or to a parameter for Verilog. The
parameter name must be HDL (VHDL, Verilog) compliant. VHDL and Verilog have certain
naming rules and conventions that must be followed.

The tools perform automatic clock DRCs. That is, they check to see if the frequency (or
period) values specified for clock-related parameters in the MHS and MPD files are equal
to the values computed by the tools. For this purpose, the tools rely on certain

56

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Port SUXILINX®
sub-properties (CLK_PORT and CLK_UNIT) to be present for that parameter. If the tools do
not find those sub-properties, they try to infer them from the name of the parameter.

If the parameter name follows the convention c_<clock_port>_FREQ_<clock_units> or
C_<clock_port>_PERIOD_<clock_units>
The tools then infer the clock name and clock units for that parameter.
Examples:

(a) PARAMETER C_PLB_Clk_FREQ_HZ = 50000000

(b) PARAMETER C_PLB_Clk_PERIOD_NS = 20
In case (a), the tools infer that the parameter is related to opB_c1k clock port and the clock
unit is Hz, thatis, frequency = 50,000,000 Hz. In case (b), the tools infer that the parameter
is related to the PLB_C1k clock port and the clock unit is ns, that is, period = 20 ns.

Port

Definition
A port defines a data flow path that is passed into the entity (VHDL) or module (Verilog)
declaration.

Port Keyword Summary
A port can have the following keywords:
ASSIGNMENT ENABLE LONG_DESC
BUFFER_TYPE ENDIAN PERMIT
BUS INITIALVAL SENSITIVITY
CLK_FACTOR INTERRUPT_PRIORITY SIGIS
CLK_INPORT IOB_STATE THREE_STATE
CLK_PHASE I0_IF TRI_I, TRI_O, and TRI_T
DESC 10_IS VEC
DIR ISVALID

Platform Specification Format Reference Manual = www.xilinx.com 57

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 3: Microprocessor Peripheral Definition (MPD)

Port Keyword Definitions

ASSIGNMENT

The AssTGNMENT keyword defines assignment usage level. The keyword is expressed in the
following format:

PORT SPLB_Clk="", DT=integer, ASSIGNMENT=REQUIRE

The table below lists ASSIGNMENT values.

Table 3-12: ASSIGNMENT Values

ASSIGNMENT Definition
CONSTANT The value is a constant. You cannot modify this value.
OPTIONAL If you do not specify a value, the EDK batch tools use the
default.
REQUIRE You must specify a value.
UPDATE You are not allowed to specify a value. The EDK batch tools
compute the value.

BUFFER_TYPE

This keyword is expressed in the following format:
PORT CLK = "", DIR=I, BUFFER_TYPE=IBUF

If the BUFFER_TYPE exists on the MPD port, Platgen moves the property to the top-level
port that is directly connected. If the BUFFER_TYPE exists on the top-level MHS port, it
overrides any MPD port definition of BUFFER_TYPE.

The BUFFER_TYPE is translated into an XST pragma resident in the top-level <system>
HDL.

Note: This constraint selects the type of buffer to be inserted on the input port or internal
net. In general, you should avoid using this constraint and allow XST to infer the proper
buffer. Avoiding this constraint allows for flexibility across device migration or synthesis tool
selection.

For an EDK submodule flow, XST does not infer the buffer as defined by the BUFFER_TYPE.
This is correct behavior since it is not expected that IO buffers be present for a submodule
flow.

BUS

The bus interface association name is expressed in the following format, in which
bus_label is a string:

PARAMETER C_PLB_NUM_MASTERS = 8, DT = INTEGER, BUS = MSPLB

If you have more than one bus interface sharing the parameter, then use the colon to
separate each bus interface in the list. The first item in the list is the default setting, which
is expressed in the following format:

PARAMETER C_PLB_NUM_MASTERS = 8, DT = INTEGER, BUS = MSPLB:SPLB

58 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Port SUXILINX®
CLK_FACTOR
The factor by which the output clock varies with respect to the input clock can be specified
with the keyword cLK_FACTOR, as follows:
PORT CLK2X = clk_out, SIGIS=CLK, DIR=0, CLK_FACTOR=2
The clock factor can also be specified in terms of other parameters, as follows:
PORT CLKFX = "", SIGIS=CLK, DIR=0, CLK_FACTOR = "1.0 * C_CLKFX_MULTIPLY
/ C_CLKFX_DIVIDE"
Note: If the CLK_FACTOR expression includes a division, it is required that the clock factor be
multiplied by 1.0 to ensure that Tcl does not trim off the decimals.
CLK_INPORT
This keyword should only be specified on clock ports when DIR=0 (that is, output clock
ports). The input clock port, on which the output clock ports value is dependent, is
specified using the keyword CLK_INPORT, as follows:
PORT CLK_OUT = clk_out, CLK_INPORT=CLK_IN
If there is only one input clock in an IP, then the tools automatically infer it to be the input
clock. If multiple input clocks are present, this keyword must be used so the tools can
determine clock connectivity.
CLK_PHASE
This keyword specifies the phase information for the clock. Allowed values: 0 to 360.
PORT CLK_IN = sys_clk_s, CLK_FREQ=100000000, CLK_PHASE=180
DESC
This keyword allows a short description of the port to be displayed by the GUI tools. The
short description replaces the port name in the display field. The DEsc keyword is
expressed in the following format:
PORT SPLB_Clk="", DIR=IN, SIGIS=CLK, BUS=SPLB, DESC="SPLB clock"
DIR
The driver direction of a signal is specified by the DIr keyword. The keyword is expressed
in the following format:
PORT mysignal = “”, DIR=direction
In this example, direction is either I, O, or IO.
ENABLE
The ENABLE keyword allows you to specify whether tri-state signals have multi-bit enable
control or single-bit enable control on the bus. The keyword is expressed in the following
format:
PORT mysignal = “”, DIR=IO, VEC=[0:31], ENABLE=enable_value
In this example, enable_value is either SINGLE or MULTI. If there is no specification, then
SINGLE is the default value.
Refer to the “Design Considerations” section of this chapter for information about
designing tri-state signals at the HDL level.
Platform Specification Format Reference Manual = www.xilinx.com 59

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

ENDIAN
The endianess of a signal is specified by the ENDIAN keyword, which is expressed in the
following format:

PORT mysignal = “”, DIR=I, VEC=[A:B], ENDIAN=endian_value

In this example, endian_value is either BIG or LITTLE. If there is no specification, BIG is
the default value. A and B are positive integer expressions.

Note: ENDIAN is not used to define the endianess of a signal; it is used as a hint to Platgen to
correctly construct the port vector. Since we use [A:B] style syntax for VEC definitions, it is not known
when writing VHDL that it should be std_logic_vector (A to B). Thisis used in a situation in
which A=B. For example, VEC=[0:0] in the port declaration of components allows Platgen to properly
define the datatype of the port.

INITIALVAL

The signal driver value on unconnected input signals is specified by the INITIALVAL
keyword, which is expressed in the following format:
PORT mysignal = “”, DIR=INPUT, INITIALVAL=init_value

In this example, the init_value is either vcc or GND. If there is no specification, then GND
is the default value.

INTERRUPT_PRIORITY
The INTERRUPT_PRIORITY keyword defines the relative priority of interrupt signals. The
keyword is expressed in the following format:

PORT Intr="", DIR=0, SENSITIVITY=EDGE_RISING, SIGIS=INTERRUPT,
INTERRUPT_PRIORITY=LOW

The level is dependent on the speed of the interface that the IP controls. For example, a
UART runs at default 19200 baud, which gives a byte-rate of around 2000 bytes/s. An
Ethernet 100 runs at 100 MHz, which gives a byte-rate of 12 000 000 bytes/s. Therefore,
UART is Low and Ethernet is HIGH.

CANBus runs at 1 MHz and gives a byte-rate of 120 000 bytes/s, which would be MEDTIUM.
It is also dependent on whether or not the IP has FIFO, which is a judgment that the
designer must make.

IOB_STATE

Deprecated. If necessary, Platgen allows XST to infer all IOB primitives.
Currently, used for DRC purposes to guard against specific IO connectivity issues:

e INOUT ports must have the same port name and connector name if the pcore embeds
an I0BUF. Use THREE_STATE=FALSE to check for condition (remains as a Platgen
DRC).

e An INPUT port must have a connector if the pcore embeds an 1BUF. Use Tcl
SYSLEVEL_DRC_PROC to check the condition.

The 10B_sTATE keyword identifies ports that instantiate or infer IOB primitives. The
keyword is expressed in the following format:

PORT DDR_Addr = “”, DIR=OUT, VEC=[0:C_DDR_AWIDTH-1], IOB_STATE=REG

The values are BUF, INFER, or REG. The default is INFER.

60

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Port SUXILINX®
When a port requires an IOB primitive (I0B_STATE=INFER), Platgen instantiates an IOB
buffer. When a port has an IOB buffer (IOB_STATE=BUF) or IOB register
(T0B_STATE=REG), Platgen does not instantiate an IOB primitive.

IO_IF
The IO interface association name is formatted as follows:

PORT C405TRCCYCLE="", DIR=0, IO_IF=trace_0, IO_IS=trace_clk
IO_IS
The 10_15 keyword defines an XBD relationship marker. 10_15s implies that the port can
be pulled out to the FPGA boundary.
Without a corresponding XBD value, the tag has no effect.
A port that has an 10_1s must also have an 10_IF association with a particular
I0_INTERFACE in the MPD. An MPD could have more than one T0_INTERFACE. Therefore,
a port with an T10_IS must be associated with only one of them. The 10_1s keyword is
expressed in the following format:

PORT C405TRCCYCLE="", DIR=0, IO _IF=trace_0, IO_IS=trace_clk
ISVALID
The 1svaLID keyword defines the validity of a PORT to an expression. If the expression
evaluates true, the PORT is included in the list of valid PORTs of the defined system for DRC
processing. If false, the PORT is not included and no DRC is performed. However, the PORT
remains listed in the HDL. It is expressed in the following format:

PORT SDRAM RAS_n = "", DIR = O, ISVALID = (C_MEM_TYPE == 2)
LONG_DESC
Allows a long description of the port to be displayed by the GUI tools. The long description
allows the GUI tools to display a hover help. There is no default and the use of this
keyword is formatted as follows:

PORT OPB_Clk="", DIR=I, SIGIS=CLK, BUS=SOPB, LONG_DESC="Clock from OPB"
PERMIT
The PERMIT keyword determines whether or not BSB should specify a particular port as a
top-level port in the MHS. Only those ports that have a PERMIT value of BASE_USER are
connected by BSB to top-level ports. The default value is ADVANCED_USER. The PERMIT
keyword is expressed in the following format:

PORT JTGC405TCK=JTGC405TCK, DIR=I, PERMIT = BASE_USER
SENSITIVITY
The interrupt sensitivity of an interrupt signal is specified by the SENSITIVITY keyword.
This supersedes the EDGE and LEVEL keywords. The SENSITIVITY keyword is expressed in
the following format:

PORT interrupt="", DIR=0, SENSITIVITY=value, SIGIS=INTERRUPT
In this example, the value is either EDGE_FALLING, EDGE_RISING, LEVEL_HIGH Or
LEVEL_LOW.

Platform Specification Format Reference Manual = www.xilinx.com 61

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

SIGIS

The class of a signal is specified by the s1G1s keyword, which is expressed in the following
format:

PORT mysig="", DIR=0, SIGIS=value

In this example, the value is CLK, INTERRUPT, or RST. The table below describes sIGIS
usage.

Table 3-13: SIGIS Usage
SIGIS Usage

CLK o XPS
Displays all clock signals.

e Platgen

For all bus components, the clock signals are automatically connected
to the clock input of the peripherals on the bus.

INTERRUPT e XPS

Displays all interrupt signals.
¢ Platgen

Encodes the priority interrupt vector
RST e XPS

Displays all reset signals.

THREE_STATE

The THREE_STATE keyword enables or disables tri-state expansion. This supersedes the
deprecated 3STATE keyword. The THREE_STATE keyword is expressed in the following
format:

PORT PAR="", DIR=INOUT, THREE_STATE=FALSE, IOB_STATE=BUF
For output ports, the default value is FALSE. For inout ports, the default value is TRUE.

Refer to the “Tri-state (InOut and Output) Signals” section of this chapter for information
about designing tri-state signals at the HDL level.

TRI I, TRI_O, and TRI_T

The TRI_I, TRI_0O, and TRI_T keywords define the associative ports of the tri-state. This
directly correlates to the TOBUF UNISIM primitive where the I port is represented by the
TRI_O keyword, the T port by TRI_T, and the O port by the TRI_I. This also directly
correlates to the OBUFT UNISIM primitive where the I port is represented by the TRI_0
keyword, the T port by TRI_T, and the TRI_I keyword is not defined. These properties are
only valid when THREE_STATE=TRUE. The TRI_I, TRI_O, and TRI_T keywords are
expressed in the following format:

PORT IPIO = ““, DIR=INOUT, TRI_T=x, TRI_O=y, TRI_T=z, THREE_STATE=TRUE
PORT x = ““, DIR=0UT

PORT y = ““, DIR=0UT

PORT z = ““, DIR=IN

Refer to the “Tri-state (InOut and Output) Signals” section of this chapter for information
about designing tri-state signals at the HDL level.

62

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Port SUXILINX®

VEC

The vector width of a signal is specified by the VEC keyword, which is expressed in the
following format:

PORT mysignal = “”, DIR=INPUT, VEC=[A:B]

A and B are positive integer expressions.

Port Naming Conventions

This section provides naming conventions for bus interface signal names. These
conventions are flexible to accommodate embedded processor systems that have more
than one bus interface and more than one bus interface port per component.

The names must be HDL (VHDL or Verilog) compliant. As with any language, VHDL and
Verilog have certain naming rules and conventions that you must follow.

Global Ports

The names for the global ports of a peripheral (such as clock and reset signals) are
standardized. You can use any name for other global ports (such as the interrupt signal).

LMB - Clock and Reset

LMB_Clk
LMB_Rst

PLB - Clock and Reset

PLB_Clk
PLB_Rst

Slave DCR Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

DCR Slave Outputs

For interconnection to the DCR, all slaves must provide the following outputs in which
<S1ln> is a meaningful name or acronym for the slave output:

<S1n> dcrDBus
<SIn>_dcrAck

An additional requirement on <s1ln> is that it must not contain the string DCR (upper,
lower, or mixed case), so that slave outputs are not confused with bus outputs.

uart_dcrAck
intc_dcrAck
memcon_dcrAck

DCR Slave Inputs
For interconnection to the DCR, all slaves must provide the following inputs:

<nDCR>_ABus
<nDCR>_S1_DBus
<nDCR>_Read
<nDCR>_Write

Platform Specification Format Reference Manual = www.xilinx.com 63
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

In this example, <nDCR> is a meaningful name or acronym for the slave input. An
additional requirement on <nDCR> is that the last three characters must contain the string
DCR (upper, lower, or mixed case).

DCR_S1_DBus
busl_DCR_S1_DBus

Slave LMB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

LMB Slave Outputs

For interconnection to the LMB, all slaves must provide the following outputs:

<S1ln>_DBus
<Sln>_Ready

In this example, <Sln> is a meaningful name or acronym for the slave output. An
additional requirement on <SIn> is that it must not contain the string “LMB” (upper, lower,
or mixed case), so that slave outputs are not confused with bus outputs.

d_Ready
i_Ready

LMB Slave Inputs

For interconnection to the LMB, all slaves must provide the following inputs:

<nLMB>_ ABus
<nLMB>_ReadStrobe
<nLMB>_AddrStrobe
<nLMB>_WriteStrobe
<nLMB> WriteDBus
<nLMB>_BE

In this example, <nLMB> is a meaningful name or acronym for the slave input. An
additional requirement on <nLMB> is that the last three characters must contain the string
LMB (upper, lower, or mixed case).

LMB_ABus
busl_LMB_ABus

Master PLB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

PLB Master Outputs

For interconnection to the PLB, all masters must provide the following outputs:

<Mn>_ABus
<Mn>_ BE
<Mn>_RNW
<Mn>_abort
<Mn>_busLock
<Mn>_compress
<Mn>_guarded
<Mn>_lockErr
<Mn>_MSize

64

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Port

SUXILINX®

<Mn>_ordered
<Mn>_priority
<Mn>_rdBurst
<Mn>_request
<Mn>_size
<Mn>_type
<Mn>_wrBurst
<Mn>_wrDBus

In this example, <Mn> is a meaningful name or acronym for the master output. An
additional requirement for <Mn> is that it must not contain the string PLB (upper, lower, or
mixed case), so that master outputs are not confused with bus outputs.

iM_request
bridge_request
o20b_request

PLB Master Inputs
For interconnection to the PLB, all masters must provide the following inputs:

<nPLB>_MAddrAck
<nPLB>_MBusy
<nPLB> MErr
<nPLB>_MRdBTerm
<nPLB>_MRdDAck
<nPLB>_MRdDBuUSs
<nPLB>_MRAWdAddr
<nPLB> MRearbitrate
<nPLB> MWrBTerm
<nPLB>_MWrDAck
<nPLB>_MSSize

In this example, <nPLB> is a meaningful name or acronym for the master input. An
additional requirement on <nPLB> is that the last three characters must contain the string
PLB (upper, lower, or mixed case).

iPLB_MBusy
PLB_MBusy
busl_PLB_MBusy

Slave PLB Ports

Naming conventions should be followed for that part of the identifier following the last
underscore in the name.

PLB Slave Outputs

For interconnection to the PLB, all slaves must provide the following outputs:

<SIln>_addrAck
<SIln>_MErr
<SIn>_MBusy
<SIn>_ rdBTerm
<S1n>_rdComp
<S1ln>_rdDAck
<S1ln>_rdDBus
<SIn>_rdwdAddr
<Sln>_ rearbitrate
<SIn>_SSize
<Sln>_ wait

Platform Specification Format Reference Manual = www.xilinx.com 65

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

<SIn>_wrBTerm
<SIn>_wrComp
<SIn>_ wrDAck

In this example, <S1n> is a meaningful name or acronym for the slave output. An
additional requirement on <S1n> is that it must not contain the string pLB (upper, lower, or
mixed case), so that slave outputs are not confused with bus outputs.

tmr_addrAck
uart_addrAck
intc_addrAck

PLB Slave Inputs

For interconnection to the PLB, all slaves must provide the following inputs:

<nPLB>_ABus
<nPLB> BE
<nPLB> PAValid
<nPLB>_RNW
<nPLB>_abort
<nPLB>_busLock
<nPLB>_compress
<nPLB>_guarded
<nPLB>_lockErr
<nPLB>_masterID
<nPLB>_MSize
<nPLB>_ordered
<nPLB>_ pendPri
<nPLB>_pendReq
<nPLB>_regPri
<nPLB>_size
<nPLB>_type
<nPLB> rdPrim
<nPLB>_SAValid
<nPLB> wrPrim
<nPLB>_wrBurst
<nPLB>_wrDBus
<nPLB>_rdBurst

In this example, <nPLB> is a meaningful name or acronym for the slave input. An
additional requirement on <nPLB> is that the last three characters must contain the string
PLB (upper, lower, or mixed case).

PLB_size
iPLB_size
dPLB_size

66

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Reserved Parameters S XILINX®

Reserved Parameters

Reserved Parameter Names Summary

The EDK tools automatically expand and populate a defined set of reserved parameters.
This can help prevent errors when your peripheral requires information on the platform
that is generated. The following list contains the reserved parameter names.

C_DEVICE C_<BUS NAME>_AWIDTH
C_PACKAGE C_<BUS NAME>_DWIDTH
C_SPEEDGRADE C_<BUS NAME> NUM_SLAVES
C_FAMILY C_<BUS NAME> MASTERS_SLAVES
C_INSTANCE C_<BUS NAME> MID_WIDTH
C_SUBFAMILY

Reserved Parameter Descriptions

C_DEVICE

The c_pEVICE parameter defines the FPGA device. This parameter is automatically
populated by the EDK tools, and is formatted as follows:

PARAMETER C_DEVICE = “4v1x100”, DT=string

C_PACKAGE

The c_PACKAGE parameter defines the FPGA device package. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_PACKAGE = “ff1016”, DT=string

C_SPEEDGRADE

The c_sPEEDGRADE parameter defines the FPGA device speed grade. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_SPEEDGRADE = “-11”, DT=string

C_FAMILY

The c_FAMILY parameter defines the FPGA device family. This parameter is automatically
populated by the EDK tools, and is formatted as follows:

PARAMETER C_FAMILY = “virtex4”, DT=string

C_INSTANCE

The c_INSTANCE parameter defines the instance name of the component. This parameter is
automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_INSTANCE = instance_name, DT=string

Platform Specification Format Reference Manual = www.xilinx.com 67
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

C_SUBFAMILY

The c_suBFAMILY parameter defines the FPGA subfamily specification. c_SUBFAMILY will
have an FX, LX, or sx designation for VIRTEX4, an LX or SX designation for VIRTEXS5, and
will be empty “” for other architectures.

This parameter is automatically populated by the EDK tools, and is formatted as follows:

PARAMETER C_SUBFAMILY = “fx”, DT=string

C_<BUS NAME>_ AWIDTH

The c_<BUS NAME>_AWIDTH parameter is automatically populated by the EDK tools, and is
formatted as follows:

PARAMETER C_<BUS NAME>_AWIDTH = integer, DT=integer

The <BUS NaME> is replaced with the name of the BUS_STD in use or the name of the
BUS_INTERFACE in use.

C_<BUS NAME>_ DWIDTH

The c_<BUS NAME>_DWIDTH parameter is automatically populated by the EDK tools, and is
formatted as follows:

PARAMETER C_<BUS NAME>_DWIDTH = integer, DT=integer

The <BUS NaME> is replaced with the name of the BUs_sTD in use, or the name of the
BUS_INTERFACE in use.

C_<BUS NAME>_NUM_SLAVES

The c_<BUS NAME>_NUM_SLAVES parameter is automatically populated by the EDK tools,
and is formatted as follows:

PARAMETER C_<BUS NAME>_NUM_SLAVES = integer, DT=integer

The <BUS NaME> is replaced with the name of the BUS_STD in use, or the name of the
BUS_INTERFACE in use.

C_<BUS NAME> MASTERS_SLAVES

The c_<BUS NAME>_MASTERS_SLAVES parameter is automatically populated by the EDK
tools, and is formatted as follows:

PARAMETER C_<BUS NAME>_NUM_MASTERS = integer, DT=integer

The <BUS NAME> is replaced with the name of the BUS_STD in use or the name of the
BUS_INTERFACE in use.

68

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Reserved Port Connections S XILINX®

C_<BUS NAME> MID WIDTH

The c_<BUS NAME>_MID_WIDTH parameter defines the PLB master ID width in bits. This is
determined by the number of PLB masters, as shown in the table below.

Table 3-14: C_<BUS NAME> MID_WIDTH Calculation

C_<BUS NAME>_NUM_MASTERS
(Number of PLB Masters)

C_<BUS NAME>_ MID_WIDTH

Oto2 1
3to4 2
5to8 3
9to 16 4

This parameter is automatically populated by the EDK tools and is formatted as follows:
PARAMETER C_<BUS NAME>_MID_WIDTH = <num>, DT=integer

In this example, <num> is an integer value. The <BUS NAME> is replaced with the name of
the BUS_STD or BUS_INTERFACE in use.

Reserved Port Connections

Connectivity of the DCR, LMB, OPB, and PLB busses to peripherals is done through a
common set of signal connections.

Clock and Reset Ports

For interconnection to the clock and reset ports:

PORT <BUS NAME>_Clk
PORT <BUS NAME>_Rst

“7, DIR=I, SIGIS=CLK
<BUS NAME>_Rst, DIR=I

The <BUS NAME> is replaced with the name of the BUS_STD in use or the name of the
BUS_INTERFACE in use. Notice that the clock port has no default value. The clock port is an
input to the bus that you assign in the MHS. Therefore, all peripherals on the bus must also
be treated as a user input port. If a default value were given to <BUS NAME>_Clk, this
would not match the clock you defined in the MHS, and the EDK tools would assume a
short in the system and tie off the sourceless ports.

The reset port is an output from the bus and has a default value. All peripherals on the bus
share the same default: <BUS NaME>_Rst. Your input to the bus is sYs_rst, which has no
default value.

Platform Specification Format Reference Manual = www.xilinx.com 69
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 3: Microprocessor Peripheral Definition (MPD)

Slave LMB Ports

For interconnection to the LMB, all slaves must provide the following connections:

PORT
PORT
PORT

<SIln> DBus = S1_DBus, DIR=0, VEC=[0:C_LMB_DWIDTH-1], BUS=SLMB
<S1ln>_Ready = S1_Ready, DIR=0, BUS=SLMB
<nLMB>_ABus = LMB_ABus, DIR=I, VEC=[0:C_LMB_AWIDTH-1], BUS=SLMB

PORT <nLMB>_ReadStrobe = LMB_ReadStrobe, DIR=I, BUS=SLMB

PORT <nLMB>_ AddrStrobe = LMB_AddrStrobe, DIR=I, BUS=SLMB

PORT <nLMB> WriteStrobe = LMB_WriteStrobe, DIR=I, BUS=SLMB

PORT <nLMB> WriteDBus = LMB_WriteDBus, DIR=I, VEC=[0:C_LMB_DWIDTH-1],
BUS=SLMB

PORT <nLMB>_ BE = LMB_BE, DIR=I, VEC=[0:C_LMB_DWIDTH/8-1], BUS=SLMB

Master PLB Ports

For interconnection to the PLB, all masters must provide the following connections:

PORT
PORT
PORT
PORT
PORT
PORT

<Mn>_ABus = M_ABus, DIR=0, VEC=[0:C_PLB_AWIDTH-1], BUS=MPLB
<Mn>_BE = M_BE, DIR=0, VEC=[0:C_PLB_DWIDTH/8-1], BUS=MPLB
<Mn>_RNW = M_RNW, DIR=0, BUS=MPLB

<Mn>_abort = M_abort, DIR=0, BUS=MPLB

<Mn>_busLock = M_busLock, DIR=0, BUS=MPLB

<Mn>_compress = M_compress, DIR=0, BUS=MPLB

PORT <Mn>_guarded = M_guarded, DIR=0, BUS=MPLB

PORT <Mn>_1lockErr = M_lockErr, DIR=0, BUS=MPLB

PORT <Mn> MSize = M_MSize, DIR=0, VEC=[0:1], BUS=MPLB

PORT <Mn>_ordered = M_ordered, DIR=0, BUS=MPLB

PORT <Mn>_priority = M _priority, DIR=0, VEC=[0:1], BUS=MPLB

PORT <Mn>_rdBurst = M_rdBurst, DIR=0, BUS=MPLB

PORT <Mn>_request = M_request, DIR=0, BUS=MPLB

PORT <Mn>_size = M_size, DIR=0, VEC=[0:3], BUS=MPLB

PORT <Mn>_type = M_type, DIR=0, VEC=[0:2], BUS=MPLB

PORT <Mn>_wrBurst = M_wrBurst, DIR=0, BUS=MPLB

PORT <Mn>_wrDBus = M_wrDBus, DIR=0, VEC=[0:C_PLB_DWIDTH-1], BUS=MPLB
PORT <nPLB>_MAddrAck = PLB_MAddrAck, DIR=I, BUS=MPLB

PORT <nPLB>_MBusy = PLB_MBusy, DIR=I, BUS=MPLB

PORT <nPLB> MErr = PLB_MErr, DIR=I, BUS=MPLB

PORT <nPLB> MRABTerm = PLB_MRdBTerm, DIR=I, BUS=MPLB

PORT <nPLB>_ MRADAck = PLB_MRdDAck, DIR=I, BUS=MPLB

PORT <nPLB>_MRADBus = PLB_MRdDBus, DIR=I, VEC=[0:C_PLB_DWIDTH-11],
BUS=MPLB

PORT <nPLB>_MRAWdAddr = PLB_MRAWdAddr, DIR=I, VEC=[0:3], BUS=MPLB

PORT
PORT
PORT
PORT

<nPLB> MRearbitrate = PLB_MRearbitrate, DIR=I, BUS=MPLB
<nPLB> MWrBTerm = PLB_MWrBTerm, DIR=I, BUS=MPLB
<nPLB>_MWrDAck = PLB_MWrDAck, DIR=I, BUS=MPLB

<nPLB> MSSize = PLB_MSSize, DIR=I, VEC=[0:1], BUS=MPLB

70

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Considerations

SUXILINX®

Slave PLB Ports

For interconnection to the PLB, all slaves must provide the following connections:

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

<S1ln> addrAck = S1_addrAck, DIR=0, BUS=SPLB

<Sln>_MErr = S1_MErr, DIR=0, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB
<SIln>_MBusy = S1_MBusy, DIR=0, VEC=[0:C_NUM_MASTERS-1], BUS=SPLB
<SIln>_rdBTerm = S1_rdBTerm, DIR=0, BUS=SPLB

<SIn>_rdComp = S1_rdComp, DIR=0, BUS=SPLB

<S1ln>_rdDAck S1_rdDAck, DIR=0, BUS=SPLB

<Sln> rdDBus = S1_rdDBus, DIR=0, VEC=[0:C_PLB_DWIDTH-1],BUS=SPLB
<SIn>_rdWwdAddr = S1_rdwdAddr, DIR=0, VEC=[0:3], BUS=SPLB
<Sln>_rearbitrate = Sl_rearbitrate, DIR=0, BUS=SPLB

<SIn>_SSize = S1_SSize, DIR=0, VEC=[0:1], BUS=SPLB

<SIn> wait = Sl_wait, DIR=0, BUS=SPLB

<SIn>_wrBTerm = S1_wrBTerm, DIR=0, BUS=SPLB

<SIn>_wrComp = Sl_wrComp, DIR=0, BUS=SPLB

<S1ln>_wrDAck = S1_wrDAck, DIR=0, BUS=SPLB

<nPLB>_ABus = PLB_ABus, DIR=I, VEC=[0:C_PLB_AWIDTH-1], BUS=SPLB
<nPLB>_BE = PLB_BE, DIR=I, VEC=[0:(C_PLB_DWIDTH/8)-1], BUS=SPLB
<nPLB> PAValid = PLB_PAValid, DIR=I, BUS=SPLB

<nPLB>_RNW = PLB_RNW, DIR=I, BUS=SPLB

PORT <nPLB>_abort = PLB_abort, DIR=I, BUS=SPLB

PORT <nPLB> busLock = PLB_busLock, DIR=I, BUS=SPLB

PORT <nPLB>_compress = PLB_compress, DIR=I, BUS=SPLB

PORT <nPLB>_guarded = PLB_guarded, DIR=I, BUS=SPLB

PORT <nPLB>_lockErr = PLB_lockErr, DIR=I, BUS=SPLB

PORT <nPLB> masterID = PLB_masterID, DIR=I,VEC=[0:C_PLB_MID WIDTH-11],
BUS=SPLB

PORT <nPLB>_MSize = PLB_MSize, DIR=I, VEC=[0:1], BUS=SPLB

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

<nPLB>_ordered = PLB_ordered, DIR=I, BUS=SPLB
<nPLB>_pendPri = PLB_pendPri, DIR=I, VEC=[0:1], BUS=SPLB
<nPLB>_pendReq = PLB_pendReqg, DIR=I, BUS=SPLB
<nPLB>_reqgPri = PLB_reqgPri, DIR=I, VEC=[0:1], BUS=SPLB
<nPLB>_size = PLB_size, DIR=I, VEC=[0:3], BUS=SPLB
<nPLB>_type = PLB_type, DIR=I, VEC=[0:2], BUS=SPLB
<nPLB>_rdPrim = PLB_rdPrim, DIR=I, BUS=SPLB
<nPLB>_SAValid = PLB_SAValid, DIR=I, BUS=SPLB

<nPLB> wrPrim = PLB_wrPrim, DIR=I, BUS=SPLB
<nPLB>_wrBurst = PLB_wrBurst, DIR=I, BUS=SPLB
<nPLB>_wrDBus = PLB_wrDBus, DIR=I, VEC=[0:C_PLB_DWIDTH-1],BUS=SPLB
<nPLB> rdBurst = PLB_rdBurst, DIR=I, BUS=SPLB

Design Considerations

Unconnected Ports

Unconnected output ports are assigned open, and unconnected input ports are either set to
GND or VCC.

An unconnected port is identified as an empty double-quote (“*) string.

The EDK tools resolve the driver value on unconnected input ports by the INITIALVAL

keyword, using this format:
PORT mysignal = “”, DIR=OUTPUT
Platform Specification Format Reference Manual = www.xilinx.com 71

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 3: Microprocessor Peripheral Definition (MPD)

Scalable Data Path

Using an MPD keyword declaration, you can automatically scale the data path width. Bus
expressions are evaluated as arithmetic equation, and are formatted as follows.

PORT name = default_connection, VEC=[A:B]

In this example, A and B are positive integer expressions.

MPD Example
The following is an example MPD file:

BEGIN my_peripheral

Generics for vhdl or parameters for verilog

PARAMETER C_BASEADDR = 0xB00000, DT=std_logic_vector(0 to 31)
PARAMETER C_MY_PERIPH_AWIDTH = 17, DT=integer

Global ports

PORT OPB_Clk = “”, DIR=I

PORT OPB_Rst = “”, DIR=I

My peripheral signals

PORT MY_ADDR = “”, DIR=0, VEC=[0:C_MY_ PERIPH_AWIDTH-1]

OPB signals

END
By default, if the vectors are larger than one bit, EDK tools determine the range
specification on buses as either big-endian or little-endian. However, if the vector has a

one-bit width, then the range cannot be determined, and the EDK tools default to big-
endian style notation.

To change this default behavior, use the ENDIAN keyword, which should be formatted as
follows:

PORT mysignal = “”, DIR=I, VEC=[0:0], ENDIAN=LITTLE
This builds the VHDL equivalent:

mysignal: in std_logic_vector (0 downto 0);

Interrupt Signals

Interrupt signals are identified by the SIGIS=INTERRUPT name-value.

Tri-state (InOut and Output) Signals

Note: Read this section if you want the EDK tools to infer a tri-state port for your output or in/out
port.

A system on a programmable chip design methodology follows these general rules of
thumb:

e Submodule port driver directions (modes) should be either 1IN or ouT

e Top level module/entity is allowed to have ports of mode INOUT

The drive direction (mode) of a port impacts the partitioning of a design. The mode of a
port must propagate through all levels of hierarchy, with the result that if the top-level
requests an inout port, then a low-level module must provide an inout port for
connectivity. Alternatively, at the top-level hierarchy, the user must describe the inout

72 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Considerations S XILINX®

drive direction to connect the lower-level, unidirectional ports of the submodule to the top-
level bi-directional inout port.

This methodology fits well into an FGPA architecture since tri-state buffers are only
available as an I0BUF primitive in the IOB cell. A reduced implementation is a tri-output,
which Platgen maps to the 0OBUFT primitive. Tri-states in the CLB do not exist; the synthesis
tool translates the tri-state logic to MUXes.

An abstract inout port on the MPD is defined for connectivity purposes. The abstract port
allows a user to connect the top-level inout port to the lower-level abstract inout port
without changing the partition or interface of the submodule in hardware.

At the MHS/MPD level, there is an abstract inout port in the MPD file that allows a
connection through the I0BUF to the top-level inout port declaration in the MHS file. This
corresponds to the usage of defining an inout port at the top level and preserving
unidirectional ports at the lower level.

MY_IP

PIO.T |T

poo |1 N IPIO
O - -
|l IPIOI 0

X9877

Figure 3-1: OBUF Implementation

Note: The tri-state enable is active-low. This allows a direct connection to the OBUFT or the IOBUF
without an inversion of the tri-state enable port.

The IPIO port in Figure 3-1 is described as an abstract port of drive direction inout. This
portis not listed on the port interface of the hardware module or entity, as demonstrated in
the following HDL code examples.

In the MPD file, an abstract inout port is identified by the inout direction mode and
THREE_STATE=TRUE without defined TRI_I, TRI_0, and TRI_T keywords. In this case, the
abstract inout port name must share a common basename across the basename_1I,
basename_0, and basename_T ports on the port interface of the hardware module or entity.
In Figure 3-1, the basename is 1p10. Platgen expands the inout port in the MPD file to _1,
_0, and _T ports in the port interface declaration of the HDL file. This method does not
allow the individual ports that construct the abstract port to be listed in the MPD.

In the MPD file, an abstract inout port is identified by the inout or output (tri-output)
direction mode and THREE_STATE=TRUE with defined TRI_I, TRI_0, and TRI_T keywords.
In this case, the abstract inout port name allows free connection to the individual ports that
construct the abstract port. The abstract inout port or output (tri-output) is freely named.
This method does allow the individual ports that construct the abstract port to be listed in
the MPD.

Platform Specification Format Reference Manual = www.xilinx.com 73

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 3: Microprocessor Peripheral Definition (MPD)

Tri-state (InOut) With Single-Bit Enable

The following examples include a tri-state port with a single-bit enable.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (
-- tri-state signal
IPIO_TI: in std_logic_vector (0 to C_WIDTH-1);
IPIO_O: out std_logic_vector(0 to C_WIDTH-1);
IPIO_T: out std_logic);

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPIO = “”, DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=SINGLE,
THREE_STATE=TRUE
END

Tri-state (InOut) With Multi-Bit Enable

The following examples include a tri-state port with a multi-bit enable.

VHDL Example

entity tri_state_multi is
generic (C_WIDTH: integer:= 9);
port (
-- tri-state signal
IPIO_TI: in std_logic_vector (0 to C_WIDTH-1);
IPIO_O: out std_logic_vector (0 to C_WIDTH-1);
IPIO_T: out std_logic_vector(0 to C_WIDTH-1));
end entity tri_state_multi;

MPD Example

BEGIN tri_state_multi
OPTION IPTYPE=IP
PARAMETER C_WIDTH = 9, DT=integer

PORT IPIO = “”, DIR=INOUT, VEC=[0:C_WIDTH-1], ENABLE=MULTI,
THREE_STATE=TRUE
END

74 www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Considerations S XILINX®

Tri-state (In/Out) With Single-Bit Enable With Freely Named Ports

The following examples include a tri-state port with a single-bit enable with freely named
ports.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

ITRI: in std_logic_vector (0 to C_WIDTH-1);
OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic);

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPIO=“", DIR=IO,VEC=[0:C_WIDTH-1], THREE_STATE=TRUE, TRI_I=ITRI,
TRI_O=OTRI, TRI_T=TTRI

PORT ITRI="", DIR=I, VEC=[0:C_WIDTH-1]

PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]

PORT TTRI="", DIR=I

END

Tri-state (InOut) With Multi-Bit Enable With Freely Named Ports

These examples show a tri-state port with a multi-bit enable with freely-named ports.

VHDL Example

entity tri_state_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

ITRI: in std_logic_vector (0 to C_WIDTH-1);
OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic(0 to C_WIDTH-1));

end entity tri_state_single;

MPD Example

BEGIN tri_state_single
OPTION IPTYPE=IP
PARAMETER C_W=9, DT=integer

PORT IPIO=“", DIR=IO, VEC=[0:C_WIDTH-1], ENABLE=MULTI, TRI_I=ITRI,
TRI_O=0TRI, TRI_T=TTRI
PORT ITRI="", DIR=I, VEC=[0:C_WIDTH-1]
PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]
PORT TTRI="", DIR=I, VEC=[0:C_WIDTH-1]
END
Platform Specification Format Reference Manual = www.xilinx.com 75

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 3: Microprocessor Peripheral Definition (MPD)

Tri-state (Output) With Single-Bit Enable

These examples include a tri-state output port with a single-bit enable.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

IPO_O: out std_logic_vector(0 to C_WIDTH-1);
IPO_T: out std_logic);

end entity tri_state_output_single;

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPO = “”, DIR=0O, VEC=[0:C_WIDTH-1], ENABLE=SINGLE,
THREE_STATE=TRUE
END

Tri-state (Output) With Multi-Bit Enable

These examples include a tri-state output port with a multi-bit enable.

VHDL Example

entity tri_state_output_multi is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

IPO_O: out std_logic_vector(0 to C_WIDTH-1);
IPO_T: out std_logic_vector(0 to C_WIDTH-1));
end entity tri_state_output_multi;

MPD Example

BEGIN tri_state_output_multi

OPTION IPTYPE=IP

PARAMETER C_WIDTH = 9, DT=integer

PORT IPO = “”, DIR=0, VEC=[0:C_WIDTH-1], ENABLE=MULTI, THREE_STATE=TRUE
END

Tri-state (Output) With Single-Bit Enable With Freely Named Ports

These examples include a tri-state output port with a single-bit enable and with freely
named ports.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic);

end entity tri_state_output_single;

76 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Considerations S XILINX®

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_WIDTH=9, DT=integer

PORT IPO=“", DIR=0O,VEC=[0:C_WIDTH-1], THREE_STATE=TRUE, TRI_O=O0OTRI,
TRI_T=TTRI

PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]

PORT TTRI="", DIR=I

END

Tri-state (Output) With Multi-Bit Enable With Freely Named Ports

These examples show a tri-state output port with a multi-bit enable and with freely named
ports.

VHDL Example

entity tri_state_output_single is

generic (C_WIDTH: integer:= 9);

port (

-- tri-state signal

OTRI: out std_logic_vector (0 to C_WIDTH-1);
TTRI: out std_logic(0 to C_WIDTH-1));

end entity tri_state_output_single;

MPD Example

BEGIN tri_state_output_single
OPTION IPTYPE=IP
PARAMETER C_W=9, DT=integer

PORT IPO=“", DIR=0, VEC=[0:C_WIDTH-1], ENABLE=MULTI, TRI_O=0TRI,
TRI_T=TTRI
PORT OTRI="", DIR=0, VEC=[0:C_WIDTH-1]
PORT TTRI="", DIR=I, VEC=[0:C_WIDTH-1]
END
Platform Specification Format Reference Manual = www.xilinx.com 77

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 3: Microprocessor Peripheral Definition (MPD)

78 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Chapter 4

Peripheral Analyze Order (PAO)

PAO Format

Format

A PAO (Peripheral Analyze Order) file contains a list of HDL files that are needed for
synthesis and defines the analyze order for compilation.

If the STYLE option in the MPD file has a value of MIX or HDL, the core has a PAO file.
This chapter contains the following sections:

e “PAO Format”
e “Verilog Include Directories”
e “PAO Example”

Use the following format:

tooltarget libraryname filename hdllang

e The tooltarget specifies the tool target. Valid values are 1ib, simlib, synlib,
and vigincdir. Files specified with 11ib are used for both synthesis and simulation.
Files specified with simlib are only for simulation. The vlgincdir defines the
relative path of the Verilog Include directories. Files specified with synlib are only
for synthesis.

e The 1ibraryname specifies the library that contains the file. All of the files for the IP
should use the IP as the library name. If no version is specified, the latest version of
the library is used. If a specific version is required, then the library name is given with
the version appended. For example, for version 1.00.a the library name is
libraryname_vl1_00_a. The name is in lower case.

e The filename specifies the file name. The filename optionally can have a file
extension. If the file extension is omitted, then for VHDL, the .vhd extension is
added; for Verilog, the . v extension is added. If the MPD file specifies OPTION
HDL=BOTH, then extensions may not be specified.

The f£ilename can specify the keyword all in place of a file name. This causes all the
files from the given library to be included. Do not use the keyword al1l if you are
referring to the same library to which the PAO belongs. Any sub-library that is
referenced using the all keyword must have a valid PAO file associated with it. The
name is in lower-case.

e The hdllang specifies the language of the file name. Valid values are verilog and
vhdl. This field is required when OPTION HDL=MIXED is used. If the language is not
specified, the OPTION HDL value determines the value of this field. This field cannot

Platform Specification Format Reference Manual = www.xilinx.com 79

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 4: Peripheral Analyze Order (PAO)

be specified for OPTION HDL=BOTH. This field is ignored if the keyword all is used.
In that particular case, the PAO of the sub-library determines the language of each of
the files included from that library.

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

e Precede comments with the pound sign (#)
e Comments can continue to the end of the line

e Comments can be anywhere on the line

Verilog Include Directories

Format

You must use relative paths to allow project maneuverability from development platform
to development platform. Use the " include compiler directive in your Verilog HDL files
to insert the contents of an entire file.

The following is an example Verilog HDL file:

“include “global_consts.v”
“include “pcore_vl_00_a/hdl/verilog/consts.v"

By default, all known EDK repositories are automatically included to the calls that process
Verilog:

<proj_dir>/pcores

SXILINX_EDK/hw/XilinxBFMinterface/pcores
SXILINX_EDK/hw/XilinxProcessorIPLib/pcores$XILINX_EDK/hw/XilinxReferen
ceDesigns/pcores

You need only specify include paths that are not default. User-specified paths have a
higher precedence over the default paths.

Use the following format:

vlgincdir <library> <relative path from library>

Restrictions

If you intend to define a library file of text macros, you must give each text macro a unique
name. The document IEEE 1364-2006 Section 3.12 defines the Verilog name space.

The text macro name space is global. The text macro names are defined in the linear order
of appearance in the set of input files that make up the description of the design unit.
Subsequent definitions of the same name override the previous definitions for the balance
of the input files.

Use unique names, as shown below:

“define MASKVAL 4'b1010=> NO
“define PCORE_V1_00_A_ MASKVAL 4'bl1010=> YES

80

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

PAO Example S XILINX®

When multiple vlgincdir options are in use, it is possible for the compiler to read an
unwanted included file. The preferred use of text inclusion within Verilog files is to include
the relative path of the pcore library in use, as shown in the example below.

“include “pcore_vl_00_a/hdl/verilog/consts.v”

PAO Example

The following is an example of a VHDL PAO file:

1ib common_vl_00_a common_types_pkg.vhd
1ib common_vl_00_a pselect.vhd

1lib opb_gpio_vl_00_a gpio_core

1lib opb_gpio_vl1_00_a opb_gpio

The following is an example of a MIXED PAO file:

1lib libname_v2_00_a filel.vhd vhdl

1lib ipname_vl_00_a file2.v verilog

1ib ipname_v1l_00_a file3.vhd vhdl
simlib ipname_v1_00_a simfile.v verilog
synlib ipname_vl_00_a synfile.vhd vhdl

Platform Specification Format Reference Manual = www.xilinx.com 81
EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Chapter 4: Peripheral Analyze Order (PAO)

82 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Chapter 5

Black-Box Definition (BBD)

BBD Format

The Black Box Definition (BBD) file manages the file locations of optimized hardware
netlists for the black-box sections of your peripheral design.

The STYLE option in the MPD with the values of MIX, or BLACKBOX, identify the core as
having a BBD file.

This chapter contains the following sections:

e “BBD Format”
e “BBD Examples”

The BBD format is a look-up table that lists netlist files. The first line is the header of the
look-up table. There can be as many entries as necessary in the header to make a selection.
Header entries are available only if defined as MPD parameters. The last column of the
table must be the FILES column.

The netlist directory in the IP directory can have its own underlying directory structure
because the BBD file manages the relative file locations.

Each file is listed with the file extension of the hardware implementation netlist. Since
implementation netlists have multiple file extensions (such as .edn, .edf, .edo, .ngo), it is
important to identify the format.

Comments

You can insert comments without disrupting processing. The following are guidelines for
inserting comments:

e Precede comments with the pound sign (#).
e Comments can continue to the end of the line.

e Comments can be anywhere on the line.

Lists
If you have multiple hardware implementation netlists, then use a comma to separate each
individual netlist in the list.
Platform Specification Format Reference Manual = www.xilinx.com 83

EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Chapter 5: Black-Box Definition (BBD)

Common Repository Library

Support for relative paths to a common repository library is specified with the (:) syntax.
For example, ddr_common is used to release netlists for the DDR for both opb_ddr and
plb_ddr.

BBD Examples

File Selection Without Options

The following is an example of a file selection without options. The NGC netlist is copied
into your implementation directory, regardless of specific options set on the core.

FILES
blackbox.ngc

Multiple File Selections Without Options

The following is an example of multiple file selections without options. The set of NGC
netlists are copied into the your implementation directory regardless of specific options set
on the core.

FILES
blackboxl.ngc, blackbox2.ngc, blackbox3.edn

File Selection With Options

The following is an example of a file selection with options. The specific EDIF netlist is
copied into your implementation directory dependent on the C_FAMILY and
C_BUS_CONFIG parameters set on the core.

C_FAMILY C_BUS_CONFIG FILES
virtex 1 virtex/ipl.edf

virtex 2 virtex/ip2.edf
spartan2 1 virtex/ipl.edf
spartan?2 2 virtex/ip2.edf
virtexe 1 virtex/ipl.edf
virtexe 2 virtex/ip2.edf
spartanle 1 virtex/ipl.edf
spartanle 2 virtex/ip2.edf
virtex2 1 virtex2/ipl.edf
virtex?2 2 virtex2/ip2.edf
virtex2p 1 virtex2/ipl.edf
virtex2p 2 virtex2/ip2.edf

File Selection With Common Repository Library

The following is an example of a file selection with a common repository library. The
following example illustrates that the netlist ddr_v1_00_b_virtex2_async_fifo.edn
is delivered from ddr_v1_00_b repository library.

C_FAMILY FILES
virtex2 ddr_vl_00_b:ddr_vl_00_b_virtex2_async_fifo.edn
virtex2p ddr_vl_00_b:ddr_vl_00_b_virtex2_async_fifo.edn

84 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®
Chapter 6

Microprocessor Software Specification
(MSS)

This chapter describes the Microprocessor Software Specification (MSS) format.
This chapter contains the following sections:

e “Overview”

e “Additional Resources”

e “TMSS Format”

e “Global Parameters”

¢ “Instance-Specific Parameters”

Overview

You supply an MSS file as an input to the Library Generator (Libgen). The MSS file
contains directives for customizing operating systems (OSs), libraries, and drivers.

Note: RevUp tool provides a way to convert the old MSS format to the new one used in this version
of the EDK tools. For more information see Chapter 9, “Format Revision Tool,” in the Embedded
System Tools Reference Manual.

Additional Resources

Embedded System Tools Reference Manual:
http:/ /www.xilinx.com/ise/embedded /edk_docs.htm

TMSS Format

You supply an MSS file as an input to the Library Generator (Libgen). An MSS file is case
insensitive and any reference to a file name or instance name in the MSS file is also case
sensitive.

Comments can be specified anywhere in the file. A pound (#) character denotes the
beginning of a comment, and all characters after it, right up to the end of the line, are
ignored. All white spaces are also ignored and carriage returns act as sentence delimiters.

Platform Specification Format Reference Manual = www.xilinx.com 85
EDK 10.1, Service Pack 3

http://www.xilinx.com
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm

STXILINX® Chapter 6: Microprocessor Software Specification (MSS)

MSS Keywords

The keywords that are used in an MSS file are as follows:

BEGIN

The keyword begins a driver, processor, or file system definition block. BEGIN should be
followed by the driver, processor or filesys keywords.

END

This keyword signifies the end of a definition block.

PARAMETER

The MSS file has a simple name = value format for most statements. The PARAMETER
keyword is required before all such NAME, VALUE pairs. The format for assigning a value to
a parameter is parameter name = value. If the parameter is within a BEGIN-END block, it
is a local assignment; otherwise it is a global (system level) assignment.

Requirements

The MSS file has a dependency on the MHS file. This dependency has to be specified as a
command line option to Libgen using the -mhs option. Refer to the “Library Generator”
chapter in the Embedded System Tools Reference Manual for more information. (For a link to
the manual, see the “Additional Resources” section of this chapter.) There is a resulting
dependency on hardware for the software flow. Refer to Chapter 2, “Microprocessor
Hardware Specification (MHS)” for more information on hardware configuration.

Prior to the EDK 6.1 release, this dependency was specified in the MSS file as parameter
HW_SPEC_FILE = file_name.mhs. This parameter will be deprecated for the EDK6.1
release, since the MHS file is given as a command line option to the Libgen tool, and will
eventually be removed for future releases.

The syntax of various files that the embedded development tools use is described by the
Platform Specification Format (PSF). The current PSF version is 2.1.0. The MSS file should
also contain version information in the form of parameter Version = 2.1.0, which
represents the PSF version 2.1.0.

MSS Example

An example MSS file is given below:

parameter VERSION = 2.1.0

BEGIN 0OS

parameter PROC_INSTANCE = my microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a

parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1

END

86 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

TMSS Format S XILINX®

BEGIN PROCESSOR

parameter HW_INSTANCE = my_microblaze
parameter DRIVER_NAME = cpu

parameter DRIVER_VER = 1.00.a
parameter XMDSTUB_PERIPHERAL = my_jtag
END

BEGIN 0OS

parameter PROC_INSTANCE = my_ppc
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a
parameter STDIN = my_uartlite_2
parameter STDOUT = my_uartlite_2
END

BEGIN PROCESSOR

parameter HW_INSTANCE = my_ppcC
parameter DRIVER_NAME = cpu_ppc405
parameter DRIVER_VER = 1.00.a

END

BEGIN DRIVER

parameter HW_INSTANCE = my_ intc
parameter DRIVER_NAME = intc
parameter DRIVER_VER = 1.00.a
END

BEGIN DRIVER

parameter HW_INSTANCE = my uartlite_1

parameter DRIVER_VER = 1.00.a

parameter DRIVER_NAME = uartlite

parameter INT_HANDLER uart_1_handler, INT_PORT = Interrupt
END

BEGIN DRIVER

parameter HW_INSTANCE = my uartlite_2

parameter DRIVER_VER = 1.00.a

parameter DRIVER_NAME = uartlite

parameter INT_HANDLER uart_2_handler, INT_PORT = Interrupt
END

BEGIN DRIVER

parameter HW_INSTANCE = my_timebase_wdt

parameter DRIVER_VER = 1.00.a

parameter DRIVER_NAME = timebase_wdt

parameter INT_HANDLER=my_timebase_hndl, INT_ PORT = Timebase_Interrupt
parameter INT_ HANDLER=my_ timebase_hndl, INT_PORT = WDT_Interrupt

END

BEGIN LIBRARY

parameter LIBRARY NAME = XilMfs
parameter LIBRARY_VER = 1.00.a
parameter NUMBYTES = 100000
parameter BASE_ADDRESS = 0x80£00000
END

BEGIN DRIVER
parameter HW_INSTANCE = my_jtag
parameter DRIVER_NAME = uartlite

Platform Specification Format Reference Manual = www.xilinx.com 87
EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Chapter 6: Microprocessor Software Specification (MSS)

parameter DRIVER_VER = 1.00.a
parameter INT_HANDLER = jtag_uart_handler, INT_PORT = Interrupt
END

Global Parameters

These parameters are system-specific parameters and do not relate to a particular driver,
file system, or library.

PSF Version

This option specifies the PSF version of the MSS file. This option is mandatory for versions
2.1.0 and above, and is formatted as:

parameter VERSION = 2.1.0

Parameter INT_HANDLER

This option defines the interrupt handler software routine for an external interrupt port
given in the MHS file, and is formatted as:

parameter INT_HANDLER = my_int_handl, INT PORT = Interrupt

The external interrupt port that raises the interrupt is specified after the attribute as shown
above with the INT_PORT keyword. This port should match the port name (not the signal
name) specified in the MHS file as a global external port.

Instance-Specific Parameters
These parameters are OS-, processor-, driver-, or library-specific. The parameters must be

within a BEGIN and END block.

OS, Diriver, Library, and Processor Block Parameters Summary

The following list shows the parameters that can be used in OS, driver, library and
processor blocks.

PROC_INSTANCE DRIVER_VER
HW_INSTANCE INT_HANDLER
OS_NAME LIBRARY_NAME
OS_VER LIBRARY_VER
DRIVER_NAME

OS, Driver, Library, and Processor Block Parameters Definitions

PROC_INSTANCE

This option is required for the OS associated with a processor instances specified in the
MHS file, and is formatted as:

parameter PROC_INSTANCE = instance_name

All OSs in EDK require processor instances to be associated with the OSs. The instance
name that is given must match the name specified in the MHS file.

88 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Instance-Specific Parameters S XILINX®

HW_INSTANCE

This option is required for drivers associated with peripheral instances specified in the
MHES file and is formatted as:

parameter HW_INSTANCE = instance_name

All drivers in EDK require instances to be associated with the drivers. Even a processor
definition block should refer to the processor instance. The instance name that is given
must match the name specified in the MHS file.

OS_NAME

This option is needed for processor instances that have OSs associated with them and is
formatted as:

parameter OS_NAME = standalone

Library Generator copies the OS directory specified to
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the OS sources
using makefiles provided. See the “Library Generator” chapter in the Embedded System
Tools Reference Manual for more information. For a link to the manual, see the “Additional
Resources” section of this chapter.

OS_VER

The OS version is set using the 0SVER option and is formatted as:
parameter OS_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, vy and z are digits, and
a is a character. This is translated to the OS directory searched by Libgen as follows:

USER_PROJECT/bsp/0OS_NAME_vVX_VyzZ_a
XILINX_EDK/sw/lib/bsp/0OS_NAME_ vx_vyz_a

The MLD (Microprocessor Library Definition) files Libgen needs for each OS should be
named OS_NAME v2_1_0.mld and should be present in a subdirectory data/ within the
driver directory. Refer to Chapter 7, “Microprocessor Library Definition (MLD)” for more
information.

DRIVER_ NAME

This option is needed for peripherals that have drivers associated with them and is
formatted as:

parameter DRIVER_NAME = uartlite

Library Generator copies the driver directory specified to
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the drivers
using makefiles provided. Refer to the “Library Generator” chapter in the Embedded System
Tools Reference Manual, for more information.

DRIVER_VER

The driver version is set using the DRIVER_VER option, and is formatted as:
parameter DRIVER_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, y and z are digits, and
a is a character. This is translated to the driver directory searched by Libgen as follows:

Platform Specification Format Reference Manual = www.xilinx.com 89
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 6: Microprocessor Software Specification (MSS)

USER_PROJECT/drivers/DRIVER_NAME_vX_yz_a
USER_PROJECT/pcores/DRIVER_NAME_vX_VzZ_a

XILINX_EDK/sw/XilinxProcessorIPLib/drivers/DRIVER_NAME_vX_VzZ_a

The MDD (Microprocessor Driver Definition) files needed by Libgen for each driver
should be named DRIVER_NAME_v2_1_0.mdd and should be present in a subdirectory
data/ within the driver directory. Refer to Chapter 8, “Microprocessor Driver Definition
(MDD),” for more information.

INT_HANDLER

This option defines the interrupt handler software routine for an interrupt port of the
peripheral and is formatted as:

parameter INT_HANDLER = my_int_handl, INT_PORT = Interrupt

The interrupt port of the peripheral instance that raises the interrupt is specified after the
attribute as shown above with the INT_PORT keyword. This port should match the port
name (and not the signal name) specified in the MHS file for that peripheral instance.

LIBRARY_ NAME

This option is needed for libraries, and is formatted as:
parameter LIBRARY _NAME = xilmfs

Library Generator copies the library directory specified in the
OUTPUT_DIR/processor_instance_name/libsrc directory and compiles the libraries
using makefiles provided. See the “Library Generator” chapter in the Embedded System
Tools Reference Manual, for more information.

LIBRARY_ VER

The library version is set using the LIBRARY_VER option and is formatted as:
parameter LIBRARY_VER = 1.00.a

This version is specified in the following format: x.yz.a, where x, y and z are digits, and
a is a character. This is translated to the library directory searched by Libgen as follows:

USER_PROJECT/sw_services/LIBRARY_NAME vxX_ vz_a
XILINX_EDK/sw/lib/sw_services/LIBRARY NAME_vxX_vyzZ_a

The MLD (Microprocessor Library Definition) files needed by Libgen for each library
should be named LIBRARY_NAME v_2_1_ 0.mld and should be present in a subdirectory
data/ within the library directory. See Chapter 7, “Microprocessor Library Definition
(MLD)” for more information.

90

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Instance-Specific Parameters S XILINX®

MDD/MLD Specific Parameters

Parameters specified in the MDD /MLD file can be overwritten in the MSS file and
formatted as

parameter PARAM NAME = PARAM VALUE

See Chapter 7, “Microprocessor Library Definition (MLD)” and Chapter §,
“Microprocessor Driver Definition (MDD)” for more information.

OS-Specific Parameters Summary

The following list identifies all the parameters that can be specified only in an OS
definition block.

STDIN

Identify the standard input device with the STDIN option, which is formatted as:.

parameter STDIN = instance name

STDOUT

Identify the standard output device with the sTDOUT option, which is formatted as:

parameter STDOUT = instance_name

Example: MSS Snippet Showing OS Options

BEGIN 0OS

parameter PROC_INSTANCE = my microblaze
parameter OS_NAME = standalone
parameter OS_VER = 1.00.a

parameter STDIN = my_uartlite_1
parameter STDOUT = my_uartlite_1

END

Processor-Specific Parameter Summary

Following is a list of all of the parameters that can be specified only in a processor
definition block.

XMDSTUB_PERIPHERAL
COMPILER

ARCHIVER
COMPILER_FLAGS
EXTRA_COMPILER_FLAGS

Platform Specification Format Reference Manual = www.xilinx.com 91

EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Chapter 6: Microprocessor Software Specification (MSS)

Processor-Specific Parameter Definitions

XMDSTUB_PERIPHERAL

The peripheral that is used to handle the XMDStub should be specified in the
XMDSTUB_PERIPHERAL option. This is useful for the MicroBlaze™ processor only, and is
formatted as follows:

parameter XMDSTUB_PERIPHERAL = instance_name

COMPILER

This option specifies the compiler used for compiling drivers and libraries. The compiler
defaults to mb-gcc or powerpc-eabi-gce depending on whether the drivers are part of the
MicroBlaze processor or PowerPC® processor instance. Any other compatible compiler
can be specified as an option, and should be formatted as follows:

parameter COMPILER = dcc

This example denotes the Diab compiler as the compiler to be used for drivers and
libraries.

ARCHIVER

This option specifies the utility to be used for archiving object files into libraries. The
archiver defaults to mb-ar or powerpc-eabi-ar depending on whether or not the drivers
are part of the MicroBlaze or PowerPC processor instance. Any other compatible archiver
can be specified as an option, and should be formatted as follows:

parameter ARCHIVER = ar

This example denotes the archiver ar to be used for drivers and libraries.

COMPILER_FLAGS

This option specifies compiler flags to be used for compiling drivers and libraries. If the
option is not specified, Libgen automatically uses platform and processor-specific options.
This option should not be specified in the MSS file if the standard compilers and archivers
in EDK are used. The COMPILER_FLAGS option can be defined in the MSS if there is a need
for custom compiler flags that override Libgen-generated flags. The
EXTRA_COMPILER_FLAGS option is recommended if compiler flags must be appended to the
ones Libgen already generates. Format this option as follows:

parameter COMPILER_FLAGS = ““

EXTRA_COMPILER_FLAGS

This option can be used whenever custom compiler flags need to be used in addition to the
automatically generated compiler flags, and should be formatted as follows:

parameter EXTRA_COMPILER_FLAGS = -g

This example specifies that the drivers and libraries must be compiled with debugging
symbols in addition to the Libgen generated COMPILER_FLAGS.

92 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Instance-Specific Parameters

SUXILINX®

Example MSS Snippet Showing Processor Options

BEGIN PROCESSOR
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
END

STDIN
STDOUT

0sS =

HW_INSTANCE =
DRIVER_NAME =
DRIVER_VER =
DEFAULT_INIT =
XMDSTUB_PERIPHERAL =

my_microblaze
cpu

1.00.a

xmdstub
my_Jjtag
my_ uartlite_1

= my_uartlite_1
COMPILER =
ARCHIVER
EXTRA_COMPILER_FLAGS =
standalone

mb-gcc
= mb-ar
-g -00

Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

www.Xxilinx.com 93

http://www.xilinx.com

STXILINX® Chapter 6: Microprocessor Software Specification (MSS)

94 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Chapter 7

Microprocessor Library Definition

(MLD)

Overview

Requirements

This chapter describes the Microprocessor Library Definition (MLD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

e “Overview”

e “Requirements”

e “Additional Resources”

e “Library Definition Files”

e “MLD Format Specification”

e “MLD Parameter Description Section”
e “Design Rule Check (DRC) Section”

e “Library Generation (Generate) Section”

An MLD file contains directives for customizing software libraries and generating Board
Support Packages (BSP) for Operating Systems (OS). This document describes the MLD
format and the parameters that can be used to customize libraries and OSs. It is
recommended that you read this document to become familiar with user-written libraries
and OSs that must be configured by the Libgen tool.

Each OS and library has an MLD file and a Tcl (Tool Command Language) file associated
with it. The MLD file is used by the Icl file to customize the OS or library, depending on
different options in the MSS file. For more information on the MSS file format, see Chapter
6, “Microprocessor Software Specification (MSS).”

The OS and library source files and the MLD file for each OS and library must be located at
specific directories if Libgen is to find the files and libraries. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual, for a list of directories to
be searched for OSs and libraries. A link to the Embedded System Tools Reference Manual is
provided in the following section.

Platform Specification Format Reference Manual = www.xilinx.com 95

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 7: Microprocessor Library Definition (MLD)

Additional Resources

Embedded System Tools Reference Manual:
http:/ /www.xilinx.com/ise/embedded /edk_docs.htm

Library Definition Files

Library Definition involves defining Data Definition (MLD) and a Data Generation (Tcl)
files.

Data Definition File

The MLD file (named as <Iibrary_name>_v2_1_0.mldor <os_name>_v2_1_0.mld)
contains the configurable parameters. A detailed description of the various parameters
and the MLD format is described in “MLD Parameter Description Section,” page 100.

Data Generation File

The second file (named as <library name>_v2_1_0.tcl or
<os_name>_v2_1_0.tcl, with the filename being the same as the MLD filename) uses
the parameters configured in the MSS file for the OS or library to generate data. Data
generated includes, but is not limited to, generation of header files, C files, running DRCs
for the OS or library and generating executables. The Tcl file includes procedures that are
called by the Libgen tool at various stages of its execution. Various procedures in a Tcl file
include: DRC (the name of the DRC given in the MLD file); generate (Libgen defined
procedure) called after OS and library files are copied; post_generate (Libgen defined
procedure) called after generate has been called on all OSs, drivers, and libraries; and
execs_generate (a Libgen-defined procedure) called after the BSPs, libraries, and
drivers have been generated. For more information on the workings of the Libgen tool
refer to the “Library Generator” chapter in the Embedded System Tools Reference Manual. A
link to this book is provided in the “Additional Resources” section, above.

Note: An OS/library need not have the data generation file (Tcl file).

MLD Format Specification

The MLD format specification involves the MLD file Format specification and the Tcl file
Format specification. These are described below.

MLD File Format Specification

The MLD file format specification involves the description of parameters defined in the
Parameter Description section.

Parameter Description Section

This data section describes configurable parameters in an OS/library. The format used to
describe this section is discussed in “MLD Parameter Description Section,” page 100.

Tcl File Format Specification

Each OS and library has a Tcl file associated with the MLD file. This Tcl file has the
following sections:

96

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com

MLD Format Specification S XILINX®

DRC Section

This section contains Tcl routines that validate your OS and library parameters for
consistency.

Generation Section

This section contains Tcl routines that generate the configuration header and C files based
on the library parameters.

Examples

This section explains the MLD format through an example MLD file and its corresponding
Tcl file.

Example: MLD File for a Library

An example of an MLD file for the xilmfs library is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN LIBRARY construct now.

BEGIN LIBRARY xilmfs

The BEGIN LIBRARY construct defines the start of a library named xilmfs.

OPTION DRC = mfs_drc ;
OPTION COPYFILES = all;

The COPYFILES option indicates the files to be copied for the library. The DRC option
specifies the name of the Tcl procedure that the tool invokes while processing this library.
Here mfs_drc is the Tcl procedure in the xilmfs_wv2_1_0. tcl file that would be
invoked by Libgen while processing the xilmfs library.

PARAM NAME = numbytes, DESC = "Number of Bytes", TYPE = int, DEFAULT =
100000, DRC = drc_numbytes ;

PARAM NAME = base_address, DESC = "Base Address", TYPE = int, DEFAULT =
0x10000, DRC = drc_base_address ;

PARAM NAME = init_type, DESC = "Init Type", TYPE = enum, VALUES = ("New
file system"=MFSINIT_NEW, "MFS Image"=MFSINIT_IMAGE, "ROM
Image"=MFSINIT ROM_IMAGE), DEFAULT = MFSINIT NEW ;

PARAM NAME = need_utils, DESC = "Need additional Utilities?", TYPE =
bool, DEFAULT = false ;

PARAM defines a library parameter that can be configured. Each PARAM has the following
properties associated with it, whose meaning is self-explanatory: NAME, DESC, TYPE,
DEFAULT, RANGE, DRC. The property VALUES defines the list of possible values associated
with an ENUM type.

BEGIN INTERFACE file
PROPERTY HEADER="xilmfs.h" ;

Platform Specification Format Reference Manual = www.xilinx.com 97
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 7: Microprocessor Library Definition (MLD)

FUNCTION NAME=open, VALUE=mfs_file_open ;

FUNCTION NAME=close, VALUE=mfs_ file close ;

FUNCTION NAME=read, VALUE=mfs_ file read ;

FUNCTION NAME=write, VALUE=mfs_ file write ;

FUNCTION NAME=1seek, VALUE=mfs_file_lseek ;
END INTERFACE

An Interface contains a list of standard functions. A library defining an interface should
have values for the list of standard functions. It must also specify a header file where all the
function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. Here HEADER is a property with value “xilmfs.h”, defined by the file
interface. FUNCTION defines a function supported by the interface. The open, close,
read, write, and lseek functions of the £ile interface have the values

mfs_file open, mfs_file close, mfs_file read, mfs_file write,and
mfs_file_ lseek. These functions are defined in the header file xilmfs.h.

BEGIN INTERFACE filesystem

BEGIN INTERFACE defines an interface the library supports. Here £ile is the name of
the interface.

PROPERTY HEADER="xilmfs.h" ;
FUNCTION NAME=cd, VALUE=mfs_change_dir ;
FUNCTION NAME=-opendir, VALUE=mfs_dir_open ;
FUNCTION NAME=closedir, VALUE=mfs_dir_close ;
FUNCTION NAME=readdir, VALUE=mfs_dir_read ;
FUNCTION NAME=deletedir, VALUE=mfs_delete_dir ;
FUNCTION NAME=pwd, VALUE=mfs_get_current_dir_name ;
FUNCTION NAME=rename, VALUE=mfs_rename_file ;
FUNCTION NAME=exists, VALUE=mfs_exists_file ;
FUNCTION NAME=delete, VALUE=mfs_delete_file ;
END INTERFACE

END LIBRARY

END is used with the construct name that was used in the BEGIN statement. Here END is
used with INTERFACE and LIBRARY constructs to indicate the end of each of INTERFACE
and LIBRARY constructs.

Example: Tcl File of a Library

The following is the xi1lmfs_v2_1_0. tcl file corresponding the xilmfs_v2_1_0.mld
file described in the previous section. The mfs_drc procedure would be invoked by
Libgen for the xilmfs library while running DRCs for libraries. The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc mfs_drc {lib_handle} {
puts "MFS DRC ..."
}
proc mfs_open_include_file {file_name} {
set filename [file join "../../include/" $file_name]
if {[file exists S$filename]} {
set config _inc [open S$filename al]
} else {
set config _inc [open $filename al]

98

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MLD Format Specification S XILINX®

Example: MLD File for an OS

An example of an MLD file for the standalone OS is given below:

OPTION psf_version = 2.1.0 ;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MLD file is defined to be 2.1. This is the only option that can occur
before a BEGIN OS construct at this time.

BEGIN OS standalone
The BEGIN 0OS construct defines the start of an OS named standalone.

OPTION DESC = “Generate standalone BSP”;
OPTION COPYFILES = all;

The DESC option gives a description of the MLD. The COPYFILES option indicates the files

to be copied for the OS.
PARAM NAME = stdin, DESC = "stdin peripheral ", TYPE =
peripheral_instance, REQUIRES_INTERFACE = stdin, DEFAULT = none;
PARAM NAME = stdout, DESC = "stdout peripheral ", TYPE =
peripheral_instance, REQUIRES INTERFACE = stdout, DEFAULT = none ;
PARAM NAME = need_xilmalloc, DESC = "Need xil_malloc?", TYPE = bool,
DEFAULT = false ;

PARAM defines an OS parameter that can be configured. Each PARAM has the following,
associated properties: NAME, DESC, TYPE, DEFAULT, RANGE, DRC. The property VALUES
defines the list of possible values associated with an ENUM type.

END OS

END is used with the construct name that was used in the BEGIN statement. Here END is
used with 0S8 to indicate the end of OS construct.

Example: Tcl File of an OS

The following is the standalone_v2_1_0. tcl file corresponding to the
standalone_v2_1_0.mld file described in the previous section.The generate routine
generates constants in a header file and a c file for xilmfs library based on the library
definition segment in the MSS file.

proc generate {os_handle} {
global env

set need_config file "false"

#Copy over the right set of files as src based on processor type
set prochandle [xget_processor]
set proctype [xget_value Sprochandle "OPTION" "IPNAME"]
set mbsrcdir "./src/microblaze"
set ppcsrcdir "./src/ppcd05"
switch S$proctype {
"microblaze" {
foreach entry [glob -nocomplain [file join Smbsrcdir *]] {
file copy -force Sentry "./src/"
}

set need_config file "true”

Platform Specification Format Reference Manual = www.xilinx.com 99
EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 7: Microprocessor Library Definition (MLD)

}

nppc405u {
foreach entry [glob -nocomplain [file join S$ppcsrcdir *]] {
file copy -force S$Sentry "./src/"

}
}
"default" {puts "unknown processor type\n"}

}

Remove microblaze and ppc405 directories...
file delete -force $mbsrcdir
file delete -force S$Sppcsrcdir

Handle stdin and stdout
xhandle_stdin $os_handle
xhandle_stdout $os_handle

Create config file for microblaze interrupt handling
if {[string compare -nocase $need_config file "true"] == 0} {
xhandle_mb_interrupts

}

Generate xil _malloc.h if required

set xil_malloc [xget_value $os_handle "PARAMETER" "need_xil_malloc"]

if {[string compare -nocase $xil_malloc "true"] == 0} {
xcreate_xil_malloc_config_file

}

MLD Parameter Description Section

This section gives a detailed description of the constructs used in the MLD file.

Conventions
[1 Denotes optional values.

<> Value substituted by the MLD writer.

Comments

Comments can be specified anywhere in the file. A “#” character denotes the beginning of
a comment and all characters after the “#” right up to the end of the line are ignored. All
white spaces are also ignored and semi-colons with carriage returns act as sentence
delimiters.

OS or Library Definition

The OS or library section includes the OS or library name, options, dependencies, and
other global parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN LIBRARY/OS <library/os name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]
[OPTION requires_interface = <list of interface names>]

100

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MLD Parameter Description Section S XILINX®

PARAM <parameter description>
[BEGIN CATEGORY <name of category>
<category description>
END CATEGORY]
BEGIN INTERFACE <interface name>
END INTERFACE]
END LIBRARY/OS

MLD or MDD Keyword Summary

The keywords that are used in an MLD or MDD file are as follows:

BEGIN OS_STATE PARAM

END REQUIRES_INTERFACE PROPERTY
PSF_VERSION HELP NAME

DRC DEP DESC
OPTION INTERFACE TYPE
COPYFILES HEADER DEFAULT
DEPENDS FUNCTION GUI_PERMIT
SUPPORTED_PERIPHERALS CATEGORY ARRAY

LIBRARY_STATE

MLD or MDD Keyword Definitions
The keywords that are used in an MLD or MDD file are as follows:

BEGIN

The BEGIN keyword begins one of the following: os, library, driver, block,
category, interface, array.

END

The END keyword signifies the end of a definition block.

PSF_VERSION
Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by the
GUI configuration tool or the command-line Libgen tool. This DRC function is called once
you enter all the parameters and MLD or MDD writers can verify that a valid OS, library,
or driver can be generated with the given parameters.

OPTION

Specifies that the name following the keyword option is an option to the tool Libgen.

COPYFILES

Specifies the files to be copied for the OS, library, or driver. If ALL is used, then Libgen
copies all the OS, library, or driver files.

Platform Specification Format Reference Manual = www.xilinx.com 101
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 7: Microprocessor Library Definition (MLD)

DEPENDS

Specifies the list of directories that needs to be compiled before the OS or library is

built.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the OS. The values of this option can be
specified as a list, or as a regular expression. For example,

option supported_peripherals = (ppc405)

Indicates that the OS supports all versions of ppc_405. Regular expressions can be
used in specifying the peripherals and versions. The regular expression (RE) is
constructed as follows:

Single-character REs

Any character that is not a special character (to be defined) matches itself.

A backslash (followed by any special character) matches the literal character
itself. That is, this “escapes” the special character.

The special charactersare: + * 2 . [] ~ 8

The period (.) matches any character except the new line. For example,
.umpty matches either "Humpty" or "Dumpty."

A set of characters enclosed in brackets ([]1) isa one-character RE that
matches any of the characters in that set. For example, [akm] matches either
an "a", "k", or "m". A range of characters can be indicated with a dash. For
example, [a-z] matches any lower-case letter. However, if the first character
of the set is the caret (*), then the RE matches any character except those in
the set. It does not match the empty string. Example: [~akm] matches any

character except "a", "k", or "m". The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

A single-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Thus, [a-z] * matches zero or more lower-case
characters.

A single-character RE followed by a plus (+) matches one or more occurrences
of the RE. Thus, [a-z] + matches one or more lower-case characters.

A question mark (?) is an optional element. The preceeding RE can occur zero
or once in the string -- no more. Thus, xy?z matches either xyz or xz.

The concatenation of REs is a RE that matches the corresponding
concatenation of strings. For example, [A-Z] [a-z] * matches any
capitalized word.

For example, the following matches an version of the ppc405 and
ppcd05_virtexd:

OPTION supported_peripherals = (ppcd405_v[0-9]1+_[1-9][0-9]_[a-z]
ppcd05_virtex4) ;

102

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MLD Parameter Description Section S XILINX®

LIBRARY_ STATE

Specifies the state of the library. Following is the list of values that can be assigned to
LIBRARY_STATE:

ACTIVE

An active library. By default the value of LIBRARY_STATE is ACTIVE.

DEPRECATED

This library is deprecated and will be removed from the release soon.

OBSOLETE

This library is obsolete and will not be recognized by any tools. Tools error out on an

obsolete library and a new library should be used instead.

OS_STATE

Specifies the state of the operating system (OS). Following is the list of values that can be
assigned to OS_STATE:

ACTIVE

This is an active OS. By default the value of 0S_STATE is ACTIVE.

DEPRECATED

This OS is deprecated and would be removed from the release soon.

OBSOLETE

This OS is obsolete and will not be recognized by any tools. Tools error out on an

obsolete OS and a new OS should be used instead.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other OSs, libraries, or drivers in the
system.

HELP

Specifies the HELP file that describes the OS, library, or driver.

DEP

Specifies the condition that must be satisfied before processing an entity. For example to
include a parameter that is dependent on another parameter (defined as a DEP, for
dependent, condition), the DEP condition should be satisfied. Conditions of the form
(operandl OP operand?2) are only supported currently. In the future any expression can be
given as condition.

Platform Specification Format Reference Manual = www.xilinx.com 103

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 7: Microprocessor Library Definition (MLD)

INTERFACE

Specifies the interfaces implemented by this OS, library, or driver. It describes the interface
functions and header files used by the library/driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of
library/driver implementation> ;
END INTERFACE

HEADER

Specifies the HEADER file in which the interface functions would be defined.

FUNCTION

Specifies the FUNCTION implemented by the interface. This is a name-value pair in which
name is the interface function name and value is the name of the function implemented by
the OS, library, or driver.

CATEGORY

The CATEGORY block defines an unconditional block. This block gets included based on
the default value of the category or if included in the MSS file.

BEGIN CATEGORY <category name>

PARAM name = <category name>, DESC=<param description>,
TYPE=<category type>, DEFAULT=<default>, GUI_PERMIT=<value>, DEP =
<condition>

OPTION DEPENDS=<list of dependencies>, DRC=<drc name>, HELP=<help
file>;

< parameters or categories description>
END CATEGORY

Currently, nested categories are not supported though the syntax that specifies them. A
category is selected in a MSS file by specifying the category name as a parameter with a
boolean value TRUE. A category must have a PARAM with category name.

PARAM

The MLD file has a simple name = value format for most statements. The PARAM
keyword is required before every such NAME, VALUE pairs. The format for assigning a
value to a parameter is param name = <name>, default = value. The PARAM
keyword specifies that the parameter can be overwritten in the MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined. (Examples: param and
property.)

DESC

Describes the entity in which it was defined. (Examples: param and property.)

104 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MLD Parameter Description Section S XILINX®

TYPE

Specifies the type for the entity in which it was defined. (Example: param.) The following
types are supported:

bool

Boolean (true or false).
int

Integer

string

String value within " ".

enum

List of possible values that a parameter can take.

library

Specify other library that is needed for building the
library/driver.

peripheral_ instance

Specify other hardware drivers that is needed for building the library.

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:
NONE
The value cannot be modified at all.
ADVANCED_USER

The value can be modified by all. The XPS GUI does not display this value by default.
This is displayed only for the advanced option in the GUL

ALL_USERS

The value can be modified by all. The XPS GUI displays this value by default. This is
the default value for all the values.

If GUI_PERMIT = NONE, the category is always active.

ARRAY

BEGIN ARRAY <array name>

PROPERTY desc = <array description> ;

PROPERTY size = <size of the array>;

PROPERTY default = <List of Values for each element based on the size
of the array>

array field description as parameters

PARAM name = <name of parameter>, desc = "description of param", type
= <type of param>, default = <default value>

Platform Specification Format Reference Manual = www.xilinx.com 105

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 7: Microprocessor Library Definition (MLD)

END ARRAY

ARRAY can have any number of PARAMs, and only PARAMs. It cannot have CATEGORY as
one of the fields of an array element. The size of the array can be defined as one of the
properties of the array. An array with default values specified in the default property
leads to its size property being initialized to the number of values. If there isno size
property defined, a size property is created before initializing it with the default number
of elements. Each parameter in the array can have a default value. In cases in which size
is defined with an integer value, an array of size elements would be created wherein the
value of each element would be the default value of each of the parameters.

Design Rule Check (DRC) Section

proc mydrc { handle } {

}

The DRC function could be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (which
Libgen builds using the MHS and the MSS files) to read the parameter values that you set.
The handleis associated with the current library in the database. The DRC procedure can
get the OS and library parameters from this handle. It can also get any other parameter

from the database by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures call the Tcl error command error "error msg" that displays
in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures return without any value.

Library Generation (Generate) Section

proc mygenerate { handle } {

}

Generate could be any Tcl code that reads your parameters and generates configuration
files for the OS or library. The configuration files can be C files, Header files, Makefiles, etc.
The generate procedures can access (read-only) the Platform Specification Format
database (which Libgen builds using the MHS and the MSS files) to read the parameter
values of the OS or library that you set. The handle is a handle to the current OS or library
in the database. The generate procedure can get the OS or library parameters from this
handle. It can also get any other parameter from the database by first requesting a handle
and using the handle to get the parameter.

106

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Chapter 8

Microprocessor Driver Definition

(MDD)

Overview

Requirements

This chapter describes the Microprocessor Driver Definition (MDD) format, Platform
Specification Format 2.1.0.

This chapter contains the following sections:

e “Overview”

e “Requirements”

e “Additional Resources”

e “Driver Definition Files”

e “MDD Format Specification”

e “MDD Parameter Description”

e “Design Rule Check (DRC) Section”

e “Driver Generation (Generate) Section”

An MDD file contains directives for customizing software drivers. This document
describes the MDD format and the parameters that can be used to customize drivers. For
more information on drivers, refer to the Driver Reference Guide (xilinx_drivers.htm)
and/or the Device Driver Programmer Guide (xilinx_drivers_guide.pdf), both contained in
your EDK installation directory under docs/usenglish. It is recommended that you
refer to these documents to gain an understanding of user-written drivers that must be
configured by the Libgen tool.

Each device driver has an MDD file and a Tcl (Tool Command Language) file associated
with it. The MDD file is used by the Tcl file to customize the driver, depending on different
options configured in the MSS file. For more information on the MSS file format, refer to
Chapter 6, “Microprocessor Software Specification (MSS).”

The driver source files and the MDD file for each driver must be located at specific
directories in order for Libgen to find the files and the drivers. Refer to the “Library
Generator” chapter in the Embedded System Tools Reference Manual for a list of directories
that is searched for drivers. A link to the manual is provided in the section below.

Platform Specification Format Reference Manual = www.xilinx.com 107

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 8: Microprocessor Driver Definition (MDD)

Additional Resources

¢ Embedded System Tools Reference Manual:
http:/ /www.xilinx.com/ise/embedded /edk_docs.htm

o Driver Reference Guide (xilinx_drivers.htm): contained in your EDK installation
directory under docs/usenglish

o Device Driver Programmer Guide (xilinx_drivers_guide.pdf): contained in your EDK
installation directory under docs/usenglish

Driver Definition Files

Driver Definition involves defining a Data Definition file (MDD) and a Data Generation
file (Tcl file).

e Data Definition File - The MDD file (<driver name>_v2_1_0.mdd) contains the
configurable parameters. A detailed description of the parameters and the MDD
format is described in “MDD Parameter Description,” section of this chapter.

o Data Generation File - The second file (<driver_name>_v2_1_0.tcl, with the
filename being the same as the MDD filename) uses the parameters configured in the
MSS file for the driver to generate data. Data generated includes but not limited to
generation of header files, C files, running DRCs for the driver and generating
executables. The Tcl file includes procedures that are called by the Libgen tool at
various stages of its execution. Various procedures in a Tcl file includes: the DRC
(name of the DRC given in the MDD file), generate (Libgen defined procedure)
called after driver files are copied, post_generate (Libgen defined procedure)
called after generate has been called on all drivers and libraries, and
execs_generate (Libgen defined procedure) called after the libraries and drivers
have been generated. For more information on the working of the Libgen tool, refer to
the “Library Generator” chapter in the Embedded System Tools Reference Manual. (A link
to the document is provided in the “Additional Resources” section, above.)

Note: A driver need not have the data generation file (Tcl file).

MDD Format Specification

The MDD format specification involves the MDD file Format specification and the Tcl file
Format specification. These are described below.

MDD File Format Specification

The MDD file format specification describes the parameters defined in the Parameter
Description section. This data section describes configurable parameters in a driver. The
format used to describe these parameters is discussed in the “MDD Parameter
Description,” section of this chapter.

108 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm

MDD Format Specification S XILINX®

Tcl File Format Specification

Each driver has a Tcl file associated with the MDD file. This Tcl file has the following
sections:

DRC Section

This section contains Tcl routines that validate your driver parameters for consistency.

Generation Section

This section contains Tcl routines that generate the configuration header and C files based
on the driver parameters

Example

This section explains the MDD format through an example of an MDD file and its
corresponding Tcl file.

MDD: File Example

An example of an MDD file for the uartlite driver is given below:
OPTION psf_version = 2.1;

OPTION is a keyword identified by the Libgen tool. The option name following the
OPTION keyword is a directive to the Libgen tool to do a specific action. Here the
psf_version of the MDD file is defined as 2.1. This is the only option that can occur
before a BEGIN DRIVER construct.

BEGIN DRIVER uartlite
The BEGIN DRIVER construct defines the start of a driver named vartlite.

PARAM NAME = level, DESC = "Driver Level", TYPE = int, DEFAULT = O,
RANGE = (0, 1);

PARAM defines a driver parameter that can be configured. Each PARAM has the following
properties associated with it: NAME, DESC, TYPE, DEFAULT, RANGE.

BEGIN BLOCK, DEP = (level = 0)

BEGIN BLOCK, DEP allows conditional inclusion of a set of parameters subject to a
condition fulfillmen. The condition is given by the DEP construct. Here the set of
parameters defined inside the BLOCK would be processed by Libgen tool only when
“level” parameter has a value 0.

OPTION DEPENDS = (common_vl_00_a);
OPTION COPYFILES = (xuartlite_l.c xuartlite_1.h Makefile);
OPTION DRC = uartlite_drc;

The DEPENDS option specifies that the driver depends on the sources of a directory named
common_v1_00_a. The area for searching the dependent directory is decided by the
Libgen tool. The COPYFILES option indicates the files to be copied for a “level” 0 uartlite
driver. The DRC option specifies the name of the Tcl procedure that the tool invokes while
processing this driver. The uartlite_drc is the Tcl procedure in the
uartlite_v2_1_0.tcl file that would be invoked by Libgen while processing the
uartlite driver.

BEGIN INTERFACE stdin

Platform Specification Format Reference Manual = www.xilinx.com 109
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 8: Microprocessor Driver Definition (MDD)

BEGIN INTERFACE defines an interface the driver supports. The interface nameis stdin.

PROPERTY header =
FUNCTION name =

END INTERFACE

xuart
inbyte,

lite_1.h;

value = XUartLite_RecvByte;

An Interface contains a list of standard functions. A driver defining an interface should
have values for the list of standard functions. It must also specify a header file in which all
the function prototypes are defined.

PROPERTY defines the properties associated with the construct defined in the BEGIN
construct. The header is a property with the value xuartlite_1.h, defined by the
stdin interface. FUNCTION defines a function supported by the interface. The inbyte
function of the stdin interface has the value XUartLite_RecvByte. This function is
defined in the header file xuartlite_1.h.

BEGIN INTERFACE stdout

PROPERTY header =
FUNCTION name =

xuart
outbyte

END INTERFACE

BEGIN INTERFACE stdio

PROPERTY header =
FUNCTION name =
FUNCTION name =

xuart
inbyte,
outbyte

END INTERFACE

lite_1.h;
, value = XUartLite_SendByte;

lite_1.h;
value = XUartLite_RecvByte;
, value = XUartLite_SendByte;

BEGIN ARRAY interrupt_handler

PROPERTY desc =
PROPERTY size = 1,
PARAM name =

"Name of Interrupt Handler",

PARAM name = int_port, default =
associated with the interrupt handler",

END ARRAY

int_handler,

"Interrupt Handler Information";
permit =

none;

default = XIntc_DefaultHandler, desc =
type = string;

Interrupt, desc = "Interrupt pin

permit = none;

The ARRAY construct defines an array of parameters. The interrupt_handler is the
name of the array. The description (DESC) of the array and the size (SIZE) are defined as
properties of the array interrupt_handler. The construct GUI_PERMIT is a directive to
the tool that you cannot change the size of the array. The array defines int_handler and
int_port as parameters of an element of the array.

END BLOCK
BEGIN BLOCK,

dep =
OPTION depends =
OPTION copyfiles =

(level = 1

all;

BEGIN ARRAY interrupt_handler

PROPERTY desc =

)

(common_vl_00_a uartlite_vxworks5 4 v1_00_a);

"Interrupt Handler Information";

PROPERTY size = 1, permit = none;

PARAM name = int_handler, default = XUartLite_InterruptHandler,
desc = "Name of Interrupt Handler", type = string;

PARAM name = int_port, default = Interrupt, desc = "Interrupt pin
associated with the interrupt handler", permit = none;

END ARRAY
PARAM name = connect_to, desc = "Connect to operationg system", type =
enum, values = {"VxWorks5_4" = VxWorks5_4, "None" = none}, default =
none;
END BLOCK

END DRIVER

110

www.Xxilinx.com

Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MDD Parameter Description S XILINX®

END is used with the construct name that was used in the BEGIN statement. Here END is
used with BLOCK and DRIVER constructs to indicate the end of each BLOCK and DRIVER
construct.

Example: Tcl File

The following is the uartlite_v2_1_0.tcl file corresponding to the uartlite_v2_1_0.mdd file
described in the previous section. The “uartlite_drc” procedure would be invoked by
Libgen for the uartlite driver while running DRCs for drivers. The generate routine
generates constants in a header file and a c file for uartlite driver, based on the driver
definition segment in the MSS file.

proc uartlite_drc {drv_handle} {
puts “UartLite DRC”
}

proc generate {drv_handle} {
set level [xget_value S$drv_handle "PARAMETER" "level"]
if {$level == 0} {
xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR"
}
if {Slevel == 1} {
xdefine_include_file $drv_handle "xparameters.h" "XUartLite"
"NUM_INSTANCES" "C_BASEADDR" "C_HIGHADDR" "DEVICE_ID" "C_BAUDRATE"
"C_USE_PARITY" "C_ODD_PARITY"
xdefine_config_file $drv_handle "xuartlite_g.c" "XUartLite"
"DEVICE_ID" "C_BASEADDR" "C_BAUDRATE" "C_USE_PARITY" "C_ODD_PARITY"
}
}

MDD Parameter Description

This section gives a detailed description of the constructs used in the MDD file.

Conventions
[1 - Denotes optional values.

<> - Value substituted by the MDD writer.

Comments

Comments can be specified anywhere in the file. A pound (#) character denotes the
beginning of a comment, and all characters after it, right up to the end of the line, are
ignored. All white spaces are also ignored and semicolons with carriage returns act as
sentence delimiters.

Platform Specification Format Reference Manual = www.xilinx.com 111
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 8: Microprocessor Driver Definition (MDD)

Driver Definition

The driver section includes the driver name, options, dependencies, and other global

parameters, using the following syntax:

OPTION psf_version = <psf version number>
BEGIN DRIVER <driver name>
[OPTION drc = <global drc name>]
[OPTION depends = <list of directories>]
[OPTION help = <help file>]

[OPTION requires_interface = <list of interface names>]

PARAM <parameter description>
[BEGIN BLOCK,dep = <condition>

END BLOCK]

[BEGIN INTERFACE <interface name>

END INTERFACE]
END DRIVER

MDD Keyword Summary

BEGIN REQUIRES_INTERFACE
END HELP

PSF_VERSION DEP

DRC BLOCK

OPTION INTERFACE
COPYFILES HEADER

DEPENDS FUNCTION
SUPPORTED_PERIPHERALS PARAM

DRIVER_STATE PROPERTY

MDD Keyword Definitions

BEGIN

NAME

DESC

TYPE
DEFAULT
GUI_PERMIT
ARRAY

The BEGIN keyword begins with one of the following: 1ibrary, drive, block,

category, interface, or array.

END
The END keyword signifies the end of a definition block.

PSF_VERSION

Specifies the PSF version of the library.

DRC

Specifies the DRC function name. This is the global DRC function, which is called by the
GUI configuration tool or the command line Libgen tool. This DRC function will be called
once you enter all the parameters and MLD or MDD writers can verify that a valid library

or driver can be generated with the given parameters.

112

www.Xxilinx.com

Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

MDD Parameter Description S XILINX®

OPTION

Specifies the name following the keyword OPTION is an option to the tool Libgen. The
following five Libgen options are supported: COPYFILES, DEPENDS,
SUPPORTED_PERIPHERALS, and DRIVER_STATE. These are described below.

COPYFILES

Specifies the list of files to be copied for the driver. If ALL is specified as the value, Libgen
copies all the driver files.

DEPENDS

Specifies the list of directories on which a driver depends for compilation.

SUPPORTED_PERIPHERALS

Specifies the list of peripherals supported by the driver. The values of this option can
be specified as a list or as a regular expression. The following example indicates that
the driver supports all versions of opb_Jjtag_uart and the
opb_uartlte_vl_00_b version:

option supported_peripherals = (xXps_uartlite_v1_00_a, xXps_uartl6550)

Regular expressions can be used in specifying the peripherals and versions. The
regular expression (RE) is constructed as follows:

Single-character REs
Any character that is not a special character (to be defined) matches itself.

A backslash (followed by any special character) matches the literal character itself.
That is, it escapes the special character.

The special characters are: + * 2 . [] ~ $

The period matches any character except the newline. For example, . umpty matches
either Humpty or Dumpty.

A set of characters enclosed in brackets ([]) is a one-character RE that matches any of
the characters in that set. For example, [akm] matches an a, k, or m. A range of
characters can be indicated with a dash. For example, [a-z] matches any lower-case
letter. However, if the first character of the set is the caret (~), then the RE matches any
character except those in the set. It does not match the empty string. Example: [~akm]
matches any character except a, k, or m. The caret loses its special meaning if it is not
the first character of the set.

Multi-character REs

A single-character RE followed by an asterisk (*) matches zero or more occurrences
of the RE. Therefore, [a-z] * matches zero or more lower-case characters.

A single-character RE followed by a plus (+) matches one or more occurrences of the
RE. Therefore, [a-z] + matches one or more lower-case characters.

A question mark (?) is an optional element. The preceding RE can occur zero or once
in the string -- no more. For example, xy?z matches either xyz or xz.

The concatenation of REs is an RE that matches the corresponding concatenation of
strings. For example, [A-Z] [a-z] * matches any capitalized word.

Platform Specification Format Reference Manual = www.xilinx.com 113
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 8: Microprocessor Driver Definition (MDD)

The following example matches any version of xps_uartlite, xps_uart16550
and mdm.

OPTION supported_peripherals = (xps_uartlite_v[0-9]+_[1-9][0-9]_[a-z]
xps_uartl6550 mdm) ;

DRIVER_STATE

Specifies the state of the driver. The following are the list of values that can be assigned to
DRIVER_STATE:

ACTIVE

This is an active driver. By default the value of DRIVER_STATE is ACTIVE.
DEPRECATED

This driver is deprecated and would be removed from the release soon.
OBSOLETE

This driver is obsolete and is not recognized by any tools. Tools error out on an
obsolete driver, and a new driver should be used instead.

REQUIRES_INTERFACE

Specifies the interfaces that must be provided by other libraries or drivers in the system.

HELP

Specifies the help file that describes the library or driver.

DEP

Specifies the condition that needs to be satisfied before processing an entity. For example to
enter into a BLOCK, the DEP condition should be satisfied. Conditions of the form
(operandl OP operand2) are supported.

BLOCK

Specifies the block is to be entered into when the DEP condition is satisfied. Nested blocks
are not supported.

INTERFACE

Specifies the interfaces implemented by this library or driver and describes the interface
functions and header files used by the library or driver.

BEGIN INTERFACE <interface name>
OPTION DEP=<list of dependencies>;
PROPERTY HEADER=<name of header file where the function is declared>;
FUNCTION NAME=<name of interface function>, VALUE=<function name of
library/driver implementation> ;
END INTERFACE

114

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

MDD Parameter Description S XILINX®

HEADER

Specifies the header file in which the interface functions would be defined.

FUNCTION

Specifies the function implemented by the interface. This is a name-value pair where name
is the interface function name and value is the name of the function implemented by the
library or driver.

PARAM

The MLD /MDD file has a simple name = value format for most statements. The PARAM
keyword is required before every such NAME, VALUE pair. The format for assigning a
value to a parameter is param name = <name>, default= value. The PARAM
keyword specifies that the parameter can be overwritten in the MSS file.

PROPERTY

Specifies the various properties of the entity defined with a BEGIN statement

NAME

Specifies the name of the entity in which it was defined (example: PARAM, PROPERTY).

DESC

Describes the entity in which it was defined (example: PARAM, PROPERTY).

TYPE

Specifies the type for the entity in which it was defined (example: PARAM). The following
are the supported types:

bool

Boolean (true or false)
int

Integer

string

String value within " "

enum

List of possible values, that this parameter can take

library

Specify other library that is needed for building the library or driver.
peripheral_ instance

Specify other hardware drivers needed for building the library or driver. Regular
expressions can be used to specify the peripheral instance. Refer to the section
“SUPPORTED_PERIPHERALS,” page 113 for more details on regular expressions.

Platform Specification Format Reference Manual = www.xilinx.com 115
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 8: Microprocessor Driver Definition (MDD)

DEFAULT

Specifies the default value for the entity in which it was defined.

GUI_PERMIT

Specifies the permissions for modification of values. The following permissions exist:
NONE
The value cannot be modified at all
ADVANCED_USER

The value can be modified by all. The XPS GUI does not display this value by default.
It is displayed only as an advanced option in the GUL

ALL_USERS

The value can be modified by all. The XPS GUI displays this value by default. This is
the default value for all the values.

If GUI_PERMIT = NONE, the category is always active.

ARRAY

BEGIN ARRAY <array name>

PROPERTY desc = <array description> ;

PROPERTY size = <size of the array>;

PROPERTY default = <List of Values for each element based on the size
of the array>

array field description as parameters

PARAM name = <name of parameter>, desc = "description of param", type
= <type of param>, default = <default value>

END ARRAY

ARRAY can have any number of PARAMs and only PARAMs. It cannot have CATEGORY as
one of the field of an array element. Size of the array can be defined as one of the
PROPERTY of the ARRAY. An array with default values specified in default property,
leads to its size property being initialized to the number of values. If there isno size
property defined, a size property is created before initializing it with the default number
of elements. Each parameter in the array can have a default value. If size is defined with
an integer value, an array of size elements is created wherein the value of each element
being the default value of each of the parameter.

116

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Design Rule Check (DRC) Section S XILINX®

Design Rule Check (DRC) Section

proc mydrc { handle } {

}

The DRC function can be any Tcl code that checks your parameters for correctness. The
DRC procedures can access (read-only) the Platform Specification Format database (built
by the Libgen tool using the MHS and the MSS files) to read the parameter values you set.
The "handle" is a handle to the current driver in the database. The DRC procedure can get
the driver parameters from this handle. It can also get any other parameter from the
database, by first requesting a handle and using the handle to get the parameters.

For errors, DRC procedures would call the Tcl error command error "error msg" that
displays in an error dialog box.

For warnings, DRC procedures return a string value that can be printed on the console.

On success, DRC procedures just return without any value.

Driver Generation (Generate) Section

proc mygenerate { handle } {

}

Generate could be any Tcl code that reads your parameters and generates configuration
files for the driver. The configuration files can be C files, Header files, or Makefiles. The
generate procedures can access (read-only) the Platform Specification Format database
(built by the Libgen tool using the MHS and the MSS files) to read the parameter values of
the driver that you set. The handle is a handle to the current driver in the database. The
generate procedure can get the driver parameters from this handle. It can also get any
other parameters from the database by requesting a handle and then using the handle to
get the parameter.

Platform Specification Format Reference Manual = www.xilinx.com 117

EDK 10.1, Service Pack 3

http://www.xilinx.com

SXILINX® Chapter 8: Microprocessor Driver Definition (MDD)

118 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Chapter 9

Xilinx Board Description (XBD) Format

Overview

The Xilinx® Board Description (XBD) file defines the contents of a particular board and
how it interfaces with the FPGA devices on the board.

An XBD file has the following characteristics:

Blocks that define the FPGA interfaces supported by the board
Each block has list of attributes, parameters and ports
Connectivity information between different ports or modules

UCF Constraints information for each FPGA pin

This chapter includes the following sections:

“Overview”

“XBD Syntax”

“Global Attribute Commands”
“Local Attribute Commands”
“Local Parameter Commands”
“Local Parameter Subproperties”
“Local Port Commands”

“Local Port Subproperties”
“Associating IPs with IO_INTERFACE in XBD”
“Bridging IP with IO_INTERFACE”
“XBD Load Path”

“BSB Restrictions”

“Existing Xilinx IO Types”

Platform Specification Format Reference Manual = www.xilinx.com 119

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 9: Xilinx Board Description (XBD) Format

XBD Syntax

XBD file syntax is case insensitive.

Note: The current XBD version is 2.2.0. The version number is reflected in the names of the XBD
files read by the EDK tools.

Comments in XBD

Format

You can insert comments in the XBD file without disrupting processing. Use the following
guidelines:

e Precede comments with the pound sign (#).
e Comments continue to the end of the line.

e Comments can be anywhere on the line.

Module Definitions

Use the following format at the beginning of a module definition:
BEGIN <block_type_ keyword>

The BEGIN keyword signifies the beginning of a new module. There are three block types
currently identified in XBD files:

IO_INTERFACE

An IO_INTERFACE specifies a physical module on the board. This does not include the
FPGA itself. Each T10_INTERFACE also has a reference to soft IPs that you can use on the
FPGA to interface with that module on the board.

IO_ADAPTER

An I0_ADAPTER specifies any soft glue-logic that might be needed to bridge any
IO_INTERFACE pins with the ports of the soft-IP used for that 10_INTERFACE.

FPGA
An FPGA block represents the FPGA itself.

Use the following format to end a module definition:

END

120

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

XBD Syntax

SUXILINX®

Assignment Commands

Each BEGIN-END block contains multiple assignment commands. An assignment
command is a name-value pair and can have one of more subproperty name-value pairs
associated with it.

Use the following format for assignment commands:
<command> <name> = <value> {, <subproperty_ name> = <subproperty value>}

There are three assignment commands:

ATTRIBUTE

Names of all the ATTRIBUTEs are keywords. EDK tools perform certain actions or use the
value of the attribute in a particular manner. You can use the ATTRIBUTE assignment
command both inside or outside a BEGIN-END block.

PARAMETER

You can use any name for a PARAMETER. PARAMETER names specify values of PARAMETERS on
the IPs connected to the T0_INTERFACE. A PARAMETER can be specified inside
IO_INTERFACE blocks only.

PORT

Any name can be used for a PORT. PORT names specify connectivity between modules
(including the FPGA) on the board. A PORT can be specified only inside T0_INTERFACE and
IO_ADAPTER blocks.

Both PARAMETERS and PORTs can have subproperties associated with them. Each
subproperty is a name-value pair. You must specify subproperties on the same line as the
PARAMETER or the PORT. Subproperties must be comma-separated.

XBD Example

Your EDK installation directory contains XBD files shipped with EDK.
The board files can be found at:

SXILINX_EDK/board/Xilinx/boards/<board_name>/data/<board_name>_
<version>.xbd

In the example path above, <board name> might be xilinx_ML505, for example. The
current XBD version is 2.2.0, therefore, <version> would be 2_2_0.

Platform Specification Format Reference Manual = www.xilinx.com 121

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 9: Xilinx Board Description (XBD) Format

Global Attribute Commands

Global Attribute Command Summary

VENDOR

NAME

REVISION
CONTACT_INFO_URL
SPEC_URL

DESC

LONG_DESC

The Global Attribute command has the following syntax:

ATTRIBUTE <name> = <value>

Global Attribute Command Definitions

VENDOR

Specifies the name of the vendor. Tools use this attribute to sort various board files based
on vendor name, using the following format:

ATTRIBUTE VENDOR= Xilinx

NAME

The naME attribute is a string representing the name of the board. This is the name the tools
display for you when they select a board. It is expressed in the following format:

ATTRIBUTE NAME= AFX Virtex-II Pro fg456 Proto Board

REVISION

The rREVISION attribute identifies the revision number of the board that the XBD file
represents. You must associate every board revision with an XBD file that is dedicated to
that board revision alone. Use the following format to specify the revision:

ATTRIBUTE REVISION = C

CONTACT_INFO_URL

Displays a web URL link that you can use to contact Xilinx if you need assistance. The
CONTACT_INFO_URL attribute is expressed in the following format:

ATTRIBUTE CONTACT_INFO_URL =
http://www.xilinx.com/support/techsup/tappinfo.htm

SPEC_URL

Displays a URL that takes you to the Xilinx website. The SPEC_URL attribute is expressed in
the following format:

ATTRIBUTE SPEC_URL = http://www.xilinx.com

122

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Local Attribute Commands S XILINX®

DESC

Provides a short text description of the board. Base System Builder uses the DESC attribute
value and displays it in the GUIL The DESC attribute is expressed in the following format:

ATTRIBUTE DESC = some text

LONG_DESC

Specifies a long text description for the board. Base System Builder uses the LONG_DESC
attribute value and displays it in the GUL If the description string contains embedded
commas, it must be enclosed in single quotes because the comma is a name-value delimiter.
The LONG_DESC attribute is expressed using the following format:

ATTRIBUTE TEXT= ‘'some long text which gives an idea to user about the
board’

Local Attribute Commands

Local Attribute Command Summary

A local attribute is defined between a BEGIN-END block and expressed in the following
format:

ATTRIBUTE <name> = <value>

INSTANCE
CORENAME
VERSION
IOTYPE
EXCLUSIVE
JTAG_POSITION

Local Attribute Command Definitions

INSTANCE

Distinguishes one module from another. The INSTANCE attribute is expressed in the
following format:

ATTRIBUTE INSTANCE = clk_module

CORENAME

Identifies the pcore that is instantiated in the MHS to represent the 10_aDAPTER. Use the
CORENAME attribute only with 10_ADAPTER blocks. The CORENAME attribute is expressed in
the following format:

ATTRIBUTE CORENAME = mypcore

Platform Specification Format Reference Manual = www.xilinx.com 123
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 9: Xilinx Board Description (XBD) Format

VERSION

Specifies the HW_VER of the pcore to be instantiated in the MHS file. Use the VERSION
attribute only with T0_aDAPTER blocks. The VERSION attribute is expressed in the following
format:

ATTRIBUTE VERSION= 1.00.a

IOTYPE

Specifies what type of 10_INTERFACE block is being used. Use the T0TYPE attribute to
match the pcore instantiated in the MHS. There are no versions for the I0_INTERFACE type.
Any version information must be embedded in the TOTYPE string itself. Use the TOTYPE
attribute with 10_INTERFACE blocks only. The IOTYPE attribute is expressed in the
following format:

ATTRIBUTE IOTYPE = XIL_GPIO_V1

EXCLUSIVE

Represents a group of T0_INTERFACESs that are exclusive to each other. If you use one
IO_INTERFACE in this group, you cannot use others, mainly because they share the same
ports with the FPGA on the board. The EXCLUSIVE attribute is expressed in the following
format:

ATTRIBUTE EXCLUSIVE = excl_group

JTAG_POSITION

Determines the position of the FPGA in the JTAG chain. Base System Builder uses this
information while creating the etc/download. cmdfile for the project. The JTAG_POSITION
attribute is expressed in the following format:

ATTRIBUTE JTAG_POSITION = 1

Local Parameter Commands

A module can have any number of parameters. Parameters have a subproperty called
I0_IS. You can use the string value of the 10_15 subproperty to match the parameter
whose value must be overwritten with the value of the XBD local parameter. This
parameter is expressed in the following format:

PARAMETER <name> = <value> {, <subprop_name> = <subprop_value>}

Local Parameter Subproperties

A subproperty on a local parameter is a name-value pair. A local parameter can have any
number of subproperty name-value pairs associated with it. All the subproperties have to
be specified on the same line as the parameter itself. Each name-value pair is separated by
a comma.

The value of the 10_1s subproperty matches parameters on the IP with the parameters on
the hardware component on the board. The 10_1Is subproperty is expressed in the
following format:

PARAMETER MYPARAM = 3, IO_IS = myparam

124

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Local Port Commands S XILINX®

MEMORY_TYPE

The only allowed value of the MEMORY_TYPE subproperty is FLASH. Use the MEMORY_TYPE
subproperty only on the baseaddress parameter of a flash memory module. Use the values
of T0_IS=C_BASEADDR and C_HIGHADDR parameters only to get the size of the memory. A
different local memory address may be assigned to the memory controller slave to which
the memory module is connected. The MEMORY_TYPE subproperty is expressed in the
following format:

PARAMETER C_BASEADDR = 0x00000000, IO_IS=C_BASEADDR, MEMORY_TYPE=FLASH
PARAMETER C_HIGHADDR = O0x0003FFFF, IO_IS=C_HIGHADDR

RANGE

The value of the RANGE subproperty is a comma-separated list of integers, intended for use
only on the clock module. These integers specify a list of possible clock frequencies on the
board. The following example shows a board with two clock frequencies of 66 and 100
MHz. The default frequency that BSB will use is 100 Mhz.

PARAMETER CLK_FREQ = 100000000, IO_IS=clk_freq, RANGE=(66000000,
100000000) # 66 Mhz or 100 Mhz

VALUE_NOTE

The value of the VALUE_NOTE subproperty provides a short text description of values
associated with this parameter. It is expressed in the following format:

PARAMETER RST_POLARITY = 0, IO_IS = polarity, VALUE_NOTE = Active LOW

Local Port Commands

Alocal portis defined between the BEGIN-END block of a module. XBD supports local ports
only; global ports are not supported. There are no reserved PORT names. You can specify
local ports in all three block types. Local port commands are formatted as follows:

PORT <name> = <connector_name> {,<subprop_name> = <subprop_value>}

Local Port Subproperties

Local Port Subproperty Summary

You can associate a local port with any number of subproperty name-value pairs. All the
subproperties must be specified on the same line as the port itself. Each name-value pair is
separated by a comma.

DIR
INTERRUPT_PRIORITY
10_IS

SENSITIVITY

SIGIS
UCF_NET_STRINGS
INITIALVAL

Platform Specification Format Reference Manual = www.xilinx.com 125
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 9: Xilinx Board Description (XBD) Format

Local Port Subproperty Definitions

DIR

Specifies the FPGA port direction. The allowed value is 10, which designates the port as an
10 port.

INTERRUPT_ PRIORITY

The value of the INTERRUPT_PRIORITY subproperty defines the priority of an interrupt
source. This affects the order in which various interrupts are connected to the interrupt
controller (and, consequently, their priority). Use the INTERRUPT_PRIORITY subproperty
only for those signals that are marked as SIGIS=INTERRUPT. The INTERRUPT_PRIORITY
subproperty is formatted as follows:

PORT Intr = CONN_Intr, IO_IS=intr, SIGIS=INTERRUPT,
INTERRUPT_PRIORITY=HIGH

IO_IS

The value of the 10_Is subproperty matches ports on the FPGA to ports of peripherals
instantiated in the MHS file. If the value of T10_Is on a port matches that on a port in the
MPD file of the IP which, in turn, matches the 10_1IF, it is considered a match. If there is a
match, that particular port of the instantiated IP is defined as a global port in the MHS file
and connected to this port on the board. The 10_1s value is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, VALUE=net_vcc

SENSITIVITY

For a signal of type SIGIS=INTERRUPT, the SENSITIVITY subproperty defines the signal
type to which this interrupt is sensitive. The global port created in MHS that corresponds
to this signal is marked with the SENSITIVITY property. This subproperty is formatted as
follows:

PORT Intr = CONN_Intr, SIGIS=INTERRUPT, SENSITIVITY=LEVEL_HIGH

SIGIS

SIGIS is a subproperty of PORT and designates a port as an interrupt port.

UCF_NET_STRINGS

Specifies the constraints associated with the NET for this PORT. The UCF_NET_STRINGS
subproperty takes as value a comma separated list of strings. Each string in the list creates
a separate line in the UCEF file related to that net. This subproperty is formatted as follows:

PORT SDRAM_BAQ = CONN_SDRAM_8Mx32BAl, UCF_NET_STRINGS=("LOC = L4",
"IOSTANDARD=LVDCI_25")

The above line in an XBD file would lead to the following lines in the UCF file:
NET “CONN_SDRAM 8Mx32BAl” LOC = L4
NET “CONN_SDRAM_8Mx32BAl” IOSTANDARD=LVDCI_25

INITIALVAL

A subproperty of VALUE, INITIALVAL specifies the value to which a port must be driven if
there is no corresponding port on the IP core connected to the device. In this case, a

126

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Associating IPs with I0_INTERFACE in XBD S XILINX®

top-level output port for the system is created and driven with this constant value. This
subproperty is formatted as follows:

PORT LED1 = CONN_LED1, IO_IS=gpio_io<0>, INITIALVAL = net_vcc

Associating IPs with IO_INTERFACE in XBD

As previously described, an XBD file contains a number of BEGIN-END blocks, each
corresponding to a hardware module on the board. The type of the module is specified
using the attribute T0TYPE, as in the following example:

BEGIN <iotype>

The 10TYPE string is used to match an IP that can communicate with this module. Refer to
Chapter 3, “Microprocessor Peripheral Definition (MPD)” for more information. An MPD
file describes the behavior of an IP. Each IP can have a number of 10_INTERFACEs. Each
IO_INTERFACE has a subproperty called 10TYPE. The value of this subproperty determines
whether or not an IP can communicate with a particular hardware module on the board.

For example, consider the following line in the MPD file for IP xps_ethernetlite:
IO_INTERFACE NAME = Ethernet_0, iotype = XIL_Ethernet_V1

This 10_INTERFACE indicates that this particular IP can communicate with a module of
type Ethernet. Similarly, the XBD file for any board that has an Ethernet module should
define a block as follows:

BEGIN IO_INTERFACE
ATTRIBUTE INSTANCE = myEthernet
ATTRIBUTE IOTYPE = XIL_Ethernet_V1
PARAMETER ...
PORT ...

END

When tools try to find an IP that can communicate with this module on the board, they
search for MPDs that have an T0_INTERFACE with I0TYPE and that match the T0TYPE of the
I0_INTERFACE module in the XBD file. If there are several such IPs, users can select any of
them.

Once an IP has been selected for communicating with that particular module on the board,
tools use the 10_Is subproperty to connect ports of the IP to the module on the board.

Generally, an IP is designed to be parametric (in terms of VHDL, the IP has generics).
When used with a particular board, you can specify some parameter values based on
board characteristics. The matching of parameters in the XBD module with that of
parameters on the IP is also done using the 10_1s block.

For example, consider the MPD snippet for xps_gpio:

#######4# MPD Snippet #HH#H#HH#HHHHH#HF
BEGIN xps_gpio

Peripheral Options
OPTION ...

TIO_INTERFACE NAME = gpio_0, iotype = XIL_GPIO_V1

Bus Interfaces
BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Platform Specification Format Reference Manual = www.xilinx.com 127
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Chapter 9: Xilinx Board Description (XBD) Format

Generics for VHDL or Parameters for Verilog

PARAMETER C_GPIO_WIDTH = 32, DT=integer, IO_IF=gpio_0, IO_IS=num_bits
PARAMETER C_ALL_INPUTS = 0, DT=integer, IO_IF=gpio_0, IO_IS=all_inputs
PARAMETER

Ports
PORT GPIO_IO = "", DIR = INOUT, IO_IF = gpio_0, IO_IS = gpio_io,
PORT

END

The MPD file defines an IO interface, gpio_0 of TIOTYPE XIL_GPIO_V1. The gpio_0 IO
interface has two parameters associated with it, C_Gp10_wIDTH and c_aLL_INPUTS. This
parameter-I1O interface association is specified with the 10_IF subproperty on the
parameter. Similarly, PORT GPIO_IO is also associated with the gpio_0 IO interface, using
the T0_IF subproperty.

Consider the following XBD snippet from a hypothetical board that includes LEDs. These
LEDs are of TOTYPE GPIO:

XBD Snippet ########H#H##H

BEGIN IO_INTERFACE
ATTRIBUTE INSTANCE = LEDs_4Bit
ATTRIBUTE IOTYPE= XIL_GPIO_V1
PARAMETER num_bits =4, IO_IS=num bits
PARAMETER all_inputs =0, IO_IS=all_inputs# All outputs

PORT LED1 = CONN_LED1, IO_IS=gpio_io[0], VALUE = net_vcc,

UCF_NET_STRINGS = (“N1”)

PORT LED2 = CONN_LED2, IO_IS=gpio_io[l], VALUE=net_vcc,
UCF_NET_STRINGS = (“N2”)

PORT LED3 = CONN_LED3, IO_IS=gpio_io[2], VALUE=net_vcc,
UCF_NET_STRINGS = (“P1")

PORT LED4 = CONN_LED4, IO_IS=gpio_iol[3], VALUE=net_vcc,
UCF_NET_STRINGS = (“P2")
END

As explained above, the TI0TYPE XIL_GPIO_V1 of the T0_INTERFACE in the MPD file is
matched with the IOTYPE XIL_GPIO_vV1 of the module LEDs_4Bit in the XBD file. As a
result, the T10_Is subproperty on ports in the MPD file and ports in the XBD file determine
which ports connect to which. The following MHS instantiation results:

MHS File Snippet

Global Ports
PORT LEDs_4Bit_GPIO_IO = LEDs_4Bit_GPIO_IO, VEC = [0:3], DIR = INOUT

GPIO instance

BEGIN xps_gpio
ATTRIBUTE INSTANCE = LEDs_4Bit
PARAMETER HW_VER = 1.00.a
PARAMETER C_GPIO_WIDTH = 4 ## IO_IS = num_bits
PARAMETER C_ALL_INPUTS = 0 ## IO_IS = all_inputs
PORT GPIO_IO = LEDs_4Bit_GPIO_IO ## IO_IS = gpio_io

END

128

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Bridging IP with 10_INTERFACE S XILINX®

The output UCF snippet is as follows:
#H####H#AHE UCF Snippet ########

Net LEDs_4Bit_GPIO_IO<0> LOC=N1;
Net LEDs_4Bit_GPIO_IO<1> LOC=N2;
Net LEDs_4Bit_GPIO_IO<2> LOC=P1;
Net LEDs_4Bit_GPIO_IO<3> LOC=P2;

Bridging IP with 10_INTERFACE

Each IP that communicates with modules outside the FPGA (on the board) has its ports
connected to pins on the FPGA. The FPGA, in turn, is connected to the pins on the board
module. For standard IPs and modules, there is usually a one-to-one correspondence
between ports on the IP and the pins on the external modules. However, on some boards,
the external modules might have slightly different requirements. In such cases, a small
amount of logic might need to be used before the IP ports can be connected to the external
module. XBD allows you to specify such glue logic in the board file.

When creating the XBD file, you must be aware of parameter and port connection
requirements for the board module. You must also associate at least one compatible soft-IP
with that external module. (This is done by using the specific I0TYPE in I0_INTERFACE
block.) If there is any mismatch, users can specify 10_aADAPTER in the XBD file to map the
IO_INTERFACE on the board with the desired soft IP on the FPGA.

XBD Load Path

Refer to Figure 9-1 for an illustration of the library directory structure. The XPS tools search
the PSF files across libraries, and they search in the <1ibrary_name>/boards directory for
boards.

Each of these libraries contains the /boards directory, which identifies where various
boards are located. This is equivalent to the /pcores directory in the IP search mechanism.

The directory name for a board must be the same as the name of the board itself. Each
board directory should contain a /data directory. The XBD file must reside in this data
directory and must be called <board_name>_v2_2_0.xbd.

The directory called edk_user_repository appears at the same level as the EDK
installation ($xI1LINX_EDK) and is automatically searched by all EDK tools for libraries.
This feature is deprecated in in EDK 10.1. It is recommended that you explicitly specify
repositories that apply to projects. You can do this in XPS using Edit ->Preferences-
>Application Preferences ->Global Peripheral Repository.

For example, to make a hypothetical board called myboard “visible” to the EDK tools,
create a library of boards, for example, MyEDKBoards, in a library search directory. Your
directory structure must appear as follows:

<Peripheral Repository Directory>/MyEDKBoards/boards/myboard revl/data/
myboard _revl_v2 2 0.xbd

Platform Specification Format Reference Manual = www.xilinx.com 129
EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Chapter 9: Xilinx Board Description (XBD) Format

-Ip <library_path>

<Library Name>

boards drivers pcores SW_services

X10066
Figure 9-1: Library Directory Structure

The $XILINX_EDK/boarddirectory is added as a default library search path for board files.
Each library contains several boards. In XPS, you can specify a library search path that
enables tools to locate additional board files.

BSB Restrictions

While most of the BSB is data-driven, there are some exceptions. Special processing is done
inside the BSB for these. Some of the restrictions are listed below:

e BSB clock module generation is not data-driven. BSB can only handle certain input
clock frequencies and can only produce certain multiples of the input clocks. BSB does
not support multiple DDR and PCI™ interfaces because they require special clock
generation.

e The parameter customization of instantiated pcores is not data-driven. For each
known type of IO interface, BSB presents certain selectable parameters. If there is an
IO_INTERFACE in the XBD file but no matching soft IP, BSB does not display the
configuration of parameters on that IP.

130 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

Existing Xilinx 10 Types

SUXILINX®

Existing Xilinx

10 Types

Establishing a match between an MPD 10_INTERFACE and an 10TYPE module in XBD is
accomplished solely through string comparison. The table below shows a list of 10
interfaces implemented by various Xilinx IPs. For a new board that includes a module that
communicates with the FPGA using a Xilinx-provided IP, module and IO interface names
must be the same. This is required to enable automatic connection between the board
module and IP.

Table 9-1: List of IO INTERFACES Supported by Xilinx IPs
IOTYPE/ .
I0_INTERFACE Supporting IPs

XIL_CPUDEBUG_V1

ppcd05

XIL_CLOCK_V1

None. Used by tools internally.

XIL_MEMORY

mpmc (supports DDR and DDR?2)

XIL_EMC_V1

Xps_emc

XIL_EPC_V1

XpsS_epc

XIL_Ethernet_V1

xps_ethernetlite

XIL_GPIO_V1 Xps_gpio
XIL_IIC_V1 xps_iic
XIL_MGT_PROTECTOR_V1 | mgt_protector
XIL_PCI32_V1 opb_pci

XIL_PCI_ARBITER_V1

opb_pci_arbiter

XIL_RESET_V1

None. Used by tools internally.

XIL_SDRAM V1

xps_sdram

XIL_SPI_V1

xXps_spi

XIL_SYSACE_V1

XpsS_sysace

XIL_TEMAC_V1

xps_II_temac

XIL_TRACE_V1

ppcd05

XIL_UART_V1

xps_uartlite

xps_uartl1l6550

Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

www.Xxilinx.com

131

http://www.xilinx.com

STXILINX® Chapter 9: Xilinx Board Description (XBD) Format

132 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

$7 XILINX®

Glossary

Appendix A

BBD file

BFL

BFM

BIT File

Bitinit

Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.

Bus Functional Language.

Bus Functional Model.

Xilinx® Integrated Software Environment (ISE™) Bitstream file.

The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
blockRAMs in the FPGA.

block RAM (BRAM)

BMM file

A block of random access memory built into a device, as distinguished
from distributed, LUT based random access memory.

Block Memory Map file. A BMM file is a text file that has syntactic
descriptions of how individual block RAMs constitute a contiguous
logical data space. Data2MEM uses BMM files to direct the translation
of data into the proper initialization form. Since a BMM file is a text
file, it is directly editable.

Platform Specification Format Reference Manual = www.xilinx.com 133

EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Appendix A: Glossary

BSB
Base System Builder. A wizard for creating a complete design in Xilinx
Platform Studio (XPS). BSB is also the file type used in the Base System
Builder.
BSP
See Standalone BSP.
CFl
Common Flash Interface
D
DCM
Digital Clock Manager
DCR
Device Control Register.
DLMB
Data-side Local Memory Bus. See also: LMB.
DMA
Direct Memory Access.
DOPB
Data-side On-chip Peripheral Bus. See also: OPB.
DRC
Design Rule Check.
DSPLB
Data-side Processor Local Bus. See also: ISPLB.
E
EDIF file
Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.
134 www.xilinx.com Platform Specification Format Reference Manual

EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

EDK
Xilinx Embedded Development Kit.

ELF file

Executable and Linkable Format file.

EMC

External Memory Controller.

EST
Embedded System Tools.

FATfs (XilFATfs)

LibXil FATFile System. The XilFATfs file system access library
provides read /write access to files stored on a Xilinx System ACE
CompactFlash or IBM microdrive device.

FPGA

Field Programmable Gate Array.

FSL

MicroBlaze™ processor Fast Simplex Link. Unidirectional point-to-
point data streaming interfaces ideal for hardware acceleration. The
MicroBlaze processor has FSL interfaces directly to the processor.

GDB
GNU Debugger.

GPIO

General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.

Hardware Platform

Xilinx FPGA technology allows you to customize the hardware logic
in your processor subsystem. Such customization is not possible using
standard off-the-shelf microprocessor or controller chips. Hardware
platform is a term that describes the flexible, embedded processing

Platform Specification Format Reference Manual = www.xilinx.com 135
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Appendix A: Glossary

HDL

IBA

IDE

ILA

ILMB

IOPB

IPIC

IPIF

ISA

ISC

ISE

ISPLB

ISS

subsystem you are creating with Xilinx technology for your
application needs.

Hardware Description Language.

Integrated Bus Analyzer.

Integrated Design Environment.

Integrated Logic Analyzer.

Instruction-side Local Memory Bus. See also: LMB.

Instruction-side On-chip Peripheral Bus. See also: OPB.

Intellectual Property Interconnect.

Intellectual Property Interface.

Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.

Interrupt Source Controller.

Xilinx ISE Project Navigator project file.

Instruction-side Peripheral Logical Bus. See also: DSPLB.

Instruction Set Simulator.

136

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

JTAG

Joint Test Action Group.

Libgen

Library Generator sub-component of the Xilinx Platform Studio
technology.

LibXil Standard C Libraries

EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.

LibXil File

A module that provides block access to files and devices. The LibXil
File module provides standard routines such as open, close, read, and
write.

LibXil Profile

A software intrusive profile library that generates call graph and
histogram information of any program running on a board.

LMB

Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.

MDD file

Microprocessor Driver Description file.

MDM
Microprocessor Debug Module.

MFS

LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.

Platform Specification Format Reference Manual = www.xilinx.com 137
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Appendix A: Glossary

MHS file

MLD file

MPD file

MSS file

NCF file

NGC file

NGD file

NGO File

NPI

OCM

OoPB

Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.

Microprocessor Library Definition file.

Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.

Microprocessor Software Specification file.

Netlist Constraints file.

The NGC file is a netlist file that contains both logical design data and
constraints. This file replaces both EDIF and NCF files.

Native Generic Database file. The NGD file is a netlist file that
represents the entire design.

A Xilinx-specific format binary file containing a logical description of
the design in terms of its original components and hierarchy.

Native Port Interface.

On Chip Memory.

On-chip Peripheral Bus.

138

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

PACE

Pinout and Area Constraints Editor.

PAO file

Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.

PBD file

Processor Block Diagram file.

Platgen

Hardware Platform Generator sub-component of the Platform Studio
technology.

PLB

Processor Local Bus.

PROM
Programmable ROM.

PSF

Platform Specification Format. The specification for the set of data
files that drive the EDK tools.

SDF file

Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.

SDK

Software Development Kit.

SDMA
Soft Direct Memory Access
Simgen

The Simulation Generator sub-component of the Platform Studio
technology.

Software Platform

A software platform is a collection of software drivers and, optionally,
the operating system on which to build your application. Because of

Platform Specification Format Reference Manual = www.xilinx.com 139
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Appendix A: Glossary

SPI

the fluid nature of the hardware platform and the rich Xilinx and
Xilinx third-party partner support, you may create several software
platforms for each of your hardware platforms.

Serial Peripheral Interface.

Standalone BSP

SVF File

UART

UCF

VHDL

VP

VPgen

XBD File

XCL

Standalone Board Support Package. A set of software modules that
access processor-specific functions. The Standalone BSP is designed
for use when an application accesses board or processor features
directly (without an intervening OS layer).

Serial Vector Format file.

Universal Asynchronous Receiver-Transmitter.

User Constraints File.

VHSIC Hardware Description Language.

Virtual Platform.

The Virtual Platform Generator sub-component of the Platform Studio
technology.

Xilinx Board Definition file.

Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.

140

www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

SUXILINX®

Xilkernel

XMD

XMK

XMP File

XPS

XST

ZBT

The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.

Xilinx Microprocessor Debugger.

Xilinx Microkernel. The entity representing the collective software
system comprising the standard C libraries, Xilkernel, Standalone BSP,
LibXil MFS, LibXil File, and LibXil Drivers.

Xilinx Microprocessor Project file. This is the top-level project file for
an EDK design.

Xilinx Platform Studio. The GUI environment in which you can
develop your embedded design.

Xilinx Synthesis Technology.

Zero Bus Turnaround™.

Platform Specification Format Reference Manual = www.xilinx.com 141

EDK 10.1, Service Pack 3

http://www.xilinx.com

STXILINX® Appendix A: Glossary

142 www.xilinx.com Platform Specification Format Reference Manual
EDK 10.1, Service Pack 3

http://www.xilinx.com

	Platform Specification Format Reference Manual
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Documents

	Table of Contents
	1 Introduction
	Files
	BBD - Black Box Definition
	MDD - Microprocessor Driver Definition
	MHS - Microprocessor Hardware Specification
	MPD - Microprocessor Peripheral Definition
	MSS - Microprocessor Software Specification
	MLD - Microprocessor Library Definition
	PAO - Peripheral Analyze Order
	XBD - Xilinx Board Definition

	File and IP Naming Rules
	Version Scheme
	Version Setting for MHS and MSS
	Version Setting for BBD, MPD, and PAO

	Load Path
	Peripheral and pcore Directory Structures
	Using Versions

	Creating Your IP
	Is Your IP Pure HDL?
	Is Your IP Only a Black-Box Netlist?
	Is Your IP a Mixture of Black-Box Netlists and VHDL or Verilog?

	Creating HDL Libraries for Your IP
	Primary Library
	Resource Library
	Library File Locations

	Verilog Include Directories
	Format
	Restrictions

	2 Microprocessor Hardware Specification (MHS)
	MHS Syntax
	About the Syntax
	Comments
	Format
	MHS Example

	Bus Interface
	Definition
	Example

	Local Bus Interface
	Local Bus Interface Keyword(s)

	Global Parameter
	Definition
	Global Parameter Keyword(s)

	Local Parameter
	Definition
	Local Parameter Keyword(s)

	Global Port
	Global Port Keyword Summary
	Global Port Keyword Definitions

	Local Port
	Design Considerations
	Defining Memory Size
	Power Signals (net_gnd/net_vcc)
	Unconnected Ports
	Constant Assignments
	Concatenation
	Internal vs. External Signals
	External Interrupt Signals

	3 Microprocessor Peripheral Definition (MPD)
	MPD Syntax
	Definition
	Comments
	Format
	MPD Example

	Bus Interface
	Definition
	Bus Interface Keyword Summary
	Bus Interface Keyword Definitions
	Bus Interface Naming Conventions

	IO Interface
	Definition
	IO Interface Keywords

	Option
	Definition
	Option Keyword Summary
	Option Keyword Definitions

	Parameter
	Definition
	Parameter Keyword Summary
	Parameter Keyword Definitions
	Parameter Naming Conventions

	Port
	Definition
	Port Keyword Summary
	Port Keyword Definitions
	Port Naming Conventions

	Reserved Parameters
	Reserved Parameter Names Summary
	Reserved Parameter Descriptions

	Reserved Port Connections
	Clock and Reset Ports
	Slave LMB Ports
	Master PLB Ports
	Slave PLB Ports

	Design Considerations
	Unconnected Ports
	Scalable Data Path
	Interrupt Signals
	Tri-state (InOut and Output) Signals

	4 Peripheral Analyze Order (PAO)
	PAO Format
	Format
	Comments

	Verilog Include Directories
	Format
	Restrictions

	PAO Example

	5 Black-Box Definition (BBD)
	BBD Format
	Comments
	Lists
	Common Repository Library

	BBD Examples
	File Selection Without Options
	Multiple File Selections Without Options
	File Selection With Options
	File Selection With Common Repository Library

	6 Microprocessor Software Specification (MSS)
	Overview
	Additional Resources
	TMSS Format
	MSS Keywords
	Requirements
	MSS Example

	Global Parameters
	PSF Version
	Parameter INT_HANDLER

	Instance-Specific Parameters
	OS, Driver, Library, and Processor Block Parameters Summary
	OS, Driver, Library, and Processor Block Parameters Definitions
	MDD/MLD Specific Parameters
	OS-Specific Parameters Summary
	Processor-Specific Parameter Summary
	Processor-Specific Parameter Definitions

	MLD Parameter Description Section
	Conventions
	Comments
	OS or Library Definition
	MLD or MDD Keyword Summary
	MLD or MDD Keyword Definitions

	Design Rule Check (DRC) Section
	Library Generation (Generate) Section

	7 Microprocessor Library Definition (MLD)
	Overview
	Requirements
	Additional Resources
	Library Definition Files
	MLD Format Specification
	MLD File Format Specification
	Tcl File Format Specification
	Examples

	8 Microprocessor Driver Definition (MDD)
	Overview
	Requirements
	Additional Resources
	Driver Definition Files
	MDD Format Specification
	MDD File Format Specification
	Tcl File Format Specification
	Example

	MDD Parameter Description
	Conventions
	Comments
	Driver Definition
	MDD Keyword Summary
	MDD Keyword Definitions

	Design Rule Check (DRC) Section
	Driver Generation (Generate) Section

	9 Xilinx Board Description (XBD) Format
	Overview
	XBD Syntax
	Comments in XBD
	Format
	XBD Example

	Global Attribute Commands
	Global Attribute Command Summary
	Global Attribute Command Definitions

	Local Attribute Commands
	Local Attribute Command Summary
	Local Attribute Command Definitions

	Local Parameter Commands
	Local Parameter Subproperties
	Local Port Commands
	Local Port Subproperties
	Local Port Subproperty Summary
	Local Port Subproperty Definitions

	Associating IPs with IO_INTERFACE in XBD
	Bridging IP with IO_INTERFACE
	XBD Load Path
	BSB Restrictions
	Existing Xilinx IO Types

	Appendix A: Glossary

