

EE 330 Homework Assignment 5 Spring 2019 (Due Friday Feb 15th)

- Problem 1 How many 12 inch wafers can be obtained from a 2m silicon pull? Assume the kerf width when a wire saw is used is to cut the wafers is 150µm. In solving this problem, state and use a typical value for the wafer thickness.
- Problem 2 A first-order RC filter is shown. The 3-dB band edge of this filter is given by $\omega_{3dB} = \frac{1}{RC}$. Assume Poly 1 is used to make the resistor and the capacitor is a Poly Insulator M1 capacitor. This filter is to be fabricated in the TSMC 0.18µ CMOS process that is characterized by the parameters attached to this assignment. a) Design this circuit and estimate the layer's area required to implement this filter in your design if the 3dB band edge is to be located at 1K Hz and the capacitor value is 8 pF. (Only consider area of resistor and capacitor, ignore V_{IN}, wires and groud) b) If the resistor is too big or the capacitor is too big, the area required to

b) If the resistor is too big or the capacitor is too big, the area required to realize this filter becomes very large. Determine the value of R and C that will minimize the total area and compare the area required for this design with that you required in part a).

Problem 3 Consider the layout of a transistor shown below where red is polysilicon and green is n-active. Rulers with dimensions in μ m are shown.

- a) What is the drawn length and width of the transistor?
- b) Assume positive photoresist is used pattern the polysilicon region to protect it during the polysilicon etch. If the photoresist is over-exposed so that the edges move by $0.1\mu m$ from the desired location and the photoresist development is perfect, and the polysilicon is under-etched so that the edges move by $0.1\mu m$, what will be the actual length and width of the transistor?
- c) Repeat part b) if negative photoresist is used.
- Problem 4 Thermal oxide growth of field oxide causes the wafer surface to become somewhat nonplanar. If 5000Å of field oxide is thermally grown, what is the difference in the thickness of the wafer between regions where field oxide is present and where it is absent. In solving this problem, state and use a typical value for the wafer thickness.

Problem 5Design a 3K (+/-2%) resistor in the TSMC 0.18µ CMOS process. Use Poly 1with a silicide block for the resistor. The width-length ratio of an imaginary box enclosing theresistor should have a W/L ratio of between 1:2 and 2:1. The layout of the resistor can be eithersketched or come from a Cadence layout.

Problem 6 Design a 500fF capacitor in the TSMC 0.18µ CMOS process. Clearly specify which layers you are using for this capacitor. The layout of the capacitor can be either sketched or come from a Cadence layout.

Problem 7 Assume a resistor has a resistance of 4.534K Ω at T=250°K. If the TCR of this resistor is constant of value 1200 ppm/°C, what will be the resistance at T=320°K?

Problem 8 Consider a Poly 1 (without silicide block) interconnect in the 0.18μ CMOS process that is 1μ wide and 100μ long. What is the resistance of this interconnect? What is the capacitance from this interconnect to the substrate? If Metal 1 is above this interconnect, what is the capacitance between this interconnect and Metal 1?

Problem 9-10 Use Modelsim create a one-bit Half Adder. For the inputs use two one-bit inputs. For the outputs, use a one-bit output and a carry out bit. Create a test bench for the code ad show the results and waveforms.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T4BK (MM_NON-EPI_THK-MTL)	VENDOR:	TSMC		
TECHNOLOGY: SCN018	FEATURE	SIZE:	0.18	microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018_TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL P-0	UNITS	
MINIMUM Vth	0.27/0.18	0.50	-0.53	volts
SHORT Idss Vth Vpt	20.0/0.18	571 0.51 4.7	-266 -0.53 -5.5	uA/um volts volts
WIDE Ids0	20.0/0.18	22.0	-5.6	pA/um
LARGE Vth Vjbkd Ijlk	50/50	0.42 3.1 <50.0	-0.41 -4.1 <50.0	volts volts pA
K' (Uo*Cox/2) Low-field Mobility		171.8 398.02	-36.3 84.10	uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

-	Desi	gn Tecł	nnology	XL (um)	XW (um)		
		 M_DEEP M_SUBM	thi	0.0 0.0 -0.0 -0.0)0)2	-0.01 -0.01 0.00 0.00		
FOX TRANSISTORS Vth	-	ATE oly	-	TIVE I 6.6	P+ACTIVE <-6.6	UNITS volts		
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	^{N+} 6.6 10.1 40	₽+ 7.5 10.6	POLY 7.7 9.3	N+BLK 61.0	PLY+BLK 317.1	M1 0.08	м2 0.08 4.18	- ··· , ··· 1
PROCESS PARAMETERS Sheet Resistance Contact Resistance COMMENTS: BLK is sili	M3 0.08 8.97 cide b	POLY_F 991. lock.		м4 0.08 14.09	м5 0.08 18.84	м6 0.01 21.44	N_W 941	UNITS ohms/sq ohms

CAPACITANCE PARAMETERS

Area (substrate) Area (N+active) Area (P+active)	N+ 998	P+ 1152	POLY 103 8566 8324	M1 39 54	M2 19 21	M3 13 14	M4 9 11	M5 8 10	M6 3 9	R_W	D_N_W 129	M5P	N_W 127	UNITS aF/um^2 aF/um^2 aF/um^2
Area (poly)				64	18	10	7	6	5					aF/um^2
Area (metal1)					44	16	10	7	5					aF/um^2
Area (metal2)						38	15	9	7					aF/um^2
Area (metal3)							40	15	9					aF/um^2
Area (metal4)								37	14					aF/um^2
Area (metal5)									36			1003		aF/um^2
Area (r well)	987													aF/um^2
Area (d well)										574				aF/um^2
Area (no well)	139													aF/um^2
Fringe (substrate)	244	201		18	61	55	43							aF/um
Fringe (poly)				69	39	29	24		19					aF/um
Fringe (metal1)					61	35		23						aF/um
Fringe (metal2)						54	37		24					aF/um
Fringe (metal3)							56							aF/um
Fringe (metal4)								58						aF/um
Fringe (metal5)	,								61					aF/um
Overlap (P+active	e)		652											aF/um

CIRCUIT PARAME	TERS		UNITS
Inverters	K		
Vinv	1.0	0.74	volts
Vinv	1.5	0.78	volts
Vol (100 uA)	2.0	0.08	volts
Voh (100 uA)	2.0	1.63	volts
Vinv	2.0	0.82	volts
Gain	2.0	-23.33	
Ring Oscillator Fre	q.		
D1024_THK (31-s		338.22	MHz
DIV1024 (31-stg,1	.8V)	402.84	MHz
Ring Oscillator Pov	ver		
D1024_THK (31-s	tg,3.3V)	0.07	uW/MHz/gate
DIV1024 (31-stg,1	.8V)	0.02	uW/MHz/gate

COMMENTS: DEEP_SUBMICRON

* LOT: T	4Bł	ζ.	WAF:	3(004			
* Tempera	atı	ire_parameters=	Default					
MODEL CI	NO	SN NMOS (LEVEL	=	49
+VERSION	=	3.1	TNOM		27	TOX		4E-9
+XJ	=	1E-7	NCH	=	2.3549E17	VTH0	=	0.3662648
+K1	=	0.5802748	К2	=	3.124029E-3	К3	=	1E-3
+K3B	=	3.3886871	WO	=	1E-7	NLX	=	1.766159E-7
+DVTOW	=	0	DVT1W	=	0	DVT2W	=	0
+DVT0	=	1.2312416	DVT1	=	0.3849841	DVT2	=	0.0161351
+U0	=	265.1889031	UA	=	-1.506402E-9	UB	=	2.489393E-1
+UC	=	5.621884E-11	VSAT	=	1.017932E5	A0	=	2
+AGS	=	0.4543117	в0	=	3.433489E-7	B1	=	5E-6
+KETA	=	-0.0127714	Al	=	1.158074E-3	A2	=	1
+RDSW	=	136.5582806	PRWG	=	0.5	PRWB	=	-0.2
+WR	=	1	WINT	=	0	LINT	=	1.702415E-8
+XL	=	0	XW	=	-1E-8	DWG	=	-4.211574E-
+DWB	=	1.107719E-8	VOFF	=	-0.0948017	NFACTOR	=	2.1860065
+CIT		0	CDSC	=	2.4E-4	CDSCD		0
+CDSCB	=	0	ETA0	=	3.335516E-3	ETAB	=	6.028975E-
+DSUB	=	0.0214781	PCLM	=	0.6602119	PDIBLC1	=	0.1605325
+PDIBLC2	=	3.287142E-3	PDIBLCB	=	-0.1	DROUT	=	0.7917811
+PSCBE1	=	6.420235E9	PSCBE2		4.122516E-9	PVAG	=	0.0347169
+DELTA		0.01	RSH	=	6.6	MOBMOD	=	1
+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
+KT1L		0	KT2	=	0.022	UA1		4.31E-9
+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT		3.3E4
+WL	=	0	WLN		1	WW		0
+WWN	=	1	WWL	=	0	LL	=	0
+LLN	=	1	LW	=	0	LWN		1
+LWL	=	0	CAPMOD		2	XPART		0.5
+CGDO		8.06E-10	CGSO		- 8.06E-10	CGBO		1E-12
+CJ		9.895609E-4	PB		0.8	MJ		0.3736889
+CJSW		2.393608E-10	PBSW		0.8	MJSW		0.1537892
-CJSWG		3.3E-10	PBSWG		0.8	MJSWG		0.1537892
+CF		0	PVTH0		-1.73163E-3	PRDSW		-1.4173554
+PK2		1.600729E-3	WKETA		1.601517E-3	LKETA		-3.255127E
+PUO		5.2024473	PUA		1.584315E-12	PUB		7.446142E-2
+PVSAT		1.686297E3	PETA0		1.001594E-4	PKETA		-2.039532E
)								2.0000020

		SP PMOS (LEVEL		49
+VERSION			TNOM		27	TOX		4E-9
+XJ		1E-7	NCH		4.1589E17	VTH0	=	-0.3708038
+K1		0.5895473	К2		0.0235946	КЗ	=	0
+K3B	=	13.8642028	WO	=	1E-6	NLX	=	1.517201E-
+DVT0W	=	0	DVT1W	=	0	DVT2W	=	0
+DVT0	=	0.7885088	DVT1	=	0.2564577	DVT2	=	0.1
+U0	=	103.0478426	UA	=	1.049312E-9	UB	=	2.545758E-
+UC	=	-1E-10	VSAT	=	1.645114E5	A0	=	1.627879
+AGS	=	0.3295499	в0	=	5.207699E-7	В1	=	1.370868E-
+KETA	=	0.0296157	Al	=	0.4449009	A2	=	0.3
+RDSW	=	306.5789827	PRWG	=	0.5	PRWB	=	0.5
+WR		1	WINT	=	0	LINT	=	2.761033E-
+XL	=	0	XW		-1E-8	DWG		-2.4338891
+DWB	=	-9.34648E-11	VOFF	=	-0.0867009	NFACTOR	=	2
+CIT	=	0	CDSC	=	2.4E-4	CDSCD	=	0
+CDSCB	=	0	ETA0	=	1.018318E-3	ETAB		-3.2063191
+DSUB	=	1.094521E-3	PCLM	=	1.3281073	PDIBLC1	=	2.394169E-
+PDIBLC2	=	-3.255915E-6	PDIBLCB	=	-1E-3	DROUT	=	0
+PSCBE1	=	4.881933E10	PSCBE2	=	5E-10	PVAG	=	2.0932623
+DELTA	=	0.01	RSH	=	7.5	MOBMOD	=	1
+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
+KT1L	=	0	KT2	=	0.022	UAl	=	4.31E-9
+UB1		-7.61E-18	UC1		-5.6E-11	AT		3.3E4
+WL	=	0	WLN	=	1	WW	=	0
+WWN	=	1	WWL	=	0	LL	=	0
+LLN	=	1	LW	=	0	LWN	=	1
+LWL	=	0	CAPMOD	=	2	XPART	=	0.5
+CGDO	=	6.52E-10	CGSO		6.52E-10	CGBO		1E-12
+CJ	=	1.157423E-3	PB		0.8444261	MJ	=	0.4063933
+CJSW	=	1.902456E-10	PBSW	=	0.8	MJSW	=	0.3550788
+CJSWG	=	4.22E-10	PBSWG	=	0.8	MJSWG	=	0.3550788
+CF	=	0	PVTH0	=	1.4398E-3	PRDSW	=	0.5073407
+PK2		2.190431E-3	WKETA	=	0.0442978	LKETA	=	-2.936093E
+PUO	=	-0.9769623	PUA	=	-4.34529E-11	PUB	=	1E-21
+PVSAT	=	-50	peta0	=	1.002762E-4	PKETA	=	-6.740436E
)								

MINIMUM Vth	3.0/0.6	0.78	-0.93	volts	
SHORT Idss Vth Vpt	20.0/0.6	439 0.69 10.0	-238 -0.90 -10.0	volts	
WIDE Ids0	20.0/0.6	< 2.5	< 2.5	pA/um	
LARGE Vth Vjbkd Ijlk Gamma K' (Uo*Cox/2) Low-field Mobility COMMENTS: XL_AMI_C5F	50/50	0.70 11.4 <50.0 0.50 56.9 474.57	<50.0 0.58 -18.4	volts pA V^0.5	
FOX TRANSISTORS Vth	GATE Poly		P+ACTIVE <-15.0		
	82.7 103.2 56.2 118.4	21.7 9	_	7 0.09	MTL2 UNITS 0.09 ohms/sq 0.78 ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance	MTL3 0.05 0.78	N\PLY 824	N_WELL 815	UNITS ohms/sq ohms	

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS	N+ACTV	P+ACTV	POLY	POLY2	M1	M2	М3	N_WELL	UNITS
Area (substrate)	429	721	82		32	17	10	40	aF/um^2
Area (N+active)			2401		36	16	12		aF/um^2
Area (P+active)			2308						aF/um^2
Area (poly)				864	61	17	9		aF/um^2
Area (poly2)					53				aF/um^2
Area (metal1)						34	13		aF/um^2
Area (metal2)							32		aF/um^2
Fringe (substrate)	311	256			74	58	39		aF/um
Fringe (poly)					53	40	28		aF/um
Fringe (metall)						55	32		aF/um
Fringe (metal2)							48		aF/um
Overlap (N+active)			206						aF/um
Overlap (P+active)			278						aF/um