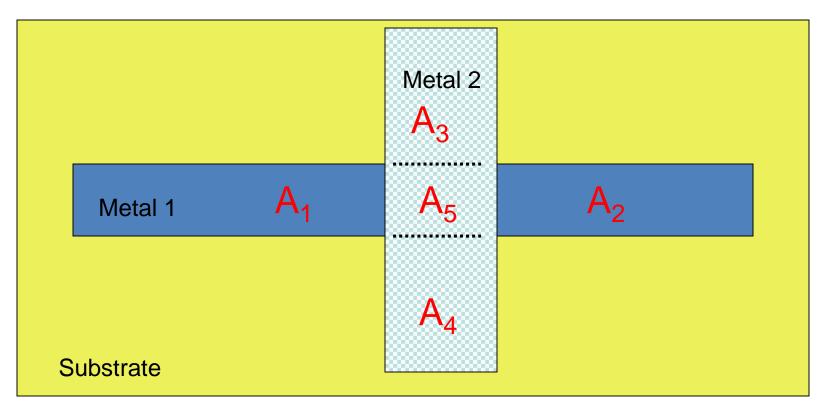
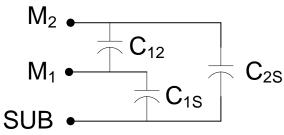
EE 330 Lecture 11


Capacitances in Interconnects Back-end Processing

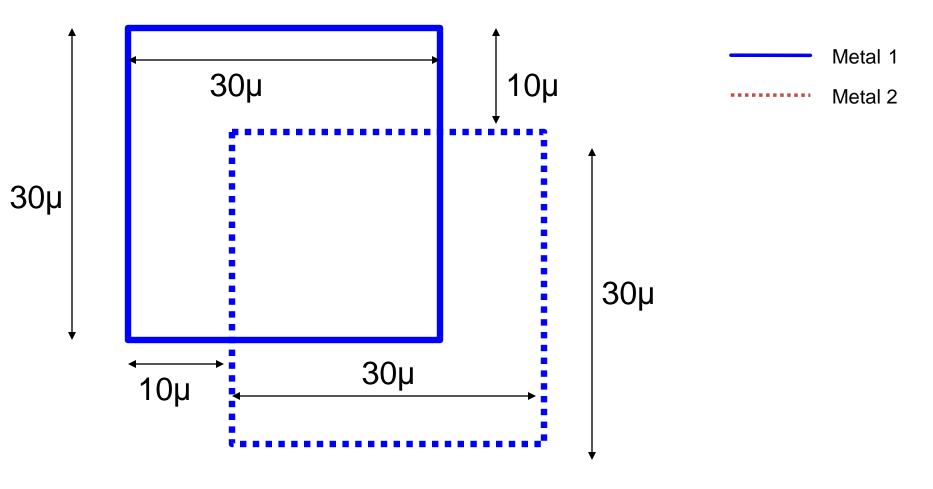

Capacitance in Interconnects

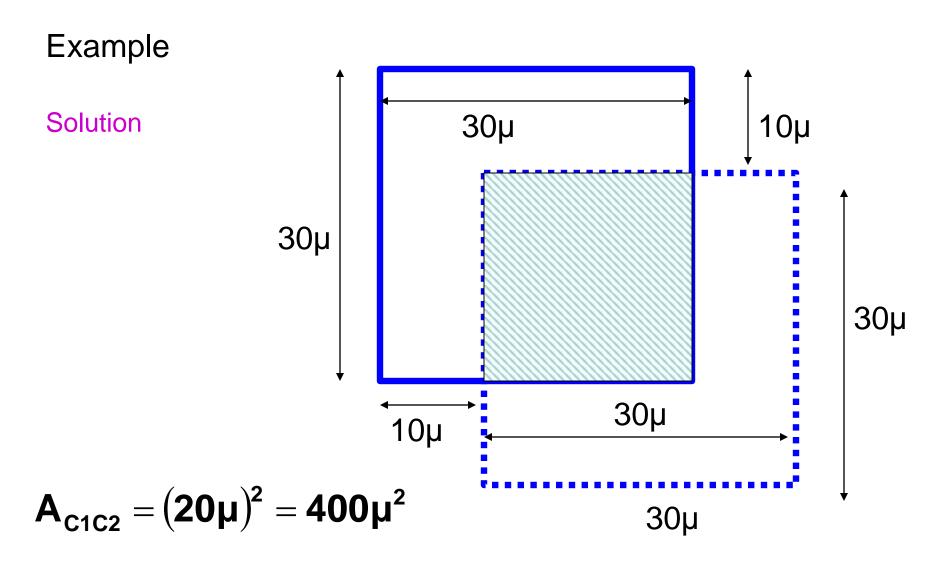
$$C = C_D A$$

 C_D is the capacitance density and A is the area of the overlap

Capacitance in Interconnects

Equivalent Circuit


$$C_{12} = C_{D12} A_5$$


$$C_{1S} = C_{D1S} (A_1 + A_2 + A_5)$$

$$C_{2S} = C_{D2S} (A_3 + A_4)$$

Example

Two metal layers, Metal 1 and Metal 2, are shown. Both are above field oxide. Determine the capacitance between Metal 1 and Metal 2. Assume the process has capacitance densities from M_1 to substrate of .05fF/u², from M_1 to M_2 of .07fF/u² and from M_2 to substrate of .025fF/u².

The capacitance density from M_1 to M_2 is .07fF/u²

 $C_{12} = A_{C1C2} \bullet C_{D12} = 400 \mu^2 \bullet 0.07 \text{fF}/\mu^2 = 28 \text{fF}$

Capacitance and Resistance in Interconnects

 See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

RUN: T4BK (MM_NON-EPI_THK-MTL)	VENDOR: TSMC
TECHNOLOGY: SCN018	FEATURE SIZE: 0.18 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018_TSMC

TRANSISTOR PARAMETERS	S W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.27/0.18	0.50	-0.53	volts
vin		0.50	-0.55	VOILS
SHORT	20.0/0.18			
Idss		571	-266	uA/um
Vth		0.51	-0.53	volts
Vpt		4.7	-5.5	volts
WIDE	20.0/0.18			
Ids0		22.0	-5.6	pA/um
LARGE	50/50			
Vth		0.42	-0.41	volts
Vjbkd		3.1	-4.1	volts
Ijlk		<50.0	<50.0	рА
K' (Uo*Cox/2)		171.8	-36.3	uA/V^2
Low-field Mobility		398.02	84.10	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in vour SPICE model card.

FOX TRANSISTORS	GATE	N+ACTIVE	P+ACTIVE	UNITS
Vth	Poly	>6.6	<-6.6	volts

PROCESS PARAMETERS Sheet Resistance Contact Resistance	N+ 6.6 10.1			7	N+E 61	3LK L.Ø		Y+B 17.		M1 0.0	8 0.	08 o	NITS hms/so hms	7
PROCESS PARAMETERS Sheet Resistance Contact Resistance COMMENTS: BLK is silicit	M3 0.08 8.97 de blo	99	/_HRI 91.5		M4 0.0 4.0	8	0	M5 .08 .84		M6 0.0 21.4	1 9	W 41	UNIT ohms ohms	/sq
CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (metal1) Area (metal2) Area (metal3) Area (metal4) Area (metal4) Area (metal5) Area (r well) Area (d well) Area (no well) Fringe (substrate) Fringe (metal1) Fringe (metal2) Fringe (metal3) Fringe (metal3) Fringe (metal4) Fringe (metal5)		P+ 1152 201	POLY 103 8566 8324	39 54 64 18	19 21 18 44 61 39	13 14 10 16 38 55 29 35	9 11 7 10 15 40 43 24 37	8 10 6 7 9 15 37 25 21 23 27 34	3 9 5 7 9 14 36 19 21 24	R_W	D_N_W 129		N_W 127	UNITS aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um aF/um aF/um aF/um aF/um aF/um
Overlap (P+active)			652											aF/um

T4BK SPICE BSIM3 VERSION 3.1 PARAMETERS SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 * DATE: Jan 21/05 * LOT: T4BK WAF: 3004 * Temperature parameters=Default .MODEL CMOSN NMOS (LEVEL = 49 +VERSION = 3.1TNOM = 27 TOX = 4E - 9+XJ = 1E-7NCH = 2.3549E17 VTH0 = 0.3662648 +K1 = 0.5802748 K2 = 3.124029E-3K3 = 1E - 3+K3B = 3.3886871WØ = 1E-7NLX = 1.766159E-7+DVTØW = 0 DVT1W = 0 DVT2W = 0 +DVT0 = 1.2312416 DVT1 = 0.3849841DVT2 = 0.0161351 +U0 = 265.1889031= -1.506402E-9UB = 2.489393E - 18UA +UC = 5.621884E - 11VSAT = 1.017932E5A0 = 2 +AGS = 0.4543117 BØ = 3.433489E-7B1 = 5E-6+KETA = -0.0127714A1 = 1.158074E-3A2 = 1 +RDSW = 136.5582806 PRWG = 0.5 PRWB = -0.2= 0 +WR = 1 WINT LINT = 1.702415E-8+XL = 0 XW = -1E - 8DWG = -4.211574E-9= 1.107719E-8 +DWB VOFF = -0.0948017 NFACTOR = 2.1860065+CIT = 0 CDSC = 2.4E-4CDSCD = 0 ETAB +CDSCB = 0 ETA0 = 3.335516E-3 = 6.028975E-5+DSUB PCLM = 0.0214781 = 0.6602119 PDIBLC1 = 0.1605325+PDIBLC2 = 3.287142E-3 PDIBLCB = -0.1DROUT = 0.7917811 PSCBE2 = 4.122516E-9 +PSCBE1 = 6.420235E9PVAG = 0.0347169 +DELTA RSH = 6.6 MOBMOD = 1= 0.01 +PRT UTE KT1 = -0.11= 0 = -1.5 +KT1L KT2 = 0.022 UA1 = 4.31E-9= 0 +UB1 = -7.61E - 18UC1 = -5.6E - 11AT = 3.3E4+WL = 0 WLN = 1 = 0 WW = 1 = 0 LL = 0 +WWN WWL +LLN = 1 LW = 0 LWN = 1 = 0 XPART = 0.5 +LWL CAPMOD = 2+CGDO = 8.06E-10 CGSO = 8.06E - 10CGBO = 1E - 12+CJ = 9.895609E-4 PB = 0.8 MJ = 0.3736889 +CJSW = 2.393608E-10 PBSW MJSW = 0.1537892 = 0.8 +CJSWG = 3.3E - 10PBSWG = 0.8 MJSWG = 0.1537892 +CF = 0 **PVTHØ** PRDSW = -1.73163E-3= -1.4173554 +PK2 = 1.600729E-3WKETA = -3.255127E-3= 1.601517E-3 LKETA +PU0 = 5.2024473 PUA = 1.584315E-12PUB = 7.446142E-25+PVSAT = 1.686297E3 PETAØ PKETA = 1.001594E-4= -2.039532E-3

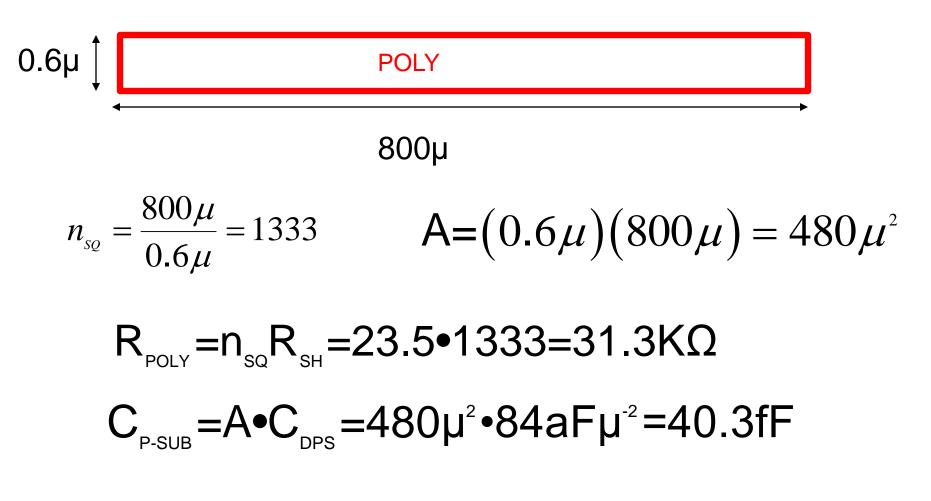
)

*

.MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1	TNOM = 27	TOX = 4E-9
+XJ = 1E-7	NCH = 4.1589E17	VTH0 = -0.3708038
+K1 = 0.5895473	K2 = 0.0235946	K3 = 0
+K3B = 13.8642028	W0 = 1E-6	NLX = 1.517201E-7
+DVT0W = 0	DVT1W = 0	DVT2W = 0
+DVT0 = 0.7885088	DVT1 = 0.2564577	DVT2 = 0.1
+U0 = 103.0478426	UA = 1.049312E-9	UB = 2.545758E-21
+UC = -1E - 10	VSAT = 1.645114E5	A0 = 1.627879
+AGS = 0.3295499	B0 = 5.207699E-7	B1 = 1.370868E-6
+KETA = 0.0296157	A1 = 0.4449009	A2 = 0.3
+RDSW = 306.5789827	PRWG = 0.5	PRWB = 0.5
+WR = 1	WINT = Ø	LINT = 2.761033E-8
+XL = 0	XW = -1E-8	DWG = -2.433889E-8
+DWB = -9.34648E-11	VOFF = -0.0867009	NFACTOR = 2
+CIT = 0	CDSC = 2.4E-4	CDSCD = 0
+CDSCB = 0	ETA0 = 1.018318E-3	ETAB = -3.206319E-4
+DSUB = 1.094521E-3	PCLM = 1.3281073	PDIBLC1 = 2.394169E-3
+PDIBLC2 = -3.255915E-6		DROUT = 0
+PSCBE1 = 4.881933E10	PSCBE2 = 5E-10	PVAG = 2.0932623
+DELTA = 0.01	RSH = 7.5	MOBMOD = 1
+PRT = 0	UTE = -1.5	KT1 = -0.11
+KT1L = 0	KT2 = 0.022	UA1 = 4.31E-9
+UB1 = -7.61E-18	UC1 = -5.6E-11	AT = 3.3E4
+WL = 0	WLN = 1	WW = 0
+WWN = 1	WUL = 0	LL = 0
+LLN = 1	LW = 0	LWN = 1
+LWL = 0	CAPMOD = 2	XPART = 0.5
+CGDO = 6.52E-10	CGS0 = 6.52E-10	CGBO = 1E-12
+CJ = 1.157423E-3	PB = 0.8444261	MJ = 0.4063933
+CJSW = 1.902456E-10		MJSW = 0.3550788
+CJSWG = 4.22E-10	PBSWG = 0.8	MJSWG = 0.3550788
+CF = 0	PVTH0 = 1.4398E-3	PRDSW = 0.5073407
+PK2 = 0 +PK2 = 2.190431E-3	WKETA = 0.0442978	LKETA = -2.936093E-3
+PKZ = 2.190451E-5 +PU0 = -0.9769623	PUA = -4.34529E-11	
+PU0 = -0.9769623 +PVSAT = -50	PUA = -4.34529E-11 PETA0 = 1.002762E-4	
+PVSAT = -50 *	PETAU = 1.002/02E-4	PRETA = -0.740430E-3

Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used. Assume a 0.18u process.


For 0.18u process

PROCESS PARAMETERS Sheet Resistance Contact Resistance	N+ 6.0 10.1		.5 7.	$\overline{\mathbf{v}}$	N+E 61	BLK L.Ø		Y+B 17.		M1 0.0)8 6	hms/		7Ω/□
PROCESS PARAMETERS	MЗ	POL	Y_HRI		M4		- 1	45		M6	N_1	V	UNI	••••	
Sheet Resistance	0.08	99	91.5		0.0	8	0	.08		0.0	1 94	11	ohm	is/sq	
Contact Resistance	8.97			1	4.0	9	18	.84		21.44	4		ohm	IS	
COMMENTS: BLK is silici	de blo	ck.											C_{D}	_{PS} =103 a	ſ∕µ²
CAPACITANCE PARAMETERS	5 N+	P+	POLY		M2	ΜЗ			M6	R_W	D_N_W	M5P	N_W		
Area (substrate)	998	1152	103	39	19	13	9	8	3		129		12	7 aF/um^2)
Area (N+active)			8566	54	21	14	11	10	9					aF/um^2	
Area (P+active)			8324											aF/um^2	
Area (poly)				64	18			6	5					aF/um^2	
Area (metal1)					44	16		7	5					aF/um^2	
Area (metal2)						38	15	9	7					aF/um^2	
Area (metal3)							40		9					aF/um^2	
Area (metal4)								37	14					aF/um^2	
Area (metal5)									36			1003		aF/um^2	
Area (r well)	987													aF/um^2	
Area (d well)										574				aF/um^2	
Area (no well)	139													aF/um^2	
Fringe (substrate)	244	201		18	61	55	43	25						aF/um	
Fringe (poly)				69	39	29	24	21	19					aF/um	
Fringe (metal1)					61	35		23	21					aF/um	
Fringe (metal2)						54	37	27	24					aF/um	
Fringe (metal3)							56	34	31					aF/um	
Fringe (metal4)								58	40					aF/um	
Fringe (metal5)									61					aF/um	
Overlap (P+active)			652											aF/um	

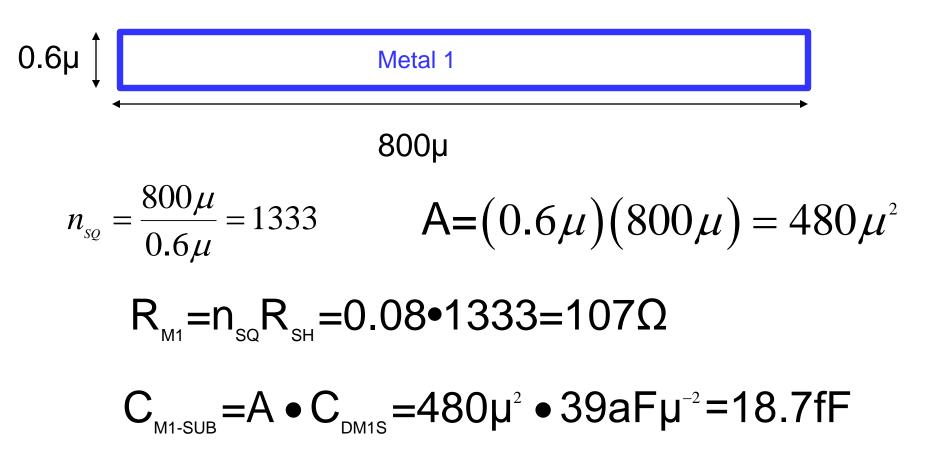
For 0.18u process

Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M₁ were used.

Example

Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.

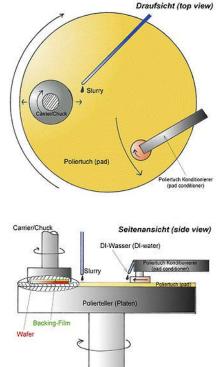


For 0.18u process

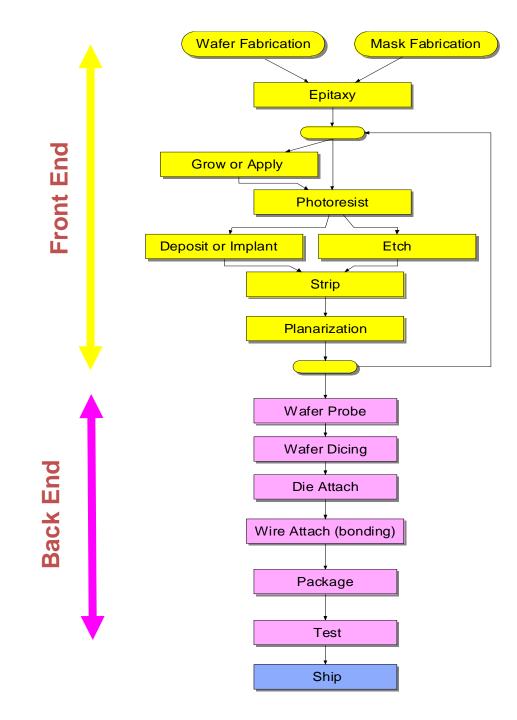
PROCESS PARAMETERS Sheet Resistance Contact Resistance	10.1 10		61.0	PLY+BLK 317.1	M1 M2 0.08 0.08 4.18	hms R _{SH} =0.08 Ω /
PROCESS PARAMETERS Sheet Resistance Contact Resistance		Y_HRI 991.5	M4 0.08 14.09	M5 0.08 18.84	M6 N_W 0.01 94 21.44	
COMMENTS: BLK is silici	ide block.					C _{DPS} =39 af/µ ²
CAPACITANCE PARAMETER Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (metal1) Area (metal2) Area (metal3) Area (metal3) Area (metal4) Area (metal5) Area (r well) Area (d well) Area (d well) Area (no well) Fringe (substrate) Fringe (metal1) Fringe (metal2) Fringe (metal3) Fringe (metal4) Fringe (metal5)	S N+ P+ 998 1152 987 139 244 201	103 8566 8324 6	39 19 13 54 21 14 54 18 10 44 16 38 18 61 55 59 39 29 61 35	11 10 9 7 6 5 10 7 5 15 9 7 40 15 9 37 14 36 43 25 24 21 19	- <u>1</u> 29	M5P N_W UNITS 127 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um^2 aF/um aF/um aF/um aF/um aF/um aF/um aF/um aF/um aF/um
Overlap (P+active)		652				aF/um

Example For 0.18u process

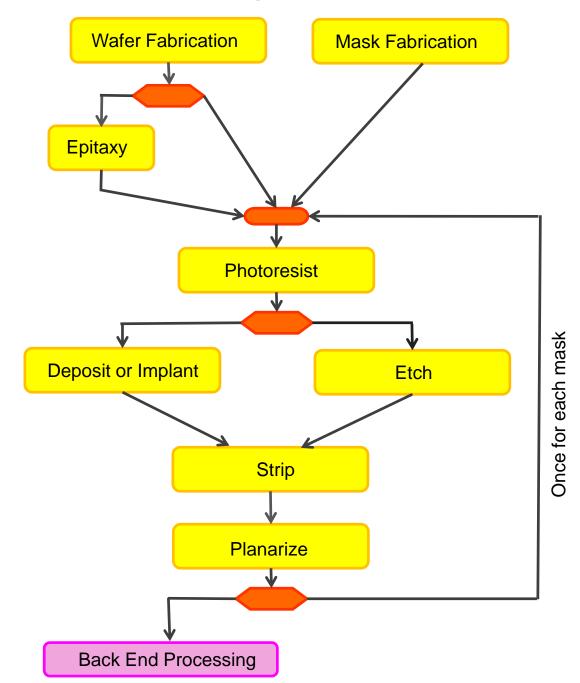
Determine the resistance and capacitance of a Poly interconnect that is 0.6u wide and 800u long and compare that with the same interconnect if M_1 were used.



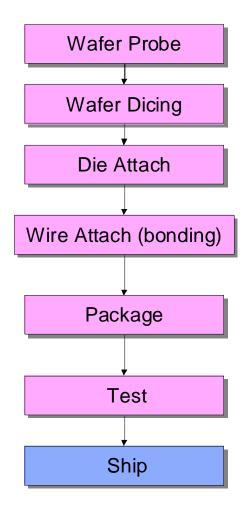
IC Fabrication Technology

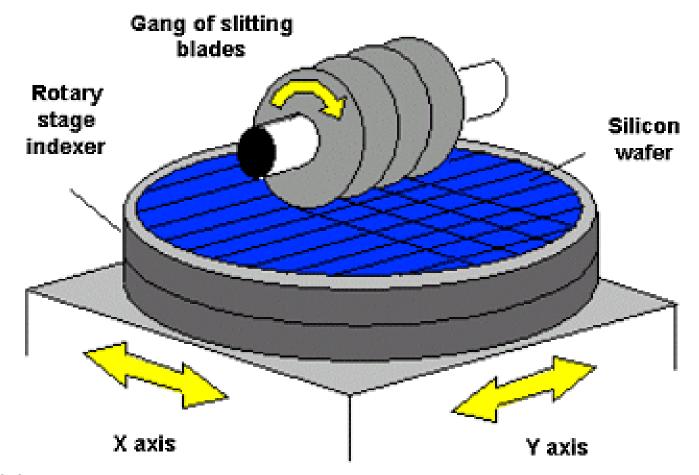

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Contacts, Interconnect and Metalization
- 🔶 Planarization

Planarization


- Planarization used to keep surface planar during subsequent processing steps
 - Important for creating good quality layers in subsequent processing steps
 - Mechanically planarized

Generic Process Flow

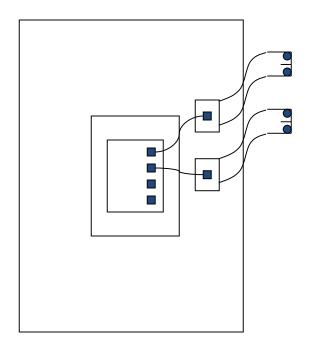

Front End Process Integration for Fabrication of ICs


Front-End Process Flow

- Front-end processing steps analogous to a "recipe" for manufacturing an integrated circuit
- Recipes vary from one process to the next but the same basic steps are used throughout the industry
- Details of the recipe are generally considered proprietary

Back-End Process Flow

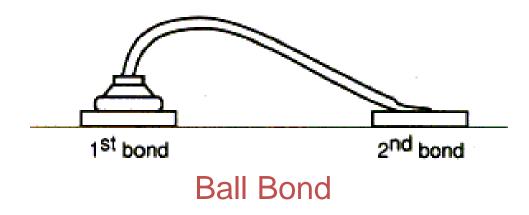
Wafer Dicing


www.renishaw.com

Die Attach

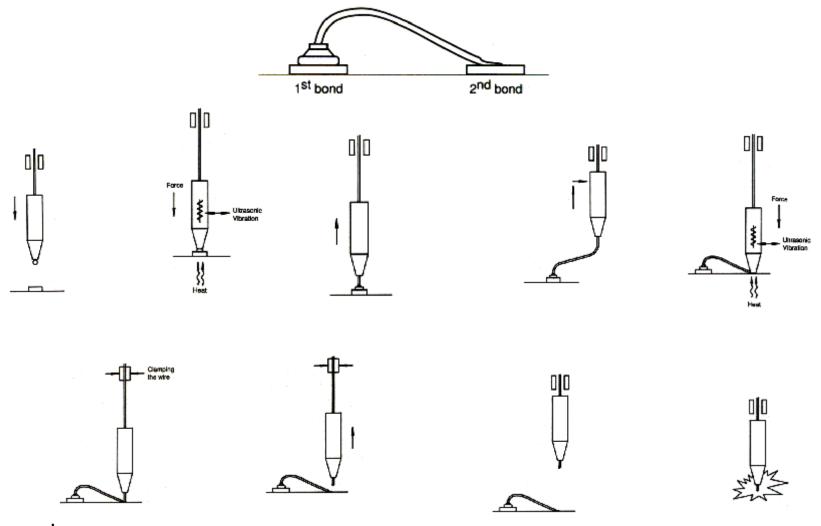
- 1. Eutectic
- 2. Pre-form
- 3. Conductive Epoxy

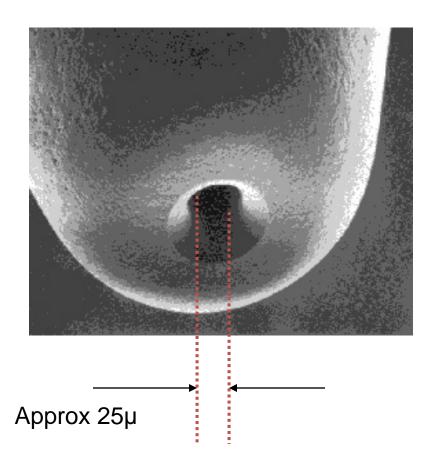
Electrical Connections (Bonding)

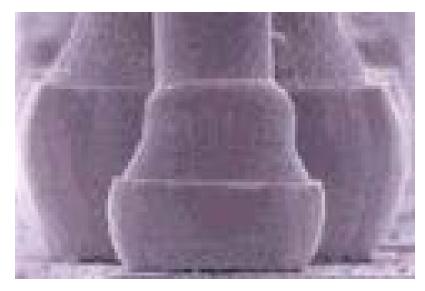

- Wire Bonding
- Bump Bonding

Wire – gold or aluminum 25μ in diameter

Excellent Annimation showing process at :

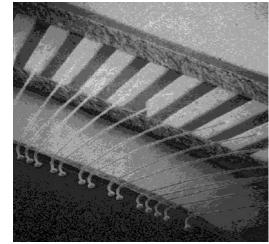

http://www.kns.com/_Flash/CAP_BONDING_CYCLE.swf

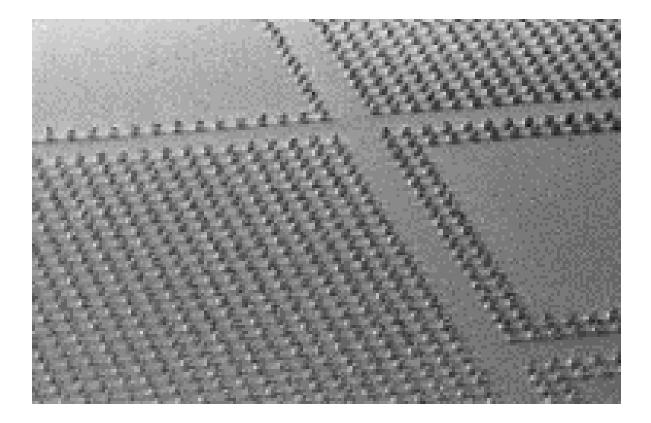

www.kns.com


Ball Bonding Steps

www.kns.com

Ball Bonding Tip

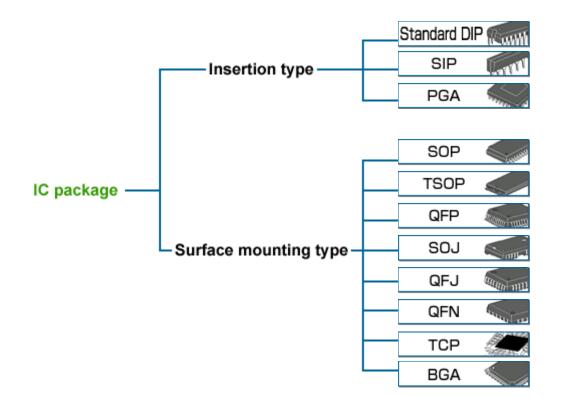



Ball Bond

Termination Bond

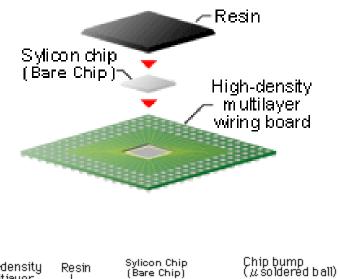
Ball Bond Photograph

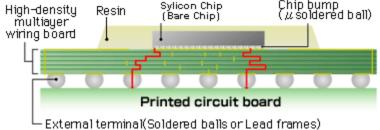
Bump Bonding



www.secap.org

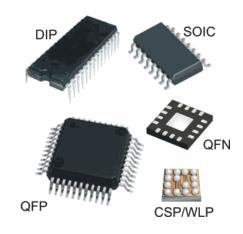
Packaging


- 1. Many variants in packages now available
- 2. Considerable development ongoing on developing packaging technology
- 3. Cost can vary from few cents to tens of dollars
- 4. Must minimize product loss after packaged
- 5. Choice of package for a product is serious business
- 6. Designer invariably needs to know packaging plans and package models


Packaging

www.necel.com

Packaging



www.necel.com

Pin Pitch Varies with Package Technology

All measurements are nominal in [mm].

Name	Pin pitch	Size	Height
DIP or DIL	2.54		
SOIC-16	1.27	3.9 x 10	1.72
SSOP	0.635		
TSSOP54-II	0.8	12.7 x 22.22	~1
PLCC44	1.27		
PQ208 ^[1]	0.50	28 x 28	3.4
TQFP64	0.40	7 x 7	1.0
TQFP144 ^[2]	0.50	20 x 20	1.0
128PQFP	0.50	23.23 x 14.0	3.15

http://www.electroiq.com/index/display/packaging-articledisplay/234467/articles/advanced-packaging/volume-14/issue-8/features/the-back-end-process/materials-andmethods-for-ic-package-assemblies.htm

From Wikipedia, Sept 20, 2010

http://en.wikipedia.org/wiki/List_of_chip_carriers

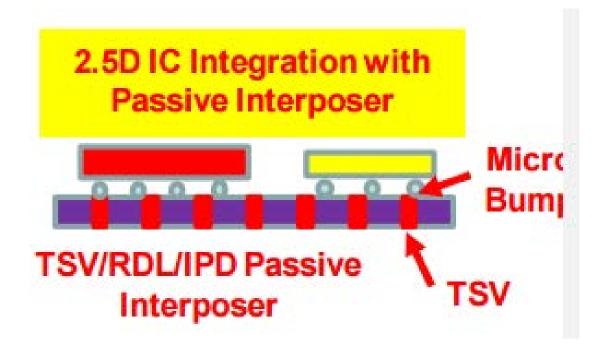
Many standard packages available today:

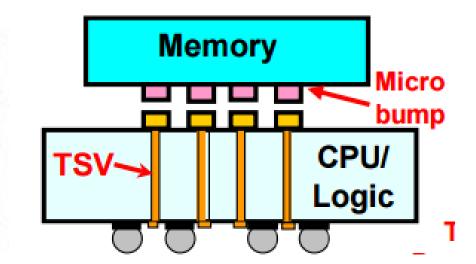
http://www.interfacebus.com/Design_Pack_types.html

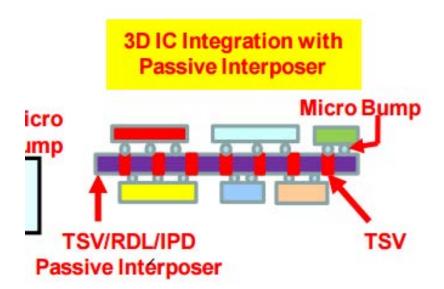
BCC: Bump Chip Carrier BGA: Ball Grid Array; BGA graphic BOFP: Bumpered Quad Flat Pack CABGA/SSBGA: Chip Array/Small Scale Ball Grid Array CBGA: Ceramic Ball Grid Array CFP: Ceramic Flat Pack CPGA: Ceramic Pin Grid Array, CPGA Graphic CQFP: Ceramic Quad Flat Pack, CQFP Graphic TBD: Ceramic Lead-Less Chip Carrier DFN: Dual Flat Pack, No Lead **DLCC:** Dual Lead-Less Chip Carrier (Ceramic) ETOFP: Extra Thin Quad Flat Package FBGA: Fine-pitch Ball Grid Array fpBGA: Fine Pitch Ball Grid Array HSBGA: Heat Slug Ball Grid Array JLCC: J-Leaded Chip Carrier (Ceramic) J-Lead Picture LBGA: Low-Profile Ball Grid Array LCC: Leaded Chip Carrier LCC Graphic LCC: Leaded Chip Carrier Un-formed LCC Graphic LCCC: Leaded Ceramic Chip Carrier; LFBGA: Low-Profile, Fine-Pitch Ball Grid Array LGA: Land Grid Array, LGA uP [Pins are on the Motherboard, not the socket] LLCC: Leadless Leaded Chip Carrier LLCC Graphic LOFP: Low Profile Quad Flat Package MCMBGA: Multi Chip Module Ball Grid Array MCMCABGA: Multi Chip Module-Chip Array Ball Grid Array MLCC: Micro Lead-frame Chip Carrier

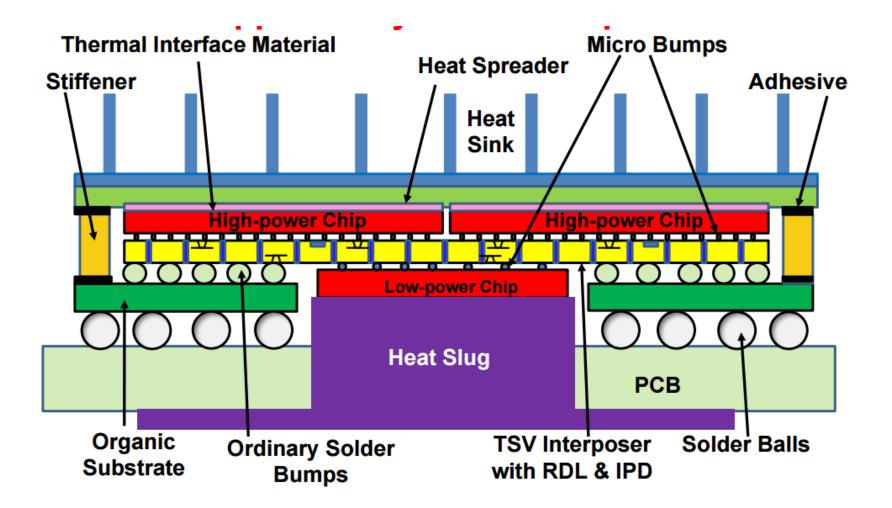
PBGA: Plastic Ball Grid Array PLCC: Plastic Leaded Chip Carrier PQFD: Plastic Quad Flat Pack PQFP: Plastic Quad Flat Pack PSOP: Plastic Small-Outline Package PSOP graphic **QFP:** Quad Flatpack **QFP** Graphics **QSOP:** Quarter Size Outline Package [Quarter Pitch Small Outline Package] SBGA: Super BGA - above 500 Pin count SOIC: Small Outline IC SO Flat Pack: Small Outline Flat Pack IC SOJ: Small-Outline Package [J-Lead]; J-Lead Picture SOP: Small-Outline Package; SOP IC, Socket SSOP: Shrink Small-Outline Package TBGA: Thin Ball Grid Array TOFP: Thin Quad Flat Pack TOFP Graphic **TSOP:** Thin Small-Outline Package **TSSOP:** Thin Shrink Small-Outline Package TVSOP: Thin Very Small-Outline Package VOFB: Very-thin Quad Flat Pack

Considerable activity today and for years to come on improving packaging technology

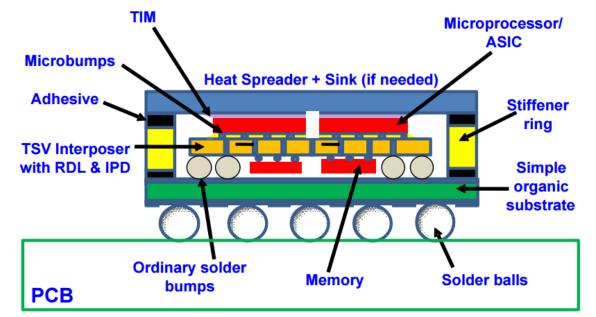

- Multiple die in a package
- Three-dimensional chip stacking
- Multiple levels of interconnect in stacks
- Through silicon via technology
- Power and heat management
- Cost driven and cost constrained

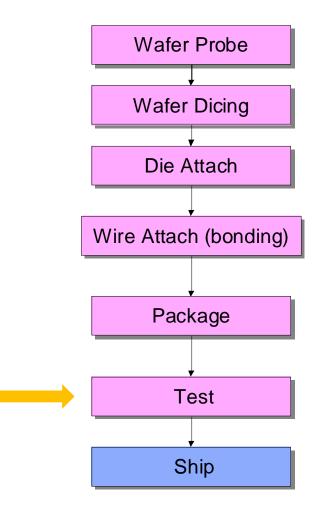

The following few slides come from a John Lau presentation


Www.sematech.org/meetings/archives/symposia/10187/Session2/04_Lau.pdf


TSV Interposer: The Most Cost-Effective Integrator for 3D IC Integration

John H. Lau Electronics & Optoelectronics Research Laboratories Industrial Technology Research Institute (ITRI) Chutung, Hsinchu, Taiwan 310, R.O.C. <u>886-3591-3390, johnlau@itri.org.tw</u>

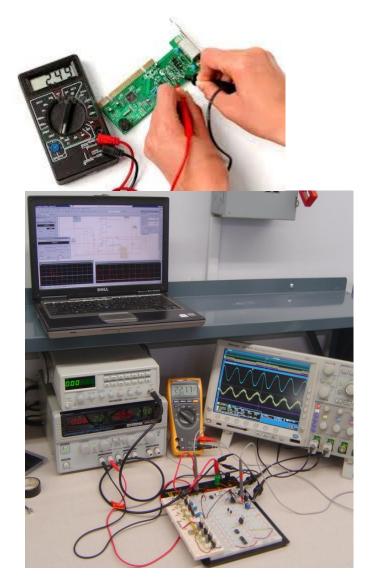


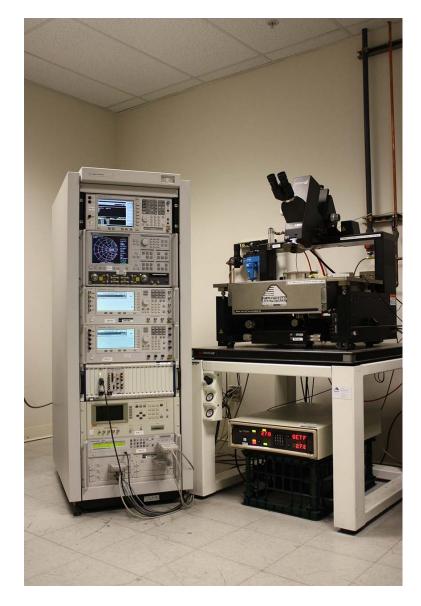

TSV passive interposer supporting high-power chips (e.g., microprocessor and logic) on its top side and low-power chips (e.g., memory) on its bottom side

Special underfills are needed between the Cu -filled interposer and all the chips. Ordinary underfills are needed between the interposer and the organic substrate.

```
ASME InterPACK2011-52189 (Lau)
```

Back-End Process Flow

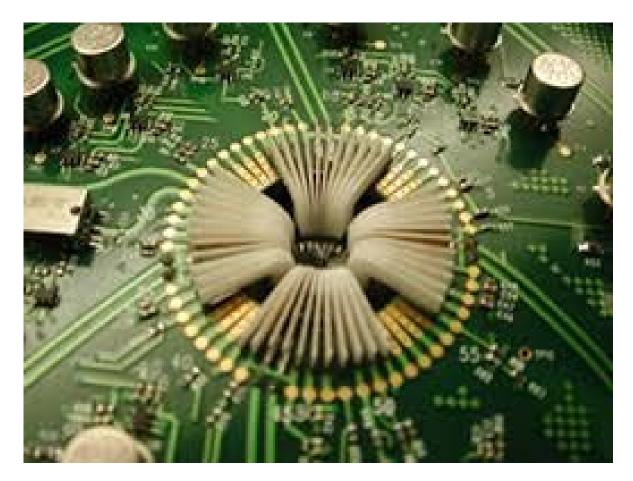

Testing of Integrated Circuits


Bench testing used to qualify parts for production

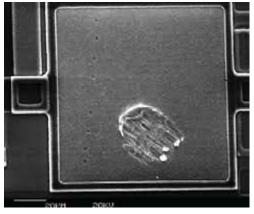
Most integrated circuits are tested twice during production

- Wafer Probe Testing
 - Quick test for functionality
 - Usually does not include much parametric testing
 - Relatively fast and low cost test
 - Package costs often quite large
 - Critical to avoid packaging defective parts
- Packaged Part Testing
 - Testing costs for packaged parts can be high
 - Extensive parametric tests done at package level for many parts
 - Data sheet parametrics with Max and Min values are usually tested on all Ics
 - Data sheet parametrics with Typ values are seldom tested
 - Occasionally require testing at two or more temperatures but this is costly
 - Critical to avoid packaging defective parts

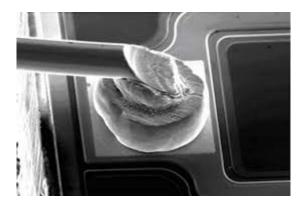
Bench Test Environment



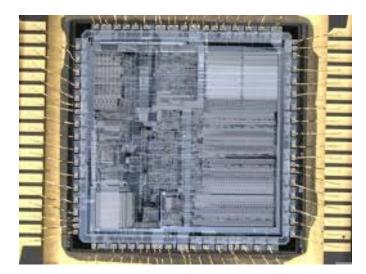
Bench Test Environment


Photo courtesy of Texas Instruments

Probe Test

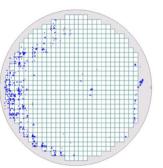


Probes on section of probe card


Probe Test

Pad showing probe marks

Pad showing bonding wire

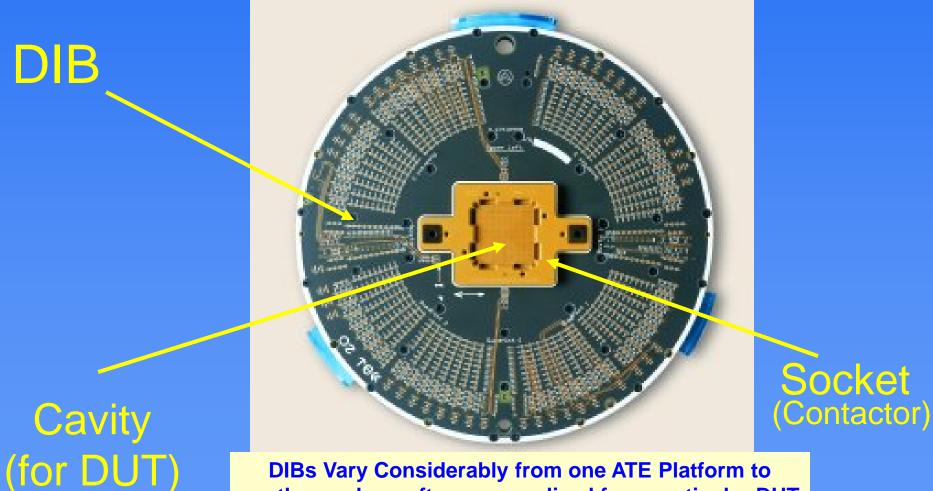

Die showing wire bonds to package cavity

Probe Test

Production probe test facility

Goal to Identify defective die on wafer

Typical ATE System (less handler)



Main Frame

Automated Test Equipment (ATE)

Device Interface Board - DIB (Load Board)

DIBs Vary Considerably from one ATE Platform to another and are often personalized for a particular DUT

Octal Site DIB

Flex Octal (Teradyne)

Top

Final Test

End of Lecture 11