EE 330 Homework 9 Spring 2019 Due on Fri March 15th

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350 \mu A/V^2$ and $V_{Tn} = 0.5V$, all p-channel transistors have model parameters $\mu_p C_{OX} = 70 \mu A/V^2$ and $V_{Tp} = -0.5V$. Correspondingly, assume all npn BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. If parameters are needed for CMOS process characterization beyond what is given, use the measured parameters from the TSMC 0.18 μ process given below as model parameters. Assume all diodes are characterized by the model parameters $J_{SX}=0.5 \text{ fA}/\mu\text{m}^2$, $V_{G0}=1.17V$, and m=2.3.

Problem 1 Determine the small-signal voltage gain of the circuit. M1 has dimensions $W = 12\mu$ and $L = 2\mu$, assume it is in saturation.

Problem 2 Obtain the small-signal voltage gain of the circuit. Assume transistor is in saturation.

Problem 3 Assume the capacitors are very large, the BJT is in forward active mode, and V_M is small.

- a) Draw the small signal equivalent circuit for the amplifier shown
- b) Determine the quiescent value of V_C and V_{OUT}
- c) Determine the voltage gain in terms of the small-signal y-parameters (or equivalently the g-parameters) for the transistor. Assume the parameter y_{21} in the model of the transistor is 0.
- d) Determine the numerical value for the small-signal voltage gain

Problem 4 Obtain the small signal equivalent circuit for the following network. Assume the transistors are operating in the saturation region, all capacitors are large, and V_M is small. You need not solve the circuit.

Problem 5 Assume the capacitors are very large the BJT is in forward active mode, and V_M is small.

- a) Draw the small signal equivalent circuit for the amplifier shown
- b) Determine the quiescent value of V_C and V_{OUT}
- c) Determine the small-signal voltage gain in terms of the small-signal g parameters
- d) Numerically determine the small-signal voltage gain.

Problem 6 Consider the following circuits:

- a) Obtain the small signal impedance between the two terminals exiting the box in terms of the small-signal model parameters. Assume the MOSFET is operating in the Saturation region and the BJT in the Forward Active region
- b) Numerically determine the small-signal impedances if the quiescent currents are both 2 mA, the width and length of the MOSFET are both 5 μ m, and the emitter of the BJT is square and is 5 μ m on a side. Assume V_{AF}= ∞ and λ =0.

Page 3

Problem 7 Consider the following circuit operating at room temperature. Assume the capacitor C is very large and the V_{IN} is a small-signal input:

- a) Determine the quiescent output voltage.
- b) Draw the small-signal equivalent circuit
- c) Determine the small-signal voltage gain from the input to the output.
- d) Repeat part c) if the current I_B is increased to 5mA

Problem 8 Design an amplifier using only MOS transistors, capacitors, and voltage sources that has a voltage gain of -15 when driving an external 10 k Ω resistor.

Problem 9 Using ModelSim create a 1-8 Demultiplexor (Demux). A Demux takes in one input and routes it to one of 8 outputs as determined by three selection bits. For example, if selection bits $\{a,b,c\} = 011$ then F should be routed to Y₄, all other outputs should be set to 0. A symbol for a 1-8 Demux is shown below.

Be sure to include your code, test bench and waveforms verifying the proper operation.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T68B

(MM_NON-EPI) TSMC TECHNOLOGY: SCN018 microns

FEATURE SIZE: 0.18

Run type: SKD

VENDOR:

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.27/0.18	0.50	-0.51	volts
SHORT Idss Vth Vpt	20.0/0.18	547 0.51 4.8	-250 -0.51 -5.6	uA/um volts volts
WIDE Ids0	20.0/0.18	14.4	-4.7	pA/um
LARGE Vth Vjbkd Ijlk	50/50	0.43 3.1 <50.0	-0.42 -4.3 <50.0	volts volts pA
K' (Uo*Cox/2) Low-field Mobility		175.4 416.5	4 -35.6 52 84.54	uA/V^2 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

	Des	рдХ	XL (um) XW um)				
SCN6M_DEEP (lamb	oda=0.09)	0.00	-0.01					
thick oxide	0.00	-0.01		SCN6M_SUBM				
(lambda=0.10)	-0.02	0.00						
thick oxide	-0.02	0.00						

FOX	TRANSISTORS	GATE	N+ACTIV	E P+ACTIV	E UNITS
Vth		Poly	>6.6	<-6.6	volts

PROCESS PARAMETERSN+P+POLYN+BLKPLY+BLKM1M2UNITSSheet Resistance6.77.88.059.7313.60.080.08ohms/sqContact Resistance10.611.010.04.79ohmsGate Oxide Thickness 41angstrom

PROCESS PARAMETERSM3POLY_HRIM4M5M6N_WUNITSSheet Resistance0.080.080.080.03930ohms/sqContact Resistance9.2414.0518.3920.69ohmsCOMMENTS:BLK is silicide block.0000

CAPACI	TANCE PARAMETERS	N+	P+	POLY	Y	М1	М2	MЗ	M4	M5	М6	R_W	D_N_W M5	P N_W	UNITS
Area	(substrate)	942	110	63 10	06	34	14	9	6	5	3		123	125	aF/um^2
Area	(N+active)			848	34	55	20	13	11	9	8				aF/um^2
Area	(P+active)			823	32										aF/um^2
Area	(poly)					66	17	10	7	5	4				aF/um^2
Area	(metal1)						37	14	9	6	5				aF/um^2
Area	(metal2)							35	14	9	6				aF/um^2
Area	(metal3)								37	14	9				aF/um^2
Area	(metal4)									36	14				aF/um^2
Area	(metal5)										34			984	aF/um^2
Area	(r well)	920	C												aF/um^2
Area	(d well)											582			aF/um^2
Area	(no well)	137	7												aF/um^2
Fring	e (substrate)	212	2 2	235		41	35	29	21	14					aF/um
Fring	e (poly)					70	39	29	23	20	17				aF/um
Fring	e (metall)						52	34		22	19				aF/um
Fring	e (metal2)							48	35	27	22				aF/um
Fring	e (metal3)								53	34	27				aF/um
Fring	e (metal4)									58	35				aF/um
Fring	e (metal5)										55				aF/um
Overl	ap (N+active)			8	895	5									aF/um
Overl	ap (P+active)			7	737	7									aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.74	volts
Vinv	1.5	0.78	volts
Vol (100 uA)	2.0	0.08	volts
Voh (100 uA)	2.0	1.63	volts
Vinv	2.0	0.82	volts
Gain	2.0	-23.72	
Ring Oscillator Freq.			
D1024_THK (31-stg,3.3V)		300.36	MHz
DIV1024 (31-stg,1.8V)		363.77	MHz
Ring Oscillator Power			
D1024_THK (31-stg,3.3V)		0.07	uW/MHz/gate