# Common mode feedback for fully differential amplifiers

#### **Differential amplifiers**

- Cancellation of common mode signals including clock feed-through
- Cancellation of even-order harmonics
- Double differential signal swing, SNR<sup>3</sup>dB





Output common mode range (OCMR) =  $V_{DD}$ - $V_{SS}$  -  $V_{SDPsat}$  -  $V_{DSNsat}$ 

#### Common Mode Output Voltage Stabilization

Common mode drift at output causes differential signals move into triode region



#### Common Mode feedback

- All fully differential amplifier needs CMFB
- Common mode output, if uncontrolled, moves to either high or low end, causing triode operation
- Ways of common mode stabilization:
  - external CMFB
  - internal CMFB

### Common mode equivalent



![](_page_6_Figure_0.jpeg)

What about single ended? Does it have the same problem? Does it require feedback stabilization?

![](_page_7_Figure_0.jpeg)

To match I1 and I3, the diode connection provides the single stage positive feedback to automatically generate Vg3. The match between I2 and I4, and I6 and I7 is a two stage problem and requires negative feedback: needs feedback from Vo to Vi-. All op amps must be used in feedback configuration!

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

Buffer connection or resistive feedback provides the needed negative feedback

## Fully differential amplifiers are also used in feedback configuration.

$$\frac{V_{i+} - V_p}{R_i} = \frac{V_p - V_{o-}}{R_b}, \quad \frac{V_{i-} - V_n}{R_i} = \frac{V_n - V_{o+}}{R_b}, \quad \bigvee_{i+} - \bigvee_{p} + \cdots + \bigvee_{o-} V_{o-}$$

$$\frac{V_{i+} - V_{i-} - (V_p - V_n)}{R_i} = \frac{V_p - V_n + (V_{o+} - V_{o-})}{R_b}$$

If amplifier gain is high,  $V_p - V_n$  is  $\approx 0$ ,

$$\frac{V_{i+} - V_{i-}}{R_i} = \frac{(V_{o+} - V_{o-})}{R_b}, \text{ and } V_{o+} - V_{o-} = \frac{R_b}{R_i}(V_{i+} - V_{i-})$$

Hence, differential signal is well defined.

## But when you add the first two equations

 $\frac{V_{i+} - V_p}{R_i} = \frac{V_p - V_{o-}}{R_b}, \quad \frac{V_{i-} - V_n}{R_i} = \frac{V_n - V_{o+}}{R_b} \qquad V_{i+} - \sqrt{V_p} \qquad V_{o-}$ You get:  $\frac{V_{i+} + V_{i-} - (V_p + V_n)}{R_i} = \frac{V_p + V_n - (V_{o+} + V_{o-})}{R_b}$ 

Solving for  $V_{o+} + V_{o-}$ ,

$$V_{o+} + V_{o-} = -\frac{R_b}{R_i}(V_{i+} + V_{i-}) + \frac{R_b + R_i}{R_i}(V_p + V_n)$$

Since  $V_p + V_n$  is undefined,  $V_{o_+} + V_{o_-}$  is undefined.

#### Basic concept of CMFB:

Since diff feedback and diff input uses Vin+ and Vin-, CMFB has to be applied to somewhere else: like a bias current

![](_page_11_Figure_2.jpeg)

#### Basic concept of CMFB:

![](_page_12_Figure_1.jpeg)

Find transfer function from e to  $V_{oc}$ :  $A_{CMF}(s)$ Find transfer function from an error source to  $V_{oc}$ :  $A_{err}(s)$  $V_{oc}$  error due to error source:  $err^*A_{err}(0)/A_{CMF}(0)$ 

#### example

![](_page_13_Figure_1.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

Need to make sure to have negative feedback

#### **Resistive C.M. detectors:**

![](_page_15_Figure_1.jpeg)

#### Resistive C.M. detectors:

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

Not recommended. The resistive loading kills gain. Buffer  $V_{0+}$ ,  $V_{0-}$  before connecting to  $R_1$ .

![](_page_17_Figure_1.jpeg)

Simple implementation:

source follower

![](_page_17_Figure_4.jpeg)

\* Gate capacitance is added to your amp load.

#### Why not:

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

$$\frac{V_{o+} + V_{o-}}{2}$$
, if  $C_1 = C_2$   
Prob : at high freq.  
AC diff short

\* Initial voltage on cap. Is unknown

Use buffer to isolate V<sub>o</sub> node:

![](_page_20_Figure_1.jpeg)

#### Practical: Combine resistor, capacitor, and buffering

![](_page_21_Figure_1.jpeg)

Folded cascode amplifier

### To increase or decrease the C.M. loop gain:

![](_page_22_Figure_1.jpeg)

## Another implementation

 Use triode transistors to provide isolation & z(s) simultaneously.

![](_page_23_Figure_2.jpeg)

 $M_1$ ,  $M_2$  in deep triode.  $V_{GS1}$ ,  $V_{GS2}$ >> $V_T$ 

In that case, circuit above  $M_1$ ,  $M_2$  needs to ensure that  $M_1$ ,  $M_2$  are in triode.

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

e.g.  $V_{o+}$ ,  $V_{o-}\approx 2V$  at Q &  $V_b \approx 1V$ , Then  $M_{1\&2}$  will be in deep triode.

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

#### Two-Stage, Miller, Differential-In, Differential-Out Op Amp

![](_page_27_Figure_1.jpeg)

M10 and M11 are in deep triode

![](_page_28_Figure_0.jpeg)

#### Small signal analysis of CMFB

Example:

![](_page_29_Figure_2.jpeg)

Common mode signal

- Differential  $V_o: V_{o+} \downarrow by \Delta V_o, V_{o-} \uparrow by \Delta V_o$
- Common mode  $V_o: V_{o+\uparrow} \text{ by } \Delta V_o, V_{o-\uparrow} \text{ by } \Delta V_o$

$$\Delta i = g_{m1} \frac{\Delta V_o}{2} \qquad (g_{m1} = g_{m2} = g_{m3} = g_{m4})$$
$$\Delta V_{CMFB} = \frac{1}{g_{m5}} \cdot 2\Delta i \qquad \left(k = \frac{g_{m1}}{g_{m5}}\right)$$
$$= k \cdot \Delta V_o$$

![](_page_31_Figure_0.jpeg)

To increase gain :

$$\Delta V_{G7} = -2\Delta i \frac{1}{g_{m6}}$$

$$\Delta i_7 = -\Delta V_{G7} g_{m7} = 2\Delta i \frac{g_{m7}}{g_{m6}}$$

$$\therefore \Delta i_5 = 2\Delta i \left( 1 + \frac{g_{m7}}{g_{m6}} \right)$$

$$\Delta V_{CMFB} = \frac{s_{m1}}{g_{m5}} \left( 1 + \frac{s_{m7}}{g_{m6}} \right) \Delta V_o$$

\* gain by geometric ratios  $\Rightarrow$  can be made accurate

- With PMOS for M1-4,  $V_{o+\max}$  is  $V_{DD} V_{DS}(sat) V_T$ and  $V_{o+\min}$  is  $V_{SS} + V_{DS}(sat)$
- Over this range, both M1 and M3 should be on.
- $V_{ocREF}$  should be set *i*n the middle of this range.
- Size M1,3 and tail current :  $2\sqrt{2} * V_{od} \ge$  this range.
- The  $V_{DS}(sat)$  of tail CS can be made ver small.
- With selected tail current, size M5,6 to achieve
- $V_{gs}$  that matches desired  $V_{CMFB}$  at Vod = 0.
- Use M7 (one on each side) to increase CM gain.
- Split CMFB MOST to reduce CM gain.

# Switched cap CMFB supports full $V_o$ swing: $V_{SS}$ to $V_{DD}$

![](_page_34_Figure_1.jpeg)

During phi\_1, the left cap are charged by the op amp output, and the right caps are charged by the reference and nominal bias voltage. During phi\_2, the charges are averaged.

## One simplified implementation

![](_page_35_Figure_1.jpeg)

## Points to consider

- If supply is high:
  - S2 can be NMOS
  - S1 and S3 can be either NMOS or PMOS or transmission gates
  - S4 an S5 must be transmission gates
- If supply is very low:
  - May need to use charge pump to boost the switch gate voltages
- Error due to charge injection from switches – Intentionally offset VCM and VGS14
  - Use simulation to determine the right values

## Bandwidth of CMFB loop

- Ideally, if CM and DM are fully decoupled, CM only needs to stabilize operating points. → CM bandwidth only needs to be wide enough to handle disturbances affecting operating points.
- Practically, there is CM ← → DM conversion.
   → CM loop needs to handle disturbances of bandwidth comparable to DM BW
- But CM loop shares most of DM poles and have additional poles, → difficult to achieve similar bandwidth, → make CM loop bandwidth a few times lower than DM

Here Bandwidth = unity loop gain frequency

## Example

![](_page_38_Figure_1.jpeg)

#### CM and DM equivalent circuit Comparison

![](_page_39_Figure_1.jpeg)

Low frequency pole p1 is about 2X lower in CM;
 DC gain is change by 2\*1/2g<sub>m5</sub>/g<sub>m1</sub>,
 unity gain frequency g<sub>m</sub>/C<sub>C</sub> is changed by 1/2g<sub>m5</sub>/g<sub>m1</sub>,
 high frequency poles and zeros of DM remain in CM,
 CM has one additional node at D5

→similar or worse PM at unity gain fre To ensure sufficient CMFB loop stability

- CMFB loop gain = CM gain from VCMFB to Voc \* gain of CMFB circuit
- To ensure sufficient PM for CMFB loop
  - Make the DC gain of CMFB circuit to be a few time less than one
  - That makes the CMFB loop UGF to be a few times lower than CM gain's UGF
  - Make sure the additional pole in the CM gain and any additional poles from the CMFB circuit to be at higher frequency than DM UGF

CM gain's additional pole at D5 is given by: ~  $-g_{m1}/(C_{gs1} + \frac{1}{2}C_{db5})$ This is close to  $f_T$  of M1. So at very high fre.

If the CMFB circuit below is to be used, then the following needs to be true:

- 1.  $I_B$  and  $M_5$  sized to give desired  $V_{CMFB}$  when  $V_{O+}=V_{O-}=desired$
- 2. CMFB circuit DC gain  $A_{CMFB} = 2g_{m1f}/g_{m5f}$  is small.
- 3. Pole of CMFB  $g_{m5f}/(C_{gs5}+C_{gs5f}+C_{db5f}+C_{db1,2f}) >> A_{CMFB}^{*}UGF$  of DM

![](_page_41_Figure_5.jpeg)

Also, W/L of  $M_{1-4f}$ should be small, so that their  $V_{EB}$  is large to accommodate  $V_{0+}$ ,  $V_{0-}$  swing.

This is consistent with (1.) above

![](_page_42_Figure_0.jpeg)

#### Why?

Because op amp is always used in feedback configuration. DM feedback also kills CM gain, since DM and CM share the same path from vo1 to vo.

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

Is it good enough to stabilize the CM Q points to -25 dB accuracy level?

If not, what can be done?

→Increase the effective g<sub>m5</sub>r<sub>o5</sub>! That is: use cascode tail current source.

This will improve the CMFB loop gain under DM feedback by about 30 to 35 dB.

→Or, increase the gain of CMFB circuit. In doing so, avoid introducing high impedance node, avoid introducing poles near or lower than DM GB.

## Voc variation range

- Voc variation comes from two sources
  - Input common mode
  - Common mode PVT variations
- Vicm induced Voc variation
  - Find closed-loop Vicm range
  - Find closed-loop gain from Vicm to Voc
  - Find contribution to Voc variation
- PVT induced Voc variation
  - Refer all PVT variations to  $V_{\text{BP}}$  variation
  - Find gain closed-loop from  $V_{\rm BP}$  to Voc
  - Find contribution to Voc variation

![](_page_49_Figure_0.jpeg)