Common mode feedback for
fully differential amplifiers



Differential amplifiers

e Cancellation of common mode signals
Including clock feed-through

e Cancellation of even-order harmonics
* Double differential signal swing, SNR13dB
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Two-Stage, Miller, Differential-In,
Differential-Out Op Amp
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Common Mode feedback

 All fully differential amplifier needs CMFB

« Common mode output, If uncontrolled,
moves to either high or low end, causing
triode operation

o Ways of common mode stabilization:
— external CMFB
— Internal CMFB



Common mode equivalent
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What about single ended?
Does it have the same problem?
Does it require feedback stabilization?



]

Yes, to Y

all three — [
questions |
I: lll |21 :Iv_+ I_'VO

To match 11 and 13, the diode connection
provides the single stage positive feedback to
automatically generate Vg3.

The match between 12 and 14, and 16 and 17 Is
a two stage problem and requires negative
feedback: needs feedback from Vo to Vi-.
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Fully differential amplifiers are also used In
feedback configuration. AN
Vi+ _Vp — VIO _VO— Vi— _Vn — Vn _Vo+ Vis Vo o > Vo.
R R R R
i b i b Vi_ Vn . - V0+
Vi+ _Vi— - (Vp _Vn) _ Vp _Vn T (Vo+ _Vo—) m

R R,

If amplifier gain is high, V -V, 1s =0,

Vi+ _Vi— — (VO+ _VO_) , and VOJr _Vo— — &(VH _Vi—)
R Ry R

Hence, differential signal is well defined.



But when you add the first
two equations
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Vi+ +Vi— o (Vp +Vn) Vp +Vn o (Vo+ +V0—) m

R R,

Solving for V,, +V__,

V. +V, _= R V) + R+
R R.

BV v,

Since V,+V, Is undefined, V,,+V,_Is undefined.



Basic concept of CMFB:

Since diff feedback and diff input uses Vin+ and Vin-, CMFB has
to be applied to somewhere else: like a bias current
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Basic concept of CMFB:

CM 2

V.. measurement

BA, | e W V7CRef

Find transfer function from e to V_.: Acye(S)
Find transfer function from an error source to V,.: A, (S)
V.. error due to error source: err*A_ (0)/A-y:(0)
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Example

Need to make sure to have negative feedback



Resistive C.M. detectors:
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. Prob :resistive loading effect.

use R, R, very large
- difficult to achieve
-especially whenV, Is
at an cascoded node



Resistive C.M. detectors:
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Not recommended.
The resistive loading kills gain.



Buffer V,,, V,. before connecting to R;.
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Simple implementation:

source follower
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* Gate capacitance is added to your amp load.



Why not:
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* Initial voltage on cap. Is unknown



Use buffer to isolate V, node:

ate cap is load
[ /9 P

/OI' resistors
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To increase or decrease the C.M. loop gain:
e.g.
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VCMFB




Another implementation

o Use triode transistors to provide isolation
& z(s) simultaneously.

M;, M, in deep triode.
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% In that case, circuit above M,
M, needs to ensure that M;, M,






Example:

Input stage
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e.g.V,,, V,=2VatQ &V, =1V,

Then M, will be in deep triode.
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Two-Stage, Miller, Differential-In,
Differential-Out Op Amp
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Small signal analysis of CMFB

Example:
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 Differential V_: V.| by AV, V_ 1 by AV,
« Common mode V,: V,,1 by AV,, V.1 by AV,
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Toincrease gain:

AVg, =201

gm6
Al = —AV._ g . = 2Aj Im7
7 G7gm7 o |

gm6
“ A, = 2Ai(1+ gm?j
gm6

gml ( gm? j
AV g = =ML | 14207 [AV
e gm5 gm6

* gain by geometric ratios = can be made accurate



o With PMOS for M1-4,V__ . 1SV, —V(sat) -V,
andV,, . 1SV, +V(sat)
e Over thisrange, both M1and M3should be on.

o\ .- should be set in the middle of this range.

e Size M1,3and tail current: 24/2 *V_, > this range.
e The V. (sat) of tail CS can be made ver small.

o \With selected tail current, size M5,6 to achieve
oV, that matches desired Vi, at Vod =0.

e Use M7 (one on each side) to increase CM gain.
o Split CMFB MOST to reduce CM gain.



Switched cap CMFB
supports full V, swing: Vg to Vo

V,. ®, ®, ®,

VoCRef

Vv
CMFB Vb-repl
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During phi_1, the left cap are charged by the op
amp output, and the right caps are charged by the
reference and nominal bias voltage.

During phi_2, the charges are averaged.



One simplified implementation
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Points to consider

o If supply is high:
— S2 can be NMOS

— S1 and S3 can be either NMOS or PMOS or
transmission gates

— S4 an S5 must be transmission gates
 If supply is very low:

— May need to use charge pump to boost the
switch gate voltages

e Error due to charge injection from switches
— Intentionally offset VCM and VGS14
— Use simulation to determine the right values



Bandwidth of CMFB loop

e |deally, if CM and DM are fully decoupled, CM
only needs to stabilize operating points. = CM

pandwidth only needs to be wide enough to

nandle disturbances affecting operating points.

e Practically, there is CM<->DM conversion.
=>CM loop needs to handle disturbances of
bandwidth comparable to DM BW

e But CM loop shares most of DM poles and have
additional poles, =» difficult to achieve similar
bandwidth, = make CM loop bandwidth a few
times lower than DM

Here Bandwidth = unity loop gain frequency



Example




CM and DM equivalent circuit Comparison
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»Low frequency pole pl is about 2X lower in CM;
»DC gain is change by 2*%20,.,:/0,11

»unity gain frequency g,,/C. is changed by %20,,:/0,11,
»high frequency poles and zeros of DM remain in CM,
»CM has one additional node at D5

=»similar or worse
PM at unity gain fre



To ensure sufficient CMFB loop stabllity

CMFB loop gain = CM gain from VCMFB
to Voc * gain of CMFB circult

To ensure sufficient PM for CMFB loop

— Make the DC gain of CMFB circuit to be a few
time less than one

— That makes the CMFB loop UGF to be a few
times lower than CM gain’'s UGF

— Make sure the additional pole in the CM gain
and any additional poles from the CMFB
circuit to be at higher frequency than DM UGF



CM gain’s additional pole at D5 is given by: ~ -g,,1/(Cyg; +%2Cy5)
This is close to f; of M1. So at very high fre.

If the CMFB circuit below is to be used, then the following needs to be true:

1. Iz and Mg sized to give desired V., When Vo+=Vo-=desired
2. CMFB circuit DC gain Aqyes=29m1¢/ 9mss 1S Small.
3. Pole of CMFB — gp5¢/(Cyss+Cyssit CapsttCapa 21) == Acurs™UGF 0f DM

V
Bﬂ"ir's Vew B—lg Also, W/L of M.,

should be small, so
Vou —||:JM1f M3f|j I |:JM4f szlj|_ Vo that their Vg IS large

to accommodate V_,,
V,. swing.

This is consistent with
(1.) above




Example DC gains But does not mean

85dB \/ Avem(®) CM Q point can be

—86dB maintained with -
/70dB accuracy!

70dB
AVDI\/I((D)
AvCMFBLOOp((D)

-15dB / \
A, (®) of CMFB circuit
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Why?



Because op amp is always used in feedback configuration.
DM feedback also kills CM gain, since DM and CM share the same
path from vol to vo.
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Example DC gains
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Is it good enough to stabilize the CM Q points to
-25 dB accuracy level?

If not, what can be done?

=> Increase the effective gzl !
That 1s: use cascode tail current source.

This will improve the CMFB loop gain under DM
feedback by about 30 to 35 dB.

=>Or, Increase the gain of CMFB circult.

In doing so, avoid introducing high impedance
node, avoid introducing poles near or lower than
DM GB.



Voc variation range

e \oc variation comes from two sources
— Input common mode
— Common mode PVT variations

* Vicm induced Voc variation
— Find closed-loop Vicm range
— Find closed-loop gain from Vicm to Voc
— Find contribution to Voc variation

* PVT Induced Voc variation
— Refer all PVT variations to Vg, variation

— Find gain closed-loop from Vg to Voc
— Find contribution to VVoc variation
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