EE 330 Homework 6 Spring 2019 (Due Friday Feb 22nd)

Assume the CMOS process is characterized by model parameters $V_{TH}=1V$ and $\mu C_{OX}=100\mu A/V^2$. If any other model parameters are needed, use the measured parameters from the TSMC 0.18u process run that are attached. On those problems that involve the design of passive components, a sketch of the design is sufficient provided you indicate dimensions (i.e. it need not be done in Cadence).

Problem 1 Consider an n+ diffused resistor that is 30u, 2u wide and 0.5μ thick. What is the nominal value of the resistance if it is doped with Arsenic and the doping density is 2E15/cm^3. List the only resource you used to obtain resistivity.

Problem 2 If the voltage of a forward-biased pn junction is varied between 0.5V and 0.6V, what is the range in the diode current. Assume the junction area of the diode is $100\mu^2$ and $J_s=10^{-15}A/\mu^2$.

Problem 3 Determine the current I_D (within ±5%) if $V_X=5V$ for the following circuit. Assume the area of the diode is $100\mu^2$ and $J_S=10^{-15}A/u^2$.

Problem 4 Repeat Problem 3 if V_x=520mV

Problem 5 Size an n-channel transistor in the TSMC 0.18 μ CMOS process so that the impedance in the switch-level model is 4000 Ω when operating with a 1.8V power supply (connected to both Drain and Gate, and the source is grounded). Repeat for an n-channel transistor in the AMIS 0.5 μ process when operating with a supply voltage of 3.5V and the IBM 0.13 μ CMOS process when operating with a 1.5V supply. Characteristics of the AMIS and IBM processes are also attached.

Problem 6 If a minimum-sized inverter designed in the TSMC 0.18µ CMOS process could directly drive a minimum-sized inverter designed in the IBM 0.13µ CMOS process, what would be tHL and tLH? Assume a supply voltage of 1.5V. Neglect any interconnect parasitics.

Problem 7 Assume the junction area of D_1 is $200\mu^2$ and that of D_2 is 4 times as large. Determine the current I_{D1} if $V_X=1.5V$. Assume J_S for the process where the diodes are fabricated is $5fA/\mu^2$.

Problem 8 Analytically determine the variable indicated by a ? in the following circuits. Assume the devices are in a process with $\mu_n C_{OX}=300\mu A/V^2$, $\mu_p C_{OX}=\mu_n C_{OX}/4$, $V_{TNO}=0.5V$, $V_{TPO}=-0.5V$, and $C_{OX}=8fF/\mu$

Problem 9 Analytically determine the variable indicated by a ? in the following circuits. Assume a process with $\mu_n C_{OX}=300\mu A/V^2$, $\mu_p C_{OX}=\mu_n C_{OX}/4$, $V_{TNO}=0.5V$, $V_{TPO}=-0.5V$, and $C_{OX}=8fF/\mu^2$

Problem 10 Use Modelsim to create a 3-8 decoder. The truth table for the decoder is attached for reference. Include screenshots of your Verilog code, and simulation waveforms.

Inputs				Outputs							
А	В	С	Y ₇	Y ₆	Y_5	Y4	Y ₃	Y2	Y ₁	Y	
0	0	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	0	0	1	0	0	
0	1	1	0	0	0	0	1	0	0	0	
1	0	0	0	0	0	1	0	0	0	0	
1	0	1	0	0	1	0	0	0	0	0	
1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	0	

MOSIS WAFER ACCEPTANCE TESTS

RUN: T4BK	(MM_NON-EPI_	_THK-MTL)	VENDOR:	TSMC		
TECHNOLOG	Y: SCN018		FEATURE	SIZE:	0.18	microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018_TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL P-CHANNEL		UNITS
MINIMUM Vth	0.27/0.18	0.50	-0.53	volts
SHORT Idss Vth Vpt	20.0/0.18	571 0.51 4.7	-266 -0.53 -5.5	uA/um volts volts
WIDE Ids0	20.0/0.18	22.0	-5.6	pA/um
LARGE Vth Vjbkd Ijlk	50/50	0.42 3.1 <50.0	-0.41 -4.1 <50.0	volts volts pA
K' (Uo*Cox/2) Low-field Mobility		171.8 398.02	-36.3 84.10	uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

	Desig	gn Tecł	nology	XL (um)	XW (um)		
	SCN61 SCN61	M_DEEP	lambd) thi (lambd)	a=0.09) ck oxid a=0.10)	e	0.0 0.0 -0.0)0)0)2	-0.01 -0.01 0.00
		thick oxide)2	0.00
FOX TRANSISTORS Vth	GZ Po	ATE N+ACTIVE P+ACTIVE oly >6.6 <-6.6		UNITS volts				
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	^{N+} 6.6 10.1 40	₽+ 7.5 10.6	POLY 7.7 9.3	N+BLK 61.0	PLY+BLK 317.1	м1 0.08	м2 0.08 4.18	UNITS ohms/sq ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance COMMENTS: BLK is silic	M3 0.08 8.97 cide bi	POLY_H 991.5 lock.	IRI 5	^{м4} 0.08 14.09	м5 0.08 18.84	м6 0.01 21.44	N_W 941	UNITS ohms/sq ohms

CAPACITANCE PARAMETERS

	N+	P+	POLY	M1	M2	M3	M4	M5	M6	R_W	D_N_W	M5P	N_W	UNITS
Area (substrate)	998	1152	103	39	19	13	9	8	3		129		127	aF/um^2
Area (N+active)			8566	54	21	14	11	10	9					aF/um^2
Area (P+active)			8324											aF/um^2
Area (poly)				64	18	10	7	6	5					aF/um^2
Area (metal1)					44	16	10	7	5					aF/um^2
Area (metal2)						38	15	9	7					aF/um^2
Area (metal3)							40	15	9					aF/um^2
Area (metal4)								37	14					aF/um^2
Area (metal5)									36			1003		aF/um^2
Area (r well)	987													aF/um^2
Area (d well)										574				aF/um^2
Area (no well)	139													aF/um^2
Fringe (substrate) 244	201		18	61	55	43	25						aF/um
Fringe (poly)				69	39	29	24	21	19					aF/um
Fringe (metal1)					61	35		23	21					aF/um
Fringe (metal2)						54	37	27	24					aF/um
Fringe (metal3)							56	34	31					aF/um
Fringe (metal4)								58	40					aF/um
Fringe (metal5)									61					aF/um
Overlap (P+active	e)		652											aF/um
CIRCUIT PARA	METE	RS			U	NITS								
Inverters		ĸ			0									

Inverters	ĸ							
Vinv	1.0	0.74	volts					
Vinv	1.5	0.78	volts					
Vol (100 uA)	2.0	0.08	volts					
Voh (100 uA)	2.0	1.63	volts					
Vinv	2.0	0.82	volts					
Gain	2.0	-23.33						
Ring Oscillator Fre	eq.							
D1024_THK (31-	stg,3.3V)	338.22	MHz					
DIV1024 (31-stg,	1.8V)	402.84	MHz					
Ring Oscillator Power								
D1024_THK (31-	stg,3.3V)	0.07	uW/MHz/gate					
DIV1024 (31-stg,	1.8V)	0.02	uW/MHz/gate					

COMMENTS: DEEP_SUBMICRON

VENDOR: AMIS FEATURE SIZE: 0.5 microns

RUN: T86S TECHNOLOGY: SCNO5

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM	3.0/0.6			
Vth		0.79	-0.92	volts
SHORT	20.0/0.6			
Idss		463	-248	uA/um
Vth		0.67	-0.91	volts
Vpt		10.0	-10.0	volts
WIDE	20.0/0.6			
Ids0		< 2.5	< 2.5	pA/um
LARGE	50/50			
Vth		0.68	-0.95	volts
Vjbkd		10.8	-11.7	volts
Ijlk		<50.0	<50.0	рА
Gamma		0.49	0.57	V^0.5
K' (Uo*Cox/2)		57.8	-19.1	uA/V^2
Low-field Mobility		475.38	157.09	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology	XL (um)	XV (um)
SCMOS_SUBM (lambda=0.30)	0.10	0.00
SCMOS (lambda=0.35)	0.00	0.20

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>15.0	<-15.0	volts

Continued

N+	P+	POLY	PLY2_HR	POLY2	M1	M 2	UNITS
84.4	109.2	22.9	1102	41.9	0.09	0.09	ohms/sq
60.9	150.6	15.8		26.8		0.81	ohms
142							angstrom
	МЗ	N\ PLY	N W	UN	ITS		
	0.05	818	808	ohr	ms/sq		
	0.81			ohr	ns		
	N+ 84.4 60.9 142	N+ P+ 84.4 109.2 60.9 150.6 142 M3 0.05 0.81	N+ P+ POLY 84.4 109.2 22.9 60.9 150.6 15.8 142 M3 N\PLY 0.05 818 0.81	N+ P+ POLY PLY2_HR 84.4 109.2 22.9 1102 60.9 150.6 15.8 142 M3 N\PLY N_W 0.05 818 808 0.81	N+ P+ POLY PLY2_HR POLY2 84.4 109.2 22.9 1102 41.9 60.9 150.6 15.8 26.8 142 M3 N\PLY N_W UNI 0.05 818 808 ohn 0.81 ohn ohn	N+ P+ POLY PLY2_HR POLY2 M1 84.4 109.2 22.9 1102 41.9 0.09 60.9 150.6 15.8 26.8 26.8 142 M3 N\PLY N_W UNITS 0.05 818 808 ohms/sq 0.81 ohms 0 0	N+ P+ POLY PLY2_HR POLY2 M1 M2 84.4 109.2 22.9 1102 41.9 0.09 0.09 60.9 150.6 15.8 26.8 0.81 142 M3 N\PLY N_W UNITS 0.05 818 808 ohms/sq 0.81 ohms 0 0

COMMENTS: N\POLY is N-well under polysilicon.

CAPACI	TANCE PARAMETERS	N+	P+	POLY	POLY2	M1	M2	МЗ	N_U	UNITS
Area	(substrate)	426	724	85		30	15	9	37	aF/um^2
Area	(N+active)			2434		34	17	12		aF/um^2
Area	(P+active)			2351						aF/um^2
Area	(poly)				899	56	16	9		aF/um^2
Area	(poly2)					46				aF/um^2
Area	(metal1)						33	13		aF/um^2
Area	(metal2)							32		aF/um^2
Fring	e (substrate)	361	241			71	49	33		aF/um
Fring	e (poly)					59	38	28		aF/um
Fring	e (metal1)						46	34		aF/um
Fring	e (metal2)							54		aF/um
Overl	ap (N+active)			292						aF/um
Overl	ap (P+active)			387						aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	К		
Vinv	1.0	2.04	volts
Vinv	1.5	2.29	volts
Vol (100 uA)	2.0	0.12	volts
Voh (100 uA)	2.0	4.86	volts
Vinv	2.0	2.47	volts
Gain	2.0	-18.26	
Ring Oscillator Freq.			
DIV256 (31-stg,5.0V)		98.75	MHz
D256_WIDE (31-stg,5.OV)		153.47	MHz
Ring Oscillator Power			
DIV256 (31-stg,5.0V)		0.49	uW/MHz/gate
D256_WIDE (31-stg,5.OV)		1.00	uW/MHz/gate

COMMENTS: SUBMICRON

RUN: T85X	(8WL_8LM_OL)	VENDOR:	IBM-BURLINGTON
TECHNOLOGY:	SIGE013	FEATURE S	IZE: 0.13 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: SIGE8WL_IBM-BU

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.16/0.12	0.41	-0.42	volts
SHORT	20.0/0.12			
Idss		406	-178	uA/um
Vth		0.43	-0.42	volts
Vpt		3.6	-3.6	volts
WIDE	20.0/0.12			
Ids0		155.2	-127.9	pA/um
LARGE	20.0/20.0			
Vth		0.12	-0.23	volts
Vjbkd		2.7	-3.2	volts
Ijlk		<50.0	<50.0	рА
Gamma		0.28	0.23	V^0.5
K' (Uo*Cox/2)		308.0	-48.8	uA/V^2
Low-field Mobility		553.02	87.62	cm^2/V*s

Continued

PROCESS PARAMETERSN+P+POLYM1M2M3M4UNITSSheet Resistance6.76.36.6ohms,Sheet Resistance72515050 ohms/sq 78 51 50 50 mohms/sq Sheet Resistance Contact Resistance 9.4 9.2 8.3 0.68 1.37 2.00 ohms Gate Oxide Thickness 31 angstrom PROCESS PARAMETERS M5 M6 M7 M8 N W PPLY+BLK N+BLK POLY NON POLY NON TAN UNITS Sheet Resistance 41 44 7 7.4 mohms/sq 327 321.2 73.4 231.6 1547.4 58.9 ohms/sq Sheet Resistance Contact Resistance 2.19 2.51 2.51 2.53 ohms COMMENTS: BLK is silicide block. CAPACITANCE PARAMETERS N+ P+ POLY M1 M2 M3 M4 M5 M6 M7 M8 TaN MiM UNITS Area (substrate) 973 1203 109 57 41 32 27 23 20 17 14 24 aF/um^2 aF/um^2 Area (N+active) 11176 aF/um^2 Area (P+active) 10496 Area (r well) 605 aF/um^2 aF/um^2 Area (N+ HA varactor) 2390 aF/um^2 Area (M1) 128 aF/um^2 171 Area (M2) 182 aF/um^2

Area (M3) aF/um^2 Area (M4) 176 Area (M5) 82 aF/um^2 Area (M6) 81 aF/um^2 aF/um^2 Area (M7) 45 Area (M8) 85 aF/um^2 4100 aF/um^2 Area (MiM) Fringe (substrate) 60 68 aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.50	volts
Vinv	1.5	0.52	volts
Vol (100 uÅ)	2.0	0.01	volts
Voh (100 uÅ)	2.0	1.18	volts
Vinv	2.0	0.53	volts
Gain	2.0	-18.48	
Ring Oscillator Freq.			
DIV1024 (31-stg,1.2V)		376.81	MHz
D1024_THK (31-stg,2.5V)		279.93	MHz
Ring Oscillator Power			
DIV1024 (31-stg,1.2V)		5.13	nW/MHz/gate
D1024_THK (31-stg,2.5V)		26.50	nW/MHz/gate
Operational Amplifier			
Gain		10	

COMMENTS: DEEP_SUBMICRON