EE 330 Homework 1, Due in class on Friday week 1.

Problem 1 Assume a simple circuit requires 2,000 MOS transistors on a die and that all transistors are minimum sized. If the transistors are fabricated in a 7nm CMOS process (the dimensions of a minimum-sized transistor are 7nm x 7nm) and the spacing overhead for the transistors is a factor of 10 (Spacing overhead is needed to allow for electrical separation between devices. With a spacing overhead of 10, often designated as 10x, the average area per transistor is assumed to be 10 times larger than the transistor itself.), determine the number of die that can be fabricated on a 12" silicon wafer. Neglect the area required for the bonding pads of the circuit (bonding pad area actually dominates the die area for integrated circuits with a small number of small MOS transistors but is neglected in this problem).

Problem 2 If the cost of a 12 inch wafer (actually 300mm) is \$3500, determine the cost/die for the circuit in Problem 1.

Problem 3 How many 7 nm transistors can be placed on a die that has the same area as a single ink drop from an ink-jet printer? Assume a 10x spacing overhead.

Problem 4 The clock frequency of microprocessors has not increased appreciably for the past several years yet performance is improving through the parallelism offered by multiple cores. Why is it more energy efficient to use multiple cores on a die each operating at a lower clock rate than to have a single core operating at a higher clock frequency?

Problem 5 How does the feature size (minimum gate length) in a 7nm process compare to the approximate "diameter" of a silicon atom? To a SiO₂ molecule? To the diameter of a human hair?

Problem 6. What is the feature size used in the Intel Cannon Lake processor?

Problem 7 The current flow into a microprocessor can be quite large. There are various methods for connecting a power supply to an integrated circuit but one way is with gold wires that are termed "bonding wires". Assuming the average supply voltage of the Quad Core Intel i7 3930K is 1.2V and the power dissipation is 95 watts.

a) What is the current draw from the 1.2V supply?

b) What would be the voltage drop in a bonding wire if a single gold wire that is 25.5um (1 mil) in diameter and $\frac{1}{2}$ inch long is used to bring power into the processor?

c) What would be the power dissipated in this wire?

d) How many parallel gold wires that are 25.5um in diameter would be needed to guarantee that the current in these interconnects is at most 10% of the fusing current? (Power requirements for some Intel processors and some properties of bonding wires are attached).

Banelia Tandiane Jandiane Tandiane				(GLA) Manuf	, Incorporated cturet's Representative		
American Control (or obtaining) Typical (honding varies) Restance (honding varies) <	Electronic Congronenses	Parted Creat Boards	Contract Assembly Services	Custion Code	& Transformers IC Per	kaging Sernors	Contact
Ture Type Diameter Ture Auo. Restriction Typeal Tenage Current (auo) Restriction Almunun 1.00 (cp. unic) (cp. unic) (cp. unic) Restriction Restrion			Current carrying	capacity of bonding wi	Le Le		and the second
Allminim 10 0.9 1.3 0.216.33 3.5.5.5.5 1 1.2 1.2 0.66 0.01 0.66 0.46 1 1.3 1.3 0.63 1.01 0.66 0.66 1 1.1 0.95 0.60 0.66 0.66 0.66 2.00 1.17 0.95 0.66 3.64 1.12 0.66 2.00 1.17 0.05 3.64 1.12 0.66 0.66 2.00 1.12 0.66 3.64 1.12 0.66 1.12 0.66 0.00 1.12 0.66 0.61 1.12 5.6 1.12 5.6 0.01 1.12 0.66 0.66 3.66 5.6	Wire Type	Diameter (mils)	Wire Area (sq. mils)	Resistivity (ohns inch)	Typical Fusing Current (amps)	Bog	commended nd Pad (mils)
12 12 086 0.45 0.45 0.45 13 1 17 036 047 064 064 210 214 036 041 055 041 056 210 215 049 213 041 012 041 012 210 112 046 112 046 213 912 210 1130 0467 112 012 112 012 110 75 041 013 112 214 214 200 114 001 112 013 213 014 200 114 001 213 013 214 014 200 114 001 213 016 114 016 201 113 0103 213 016 016 016 201 113 016 013 013 016 016 201 113	Alunium	100	619	8	027030		35x35
130 1,7 0.69 0.647 0.647 0.64 200 3.1 0.35 1012 6.68 300 77 0.035 1012 6.68 300 125 0.035 3.54 9.12 4.00 125 0.065 3.54 12.70 8.00 126 0.065 3.54 12.70 9.01 126 0.065 3.54 12.70 9.01 126 0.067 3.54 12.70 9.01 126 0.067 12.75 0.65 12.00 754 0.013 16.8 25.46 12.01 13.10 0.005 3.12 0.046 13.01 10.01 0.013 3.15 0.046 0.01 1.01 0.005 3.15 0.046 0.01 1.067 1.16 0.660 4.14 0.01 1.01 0.05 3.06 3.16 0.01 1.065 1.16 <td></td> <td>135</td> <td>13</td> <td>0.856</td> <td>0405</td> <td></td> <td>4x4</td>		135	13	0.856	0405		4x4
200 314 0.55 0.14 300 7.07 0.065 3.3.4.0 9.12 300 1257 0.065 3.3.4.0 1.2.7.0 400 1257 0.065 3.5.4.0 1.2.7.0 500 1257 0.065 3.5.4.0 1.2.7.0 800 9.45 0.050 3.5.4.0 1.2.7.0 1000 76.4 0.050 3.5.4 2.5.4.0 1100 76.4 0.013 1.1.2 2.5.4.0 1200 113.10 0.069 3.1.2 3.5.4.0 1500 76.4 0.013 3.1.6 3.5.4 1500 17 0.069 3.2.2 3.5.4 500 116 0.05 3.6.0 3.6 51 1.0 0.05 3.6 3.6 51 1.0 0.69 1.6 3.6 3.6 51 1.0 0.65 1.6 3.6 3.6 1.1 0.5.6		150	17	0.595	2090		6x6
300 707 0.19 2.25 9.12 400 1257 00657 5.4 12.50 500 9.05 0.055 5.4 12.50 800 9.05 0.057 5.6 12.50 100 7.54 0.005 5.6 12.50 100 7.54 0.013 16.18 20.52 12.00 11.3.10 0.005 21.23 00.46 13.00 7.61 0.005 20.5 00.46 5.10 13.16 0.005 20.5 00.46 6.01 1.0 0.05 20.5 00.46 6.01 1.0 0.05 20.5 00.5 6.01 1.0 0.05 20.5 00.5 1.30 1.31 0.05 20.6 0.5 1.31 1.0 0.55 1.5 0.5 1.31 1.31 0.51 1.5 0.55 1.31 1.31 0.51 1.5		200	3.14	0.335	10.12		6x8
400 1257 0.0655 5.4.0 12.7.0 500 19.6.5 0.0265 5.6 15.2.5 800 5.0.7 0.0265 5.6 15.2.5 800 5.0.7 0.0265 5.6 15.2.5 1000 76.4 0.0134 16.18 2.7.4.0 12.00 113.10 0.0055 12.2.5 30.4.6 12.00 113.10 0.0055 2.1.2.5 30.4.6 12.00 113.10 0.0055 2.1.2 30.4.6 6.01 13.0 0.0055 2.1.2 30.4.6 7.00 14.16 0.0055 2.1.2 30.4.6 6.01 1.0 0.3 1.1.6 4.4 1.30 0.3.5 0.0.5.5 4.4 1.31 1.32 0.0.5 5.5 1.31 0.5.5 1.4 5.5 1.31 0.5.5 1.5.1 5.5 1.31 1.31 1.5.3 5.5 1.31		3.00	7.07	0149	225		9x12
500 1945 0.0857 5.6 15.45 800 30.7 0.010 11.12 20.12 1000 78.4 0.0134 16.18 20.54 12.00 78.4 0.0134 16.18 20.48 12.00 78.4 0.0134 16.18 20.48 12.00 76.1 0.0059 21.23 20.46 20.01 76.1 0.0059 21.23 20.46 20.01 74.16 0.0059 21.23 20.46 20.01 13.14 0.0059 21.23 20.46 20.01 14.1 0.0059 21.23 20.46 20.01 1.16 0.005 21.23 20.46 10 0.19 0.015 21.4 45.4 13 0.015 1.16 0.45 45.4 13 1.1 0.51 1.1 45.4 20.0 31.4 0.23 1.21.4 45.4 20.1 1.1 0		4.00	1257	85300	3540		12x20
600 50.7 00210 11-12 00.52 1000 76.4 0013 16.18 20.40 1200 113.10 0013 16.18 20.46 1200 113.10 0003 21.25 30.46 15.00 15.00 15.10 20.55 30.46 2010 31.16 0.003 21.25 30.46 2010 31.16 0.003 21.25 30.46 2010 31.16 0.003 21.25 30.46 201 10 0.16 0.003 21.25 30.46 201 116 0.003 21.25 30.46 31.46 201 13 0.013 11.6 0.607 31.46 201 13 0.29 0.21.4 1.61 35.5 201 31.4 0.29 1.21.4 5.6 5.5 201 31.4 0.29 1.62.0 5.5 5.6 201 31.4 0.29	G. B. B.	500	5761	0.0657	56	1.111	15x25
IDD 78.4 0.013 16.18 25.40 12.00 113.10 0.0050 21.25 30.48 13.00 113.10 0.0050 21.25 30.46 13.00 113.10 0.0050 20.35 30.46 20.01 21.16 0.0050 20.35 30.46 20.01 21.16 0.005 20.40 20.60 0.01 13 0.05 11.6 0.47 13 13 0.693 0.613 5.5 14 13 0.51 12.1 5.5 13 1.3 0.59 0.51 5.5 1.9 3.4 0.29 0.51 5.5 1.9 3.4 0.29 1.5 5.5 1.5 3.4 0.51 5.5 5.5 1.5 3.4 0.59 5.5 5.5 1.5 3.4 0.54 5.5 5.5 1.5 3.4 0.54 1.5 5.		8.00	50.27	00210	11-12		20x32
I_200 I_210 0005 I_22 30.46 I_500 I_767 0005 I_23 00.66 I_500 I_767 0005 I_24 00.66 I_500 I_167 0005 54.60 50.60 Gold I_10 0.7 I_167 0.60 54.60 Gold I_10 0.7 I_167 0.60 54.6 I_13 I_16 0.7 I_14 1.4 I_13 I_16 0.60 1.4 54.5 I_14 I_19 0.7 I_21.1 64.6 I_20 3.4 0.29 I_21.1 64.6		10.00	7854	00134	16-18		25x40
1500 176.1 0.0059 31.56 40.60 2000 314.16 0.0053 30.40 30.56 7010 314.16 0.0053 30.40 30.56 6uld 1.00 0.93 1.16 0.51 1.41 1.30 1.31 0.695 0.91 54.5 1.30 1.33 0.695 0.91 54.5 1.30 1.31 0.51 1.21.4 64.6 2.00 3.14 0.54 1.21.4 64.6		12.00	113.10	56000	21-23		30 x 48
2010 314.16 00053 59.40 30.60 Gold 1.00 0.9 1.16 06.07 4.14 Gold 1.00 0.9 1.16 06.07 4.14 I.30 1.33 0.69 1.11 05.11 1.14 I.30 1.33 0.69 1.31.14 05.66 5.55 I.30 3.14 0.294 1.31.14 05.66 5.65 Lobal antimum vite (99.9%) vit 21 legenes C. 3.14 0.294 1.6.20 8.8		15,00	12621	63000	20.35		40 x 60
Guid 100 0.9 116 0.6.0.7 4.14 1.30 1.35 0.095 0.910 5.55 1.30 1.37 0.621 1.21.4 6.64 1.30 1.37 0.621 1.21.4 6.64 1.30 3.14 0.621 1.21.4 6.64 1.30 3.34 0.624 1.21.4 6.64 1.31 0.521 1.21.4 6.64 1.31 0.524 1.52.0 8.64 1.31 0.534 1.62.0 8.63 1.31 0.534 1.62.0 8.64 1.31 0.534 1.62.0 8.64 1.31 0.534 1.62.0 8.63 1.31 0.534 1.62.0 8.64 1.31 0.534 1.62.0 8.64 1.31 1.62.0 3.43 9.604 1.31 1.62.0 1.62.0 9.64		20.00	314.16	0.0003	30-60		50x80
130 133 0.6/63 0.0/10 5.5.5 1.90 1.77 0.621 1.2/1.4 6.6.6 2.00 3.14 0.294 1.6.2.0 8.1.8 keel or vibro 1.20 3.1.4 0.294 1.6.2.0 8.1.8 keel or vibro 1.20 0.294 1.6.2.0 8.1.8 keel or vibro 1.20 0.294 1.6.2.0 8.1.8 keel or vibro 1.20 0.294 1.6.2.0 \$.560 <td>Gold</td> <td>1.00</td> <td>6.0</td> <td>116</td> <td>2090</td> <td></td> <td>414</td>	Gold	1.00	6.0	116	2090		414
LSU L31 616 2.00 3.14 0.24 1.6.2.0 8:18 backet 3.14 0.24 1.6.2.0 8:18 there is 3.14 0.24 1.6.2.0 8:18 the label annium vire (99.99%) at 20 legrees C. 4 Store Network Unreacher Chreeker Oresters C. 4 Store Network Chreeker C.		130	13	\$6970	0110		5x5
200 3.14 0.24 1.6.20 8.18 v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Martin v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Martin v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Martin v Stew Moresh Extra Participants v Stew Moresh Extra Participants v Stew Moresh Extra Participants		150	17	0521	1214		6x6
 V Show Monsh Eidange Reages V Show Network Warning V Show Network Warning V Show Network Warning V Show Network Warning V Show Network Unarges V Show Network Corrective Constraint 		2.00	314	0.294	1620		818
	kased au: ut finr 1.0 mil aluminum wire (9 ut finr 1.0 mil gold wire (99.99%)	099%) at 20 égres C. Nat 20 égres C.				 Show Microsoft E Show Microsoft W Show Microsoft W 	Cichange Messages Namings omechicty Changes

Some Properties of Gold and Aluminum Wires

Problem 8 Data is stored in many different ways but today the most popular strategies for storage that can be rapidly retrieved are CDs, DVDs, Blu Ray DVDs, hard disks, static memory (SRAM), dynamic memory (DRAM), and Flash Memory. The first three store data physically on metal/plastic media and retrieve it optically. Hard disks store data magnetically. SRAMs and DRAMs store data electronically in semiconductor materials. Flash memory devices store data electronically in floating gate transistors. Using a table, make a comparison of the storage density (bits per cm²) and the commercial cost of storage per bit in these 7 different media. In making this comparison, try to use state of the art parts or components and, when appropriate, state which part you are using and the approximate cost for the component or device.

Based upon this comparison, what is the lowest cost method for storing data and what is the ratio in the cost/bit between the most expensive and the least expensive data storage approaches in this comparison?

Problem 9 There are varying estimates by presumably reputable sources on the number of people that will be using smart phones on a global basis by the year 2020. What are the prediction extremes? Give the sources of your data.

Problem 10 What percent of the smart phones today use the Android OS?, the Apple OS?, any other OS?

Problem 11 Compare the number of smart phones sold in 2016 to the number of smart phone users in 2016. Comment on the useful "life" of a smart phone and the corresponding market potential.

Problem 12 A major engineering effort is required to support the mobile-phone industry. This includes engineers that work all the way from the infrastructure level down to the process development level. Using the number of smart phone users in the world and worldwide annual

smart-phone sales obtained in the previous problem, obtain a very approximate estimate of the level of the engineering workforce that is needed to support the smart phone industry. In making this assessment, make the following basic simplifying assumptions. Assume the average smart-phone selling price is \$500 (this is not the "plan" price) and the average salary of engineers is \$60,000 (of course some get paid much more and some much less in different parts of the world). If 10% of the total mobile-phone sales revenue is invested in the salary of engineers responsible for development of the mobile-phone infrastructure, how many full-time engineers are needed worldwide to support the growing mobile-phone industry?

Problem 13 Using ModelSim create a 3-input **AND** and a 2-input **NOR** gate. Create a test bench for the code to verify the operation of the design. Provide both your code and the test bench results (appropriate results/waveforms). Use the same input signals for verifying the operation of the **AND** and **NOR** gates in the test bench.

Extra Problems to be Deleted Before Posting

Problem 11 For small circuits, the area required for bonding pads often dominates the area required for a circuit whereas for large circuits, the bonding pad area is a minor contributor to the overall die area. If bonding pads are square and of area $80\mu \times 80\mu$ and the spacing between bonding pads and any circuit components or the edge of the die is 40μ , determine the number of die for the 10,000 transistor circuit of Problem 1 if the circuit requires 8 bonding pads. What is the cost/die if the bonding pads are included