EE 330
Lecture 25

« Small Signal Analysis Example Circuits
o Graphical Small Signal Analysis
 Model Extensions and Simplifications



Small-signal Operation of Nonlinear Circuits

 Small-signal principles
e Example Circuit
 Small-Signal Models

Small-Signal Analysis of Nonlinear Circuits



Recall:

Alternative Approach to small-signal
analysis of nonlinear networks

1. Linearize nonlinear devices

(have small-signal model for key devices!)

2. Replace all devices with small-signal
equivalent

3. Solve linear small-signal network

« Remember that the small-signal model is operating point dependent!
* Thus need Q-point to obtain values for small signal parameters

» EXpressions for circuit characteristics such as gain can be expressed in terms of
small-signal parameters or nonlinear device model parameters and Q-points

e EXxpressions for circuit characteristics such as gain in terms of small-signal
parameters often give little insight into performance or design



Recall:

Q-point Computation

 Open all caps and short all inductors

 Assume correct region for all nonlinear devices
— Diodes on, MOS in saturation, BJT in forward active
 Write down device models and KCL's
— One KCL at each ono-trivial node in nodal analysis
— For hand calculation, use simplified device models
e Solve the simultaneous equations

— Produce Q values for all node voltages and branch
currents

* Check correctness of assumptions in 2"9 step



Recall:
Small Signal Model for Active Devices
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Recall:

Small Signal Model for Active Devices
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Recall:

Small-signal analysis example
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Example:

Assume M; and M, are operating in the saturation region and that A=0

a) Determine the small signal voltage gain A,=V,/V,\ in terms of the small-
signal model parameters

b) Determine the small signal voltage gain A=V, ;/V,y in terms of the Q-points
and the nonlinear model parameters




Example:  Determine the small signal voltage gain A,=Vg,/V,y. Assume M, and M,
are operating in the saturation region and that A=0
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Example:  petermine the small signal voltage gain A=V ,/V,. Assume M; and M,
are operating in the saturation region and that A=0
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Small-signal MOSFET model for A=0



Example:  petermine the small signal voltage gain A=V ,/V,. Assume M; and M,
are operating in the saturation region and that A=0
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Example:
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Small-signal circuit for A=0
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Analysis:

Recall: g =-— /Zloﬂcox V%




Example Summary: Vb
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If L,=L,, obtain A = W L, W
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The width and length ratios can be accurately controlled with good layout
when designed in a standard CMOS process !



Example: Obtain the small signal model of the following circuit. Assume
MOSFET is operating in the saturation region

Note: g >>g, for MOS devices in most processes so also obtain model under this
assumption




Example: Obtain the small signal model of the following circuit. Assume
MOSFET is operating in the saturation region.

Solution:

V(gm+90):|
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EQ Om + 90

for g, >>g,



Example: Determine the small signal voltage gain A,=Vq/Vn- Assume M; and M,
are operating in the saturation region and that A=0
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Solving obtain: A, =2 = —gmlR;foo
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Unexpectedly large, need better device models!



Example: Determine the small signal voltage gain A,=Vq/Vn- Assume M; and M,
are operating in the saturation region and that A#0
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* Analysis is straightforward but a bit tedious
e A, isverylarge and would go to == if g,, and g,, were both 0



Graphical Analysis and Interpretation

Consider Again

¢+ Vbp

R

—Vour

M
Vin(t) l
Vss
VOUT :VDD - IDR )
> IDQ — IJCOXW (VSS+V

L =Py v vy o




Graphical Analysis and Interpretation % Voo
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Graphical Analysis and Interpretation % Voo
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Device Model (family of curves) l, = oL (Vee-V, )2 (1+/1VDS) Ry
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Graphical Analysis and Interpretation Voo
Device Model (family of curves) | = : %EW (V, V-V, ) (1+2V,,) %

Q-Point Load Line

« As V,, changes around Q-point, V,, induces changes in V45 . The
operating point must remain on the load line!

« Small sinusoidal changes of V will be nearly symmetric around the
Viso line

« This will cause nearly symmetric changes in both I and V¢ !

e Since Vg is constant, change in Vg Is equal to change in V¢



Graphical Analysis and Interpretation % Voo
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Device Model (family of curves) l, = (Vo-VarV, )2 (1+2V,,)

Q-Point Load Line

As V,\ changes around Q-point, due to changes V, induces in Vg,
the operating point must remain on the load line!



Graphical Analysis and Interpretation % Voo
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* Linear signal swing region smaller than saturation region
 Modest nonlinear distortion provided saturation region operation maintained
o Symmetric swing about Q-point

« Signal swing can be maximized by judicious location of Q-point



Graphical Analysis and Interpretation % Voo
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Very limited signal swing with non-optimal Q-point location



Graphical Analysis and Interpretation % Voo
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» Signal swing can be maximized by judicious location of Q-point

« Often selected to be at middle of load line in saturation region



Small-Signal MOSFET Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage !
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Recall that changing the bulk voltage changes the electric field in the

channel region and thus the threshold voltage!
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Reca I I: Typical Effects of Bulk on Threshold Voltage for n-channel Device

Vi =V +7[\/¢ — Vs _\/5]

N[~

y=0.4V ¢ = 0.6V

N VTO

— ~ Vs
~ -3V
Bulk-Diffusion Generally Reverse Biased (Vgs< O or at least less than 0.3V) for n-

channel
Shift in threshold voltage with bulk voltage can be substantial

Often Vgs=0




Recall: Typical Effects of Bulk on Threshold Voltage for p-channel Device

Vi =V _7/|:\/¢+VBS _\/5]

Yy = 0.4V ¢ =0.6V
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Bulk-Diffusion Generally Reverse Biased (Vgg > 0 or at least greater than -0.3V)
for n-channel

Same functional form as for n-channel devices but V-, is now negative and
the magnitude of V- still increases with the magnitude of the reverse bias



Recall:
4-terminal model extension
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Model Parameters : {4,Cqy,V10:P,Y,A}

Design Parameters : {W,L} but only one degree of freedom W/L
biasing or quiescent point



Small-Signal 4-terminal Model Extension
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Small-Signal 4-terminal Model Extension

I, =HCoy %(vGS — V. ) o1+ AV,e) Definition:
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Small Signal Model Summary
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Relative Magnitude of Small Signal MOS Parameters

Consider:

Id — gmvgs _I_ gmbvbs + govds

3 alternate equivalent expressions for g,
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In this example
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MG, W
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g =A_=5E-7 This relationship is
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_ /4 _ In many circuits,
G = G (2 -V, ] 260, Vss=0 as well

Often the g, term can be neglected in the small signal model because it is so small
Be careful about neglecting g, prior to obtaining a final expression



Large and Small Signal Model Summary
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Large and Small Signal Model Summary

Large Signal Model
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Relative Magnitude of Small Signal BJT Parameters
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9n >> Yy >> G,

Often the g, term can be neglected in the small signal model because it is so small



Relative Magnitude of Small Signal Parameters
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9n >> Yy >> G,

Often the g, term can be neglected in the small signal model because it is so small
Be careful about neglecting g, prior to obtaining a final expression




Small Signal Model Simplifications
for the MOSFET and BJT
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MOSFET BJT

Often simplifications of the small signal model are adequate for a given application

These simplifications will be discussed next



Small Signal MOSFET Model Summary

An equivalent Circuit: _ 4‘
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Small Signal Model Simplifications
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Small Signal Model Simplifications
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Small Signal BJT Model Summary

An equivalent circuit

ib ic
B i E— e C
+ +
(vbe g'IT @ gm?)be gO vce
p— —
ICQ | I
gm = — ﬂ ~ _CQ
t o th % = Vae

9n >> Yy >> G,

This contains absolutely no more information than the set of small-signal
model equations



Small Signal BJT Model Simplifications
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Gains for MOSFET and BJT Circuits
MOSFET

VDD
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Vt
‘UOUT VOUT

For both circuits
Q1 § R M2 § R
Un AV —— ng Vin

Gains vary linearly with small signal parameter g,

Power is often a key resource in the design of an integrated circuit
In both circuits, power is proportional to Iq, Ipg



How does g, vary with I4?

R
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Varies with the square root of I,
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Om =

Varies linearly with I,

_ HCoxW
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On (VGSQ o VT )

Doesn’t vary with Ipq



How does g, vary with I4?
All of the above are true — but with qualification

dm IS a function of more than one variable (l55) and how
It varies depends upon how the remaining variables are
constrained
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