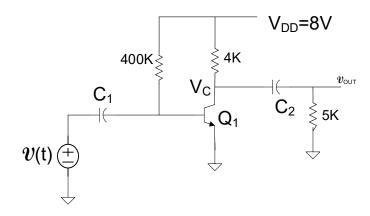
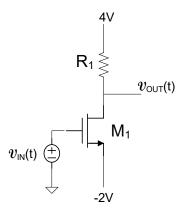
EE 330 Homework 8 Spring 2019 (Due Friday March 8th )

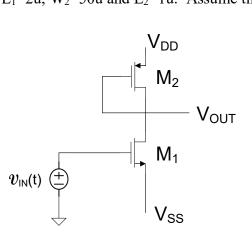
Unless stated to the contrary, assume all MOS transistors have model parameters  $\mu_n C_{OX}=300\mu A/V^2$ ,  $V_{Tn}=0.5V$ ,  $\mu_n/\mu_p=4$ ,  $V_{Tp}=-0.5V$ ,  $C_{OX}=4fF/\mu^2$ ,  $\lambda=0$ ,  $\gamma=0$ , and all BJT transistors have model parameters  $J_SA=10^{-12}A$ ,  $\beta n=100$ , and ,  $\beta p=30$ .


**Problem 1** The following circuit was constructed for measuring the  $\beta$  of the bipolar transistor. To obtain the  $\beta$ , the resistor  $R_B$  was adjusted so that the current  $I_c$  was precisely 1.000mA. The current  $I_e$  was then measured to be 1.050mA. From these measurements the parameter  $\alpha$  of the transistor was obtained and then  $\beta$  was calculated using the well-known relationship between  $\alpha$  and  $\beta$ .

- a) What is the value of  $\beta$  for the transistor?
- b) What would be the worst-case error (in percent) in measuring the  $\beta$  of the transistor using this approach if the current measurements were only accurate to  $\pm 1\%$ ?

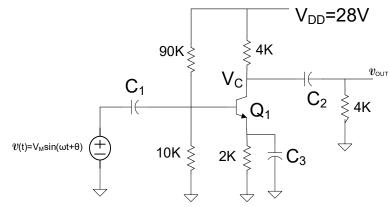



**Problem 2** As an alternative to measuring  $\beta$  in the circuit for the previous problem (assuming  $\beta$  is the value determine in part a) of the previous problem), the currents  $I_b$  and  $I_c$  were measured. What would be the worst-case error (in percent) in measuring the  $\beta$  of the transistor using this alternative approach if the current measurements of  $I_b$  and  $I_c$  were only accurate to  $\pm 0.25\%$ ?


**Problem 3** Assume the capacitors are very large. Determine the quiescent value of  $V_C$  and  $V_{OUT}$ 



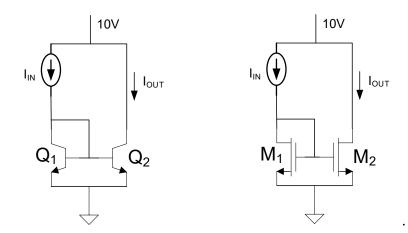
**Problem 4** Determine the maximum value of  $R_1$  that will keep  $M_1$  in saturation.  $M_1$  has dimensions W=8u and L=2u. Assume the magnitude of the input is arbitrarily small.




**Problem 5** Consider the following circuit. Determine the quiescent output voltage if  $V_{DD}=2V$ ,  $V_{SS}=-2V$ ,  $W_1=10u$ ,  $L_1=2u$ ,  $W_2=50u$  and  $L_2=1u$ . Assume the magnitude of the input is arbitrarily small.



Page 2 of 4


**Problem 6** Assume the capacitors are all very large. Determine the quiescent value of  $V_C$  and  $V_{OUT}$ 



**Problem 7** Consider the two circuits shown.

a) Determine the output current for the bipolar circuit if  $A_{E1}=200u^2$  and  $A_{E2}=1000u^2$  and  $I_{IN}=1.5$ mA. Assume  $\beta$  is very large.

b) Determine the output current for the MOS circuit if  $W_1/L_1=5$  and  $W_2/L_2=20$  and  $I_{IN}=1.5$ mA.



**Problem 8** Express the output current for the bipolar circuit in terms of the input current and the emitter areas for the circuit of Problem 9. Assume  $\beta$  is very large. Also express the output current for the MOS circuit in terms of the input current and the "W/L" ratios for the circuit of Problem 9. What conclusion can be drawn about the usefulness of these structures?

**Problem 9** Use the D-flip flop you created in the previous homework to create a 4-bit register with an enable input that turns it on or off depending on its level. Show your Verilog code, testbench, and waveform output.

*Note: Enable can be implement on the individual flip flop level or on the register level.*