
Common mode feedback for 
fully differential amplifiers 



Differential amplifiers 
• Cancellation of common mode signals 

including clock feed-through 
• Cancellation of even-order harmonics 
• Double differential signal swing, SNR↑3dB 

 
 
 

Symbol: 
 



Two-Stage, Miller, Differential-In, 
Differential-Out Op Amp 

Output common mode range (OCMR)  
= VDD-VSS - VSDPsat - VDSNsat 

peak-to-peak  
output voltage  

≤ 2·OCMR 



Common Mode Output Voltage 
Stabilization 

Common mode 
drift at output 

causes differential 
signals move into 

triode region 



Common Mode feedback 
• All fully differential amplifier needs CMFB 
• Common mode output, if uncontrolled, 

moves to either high or low end, causing 
triode operation 

• Ways of common mode stabilization: 
– external CMFB 
– internal CMFB 



Common mode equivalent 
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What about single ended? 
Does it have the same problem? 
Does it require feedback stabilization? 
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Yes, to 
all three 
questions 
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To match I1 and I3, the diode connection 
provides the single stage positive feedback to 
automatically generate Vg3. 
The match between I2 and I4, and I6 and I7 is 
a two stage problem and requires negative 
feedback: needs feedback from Vo to Vi-. 
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All op amps must 
be used in 
feedback 
configuration! 

Buffer connection 
or resistive 
feedback provides 
the needed 
negative feedback 
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Fully differential amplifiers are also used in 
feedback configuration. 
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Hence, differential signal is well defined. 
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But when you add the first 
two equations 
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Since Vp+Vn is undefined, Vo++Vo- is undefined. 

You get: 
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Basic concept of CMFB: 
Since diff feedback and diff input uses Vin+ and Vin-, CMFB has 

to be applied to somewhere else: like a bias current 

e ∆vb 
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Basic concept of CMFB: 

e ∆vb e 

Find transfer function from e to Voc: ACMF(s) 
Find transfer function from an error source to Voc: Aerr(s) 
Voc error due to error source: err*Aerr(0)/ACMF(0) 
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Need to make sure to have negative feedback 
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? 
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Resistive C.M. detectors: 



Resistive C.M. detectors: 

Vo.c. 

R1 R1 
Vo- Vo+ 

Vi- Vi+ 

Not recommended. 
The resistive loading kills gain. 



Buffer Vo+, Vo- before connecting to R1. 
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Simple implementation: 

 source follower 

Vo- Vo+ 
Vo.c. 

* Gate capacitance is added to your amp load. 



Why not: 
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C1 C2 short diff C         A
 freq. high at :Prob

 if 21,
2

CCVV oo =
+ −+

* Initial voltage on cap. Is unknown 



Use buffer to isolate Vo node: 

gate cap is load 

or resistors 
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Folded cascode amplifier 

Practical: Combine resistor, capacitor, and buffering 



To increase or decrease the C.M. loop gain: 
e.g. 

VocRef Voc 

VCMFB 



Another implementation 
• Use triode transistors to provide isolation 

& z(s) simultaneously. 

Vo- Vo+ 

Voc 

M1 M2 

can be a c.s. 

M1, M2 in deep triode. 

VGS1, VGS2>>VT 

In that case, circuit above M1, 
M2 needs to ensure that M1, M2  
are in triode. 
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Example: 

M1 M2 

Vb 
Vo+ Vo- 

Input stage 

e.g. Vo+, Vo-≈2V at Q & Vb ≈1V , 

Then M1&2 will be in deep triode. 
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Two-Stage, Miller, Differential-In, 
Differential-Out Op Amp 

M10 and M11 are in deep triode 



 

 

Vo++ Vo- 

2 VocREF. 

VCMFB 

Vo+ 

Vo- 

large be can gain

CMFB
oo VVV

→
+ −+

2

Note the difference 
from the book 

accommodates much 
larger VoCM range 
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Small signal analysis of CMFB 
Example: 

Differential signal 

Common mode signal 

VCMFB 



• Differential Vo: Vo+↓ by ΔVo, Vo-↑ by ΔVo 

• Common mode Vo: Vo+↑ by ΔVo, Vo-↑ by ΔVo 
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Switched cap CMFB  
supports full Vo swing: VSS to VDD 

Vo+ 

Vo- VoCRef 

VoCRef 
Φ2 Φ1 Φ1 

Vb-repl 
VCMFB 

During phi_1, the left cap are charged by the op 
amp output, and the right caps are charged by the 
reference and nominal bias voltage. 
During phi_2, the charges are averaged. 



One simplified implementation 
VCM: desired Voc 
VGS14: desired bias 
Split for gain reduction 
C1=C2 



Points to consider 
• If supply is high: 

– S2 can be NMOS 
– S1 and S3 can be either NMOS or PMOS or 

transmission gates 
– S4 an S5 must be transmission gates 

• If supply is very low: 
– May need to use charge pump to boost the 

switch gate voltages 
• Error due to charge injection from switches 

– Intentionally offset VCM and VGS14 
– Use simulation to determine the right values 



Bandwidth of CMFB loop 
• Ideally, if CM and DM are fully decoupled, CM 

only needs to stabilize operating points.  CM 
bandwidth only needs to be wide enough to 
handle disturbances affecting operating points. 

• Practically, there is CMDM conversion. 
CM loop needs to handle disturbances of 
bandwidth comparable to DM BW 

• But CM loop shares most of DM poles and have 
additional poles,  difficult to achieve similar 
bandwidth,  make CM loop bandwidth a few 
times lower than DM 

Here Bandwidth = unity loop gain frequency 
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CM and DM equivalent circuit Comparison 
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½ M5 

ro1=rdsp||rcascode≈rdsp 
ro1=rdsp||rdsn≈ ½rdsp 

gm = ½gm5 
gm = gm1 

Low frequency pole p1 is about 2X lower in CM;  
DC gain is change by 2*½gm5/gm1,  
unity gain frequency gm/CC is changed by ½gm5/gm1,  
high frequency poles and zeros of DM remain in CM,  
CM has one additional node at D5  

similar or worse 
PM at unity gain fre 

CM DM 



To ensure sufficient CMFB loop stability 

• CMFB loop gain = CM gain from VCMFB 
to Voc * gain of CMFB circuit 

• To ensure sufficient PM for CMFB loop 
– Make the DC gain of CMFB circuit to be a few 

time less than one 
– That makes the CMFB loop UGF to be a few 

times lower than CM gain’s UGF 
– Make sure the additional pole in the CM gain 

and any additional poles from the CMFB 
circuit to be at higher frequency than DM UGF 



CM gain’s additional pole at D5 is given by: ~ -gm1/(Cgs1+½Cdb5) 
This is close to fT of M1. So at very high fre. 
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If the CMFB circuit below is to be used, then the following needs to be true: 
1. IB and M5 sized to give desired VCMFB when Vo+=Vo-=desired 
2. CMFB circuit DC gain ACMFB=2gm1f/gm5f is small.  
3. Pole of CMFB – gm5f/(Cgs5+Cgs5f+Cdb5f+Cdb1,2f) >> ACMFB*UGF of DM 

Also, W/L of M1-4f 
should be small, so 
that their VEB is large 
to accommodate Vo+, 
Vo- swing. 
 
This is consistent with 
(1.) above 
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Example DC gains But does not mean 
CM Q point can be 
maintained with -
70dB accuracy! 



Why? 



Because op amp is always used in feedback configuration. 
DM feedback also kills CM gain, since DM and CM share the same 
path from vo1 to vo. 
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Is it good enough to stabilize the CM Q points to 
-25 dB accuracy level? 
 
If not, what can be done? 
 
Increase the effective gm5ro5! 
    That is: use cascode tail current source. 
 
This will improve the CMFB loop gain under DM 
feedback by about 30 to 35 dB. 
 
Or, increase the gain of CMFB circuit. 
In doing so, avoid introducing high impedance 
node, avoid introducing poles near or lower than 
DM GB. 



Voc variation range 
• Voc variation comes from two sources 

– Input common mode 
– Common mode PVT variations 

• Vicm induced Voc variation 
– Find closed-loop Vicm range 
– Find closed-loop gain from Vicm to Voc 
– Find contribution to Voc variation 

• PVT induced Voc variation 
– Refer all PVT variations to VBP variation 
– Find gain closed-loop from VBP to Voc 
– Find contribution to Voc variation 
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