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Lecture 22

• Small Signal Analysis
• Small Signal Modelling



Small signal analysis example

Difficult to answer this question with the information provided !

OUT OUTQ V MV V A V sin tω≅ +

But – this expression gives little insight into how large the gain is !

Can the gain be made arbitrarily large by simply making R large?

Observe increasing R with W,L, and VSS fixed will change Q-point
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Small signal analysis example
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Thus,  substituting from the expression for IDQ we obtain

But recall:
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Small signal analysis example

• Small signal voltage gain is twice the Quiescent
voltage across R divided by VGSQ - VT

• Making IDQR too big or too small will limit signal swing
• Can make  |AV | large by making VGSQ - VT small 

• This analysis which required linearization of a nonlinear output voltage is quite 
tedious.

• This approach becomes unwieldy for even slightly more complicated circuits

• A much easier approach based upon the development of small signal models 
will provide the same results, provide more insight into both analysis and 
design, and result in a dramatic reduction in computational requirements 
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Small signal analysis example

OUT OUTQ V MV V A V sin tω≅ +
However, there are invariably small errors in this analsis

( )OUT OUTQ V MV V A V sin t + ε tω= +

To see the effects of the approximations consider again
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Note presence of second harmonic distortion term !

(Consider what was neglected in the previous analysis)
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Small signal analysis example

OUT OUTQ V MV V A V sin tω≅ +

( )OUT OUTQ V MV V A V sin t + ε tω= +
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Nonlinear distortion term
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Small signal analysis example
Nonlinear distortion term

Total Harmonic Distortion:

Recall, if                                            then ( ) ( )
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Thus, for this amplifier, as long as M1 stays in the saturation region
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Distortion will be much worse (larger and more harmonic terms) if M1 leaves saturation region.
Distortion will be small for VM<<
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Consider the following MOSFET and BJT Circuits
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One of the most widely used amplifier architectures

• Analysis was very time consuming
• Issue of operation of circuit was 

obscured in the details of the analysis



Consider the following MOSFET and BJT Circuits
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Small signal analysis using nonlinear models
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Assume Q1 operating in forward active region

By selecting appropriate value of VSS, M1
will operate in the forward active region
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Small signal analysis using nonlinear models
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Recall that if x is small ε ε≅e 1+ (truncated Taylor’s series)
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Small signal analysis using nonlinear models

R1

Q1

VOUT

VCC

VEE

VIN(t)

=
beQ

t

V
V

CQ S EI J A e

VM is small ( )1CQ
OUT CC 1 M

IV V R V sin t
CQ

t

RI
V

ω
 

≅ − −    
 Quiescent Output

ss Voltage Gain

( )ω ≅ − −  

beQ

tbeQ

t

V
VV

V S E 1
OUT CC S E 1 M

t

J A R eV V J A R e V sin t
V

VIN=VINQ+VMsinωt



Comparison of Gains for MOSFET and BJT Circuits
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Observe AVB>>AVM
Due to exponential-law rather than square-law model



Operation with Small-Signal Inputs

• Analysis procedure for these simple circuits was very tedious

• This approach will be unmanageable for even modestly more complicated
circuits

• Faster analysis method is needed !



Small-Signal Analysis

IOUTSS

VOUTSS

VINSS or IINSS

Biasing 
(voltage or current)

Nonlinear 
Circuit

IOUTSS

VOUTSS

VINSS or IINSS Linear Small 
Signal Circuit

• Will commit next several lectures to developing this approach
• Analysis will be MUCH simpler, faster, and provide significantly more insight
• Applicable to many fields of engineering

Map Nonlinear circuit to linear 
small-signal circuit

Nonlinear 
Analysis

Linear 
Analysis



Simple dc Model

Small 
Signal 

Frequency 
Dependent Small 

Signal 

Better Analytical  
dc Model

Sophisticated Model 
for Computer 
Simulations 

Simpler dc Model

Square-Law Model

Square-Law Model (with extensions for λ,γ effects)

Short-Channel α-law Model

BSIM Model

Switch-Level Models
    • Ideal switches
    • RSW and CGS

Small-Signal Analysis



Operation with Small-Signal Inputs
Why was this analysis so tedious?     

What was the key technique in the analysis that was used to obtain a simple 
expression for the output  (and that related linearly to the input)?

Because of the nonlinearity in the device models
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Linearization of the nonlinear output expression at the operating point



Operation with Small-Signal Inputs
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Small-signal analysis strategy

1. Obtain Quiescent Output (Q-point)
2. Linearize circuit at Q-point instead of linearize the nonlinear solution

(this will be done by linearizing each component in the circuit)
1. Analyze linear “small-signal” circuit
2. Add quiescent and small-signal outputs to obtain good approximation 

to actual output



Small-Signal Principle
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Small-Signal Principle
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Small-Signal Principle
y

x
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XQ
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Region around 
Q-Point

Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points

y=f(x)



Small-Signal Principle
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Small-Signal Principle 
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Device Behaves Linearly in Neighborhood of Q-Point
Can be characterized in terms of a small-signal coordinate system

y=f(x)



Small-Signal Principle
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Small-Signal Principle 
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Changing coordinate systems:

ySS=y-yQ

xSS=x-xQ
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Small-Signal Principle 
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• Linearized model for the nonlinear function y=f(x)
• Valid in the region of the Q-point
• Will show the small signal model is simply Taylor’s series expansion

of f(x) at the Q-point truncated after first-order terms

Small-Signal Model:



Small-Signal Principle 
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Mathematically, linearized  model is simply Taylor’s series expansion of the nonlinear 
function f   at the Q-point truncated after first-order terms with notation xQ=x0

Small-Signal Model:

( )
Q

Q Q

x=x

fy - y x - x
x
∂

=
∂

( ) ( )
Q

Q Q

x=x

fy f x x - x
x
∂

= +
∂

( ) ( )
Q

Q Q

x=x

fy f x x - x
x
∂

≅ +
∂

Observe:

Recall Taylors Series Expansion of nonlinear function f at expansion point x0
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Truncating after first-order terms (and defining “o” as “Q”):
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Small-Signal Principle 
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Quiescent Output

ss  Gain
How can a circuit be linearized at an operating point as an alternative to 
linearizing  a nonlinear function at an operating point?

V Nonlinear 
One-Port

IConsider arbitrary nonlinear one-port network



Arbitrary Nonlinear One-Port
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A Small Signal  Equivalent Circuit:

I

V

2-Terminal
Nonlinear

Device

f(v)

Arbitrary Nonlinear One-Port 

QV=V
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∂
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• The small-signal model of this 2-terminal electrical network is a resistor of value 1/y 
or a conductor of value y

• One small-signal parameter characterizes this one-port but it is dependent on Q-
point

• This applies to ANY nonlinear one-port that is differentiable at a Q-point (e.g. a diode)

V Nonlinear 
One-Port

I

Linear small-signal model:



End of Lecture 22
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