EE 330 Assignment 13 Spring 2019

You might need to review Digital Logic from EE/CPRE 281 to be able to answer some of the problems on this assignment

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters  $\mu n_{COX} = 350 \mu A/V^2$ ,  $V_{Tn} = 0.5V$ , all p-channel transistors have model parameters  $\mu p_{COX} = 70 \mu A/V^2$ ,  $V_{Tp} = -0.5V$ , and all JFET devices are from a process with IDSSn0= 100 \mu A, IDSSp0= 30 \mu A, VPp=1V, VPn=-1V, and ,  $\lambda=0$ . In this process, assume that for all MOS devices,  $L_{MIN}=W_{MIN}=0.18\mu$ , and VDD=2V. Assume also that a bipolar process is available with parameters  $J_S=10^{-14}A/\mu^2$  and  $\beta n=100$  and  $\beta p=40$ . Unless stated to the contrary, assume the output conductance of the BJT and the MOSFET are characterized, respectively, by  $V_{AF}=100V$  and  $\lambda=.01V^{-1}$ .

**Problem 1** Assume the biasing voltages have been selected so that the quiescent current is 1 mA and that all transistors are operating in the forward active region. Determine the small-signal voltage gain. Assume  $\beta$  for all transistors is 100.



**Problem 2** Assume the biasing voltages have been selected so that the quiescent current is 1 mA and that all transistors are operating in the forward active region. Determine the small-signal voltage gain. Assume  $\beta$  for all transistors is 100.



**Problem 3** If a DC input voltage of 1uV is placed in series with  $V_{IN}$  in the previous circuit and  $V_{OUTQ} = 2V$ , how much change in the output voltage from the quiescent value of 2V can be expected? Comment on the implications of this observation.

**Problem 4** Assume you have available a 2mA sourcing current (one end connected to V<sub>DD</sub>) and a single DC voltage source, V<sub>DD</sub>.

a) Design a current mirror that provides a sinking current of 200 µA using MOS transistors.

b) What is the minimum voltage on the drain of the 200  $\mu$ A current source in your design for it to still work as a current mirror?

Problem 5 Determine V<sub>OUT</sub>



**Problem 6** Give all of the two-input Boolean functions and identify which of those are useful or are actually used.

**Problem 7** The small-signal equivalent circuit of a common emitter amplifier is shown below. If the emitter area of the BJT is  $100\mu^2$  and the load resistor R<sub>L</sub> is 10K, bias this circuit so that the quiescent output voltage is 5V and the DC voltage across R<sub>L</sub> is also 5V while maintaining the same small signal gain that this circuit has. You have one dc power supply available of any value you choose and any number of resistors and capacitors.



**Problem 8** Consider the following circuit.

- a) Determine an analytical expression that relates  $I_{OUT}$  to  $I_{IN}$
- b) With a computer simulation, plot the relationship between  $I_{OUT}$  and  $I_{IN}$  as  $I_{IN}$  is varied between -50uA and +50uA.



**Problem 9** A Boolean System is supposed to have an output F that is high when the Boolean inputs A and B are high or when the inputs C and D are high and E is low or when the input A is low and the input E is high.

- a) Give a behavioral description of this system in terms of the input/output variables A,B,C,D,E, and F.
- b) Write Verilog code describing this system at the behavioral level
- c) Give a gate-level structural description of this system if the only gates that are NOR gates with any number of inputs

**Problem 10** Give two distinct structural implementations at the gate level of a system with the following Behavioral Description: The output F is high when A is high and B is high or when C is high and B is low. Otherwise the F output is low.

## MOSIS WAFER ACCEPTANCE TESTS

| RUN: T4BK  | (MM_NON-EPI | THK-MTL) | VENDOR: | TSMC  |      |         |
|------------|-------------|----------|---------|-------|------|---------|
| TECHNOLOGY | : SCN018    |          | FEATURE | SIZE: | 0.18 | microns |

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

| COMMENTS: DSCN6M018_TSMC |           |             |          |          |
|--------------------------|-----------|-------------|----------|----------|
| TRANSISTOR PARAMETERS    | W/L       | N-CHANNEL P | -CHANNEL | UNITS    |
| MINIMUM                  | 0.27/0.18 |             |          |          |
| Vth                      |           | 0.50        | -0.53    | volts    |
| SHORT                    | 20.0/0.18 |             |          |          |
| Idss                     |           | 571         | -266     | uA/um    |
| Vth                      |           | 0.51        | -0.53    | volts    |
| Vpt                      |           | 4.7         | -5.5     | volts    |
| WIDE                     | 20.0/0.18 |             |          |          |
| Ids0                     |           | 22.0        | -5.6     | pA/um    |
| LARGE                    | 50/50     |             |          |          |
| Vth                      |           | 0.42        | -0.41    | volts    |
| Vjbkd                    |           | 3.1         | -4.1     | volts    |
| Ijlk                     |           | <50.0       | <50.0    | рА       |
| K' (Uo*Cox/2)            |           | 171.8       | -36.3    | uA/V^2   |
| Low-field Mobility       |           | 398.02      | 84.10    | cm^2/V*s |

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

| Jour prior model ou |    |           |                   |        |      |         |
|---------------------|----|-----------|-------------------|--------|------|---------|
|                     |    | Design Te | echnology         | Х      | (um) | XW (um) |
|                     |    |           |                   | -      |      |         |
|                     |    | SCN6M DE  | EP (lambda=0.09)  |        | 0.00 | -0.01   |
| thick oxide         |    | 0.00      | -0.01             |        | SCN  | 6M SUBM |
| (lambda=0.10)       |    | -0.02     | 0.00              |        |      | thick   |
| oxide -0.           | 02 | 0.00      |                   |        |      |         |
| FOX TRANSISTORS     |    | GATE      | N+ACTIVE P+ACTIVE | E UNIT | S    |         |
| Vth                 |    | Poly      | >6.6 <-6.6        | volts  | 3    |         |
| PROCESS PARAMETERS  |    | N+ P+     | POLY N+BLK PLY+B  | LK M1  | . M2 | 2 UNITS |

| Sheet Resistance      | 6.6    | 7.5    | 7.7 | 61.0  | 317.1 | 0.08  | 0.08 | ohms/sq  |
|-----------------------|--------|--------|-----|-------|-------|-------|------|----------|
| Contact Resistance    | 10.1   | 10.6   | 9.3 |       |       |       | 4.18 | ohms     |
| Gate Oxide Thickness  | 40     |        |     |       |       |       |      | angstrom |
| PROCESS PARAMETERS    | МЗ     | POLY_H | IRI | M4    | M5    | M6    | N_W  | UNITS    |
| Sheet Resistance      | 0.08   | 991.5  | 5   | 0.08  | 0.08  | 0.01  | 941  | ohms/sq  |
| Contact Resistance    | 8.97   |        |     | 14.09 | 18.84 | 21.44 |      | ohms     |
| COMMENTS: BLK is sili | cide 1 | block. |     |       |       |       |      |          |

## CAPACITANCE PARAMETERS

|                       | N+    | P+     | POLY   | M1  | M2   | M3      | M4     | M5 | M6 | R_W | D_N_W | M5P  | N_W | UNITS              |
|-----------------------|-------|--------|--------|-----|------|---------|--------|----|----|-----|-------|------|-----|--------------------|
| Area (substrate)      | 998   | 1152   | 103    | 39  | 19   | 13      | 9      | 8  | 3  | _   | 129   |      | 127 | aF/um^2            |
| Area (N+active)       |       |        | 8566   | 54  | 21   | 14      | 11     | 10 | 9  |     |       |      |     | aF/um^2            |
| Area (P+active)       |       |        | 8324   |     |      |         |        |    |    |     |       |      |     | aF/um^2            |
| Area (poly)           |       |        |        | 64  | 18   | 10      | 7      | 6  | 5  |     |       |      |     | aF/um^2            |
| Area (metal1)         |       |        |        |     | 44   | 16      | 10     | 7  | 5  |     |       |      |     | aF/um^2            |
| Area (metal2)         |       |        |        |     |      | 38      | 15     | 9  | 7  |     |       |      |     | aF/um^2            |
| Area (metal3)         |       |        |        |     |      |         | 40     | 15 | 9  |     |       |      |     | aF/um^2            |
| Area (metal4)         |       |        |        |     |      |         |        | 37 | 14 |     |       | 1000 |     | aF/um^2            |
| Area (metal5)         | 007   |        |        |     |      |         |        |    | 30 |     |       | 1003 |     | aF/um^2            |
| Area (i well)         | 907   |        |        |     |      |         |        |    |    | 574 |       |      |     | aF/um <sup>2</sup> |
| Area (u weii)         | 130   |        |        |     |      |         |        |    |    | 574 |       |      |     | aF/um^2            |
| Fringe (substrate)    | 244   | 201    |        | 18  | 61   | 55      | 43     | 25 |    |     |       |      |     | aF/um              |
| Fringe (poly)         | 211   | 201    |        | 69  | 39   | 29      | 24     | 21 | 19 |     |       |      |     | aF/um              |
| Fringe (metal1)       |       |        |        |     | 61   | 35      |        | 23 | 21 |     |       |      |     | aF/um              |
| Fringe (metal2)       |       |        |        |     |      | 54      | 37     | 27 | 24 |     |       |      |     | aF/um              |
| Fringe (metal3)       |       |        |        |     |      |         | 56     | 34 | 31 |     |       |      |     | aF/um              |
| Fringe (metal4)       |       |        |        |     |      |         |        | 58 | 40 |     |       |      |     | aF/um              |
| Fringe (metal5)       |       |        |        |     |      |         |        |    | 61 |     |       |      |     | aF/um              |
| Overlap (P+active     | )     |        | 652    |     |      |         |        |    |    |     |       |      |     | aF/um              |
| CIRCUIT PARA          | METE  | ERS    |        |     | U    | NITS    |        |    |    |     |       |      |     |                    |
| Inverters             |       | Κ      |        |     |      |         |        |    |    |     |       |      |     |                    |
| Vinv                  |       | 1.0    | 0.74   | 1   | V    | olts    |        |    |    |     |       |      |     |                    |
| Vinv                  |       | 1.5    | 0.78   | 3   | v    | olts    |        |    |    |     |       |      |     |                    |
| Vol (100 uA)          |       | 2.0    | 0.0    | 3   | v    | olts    |        |    |    |     |       |      |     |                    |
| Voh (100 uA)          |       | 2.0    | 1.63   | 5   | v    | olts    |        |    |    |     |       |      |     |                    |
| Vinv                  |       | 2.0    | 0.8    | 2   | V    | olts    |        |    |    |     |       |      |     |                    |
| Gain                  | 2     | 2.0    | -23.33 |     | F    | Ring    |        |    |    |     |       |      |     |                    |
| Oscillator Freq.      |       |        |        |     |      |         |        |    |    |     |       |      |     |                    |
| D1024 THK (3          | 1-stg | ,3.3V) | 338    | .22 | N    | lHz     |        |    |    |     |       |      |     |                    |
| DIV1024 (31-st        | g,1.8 | V)     | 402    | .84 | N    | IHz     |        |    |    |     |       |      |     |                    |
| Ring Oscillator I     | Powe  | ŕ      |        |     |      |         |        |    |    |     |       |      |     |                    |
| D1024_THK (3          | 1-stg | ,3.3V) | 0      | .07 | u    | W/Mł    | Iz/gat | е  |    |     |       |      |     |                    |
| DIV1024 (31-stg,1.8V) |       | 0      | .02    | u   | W/Mł | -Iz/gat | е      |    |    |     |       |      |     |                    |

COMMENTS: DEEP\_SUBMICRON