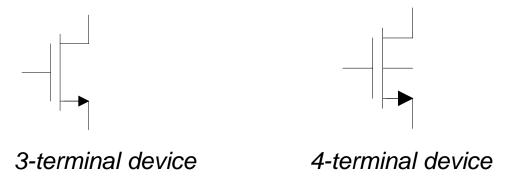
EE 330 Lecture 24

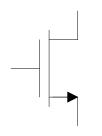
- Small Signal Analysis
 - SS Models for MOSFET
 - SS Models for BJT



MOSFET is actually a 4-terminal device but for many applications acceptable predictions of performance can be obtained by treating it as a 3-terminal device by neglecting the bulk terminal

In this course, we have been treating it as a 3-terminal device and in this lecture will develop the small-signal model by treating it as a 3-terminal device

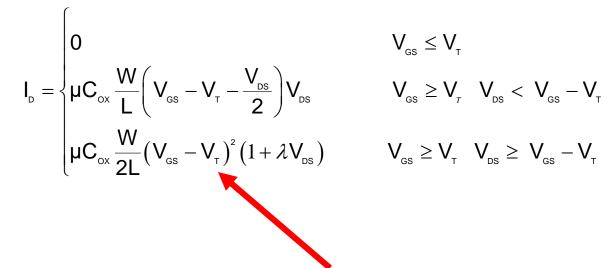
When treated as a 4-terminal device, the bulk voltage introduces one additional term to the small signal model which is often either negligibly small or has no effect on circuit performance (will develop 4-terminal ss model later)



Large Signal Model

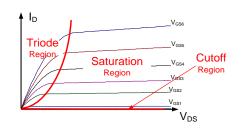
$$I_{\rm G} = 0$$

3-terminal device



$$V_{gs} \le V_{T}$$
 $V_{gs} \ge V_{T}$ $V_{ds} < V_{gs} - V_{ds}$

$$V_{_{GS}} \ge V_{_{T}} \quad V_{_{DS}} \ge V_{_{GS}} - V_{_{T}}$$



MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

$$\begin{split} I_{_{1}} &= f_{_{1}} \left(V_{_{1}}, V_{_{2}} \right) & \iff & I_{_{G}} = 0 \\ I_{_{2}} &= f_{_{2}} \left(V_{_{1}}, V_{_{2}} \right) & \iff & I_{_{D}} = \mu C_{_{OX}} \frac{W}{2L} \left(V_{_{GS}} - V_{_{T}} \right)^{2} \left(1 + \lambda V_{_{DS}} \right) \\ I_{_{G}} &= f_{_{1}} \left(V_{_{GS}}, V_{_{DS}} \right) \\ I_{_{D}} &= f_{_{2}} \left(V_{_{GS}}, V_{_{DS}} \right) \end{split}$$

Small-signal model:

al model:
$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right)}{\partial \mathbf{V}_{j}} \Big|_{\vec{V} = \vec{V}_{Q}}$$

$$\mathbf{y}_{11} = \frac{\partial \mathbf{I}_{G}}{\partial \mathbf{V}_{GS}} \Big|_{\vec{V} = \vec{V}_{Q}}$$

$$\mathbf{y}_{21} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{DS}} \Big|_{\vec{V} = \vec{V}_{Q}}$$

$$\mathbf{y}_{22} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{DS}} \Big|_{\vec{V} = \vec{V}_{Q}}$$

$$I_{\rm g}=0$$

$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

Small-signal model:

$$y_{11} = \frac{\partial I_{g}}{\partial V_{gs}}\Big|_{\bar{V} = \bar{V}_{Q}} = ? \qquad y_{12} = \frac{\partial I_{g}}{\partial V_{DS}}\Big|_{\bar{V} = \bar{V}_{Q}} = ?$$

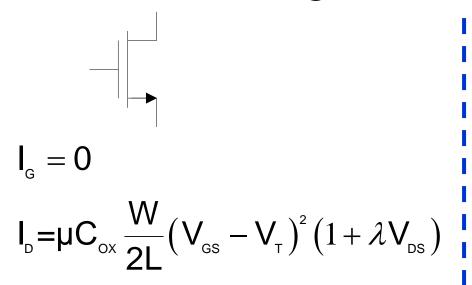
$$\mathbf{y}_{21} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{GS}}\Big|_{\vec{\mathbf{y}} = \vec{\mathbf{V}}_{Q}} = \mathbf{?}$$

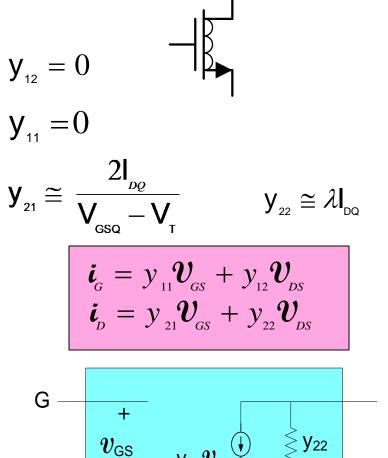
$$\mathbf{y}_{22} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{DS}}\Big|_{\vec{\mathbf{y}} = \vec{\mathbf{V}}_{Q}} = \mathbf{?}$$

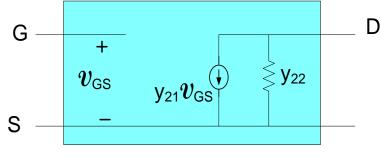
Recall: termed the y-parameter model

Small-signal model:

$$\begin{aligned} y_{_{11}} &= & \left. \frac{\partial I_{_{G}}}{\partial V_{_{GS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = 0 \\ y_{_{21}} &= & \left. \frac{\partial I_{_{G}}}{\partial V_{_{DS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = 2 \mu C_{_{OX}} \frac{W}{2L} \Big(V_{_{GS}} - V_{_{T}} \Big) \Big(1 + \lambda V_{_{DS}} \Big) \bigg|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \frac{2I_{_{D}}}{\left(V_{_{GSQ}} - V_{_{T}} \right)} \\ y_{_{21}} &\cong & \mu C_{_{OX}} \frac{W}{L} \Big(V_{_{GSQ}} - V_{_{T}} \Big) \\ y_{_{22}} &= & \left. \frac{\partial I_{_{D}}}{\partial V_{_{DS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \mu C_{_{OX}} \frac{W}{2L} \Big(V_{_{GS}} - V_{_{T}} \Big)^{2} \lambda \bigg|_{_{\bar{V} = \bar{V}_{_{Q}}}} \cong \lambda I_{_{DQ}} \end{aligned}$$

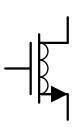






An equivalent circuit

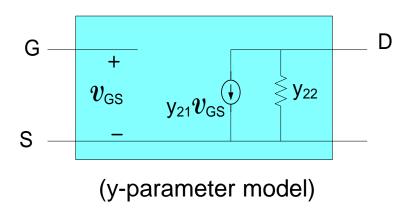
(y-parameter model)

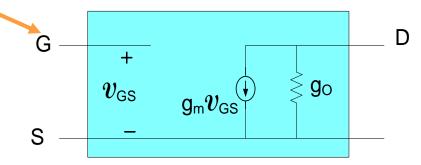


by convention, $y_{21}=g_m$, $y_{22}=g_0$

$$\therefore y_{21} \cong g_m = \mu C_{OX} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$y_{22} = g_0 \cong \lambda I_{DQ}$$

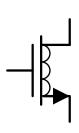




$$\mathbf{i}_{G} = 0
 \mathbf{i}_{D} = g_{m} \mathbf{v}_{GS} + g_{O} \mathbf{v}_{DS}$$

Note: g_0 vanishes when $\lambda=0$

still y-parameter model but use "g" parameter notation



$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$g_o \cong \lambda I_{_{DQ}}$$
 $G \xrightarrow{+} v_{GS} g_m v_{GS} \geqslant g_o$
 $S \xrightarrow{-}$

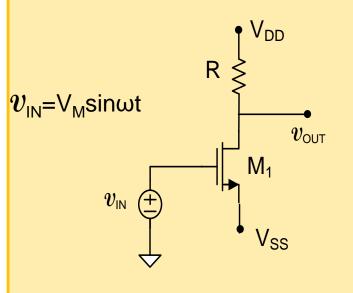
Alternate equivalent expressions for g_m :

$$\begin{split} \mathbf{I}_{\text{\tiny DQ}} = & \mu \mathbf{C}_{\text{\tiny OX}} \frac{\mathbf{W}}{2 \mathsf{L}} \big(\mathbf{V}_{\text{\tiny GSQ}} - \mathbf{V}_{\text{\tiny T}} \big)^2 \big(1 + \lambda \mathbf{V}_{\text{\tiny DSQ}} \big) \cong \mu \mathbf{C}_{\text{\tiny OX}} \frac{\mathbf{W}}{2 \mathsf{L}} \big(\mathbf{V}_{\text{\tiny GSQ}} - \mathbf{V}_{\text{\tiny T}} \big)^2 \\ g_{_{m}} = & \mu \mathbf{C}_{\text{\tiny OX}} \frac{\mathbf{W}}{\mathsf{L}} \big(\mathbf{V}_{\text{\tiny GSQ}} - \mathbf{V}_{\text{\tiny T}} \big) \end{split}$$

$$g_{m} = \sqrt{2\mu C_{ox} \frac{W}{L}} \cdot \sqrt{I_{DQ}}$$

$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}}$$

Small-signal analysis example

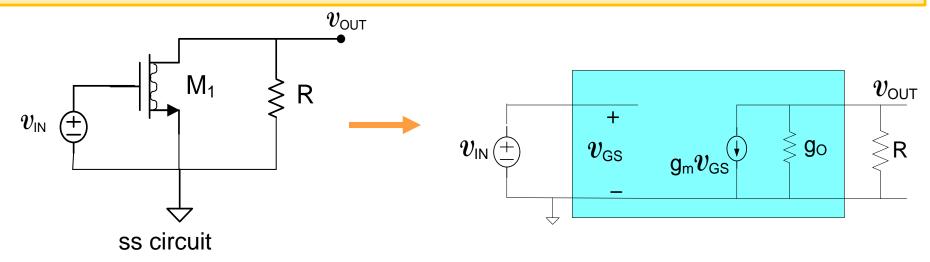


$$A_{_{\text{V}}} = \frac{2I_{_{\text{DQ}}}R}{\left[V_{_{\text{SS}}} + V_{_{\text{T}}}\right]}$$

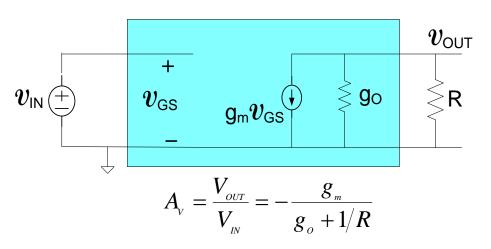
Derived for $\lambda=0$ (equivalently $g_0=0$)

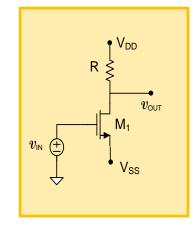
$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2}$$

Recall the derivation was very tedious and time consuming!



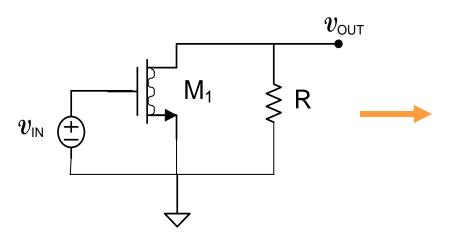
Small-signal analysis example





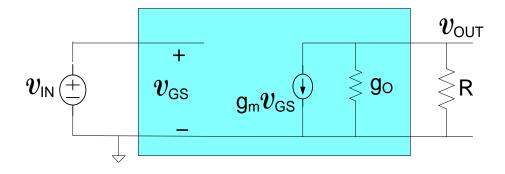
This gain is expressed in terms of small-signal model parameters

For
$$\lambda=0$$
, $g_O = \lambda I_{DQ} = 0$



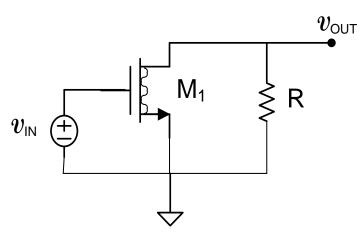
$$A_{V} = \frac{\mathcal{V}_{OUT}}{\mathcal{V}_{IN}} = -g_{m}R$$
but
$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}} \qquad V_{GSQ} = -V_{SS}$$
thus
$$A = \frac{2I_{DQ}}{V_{DQ}}R$$

Small-signal analysis example



$$A_{V} = \frac{V_{OUT}}{V_{IN}} = -\frac{g_{m}}{g_{o} + 1/R}$$

For
$$\lambda=0$$
, $g_O = \lambda I_{DQ} = 0$

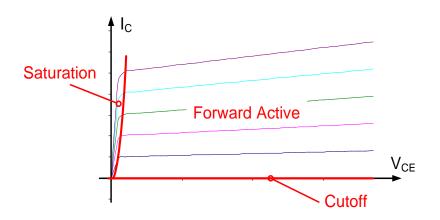


$$\longrightarrow$$

$$A_{v} = \frac{2I_{DQ}R}{\left[V_{SS} + V_{T}\right]}$$

- Same expression as derived before!
- More accurate gain can be obtained if
 λ effects are included and does not significantly
 increase complexity of small-signal analysis

3-terminal device

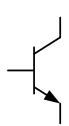


Forward Active Model:

$$\begin{split} &\textbf{I}_{\text{c}} = \textbf{J}_{\text{s}} \textbf{A}_{\text{e}} \textbf{e}^{\frac{\textbf{V}_{\text{BE}}}{\textbf{V}_{\text{t}}}} \Bigg(1 + \frac{\textbf{V}_{\text{CE}}}{\textbf{V}_{\text{AF}}} \Bigg) \\ &\textbf{I}_{\text{B}} = \frac{\textbf{J}_{\text{s}} \textbf{A}_{\text{E}}}{\beta} \textbf{e}^{\frac{\textbf{V}_{\text{BE}}}{\textbf{V}_{\text{t}}}} \end{split}$$

- Usually operated in Forward Active Region when small-signal model is needed
- Will develop small-signal model in Forward Active Region

Nonlinear model:



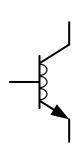
$$\boldsymbol{I}_{\scriptscriptstyle 1} = \boldsymbol{f}_{\scriptscriptstyle 1} \big(\boldsymbol{V}_{\scriptscriptstyle 1}, \boldsymbol{V}_{\scriptscriptstyle 2} \big)$$

$$I_{1} = f_{1}(V_{1}, V_{2}) \qquad \Longrightarrow \qquad I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$I_2 = f_2(V_1, V_2)$$

$$\mathbf{I}_{2} = \mathbf{f}_{2} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right) \qquad \qquad \mathbf{I}_{C} = \mathbf{J}_{S} \mathbf{A}_{E} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}} \left(1 + \frac{\mathbf{V}_{CE}}{\mathbf{V}_{AF}} \right)$$

Small-signal model:



$$\mathbf{i}_{B} = y_{11} \mathbf{v}_{BE} + y_{12} \mathbf{v}_{CE}$$

$$\mathbf{i}_{C} = y_{21} \mathbf{V}_{BE} + y_{22} \mathbf{V}_{CE}$$

$$y_{ij} = \frac{\partial f_i(V_1, V_2)}{\partial V_j}$$
 y-parameter model

$$\mathbf{y}_{11} = \mathbf{g}_{\pi} = \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{BE}}|_{\mathbf{V} = \mathbf{V}}}$$

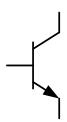
$$\mathbf{y}_{21} = \mathbf{g}_{m} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{RE}} \Big|_{\mathbf{F} \in \mathcal{F}}$$

$$\mathbf{y}_{12} = \left. \frac{\partial \mathbf{I}_{B}}{\partial \mathbf{V}_{CE}} \right|_{\vec{V} = \vec{V}.}$$

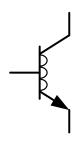
$$\mathbf{y}_{22} = \mathbf{g}_{o} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}} \bigg|_{\mathbf{V} = \mathbf{V}_{c}}$$

Note: g_m , g_{π} and g_o used for notational consistency with legacy terminology

Nonlinear model:



Small-signal model:



$$y_{11} = g_{\pi} = \frac{\partial I_{B}}{\partial V_{BE}}\Big|_{\vec{V} = \vec{V}_{O}} = ?$$

$$y_{21} = g_{m} = \frac{\partial I_{c}}{\partial V_{BE}}\Big|_{\vec{V} = \vec{V}_{c}} = ?$$

$$\mathbf{I}_{\mathsf{B}} = \frac{\mathbf{J}_{\mathsf{S}} \mathbf{A}_{\mathsf{E}}}{\mathbf{\beta}} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}}$$

$$\mathbf{I}_{\mathsf{C}} = \mathbf{J}_{\mathsf{S}} \mathbf{A}_{\mathsf{E}} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}} \left(1 + \frac{\mathsf{V}_{\mathsf{CE}}}{\mathsf{V}_{\mathsf{AF}}} \right)$$

$$\mathbf{i}_{B} = y_{11} \mathbf{v}_{BE} + y_{12} \mathbf{v}_{CE}$$

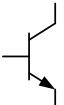
$$\mathbf{i}_{C} = y_{21} \mathbf{v}_{BE} + y_{22} \mathbf{v}_{CE}$$

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right)}{\partial \mathbf{V}_{j}} \Big|_{\vec{\mathbf{v}} = \vec{\mathbf{v}}_{Q}}$$

$$\mathbf{y}_{12} = \frac{\partial \mathbf{I}_{B}}{\partial \mathbf{V}_{CE}} \Big|_{\vec{\mathbf{v}} = \vec{\mathbf{v}}_{Q}} = \mathbf{?}$$

$$\mathbf{y}_{22} = \mathbf{g}_{o} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{cE}}\Big|_{\mathbf{V} = \mathbf{V}_{O}} = \mathbf{?}$$

Nonlinear model



Small-signal model:



$$I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$I_{C} = J_{S}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$$

$$\mathbf{i}_{B} = y_{11} \mathbf{v}_{BE} + y_{12} \mathbf{v}_{CE}$$

$$\mathbf{i}_{C} = y_{21} \mathbf{V}_{BE} + y_{22} \mathbf{V}_{CE}$$

$$\mathsf{y}_{\scriptscriptstyle{\mathsf{1}\mathsf{1}}} = g_{\scriptscriptstyle{\pi}} = \left. \frac{\partial \mathsf{I}_{\scriptscriptstyle{\mathsf{B}}}}{\partial \mathsf{V}_{\scriptscriptstyle{\mathsf{BE}}}} \right|_{\bar{\mathsf{V}} = \bar{\mathsf{V}}_{\scriptscriptstyle{\mathsf{O}}}} = \frac{1}{V_{\scriptscriptstyle{\mathsf{I}}}} \frac{\mathsf{J}_{\scriptscriptstyle{\mathsf{S}}} \mathsf{A}_{\scriptscriptstyle{\mathsf{E}}}}{\mathsf{\beta}} \, \mathsf{e}^{\frac{\mathsf{V}_{\scriptscriptstyle{\mathsf{BE}}}}{\mathsf{V}_{\scriptscriptstyle{\mathsf{I}}}}} \right|_{\bar{\mathsf{V}} = \bar{\mathsf{V}}_{\scriptscriptstyle{\mathsf{O}}}} = \frac{\mathsf{I}_{\scriptscriptstyle{\mathsf{BQ}}}}{\mathsf{V}_{\scriptscriptstyle{\mathsf{I}}}} \cong \frac{\mathsf{I}_{\scriptscriptstyle{\mathsf{CQ}}}}{\mathsf{\beta} \mathsf{V}_{\scriptscriptstyle{\mathsf{I}}}}$$

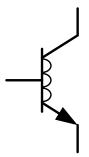
$$\mathbf{y}_{_{12}} = \left. \frac{\partial \mathbf{I}_{_{\mathrm{B}}}}{\partial \mathbf{V}_{_{\mathrm{CF}}}} \right|_{_{\vec{\mathbf{V}} = \vec{\mathbf{V}}}} = \mathbf{0}$$

$$\mathbf{y}_{\scriptscriptstyle{11}} = g_{\scriptscriptstyle{\pi}} = \left. \frac{\partial \mathbf{I}_{\scriptscriptstyle{B}}}{\partial \mathbf{V}_{\scriptscriptstyle{BE}}} \right|_{_{\bar{V}} = \bar{V}_{\scriptscriptstyle{Q}}} = \frac{1}{V_{\scriptscriptstyle{t}}} \frac{\mathbf{J}_{\scriptscriptstyle{S}} \mathbf{A}_{\scriptscriptstyle{E}}}{\beta} \mathbf{e}^{\frac{\mathbf{V}_{\scriptscriptstyle{BE}}}{V_{\scriptscriptstyle{t}}}} \right|_{_{\bar{V}} = \bar{V}_{\scriptscriptstyle{Q}}} = \frac{\mathbf{I}_{\scriptscriptstyle{CQ}}}{\mathbf{V}_{\scriptscriptstyle{t}}}$$

$$\mathbf{y}_{\scriptscriptstyle{21}} = g_{\scriptscriptstyle{m}} = \frac{\partial \mathbf{I}_{\scriptscriptstyle{C}}}{\partial \mathbf{V}_{\scriptscriptstyle{BE}}} \bigg|_{_{\bar{V}} = \bar{V}_{\scriptscriptstyle{Q}}} = \frac{1}{V_{\scriptscriptstyle{t}}} \mathbf{J}_{\scriptscriptstyle{S}} \mathbf{A}_{\scriptscriptstyle{E}} \mathbf{e}^{\frac{\mathbf{V}_{\scriptscriptstyle{BE}}}{V_{\scriptscriptstyle{t}}}} \left(1 + \frac{\mathbf{V}_{\scriptscriptstyle{CE}}}{V_{\scriptscriptstyle{AF}}}\right) \bigg|_{_{\bar{V}} = \bar{V}_{\scriptscriptstyle{Q}}} = \frac{\mathbf{I}_{\scriptscriptstyle{CQ}}}{V_{\scriptscriptstyle{t}}}$$

$$\mathbf{y}_{22} = g_o = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}} \bigg|_{\mathbf{V} = \mathbf{V}_{Q}} = \frac{\mathbf{J}_{s} \mathbf{A}_{e} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}}}{\mathbf{V}_{AF}} \bigg|_{\mathbf{V} = \mathbf{V}_{AF}} \cong \frac{\mathbf{I}_{cQ}}{\mathbf{V}_{AF}}$$

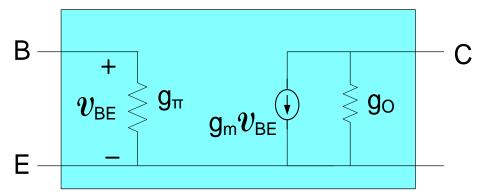
Note: usually prefer to express in terms of I_{CO}



$$g_{\pi} = \frac{I_{CQ}}{\beta V_{\star}}$$
 $g_{m} = \frac{I_{CQ}}{V_{\star}}$ $g_{o} = \frac{I_{CQ}}{V_{AF}}$

$$\mathbf{i}_{B} = g_{\pi} \mathbf{V}_{BE}$$

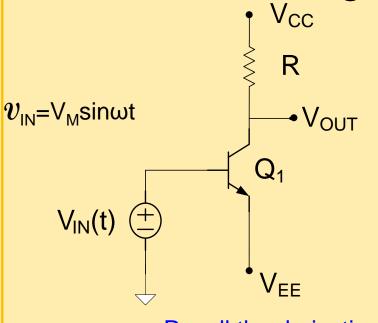
$$\mathbf{i}_{C} = g_{m} \mathbf{V}_{BE} + g_{o} \mathbf{V}_{CE}$$



An equivalent circuit

y-parameter model using "g" parameter notation

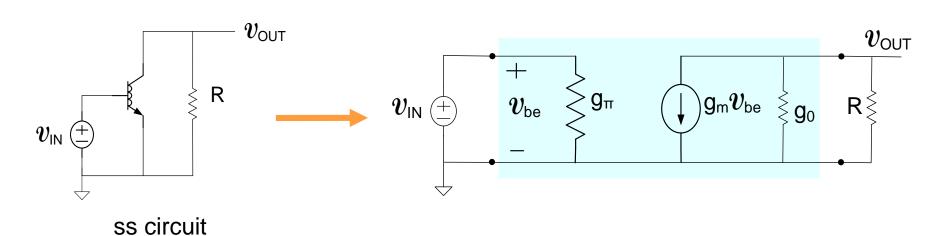
Small signal analysis example



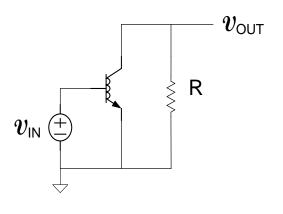
$$A_{VB} = -\frac{I_{CQ}R}{V_{t}}$$

Derived for $V_{AF}=0$ (equivalently $g_o=0$)

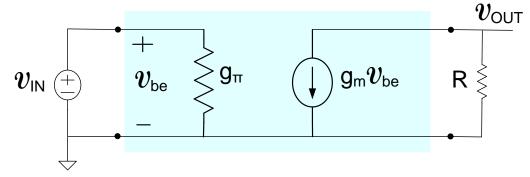
Recall the derivation was very tedious and time consuming!



Neglect V_{AF} effects (i.e. $V_{AF} = \infty$) to be consistent with earlier analysis



$$g_o = \frac{I_{CQ}}{V_{AF}} = 0$$



$$egin{array}{lll} oldsymbol{v}_{ ext{OUT}} = -g_{ ext{m}} R oldsymbol{v}_{ ext{BE}} \\ oldsymbol{v}_{ ext{IN}} = oldsymbol{v}_{ ext{BE}} \end{array} \qquad A_{ ext{V}} = rac{oldsymbol{v}_{ ext{OUT}}}{oldsymbol{v}_{ ext{IN}}} = -g_{ ext{m}} R$$

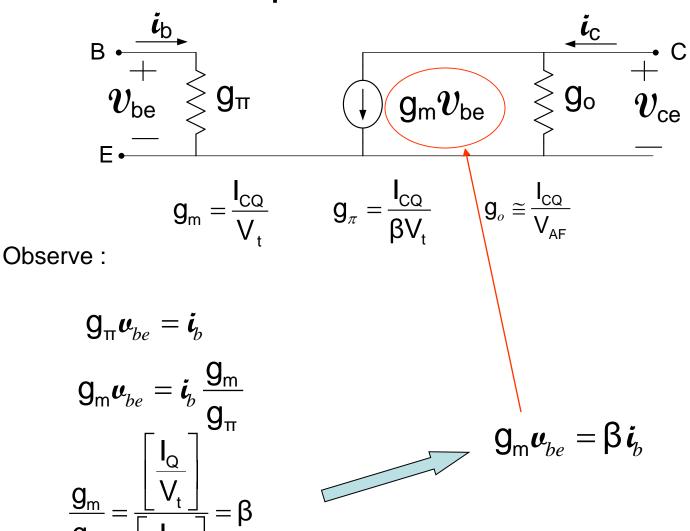
$$A_{v} = \frac{v_{OUT}}{v_{IN}} = -g_{m}R$$

$$g_{m} = \frac{I_{CQ}}{V_{t}}$$

$$A_{V} = -\frac{I_{CQ}R}{V_{t}}$$

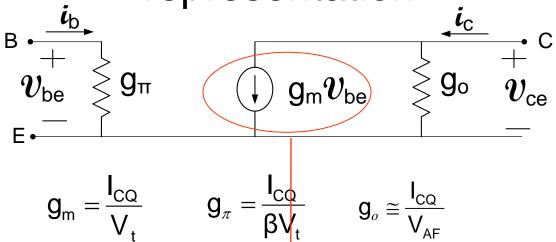
Note this is identical to what was obtained with the direct nonlinear analysis

Small Signal BJT Model – alternate representation

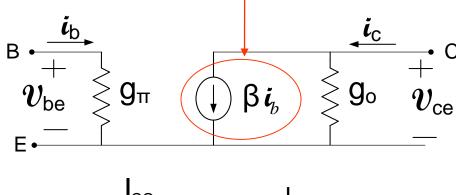


Can replace the voltage dependent current source with a current dependent current source

Small Signal BJT Model – alternate representation

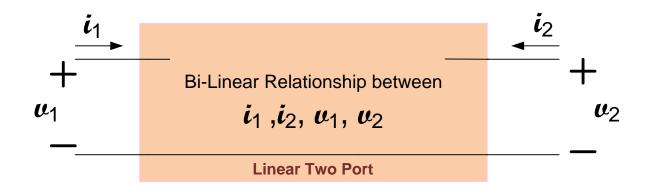


Alternate equivalent small signal model

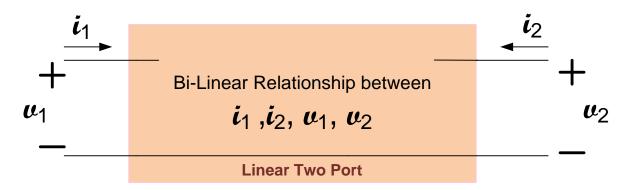


$$g_{\pi} = \frac{I_{CQ}}{\beta V_{t}}$$
 $g_{o} \cong \frac{I_{CQ}}{V_{AF}}$

(3-terminal network – also relevant with 4-terminal networks)

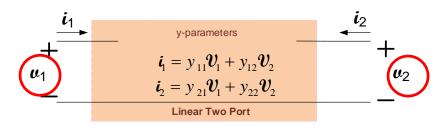


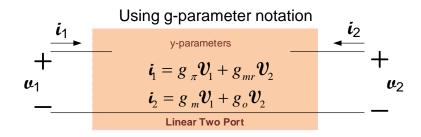
- Have developed small-signal models for the MOSFET and BJT
- Models have been based upon arbitrary assumption that u_1 , u_2 are independent variables
- Models are y-parameter models expressed in terms of "g" parameters
- Have already seen some alternatives for "parameter" definitions in these models
- Alternative representations are sometimes used



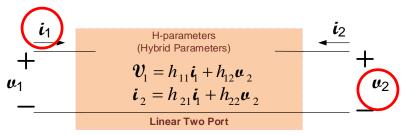
The good, the bad, and the unnecessary!!

what we have developed:

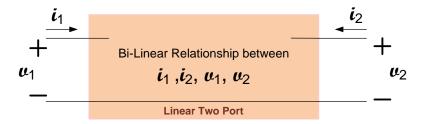




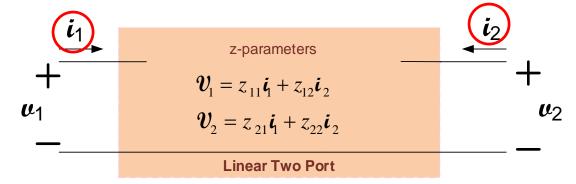
The hybrid parameters:



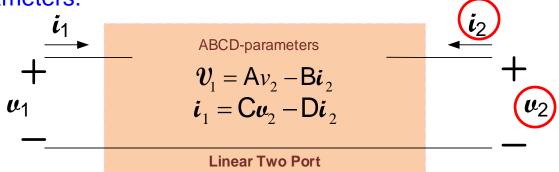
Independent parameters

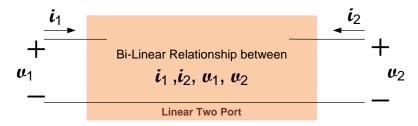


The z-parameters

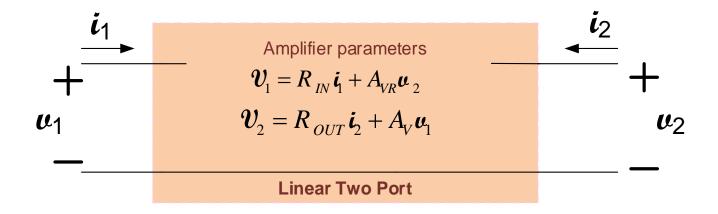


The ABCD parameters:

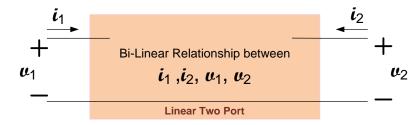




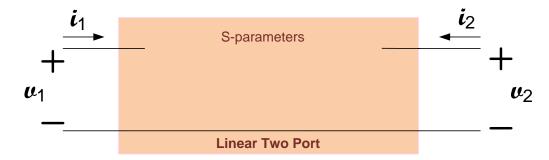
Amplifier parameters



- Alternate two-port characterization but not expressed in terms of independent and dependent parameters
- Widely used notation when designing amplifiers

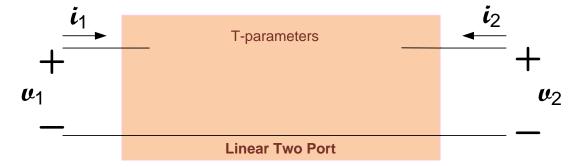


The S-parameters

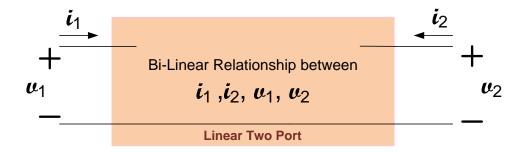


(embedded with source and load impedances)

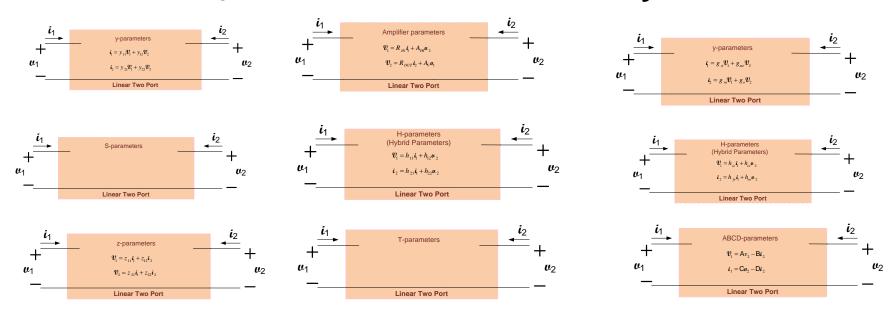
The T parameters:



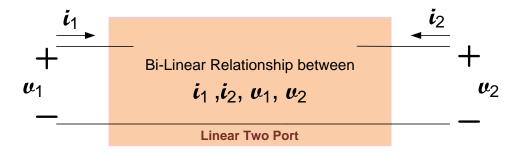
(embedded with source and load impedances)



The good, the bad, and the **unnecessary**!!



- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another



The good, the bad, and the unnecessary!!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

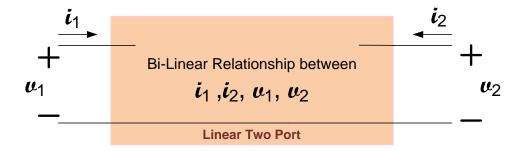
Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Conversions **between** S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org
This paper provides tables which contain the conversion between the various common twoport parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for complex normalizing
impedances. An example is provided which verifies the conversions to and from S

☆ 99 Cited by 370 Related articles All 5 versions

As of Mar 6, 2018



The good, the bad, and the unnecessary!!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

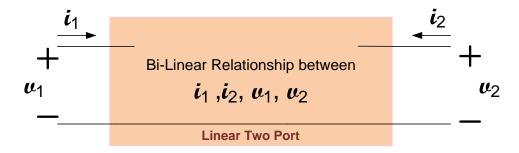
Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - IEEE Transactions on Microwave Theory and ..., 1994 - osti.gov

Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances This paper provides tables which contain the conversion between the various common two-port parameters, Z, Y, h, ABCD, S, and T. The ...

Cited by 226 Related articles All 6 versions Cite Save More

Comments on" Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances"[with reply] ..., DF Williams, DA Frickey - Microwave Theory and ..., 1995 - ieeexplore.ieee.org In his recent paper, Frickey presents formulas for conversions between various network matrices. Four of these matrices (Z, Y, h, and ABCD) relate voltages and currents at the page, the other two (S and 7") relate wave quantities. These relationships depend on the ... Cited by 30 Repetulon.



The good, the bad, and the unnecessary!!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

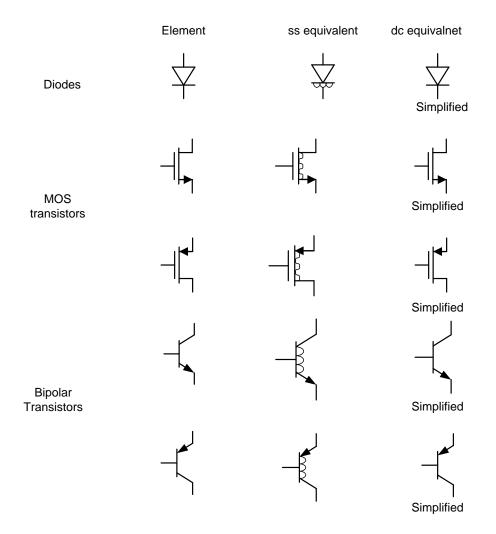
Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - ... theory and techniques, IEEE Transactions on, 1994 - ieeexplore.ieee.org
Abstract This paper provides tables which contain the conversion between the various
common two-port parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for
complex normalizing impedances. An example is provided which verifies the conversions ...
Cited by 149 Plated articles All 5 versions Cite

Active Device Model Summary

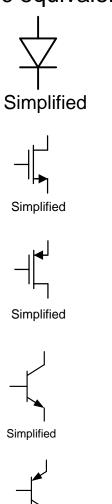


What are the simplified dc equivalent models?

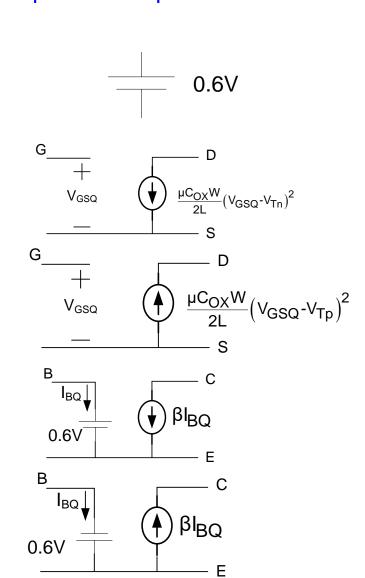
Active Device Model Summary

What are the simplified dc equivalent models?

dc equivalent



Simplified



End of Lecture 24