CMOS Devices

- PN junctions and diodes
- NMOS and PMOS transistors
- Resistors
- Capacitors
- Inductors
- Bipolar transistors

PN Junctions

- Diffusion causes depletion region
- D.R. is insulator and establishes barrier
- This leads to 1-directional current flow
- Forms junction capacitor
 - Capacitance highly voltage dependent
 - Can be nuisance or benefits

PN Junctions

pn junction

- 1. Doped atoms near the metallurgical junction lose their free carriers by diffusion.
- 2. As these fixed atoms lose their free carriers, they build up an electric field, which opposes the diffusion mechanism.
- 3. Equilibrium conditions are reached when:

Current due to diffusion = Current due to electric field

PN Junctions

Cross-section of an ideal pn junction:

Initial impurity concentration

PN Junctions

$$\phi_o - v_D = \frac{q}{2\varepsilon_{si}} (N_A x_p^2 + N_D x_n^2) = \frac{q N_A x_p^2}{2\varepsilon_{si}} (1 + \frac{N_A}{N_D})$$

Depletion region widths:

$$x_{n} = \left(\frac{2\varepsilon_{si}(\phi_{0} - v_{D})N_{A}}{qN_{D}(N_{A} + N_{D})}\right)^{1/2}$$

$$x_{d} \propto \sqrt{\frac{1}{N}}$$

$$x_{d} \propto \sqrt{\frac{1}{N}}$$

$$x_{d} \propto \sqrt{\frac{1}{N}}$$

$$|x_{n} / x_{p}| = N_{A} / N_{D}$$
Built-in potential:

$$\varphi_{o} = \frac{kT}{q} \ln(\frac{N_{A}N_{D}}{n_{i}^{2}}) = V_{t} \ln(\frac{N_{A}N_{D}}{n_{i}^{2}})$$

Example

- NA=10^15 atoms/cm^3, ND=10^16, vD=-10
- Ni=2.25*10^20
- Phi_o=26ln(10^15*10^16/2.25/10^20)=638 mV
- xp= 3.5 μm
- xn= 0.35 μm
- Max field = $q^{NA*xp/\epsilon} = -5.4*10^{4} V/cm$

Note the large magnitude of the field

Excercise

- Suppose that $v_D = 0$, $\psi_o = 0.637V$ and $N_D = 10^{17}$ atoms/cm3.
- If N_A = 10¹⁵ atoms/cm3 p-side depletion width = ?? n-side depletion width = ??
 If N_A = 10¹⁹ atoms/cm3: p-side depletion width = ?? n-side depletion width = ??

PN Junctions

The depletion charge

$$Q_{j} = \left| AqN_{A}x_{p} \right| = AqN_{D}x_{n} = A\left(\frac{2\varepsilon_{si}qN_{A}N_{D}}{N_{A} + N_{D}}\right)^{1/2} (\phi_{0} - v_{D})^{1/2}$$

The junction capacitance

$$C_{j} = \frac{dQ_{j}}{dv_{D}} = A \left(\frac{2\varepsilon_{si}qN_{A}N_{D}}{N_{A} + N_{D}} \right)^{1/2} \frac{1}{(\phi_{0} - v_{D})^{1/2}} = \frac{C_{j0}}{(1 - \frac{v_{D}}{\phi_{0}})^{m}}$$

•Can be used as voltage controlled capacitor

•Here m = 1/2 for the step change in impurity concentration.

•For gradual concentration change, m = 1/3.

Impurity concentration profile for diffused pn junction

p-type semiconductor Depletion region	n n-type semiconductor
---------------------------------------	------------------------

Current density at boundary due to wholes:

$$J_p(x) = -qD_p \frac{dp_n(x)}{dx} \bigg|_{x=0}$$

$$J_{p}(0) = \frac{qD_{p}n_{i}^{2}}{N_{D}L_{p}} \left\{ e^{v_{D}/V_{t}} - 1 \right\}$$

Total:

$$J(0) = J_{p}(0) + J_{n}(0) = qn_{i}^{2} \left(\frac{D_{p}}{N_{D}L_{p}} + \frac{D_{n}}{N_{A}L_{n}}\right) \left\{e^{\nu_{D}/V_{t}} - 1\right\}$$

Diode current:

$$i_{D} = AJ(0) = qn_{i}^{2}A\left(\frac{D_{p}}{N_{D}L_{p}} + \frac{D_{n}}{N_{A}L_{n}}\right)\left\{e^{v_{D}/V_{t}} - 1\right\} = I_{S}\left\{e^{v_{D}/V_{t}} - 1\right\}$$

Reverse-Biased PN Junctions

Depletion region:

060121-06

Breakdown Voltage

Our book shows that

$$BV \approx \frac{\varepsilon_{si}(N_A + N_D)}{2qN_A N_D} E_{max}^2$$

where $E_{\text{max}} = 3 \times 10^5 \text{ V/cm}$ for silicon.

An example:

Assume that $N_D = 10^{17}$ atoms/cm³.

Find *BV* if $N_A = 10^{15}$ atoms/cm³ and if $N_A = 10^{19}$ atoms/cm³: $N_A = 10^{15}$ atoms/cm³:

If $N_A \ll N_D$, then $BV \approx \frac{\varepsilon_{si}}{2qN_A} E_{max}^2 = \frac{1.04 \times 10^{-12.9} \times 10^{10}}{2 \cdot 1.6 \times 10^{-19.1015}} = 291 \text{V}$ $N_A = 10^{19} \text{ atoms/cm}^3$:

If
$$N_A >> N_D$$
, then $BV \approx \frac{\varepsilon_{si}}{2qN_D} E_{max}^2 = \frac{1.04 \times 10^{-12.9} \times 10^{10}}{2 \cdot 1.6 \times 10^{-19.1017}} = 2.91 \text{V}$

Metal-Semiconductor Junctions

- Ohmic Junctions:
 - A pn junction formed by a highly doped semiconductor and metal
 - Behaves like resistor
- Schottky Junctions:
 - A pn junction formed by a lightly doped semiconductor and metal
 - Behaves like a diode

The MOS Transistors

Capacitors

- Two conductor plates separated by an insulator form a capacitor
- Intentional capacitors vs parasitic capacitors
- Linear vs nonlinear capacitors

Linear capacitors:

$$C = \frac{\varepsilon_{OX}A}{tox} = C_dA$$

Capacitor specifications

- 1. Dissipation (quality factor) of a capacitor
- 2. Parasitic capacitors to ground from each node of the capacitor.
- 3. The density of the capacitor in Farads/area.
- 4. The absolute and relative accuracies of the capacitor.
- 5. The *Cmax/Cmin ratio which is the largest value of capacitance to the smallest when* the capacitor is used as a variable capacitor (*varactor*).
- 6. The variation of a variable capacitance with the control voltage (is it linear).
- 7. Linearity, q = Cv.

PMOS on Substrate Gate Capacitors

(a)

(a) Polysilicon-oxide-channel

High density, good matching, but nonlinear

NMOS in p-well Gate Capacitor

- Gate as one terminal of the capacitor
- Some combination of the source, drain, and bulk as the other terminal

Gate Capacitor vs V_{GS} with D=S=B

In this configuration, the MOSFET gate capacitor has 5 regions of operation as V_{GS} is varied. They are:

- 1.) Accumulation
- 2.) Depletion
- 3.) Weak inversion
- 4.) Moderate inversion
- 5.) Strong inversion

For the first four regions, the gate capacitance is the series combination of C_{ox} and C_j given as,

$$C_{\text{gate}} = \frac{1}{\frac{1}{C_{ox}} + \frac{1}{C_j}}$$

3-seg Approximation

Region	Channel R	C_{ox} and C_j	Cgate	3-Segment Model
Accumulation	Large	In series and $C_j > C_{ox}$	$C_{\text{gate}} \approx C_{ox}$	$G \circ G$ $S \circ C_{ax}$ C_{j} C_{j} C_{j} C_{j} C_{j} C_{ax}
Depletion	Large	In series and $C_j \approx C_{ox}$	$C_{\text{gate}} \approx 0.5 C_{ox}$ $\approx 0.5 C_j$	$G \circ G \circ G$ $C_{ax} = F \circ D \simeq C_{ax}$ $C_{j} = F \circ D \simeq C_{ax}$ $C_{j} = F \circ D \simeq C_{ax}$ $C_{ax} = F \circ D \simeq C_{ax}$ $C_{ax} = F \circ D \simeq C_{ax}$ $C_{ax} = F \circ D \simeq C_{ax}$
Weak Inversion	Large	In series and C _j < C _{ox}	$C_{\text{gate}} \approx C_j$	$G \circ$ $C_{ax} = $ $S \circ$ $C_{j} = $ $G \circ$ $C_{j} = $ $C_{j} = $ $C_{j} = $ $C_{j} = $ $S \circ$ $S \circ$ $C_{j} = $ $S \circ$ $S \circ$
Moderate Inversion	Moderate	In series and C _j < C _{ox}	$C_j < C_{gate} < C_{ox}$	$\begin{array}{c} G \\ C_{ax} \\ S \\ C_{j} \\ C_{j} \\ 070218-04 \end{array} \xrightarrow{G} C_{j} \\ B \\ C_{j} \\ C$
Strong Inversion	Small	In parallel and C _j < C _{ox}	$C_{\text{gate}} \approx C_{ox}$	$C_{ax} = C_{ax} = C_{ax}$

Gate Capacitor in Inversion Mode

Conditions:

- $D = S, B = V_{SS}$
- Accumulation region removed by connecting bulk to V_{DD}
- Nonlinear
- Channel resistance:

$$R_{on} = \frac{L}{12K_P'(V_{BG} - |V_T|)}$$

• LDD transistors will give lower Q because of the increased series resistance

Inversion Mode NMOS Capacitor

E. Pedersen, "RF CMOS Varactors for 2GHz Applications," Analog Integrated Circuits and Signal Processing, vol. 26, pp. 27-36, Jan. 2001.

Accumulation NMOS Gate Cap in n-well

Conditions:

- Remove p⁺ drain and source and put n⁺ bulk contacts instead.
- Implements a variable capacitor with a larger transition region between the maximum and minimum values.
- Reasonably linear capacitor for values of $V_{GB} > 0$

Accumulation Mode NMOS Gate Cap

E. Pedersen, "RF CMOS Varactors for 2GHz Applications," Analog Integrated Circuits and Signal Processing, vol. 26, pp. 27-36, Jan. 2001.

PN Junction Capacitors in a Well

Layout:

Minimize the distance between the p^+ and n^+ diffusions.

Two different versions have been tested.

- 1.) Large islands 9μ m on a side
- 2.) Small islands 1.2μ m on a side

PN-Junction Capacitors

The anode should be the floating node and the cathode must be connected to ac ground. Experimental data (Q at 2GHz, 0.5 μ m CMOS)[†]:

Electrons as majority carriers lead to higher *Q* because of their higher mobility. The resistance, R_{wj} , is reduced in small islands compared with large islands \Rightarrow higher Q

E. Pedersen, "RF CMOS Varactors for 2GHz Applications," Analog Integrated Circuits and Signal Processing, vol. 26, pp. 27-36, Jan. 2001.

Poly-poly cap on FOX

(b) Polysilicon-oxide-polysilicon

High density, good matching, good linearity, but require two-poly processes

Poly-poly cap on STI

- Very linear
- Small bottom plate parasitics

Metal-insulator-metal cap

In some processes, there is a thin dielectric between a metal layer and a special metal layer called "capacitor top metal". Typically the capacitance is around $1 \text{fF}/\mu \text{m}^2$ and is at the level below top metal.

Good matching is possible with low parasitics.

Fringe Capacitors

Capacitance between conductors on the same level and use lateral flux.

These capacitors are sometimes called fractal capacitors because the fractal patterns are structures that enclose a finite area with a near-infinite perimeter. The capacitor/area can be increased by a factor of 10 over vertical flux capacitors.

R. Aparicio and A. Hajimiri, "Capacity Limits and Matching Properties of Integrated Capacitors," *IEEE J. of Solid-State Circuits, vol. 37, no. 3, March* 2002, pp. 384-393.

3.) Vertical parallel plates (VPP):

4.) Vertical bars (VB):

Comparison

Experimental results for a CMOS process with 3 layers of metal, $L_{min} = 0.5 \mu \text{ m}$, $t_{ox} = 0.95 \mu \text{ m}$ and $t_{metal} = 0.63 \mu \text{ m}$ for the bottom 2 layers of metal.

Structure	Cap. Density	Caver.	Std. Dev.	σ	f _{res.}	Q @	$R_{s}\left(\Omega\right)$	Break-
	(aF/µm ²)	(pF)	(fF)	C _{aver.}	(GHz)	1 GHz		down (V)
VPP	158.3	18.99	103	0.0054	3.65	14.5	0.57	355
PW	101.5	33.5	315	0.0094	1.1	8.6	0.55	380
HPP	35.8	6.94	427	0.0615	6.0	21	1.1	690

Experimental results for a digital CMOS process with 7 layers of metal, $L_{min} = 0.24 \mu \text{m}$, $t_{ox} = 0.7 \mu \text{m}$ and $t_{metal} = 0.53 \mu \text{m}$ for the bottom 5 layers of metal. All capacitors = 1pF.

Structure	Cap. Density	Caver.	Area	Cap.	Std.	σ	$f_{res.}$	Q@	Break-
(1 pF)	$(aF/\mu m^2)$	(pF)	(μm^2)	Enhanc	Dev.	C _{aver.}	(GHz)	1 GHz	down
_		(P-)		ement	(fF)		()		(V)
VPP	1512.2	1.01	670	7.4	5.06	0.0050	> 40	83.2	128
VB	1281.3	1.07	839.7	6.3	14.19	0.0132	37.1	48.7	124
HPP	203.6	1.09	5378	1.0	26.11	0.0239	21	63.8	500
MIM	1100	1.05	960.9	5.4	-	-	11	95	-

Non-ideal Behavior

- Dielectric gradients
- Edge effects
- Process biases
- Parasitics
- Voltage dependence
- Temperature dependence

Parasitic Capacitors

Proper layout of capacitors

For achieving $C_A = 2C_B$, which one is better?

Various Capacitor Errors

Random edge distortion

Large-scale distortion

Corner-rounding distortion

Are A and B the same?

Temperature and Voltage Dependence

- MOSFET Gate Capacitors:
 - Absolute accuracy $\approx \pm 10\%$
 - Relative accuracy $\approx \pm 0.2\%$
 - Temperature coefficient ≈ +25 ppm/C°
 - Voltage coefficient ≈ -50ppm/V
- Polysilicon-Oxide-Polysilicon Capacitors:
 - Absolute accuracy ≈ ±10%
 - Relative accuracy $\approx \pm 0.2\%$
 - Temperature coefficient ≈ +25 ppm/C°
 - Voltage coefficient ≈ -20ppm/V
- Metal-Dielectric-Metal Capacitors:
 - Absolute accuracy $\approx \pm 10\%$
 - Relative accuracy $\approx \pm 0.6\%$
 - Temperature coefficient ≈ +40 ppm/C°
 - Voltage coefficient ≈ -20ppm/V, 5ppm/V2
- Accuracies depend upon the size of the capacitors.

Improving Cap Matching

- Divide each cap into even # of unit caps
- Each unit cap is square, has identical construction, has identical vicinity, has identical routing
- The unit caps for matching critical caps are laid out with inter-digitation, common centroid, or other advanced techniques.

Same comments apply to resistors and transistors

Resistors in CMOS

- Diffusion resistor
- polysilicon resistor
- well resistor
- metal layer resistor
- contact resistor

Resistor specs

Diffusion resistor in n-well

Source/Drain Resistor

060214-02 Older LOCOS Technology

Diffusion:

- 10-100 ohms/square
- Absolute accuracy = $\pm 35\%$
- Relative accuracy=2% (5 μ m), 0.2% (50 μ m)
- Temperature coefficient = +1500 ppm/°C
- Voltage coefficient $\approx 200 \text{ ppm/V}$

Comments:

- Parasitic capacitance to substrate is voltage dependent.
- Piezoresistance effects occur due to chip strain from mounting.

Ion Implanted: 500-2000 ohms/square Absolute accuracy = $\pm 15\%$ Relative accuracy=2% (5µm), 0.15% (50µm) Temperature coefficient = +400 ppm/°C Voltage coefficient ≈ 800 ppm/V

p- substrate

Polysilicon resistor on FOX

Polysilicon Resistor

Older LOCOS Technology 081027-04

30-100 ohms/square (unshielded) 100-500 ohms/square (shielded) Absolute accuracy = $\pm 3.0\%$ Relative accuracy = 2% (5 μ m) Temperature coefficient = 500-1000 ppm/°C Voltage coefficient $\approx 100 \text{ ppm/V}$

Comments:

- Used for fuzzes and laser trimming
- Good general resistor with low parasitics

n-well resistor on p-substrate

N-well Resistor

1000-5000 ohms/square

Absolute accuracy = $\pm 40\%$

Relative accuracy $\approx 5\%$

Temperature coefficient = 4000 ppm/°C

Voltage coefficient is large ≈ 8000 ppm/V

Comments:

- Good when large values of resistance are needed.
- Parasitics are large and resistance is voltage dependent
- Could put a p^+ diffusion into the well to form a pinched resistor

Resistance from *A* to B = Resistance of segments L_1, L_2, L_3, L_4 , and L_5 with some correction subtracted because of corners.

Sheet resistance:

50-70 m Ω/\Box ± 30% for lower or middle levels of metal

 $30-40 \text{ m}\Omega/\Box \pm 15\%$ for top level metal

Watch out for the current limit for metal resistors.

Contact resistance varies from 5Ω to 10Ω .

Tempco \approx +4000 ppm/°C

Need to derate the current at higher temperatures:

 $I_{DC}(T_j) = D_t \cdot I_{DC}(T_r)$

$T_{j}(^{\circ}\mathrm{C})$	$T_{r}(^{\circ}C)$	D_t
<85	85	1
100	85	0.63
110	85	0.48
125	85	0.32
150	85	0.18

Thin Film Resistors

A high-quality resistor fabricated from a thin nickel-chromium alloy or a siliconchromium mixture.

Uppermost metal layer:

Performance:

Sheet resistivity is approximately 5-10 ohms/square

Temperature coefficients of less than 100 ppm/°C

Absolute tolerance of better than $\pm 0.1\%$ using laser trimming

Selectivity of the metal etch must be sufficient to ensure the integrity of the thin-film resistor beneath the areas where metal is etched away.

Thermoelectric (Seebeck) Effects

- When two materials form a junction, a voltage difference is generated, which depends on the temperature
- But a single junction voltage cannot be measured
- It needs at least two junctions
- The voltage difference is:

$$V = (S_B - S_A)T_2 - (S_B - S_A)T_1 = (S_B - S_A)(T_2 - T_1)$$

Seebeck Coefficients

- S_A and S_B are called Seebeck coefficients of material A and material B
- Roughly speaking S is inversely related to the conductivity of the material
- Metals have low S, semiconductors have high S
- High resistivity materials (with light doping) pose serious thermoelectric problems

Table 1. Seebeck Coefficients for Some Metals and Alloys, Compared to Platinum

Seebeck Metals Coefficient μV/K Antimony 47 Nichrome 25 Molybdenum 10 7.5 Cadmium 7.5 Tungsten 6.5 Gold 6.5 Silver 6.5 Copper 6.0 Rhodium 4.5 Tantalum Lead 4.0 3.5 Aluminum 3.0 Carbon 0.6 Mercury 0 Platinum -2.0 Sodium -9.0 Potassium Nickel -15 -35 Constantan -72 Bismuth

Table 2. Seebeck Coefficients for Some Semiconductors

Semiconductors	Seebeck Coefficient		
	μV/K		
Se	900		
Те	500		
Si	440		
Ge	300		
n-type Bi ₂ Te ₃	-230		
p-type Bi _{2-x} Sb _x Te ₃	300		
p-type Sb ₂ Te ₃	185		
PbTe	-180		
Pb ₀₃ Ge ₃₉ Se ₅₈	1670		
Pb ₀₆ Ge ₃₆ Se ₅₈	1410		
Pb ₀₉ Ge ₃₃ Se ₅₈	-1360		
Pb13Ge29Se28	-1710		
Pb15Ge37Se58	-1990		
SnSb ₄ Te ₇	25		
SnBi₄Te ₇	120		
SnBi₃Sb₁Te7	151		
SnBi _{2.5} Sb _{1.5} Te ₇	110		
SnBi ₂ Sb ₂ Te ₇	90		
PbBi ₄ Te ₇	-53		

Moffat, R., "Notes on Using Thermocouples", ElectronicsCooling, Vol. 3, No. 1, 1997

Resistor Layout

- But what about horizontal temperature gradient?
- Use "antiparallel" layout

HW1: Prove that if following the arrow, all the metal to poly contacts have the same centroid as all the poly to metal contacts, then the thermoelectric effect due to linear thermo gradient is cancelled. HW2: Generalize HW1 to design a layout pattern so that thermo-electric effects due to both linear and nonlinear thermo gradients are cancelled.

Suggestions

- Use larger area (increase both W and L) to improve accuracy
- Use metal to make "turns", i.e., use straight strips only
- Use unit resistors
- Use dummies
- Use identical structures and vivinities
- Interdigitate, common centroid, and other techniques for good matching

Passive RC Performance

Component Type	Range of Values	Absolute Accuracy	Relative Accuracy	Temperature Coefficient	Voltage Coefficient
MOSFET gate Cap.	$6-7 \text{ fF}/\mu\text{m}^2$	10%	0.1%	20ppm/°C	±20ppm/V
Poly-Poly Capacitor	$0.3-0.4 \text{ fF}/\mu \text{m}^2$	20%	0.1%	25ppm/°C	±50ppm/V
Metal-Metal Capacitor	$0.1-1 fF/\mu m^2$	10%	0.6%	??	??
Diffused Resistor	10-100 Ω/sq.	35%	2%	1500ppm/°C	200ppm/V
Ion Implanted Resistor	0.5-2 kΩ/sq.	15%	2%	400ppm/°C	800ppm/V
Poly Resistor	30-200 Ω/sq.	30%	2%	1500ppm/°C	100ppm/V
<i>n</i> -well Resistor	1- 1 0 kΩ/sq.	40%	5%	8000ppm/°C	10kppm/V
Top Metal Resistor	30 mΩ/sq.	15%	2%	4000ppm/°C	??
Lower Metal Resistor	$70 \text{ m}\Omega/\text{sq}.$	28%	3%	4000ppm/°C	??

Parasitic Bipolar in CMOS

Vertical PNP Horizontal NPN

Latch-up problem

Preventing Latch-up

p⁻ substrate

Guard Rings

- Collect carriers flowing in the silicon
- Bypass unwanted currents to VDD or VSS
- Isolate sensitive circuits from noise and/or interferences

Guard rings in *n*-material:

Guard rings in *p*-material:

DD

051201-01

 n^+

Butted Contacts and Guard Rings

- To reduce sensitivity
- To prevent latch up

Intentional Bipolar

- It is desirable to have the lateral collector current much larger than the vertical collector current.
- Lateral BJT generally has good matching.
- The lateral BJT can be used as a photodetector with reasonably good efficiency.
- Triple well technology allows the current of the vertical collector to avoid the substrate.

Donut PMOS as bipolar

- A Field-Aided Lateral BJT
 - Use minimum channel length
 - enhance beta to50 to 100
- Can be done in ON0.5 or TSMC0.18

 No STI

ESD protection

• A very serious problem

• Not enough theoretical study

• Many trade secrets

• Learn from experienced designers