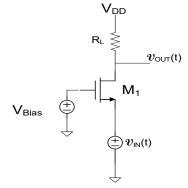
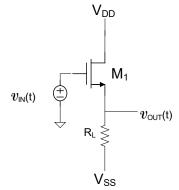

EE 330 Homework 10 Spring 2019 Due on Fri March 29th

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350\mu A/V^2$ and $V_{Tn} = 0.5V$, all p-channel transistors have model parameters $\mu_p C_{OX} = 70\mu A/V^2$ and $V_{Tp} = -0.5V$. Correspondingly, assume all npn BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. If parameters are needed for CMOS process characterization beyond what is given, use the measured parameters from the TSMC 0.18 μ process given in previous assignments as model parameters. Assume all diodes are characterized by the model parameters $J_{SX}=0.5$ fA/ μ m², $V_{G0}=1.17V$, and m=2.3.

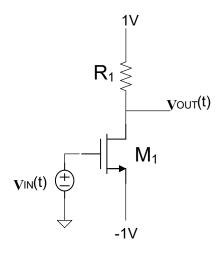
Problem 1 The amplifier shown below is called a common source amplifier. You can assume the transistor is operating in saturation.



a) Draw the small signal equivalent circuit (showing g_m and g_0), and solve for the small signal gain.

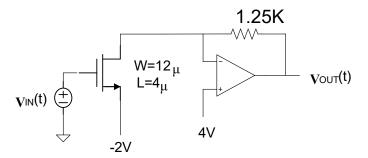

b) Solve for the input resistance of this amplifier by shorting the output terminal and applying a test voltage source V_T at the input terminal, then solving for $R_{in} = \frac{V_T}{I_T}$, where I_T is the test current supplied by V_T. Redraw the small signal equivalent circuit (showing g_m and g₀) and apply the appropriate changes.

c) Solve for the output resistance of this amplifier by shorting the input terminal and applying a test voltage source V_T at the output terminal, then solving for $R_{out} = \frac{V_T}{I_T}$, where I_T is the test current supplied by V_T. Redraw the small signal equivalent circuit (showing g_m and g₀) and apply the appropriate changes.

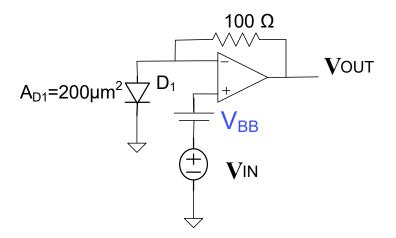

Problem 2 Repeat **Problem 1** but for the amplifier shown below. This amplifier is called a common gate amplifier.

Problem 3 Repeat **Problem 1** but for the amplifier shown below. This amplifier is called a common drain amplifier.

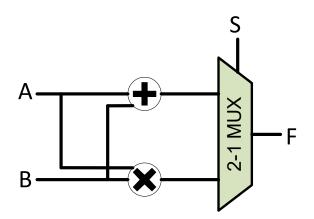
Problem 4 Consider the following circuit where R1=20K. Size the device so that the amplifier has a voltage gain of -10. Assume M_1 is in saturation.


Problem 5 Consider a device characterized by the equations

$$I_1 = V_1 V_2^{\ 3}$$
$$I_2 = 0.25 \ e^{0.2V_1^{\ 2}V_2}$$


- a. Determine the small signal model for a two-terminal device characterized by the equations given above
- b. Determine the numerical values for the small signal model parameters if the quiescent value of the port voltages are V_1 =5V, V2=1V.
- c. Determine the quiescent currents at the Q-point established in part b.
- d. Determine the small signal currents i_1 and i_2 if the small signal voltages v_1 and v_2 were measured to be $1mV_{RMS}$ and $2mV_{RMS}$ respectively. Assume the same Q-point as established in part b.

Problem 6 Determine the small signal output voltage if the small signal input voltage is a sinusoidal 1 KHz signal with 0-P amplitude of 25mV.



Problem 7 Consider the following circuit operating at T=300K. Assume V_{IN} is a small-signal voltage source.

- a) If the voltage V_{BB} is adjusted so that the quiescent diode current is 1mA, determine the small signal voltage gain.
- b) Repeat part a) if V_{BB} is adjusted so that the quiescent diode current is 10mA

Problem 8 Using ModelSim create a circuit that takes in 2 4-bit inputs and computes their sum or product depending on a select signal S. If S is 0, the output should A + B, if S is 1, the output should be A * B. Choose the output size so it won't overflow.

