EE 330 Homework 7 Solutions

Problem 1

For the circuit on the left, the anode voltage can't exceed the cathode voltage of 15 V, so diode is off.

 $I_1 = \frac{7}{4k + 2k} = \frac{1.17 \ mA}{1.17 \ mA}$

For the circuit on the right, initially consider the diode is off. In this case the resistors act as a voltage divider so $V_D = 15^*(4/6) = 10V > 9V$. So our initial assumption is wrong and the diode is on.

 $I_2 = \frac{9.7}{4k} = \frac{2.4 \ mA}{4k}$

Problem 2.

A.
$$V_{OUT} = I(10k\Omega) + 0.575V, V_t = \frac{kT}{g}, I(T) = \left[J_{SX}\left(T^m e^{\frac{-V_{go}}{V_t}}\right)\right]A * e^{\frac{V_D}{V_t}}$$
$$A * J_{SX}\left[T^m e^{\frac{-V_{go}}{V_t}}\right] * e^{\frac{0.575}{V_t}} = \frac{0.5A}{\mu^2} * [1.63 * 10^{-18}] * 200\mu^2 * 287.19 * 10^9$$

- B. $V_{OUT} = 145V \rightarrow 20V$ (clipping)
- C. $V_{OUT} = 12.8kV \rightarrow 20V$ (clipping)

Problem 3

For the left figure:

Initially assume both diodes to be 'on'. Thus, $V_b = 7 - 0.6 = 6.4V$. Applying KCL at V_a will yields $V_a = 10.7V$. However, this would mean that the current through diode d1 is flowing from cathode to anode, which is incorrect. Thus, our assumption that diode d1 is on is "incorrect". Now, calculating V_a with diode d1 off and d2 on, yields $V_a = 13.5V$. Thus, $I_1 = \frac{13.5V - 0.6}{4k} = 3.2mA$.

For the right figure,

Assuming both diodes are on. Thus, $V_e = -30 + 0.6 = -29.4V$ then the voltage at $V_d = -3.64V$ (using KCL). Thus, diode is off and $I_2=0$.

Problem 4

1.8V
Problem 5
Both transistors are in saturation.

$$u_n C_{OX} * \frac{W_1}{2L_1} * (V_{out} - V_{ss} - V_T)^2 = u_n C_{OX} * \frac{W_2}{2L_2} * (V_{DD} - V_{out} - V_T)^2$$

 $u_n C_{OX} * \frac{W_1}{2L_1} * (1V - 0V - 0.5V)^2 = u_n C_{OX} * \frac{W_2}{2L_2} * (2.5V - 1V - 0.5V)^2$
 $\frac{W_1}{L_1} * (0.8V - 0.5V)^2 = \frac{W_2}{L_2} * (1.8V - 0.8V - 0.5V)^2$
 $\frac{(W_2/L_2)}{(W_1/L_1)} = \frac{(0.8V - 0.5V)^2}{(1.8V - 0.8V - 0.5V)^2} = 0.6$
 $If \frac{W_1}{L_1} = \frac{2\mu}{0.2\mu} = 10 \ then \frac{W_2}{L_2} = \frac{1.2\mu}{0.2\mu} = 6$

Problem 6
A.)
$$\alpha = \frac{l_c}{l_E} = \frac{1.00mA}{1.0250mA} = 0.9756$$

 $\beta = \frac{\alpha}{1-\alpha} = \frac{0.9756}{1-0.9756} = \frac{40}{100}$
B.) $\alpha = \frac{1.00mA * 1.005}{1.0250 * (1-.005)} = 0.985$
 $\beta = \frac{0.985}{1-0.985} = 67.56$
 $Error = \frac{67.56 - 40}{40} = 0.689 = \frac{68.9\%}{100}$

Problem 7

$$I_{B} = \frac{I_{C}}{\beta} = \frac{1.00mA}{40} = 25\mu A$$

$$\beta = \frac{I_{C}}{I_{B}} = \frac{1.00mA * 1.005}{25\mu A * 0.995} = 40.402$$
Error = $\frac{40.402 - 40}{40} = 0.01005 = 1.005\%$

Problem 8.

Assuming saturation: $I_{D_1} = 75 * 10^{-6} * \frac{5}{2 * 5} * (1.8 - 1 - 0.5)^2 = I_{D_2} = 300 * 10^{-6} \left(\frac{5}{10}\right) (V_{out} - 0.5)^2$ $V_{out} = 0.35V \text{ or } 0.65V, \text{ given } 0.35 < 0.5,$ $V_{out} = 0.65V$

Problem 9
A.)
$$I_C = \frac{8V-5V}{3k\Omega} = 1.00mA$$

 $V_t = \left(8.617 * 10^{-5} \frac{eV}{K}\right)(300K) = 25.85mV$
 $I_C = J_s A_E e^{\frac{V_{BE}}{V_t}} = 20 * 10^{-14} * 100 * e^{\frac{V_{BE}}{25.85mV}} \rightarrow \frac{V_{BE}}{V_{BE}} = V_x = 0.4582567V$
B.) $I_C = J_s A_E e^{\frac{V_{BE}}{V_t}} = 20 * 10^{-14} * 100 * e^{\frac{0.536V-100V}{25.85mV}} = 999.6uA$
 $V_C = 8V - 3k\Omega * 999.6uA = 5.00118 V$
 $Change = \frac{5.00118 - 5}{5} * 100 = \frac{0.0236\%}{5}$
C.) $V_t = \left(8.617 * 10^{-5} \frac{eV}{K}\right)(301K) = 25.93mV$

$$I_{C} = J_{s}A_{E}e^{\frac{V_{BE}}{V_{t}}} = 20 * 10^{-14} * 100 * e^{\frac{V_{BE}}{25.93mV}} \rightarrow V_{BE} = V_{x=}0.4596749V$$

Change = $\frac{0.4596749V - 0.4582567V}{0.4582567V} * 100 = 0.31\%$

D.) A change of 10uV (0.002%) in V_x resulted in a change of 0.0236% at the output. Similarly, a change of 1°C in temperature(keeping the input constant at 0.458V) would result in 3% change in the output voltage. Thus, the circuit seems to be very sensitive to changes in V_x and temperature.

Problem 10