#### NOTES:

Some of the problems can have multiple correct answers. One example is shown below.

### **SOLUTIONS:**

#### Problem 1:

The average thickness of a 12 inch (300 mm) wafer is 750-800 µm With a 150 µm saw

With n cuts (n+1) wafers are obtained

 $(n + 1)(775 \ \mu m) + n(150 \ \mu m) = 2 \ m \ \rightarrow n = 2161$ 

Numbers of wafer = 2161 + 1 = 2162

Answer can range from 2105 to 2222 depending on thickness value

### Problem 2:

From the last page we find, Poly1 sheet resistance =  $7.7 \frac{\Omega}{\blacksquare}$ poly1-Insulator-M1 capacitance =  $64 \frac{aF}{\mu m^2}$  $\omega_{3dB} = \frac{1}{RC} = 2\pi f \rightarrow R = \frac{1}{2\pi f * c} = 19.89 * 10^6 \Omega$ 

a. The minimum area of a poly1 resistor is

$$A_{Resistor} = \frac{19.89 * 10^{6}}{7.7} * 0.2^{2} \mu m^{2} = 103.32 * 10^{3} \mu m^{2}$$
  
The minimum area of a Poly-M1 capacitor is  
$$A_{Capacitor} = \frac{8pF}{64\frac{aF}{\mu m^{2}}} = 125 * 10^{3} \mu m^{2}$$

Total Area  $A = A_{Res} + A_{Cap} = 103.32 * 10^3 + 125 * 10^3 = \frac{228.32 * 10^3 \,\mu m^2}{10^3 \,\mu m^2}$ 

b) We will start with the minimized size resistor has a sheet of  $x \blacksquare$  and the capacitor has an area of  $y \mu m^2$ .

Total area 
$$A = (0.2 * 0.2) * x + y = 0.04x + y$$
  
 $\frac{1}{RC} = \omega_{3dB} = 2\pi f \rightarrow RC = \frac{1}{2\pi f} = 0.0001592 \, Hz$   
 $(x * 7.7)(64 * 10^{-18} * y) = 0.0001592 \rightarrow y = \frac{3.23 * 10^{11}}{x}$   
 $A = 0.04x + \left(\frac{3.23 * 10^{11}}{x}\right) \rightarrow A_{min} \, when \, 0.04x = \frac{3.23 * 10^{11}}{x}$   
 $x = 2.84 * 10^6 \rightarrow y = \frac{7.952 * 10^{12}}{7.0495 * 10^6} = 0.114 * 10^6 \, \mu m^2 2$   
 $R = 2.84 * 10^6 * 7.7 = 55.2 * 10^6 = 21.87 \, M\Omega$ 

 $C = 0.114 * 10^6 * 64 * 10^{-18} = 7.28 * 10^{-12} = 7.28 \, pF$ 

## Problem 3:

- a. Length =  $1\mu m$ , width =  $2\mu m$
- b. Positive photoresist overexposed decreases the size, under-etching increases the size Length =  $1 0.1 + 0.1 = 1.0 \,\mu m$ Width is unchanged.
- c. Overexposing negative photoresist increases the size, under-etching negative photoresist increases size

Length =  $1 + 0.1 + 0.1 = \frac{1.2 \,\mu m}{1.2 \,\mu m}$ 

## Problem 4:

Approximately 53% of the oxide grows above the wafer, and 47% grows into the wafer. The increased wafer height  $W_{height} = 0.53 * 5000 = 2650\text{\AA}$ 

# Problem 5:

Sheet Resistance of poly is 317.1  $\Omega/\blacksquare \Rightarrow \frac{3000}{317.1} = 9.46$ 

Use 0.4  $\mu m$  by 0.4  $\mu m$  squares with the last square being 0.2  $\mu m$  by 0.4  $\mu m$  (counts as 1/2 of square).

 $8 + 0.5 + (2 * 0.55) = 9.6 \blacksquare = \frac{3044.2\Omega}{2}$ 



# Problem 6:

Using poly and Metal1 => 64  $aF/\mu m^2$ 

$$A_{C} = \frac{0.5 * 10^{-12} F}{64 * 10^{-18} F / \mu m^{2}} = 7812.5 \ \mu m^{2} => \sqrt{A_{C}} = 88.39 \mu m$$

88.39µm



88.39µm

## Problem 7:

$$R(320) = 4534 * \left(1 + (320 - 250) * \left(\frac{1200}{10^6}\right)\right) = \frac{4914 \,\Omega}{10^6}$$

## **Problem 8:**

Number of  $\blacksquare = 100$ 

Sheet resistance of Poly = 7.7  $\Omega/\blacksquare$ 

Resistance =  $100 * 7.7 = 770 \Omega$ 

Area =  $100 \ \mu m^2$ 

Poly-Substrate =  $103 \text{ aF}/\mu m^2$ 

M1-Poly = 64  $aF/\mu m^2$ 

 $C_{Poly-Substrate} = 100 \ \mu m^2 * 103 \frac{aF}{\mu m^2} = \frac{10.3 \ fF}{10.3 \ fF}$ 

 $C_{M1-Poly} = 100 \ \mu m^2 * 64 \frac{aF}{\mu m^2} = \frac{6.4 \ fF}{6.4 \ fF}$ 

## Problem 9:

Half adder code:

```
Ln#

1 `timescale 1ns / 1ps

2

3 module Halfadder (iA, iB, oSum, oCarry);

4 input iA, iB; //defining inputs

5 output oSum, oCarry; //defining outputs

6

7 assign oSum = iA^iB; //sum is equal to A xor B

8 assign oCarry = iA & iB; //carry is equal to A and B

9

10 endmodule
```

Test Bench:

| h] /hom  | e/falegria/ee330/Half_adder_tb.v - Default 💳 📰 🔀                         |
|----------|--------------------------------------------------------------------------|
| Ln#      | Now ≑ ➔ 🍐                                                                |
| 1        | `timescale 1ns / 1ps                                                     |
| 2        | <pre>module half_adder_tb ();</pre>                                      |
| 3        | reg A, B;                                                                |
| 4        | wire Sum, Carry;                                                         |
| 5        | Halfadder uut (.iA(A), .iB(B), .oSum(Sum), .oCarry(Carry)); //unit under |
| 6        |                                                                          |
| 7        | initial                                                                  |
| 8        | begin //begin setting bits (basically recreating the truth table)        |
| 10       |                                                                          |
| 10       | 3 1/10                                                                   |
| 10       | $\mathbf{A} = 1^{\circ} \mathbf{D} \mathbf{U};$                          |
| 12       |                                                                          |
| 1/       | initial                                                                  |
| 15       | hitial                                                                   |
| 16       | #10//timestamp to wait 35ps                                              |
| 17       | #10,) Cimes camp of ward borro                                           |
| 18       | A = 1 'b0:                                                               |
| 19       | B = 1'b1;                                                                |
| 20       |                                                                          |
| 21       | #10 //timestamp to wait 35ns                                             |
| 22       |                                                                          |
| 23       | A = 1'b1;                                                                |
| 24       | B = 1'b0;                                                                |
| 25       |                                                                          |
| 26       | #10 //timestamp to wait 35ns                                             |
| 27       |                                                                          |
| 28       | $\mathbf{A} = 1^{\prime} \mathbf{b} 1;$                                  |
| 29       | B = 1.D1;                                                                |
| 3U<br>21 | #10 //timestern to writ 25mg                                             |
| 31<br>20 | #10 ;//timestamp to Walt 35hs                                            |
| 32       | endule                                                                   |
| 55       | endirotate                                                               |

Ignore timestamp comments

Waveform:

