EE 330 Lecture 25

- Small Signal Analysis Example Circuits
- Graphical Small Signal Analysis
- Model Extensions and Simplifications

Small-signal Operation of Nonlinear Circuits

Small-signal principles

Example Circuit

Small-Signal Models

Small-Signal Analysis of Nonlinear Circuits

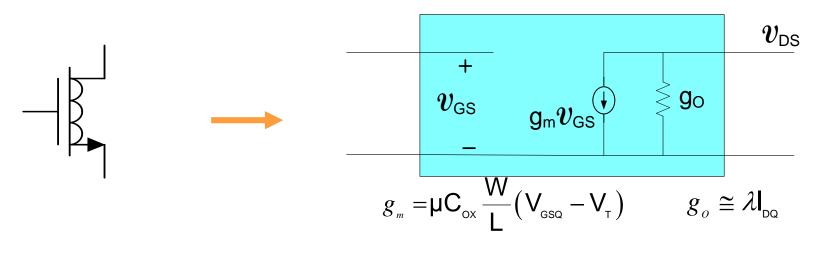
Alternative Approach to small-signal analysis of nonlinear networks

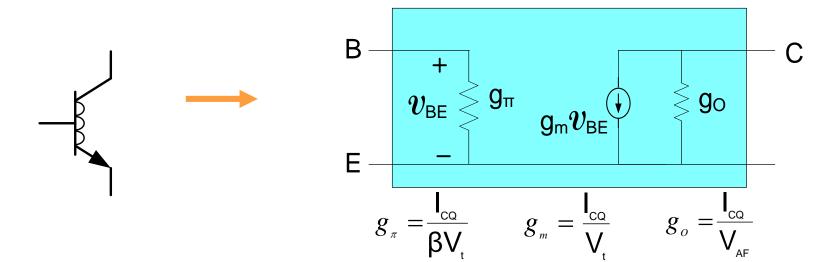
- 1. Linearize nonlinear devices (have small-signal model for key devices!)
- 2. Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network
- Remember that the small-signal model is operating point dependent!
- Thus need Q-point to obtain values for small signal parameters
- Expressions for circuit characteristics such as gain can be expressed in terms of small-signal parameters or nonlinear device model parameters and Q-points
- Expressions for circuit characteristics such as gain in terms of small-signal parameters often give little insight into performance or design

Q-point Computation

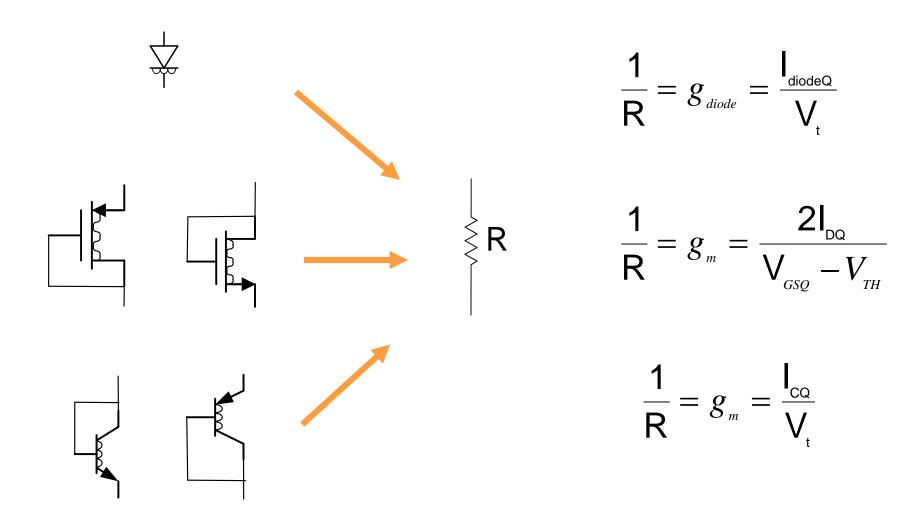
- Open all caps and short all inductors
- Assume correct region for all nonlinear devices
 - Diodes on, MOS in saturation, BJT in forward active
- Write down device models and KCL's
 - One KCL at each ono-trivial node in nodal analysis
 - For hand calculation, use simplified device models
- Solve the simultaneous equations
 - Produce Q values for all node voltages and branch currents
- Check correctness of assumptions in 2nd step

Small Signal Model for Active Devices

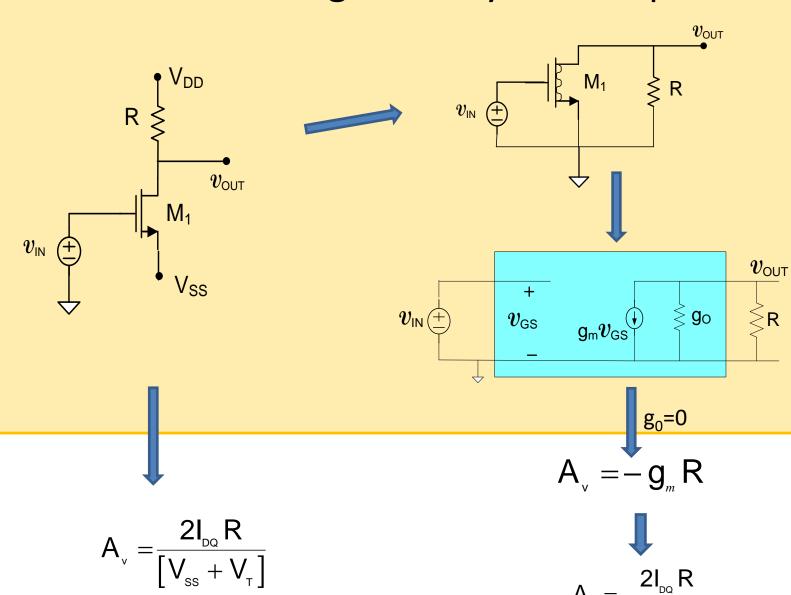




Small Signal Model for Active Devices

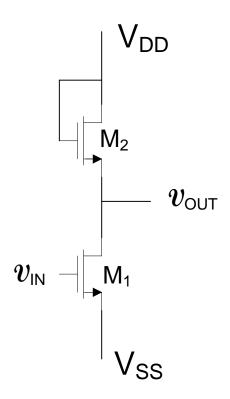


Recall: Small-signal analysis example

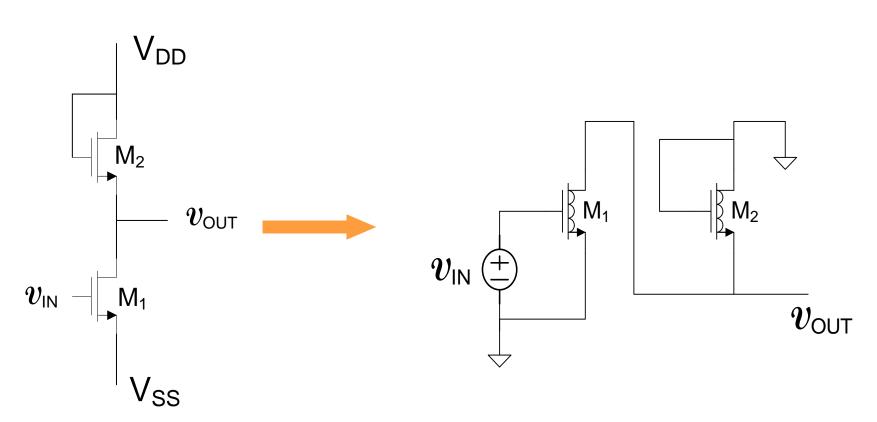


Assume M_1 and M_2 are operating in the saturation region and that $\lambda=0$

- a) Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$ in terms of the small-signal model parameters
- b) Determine the small signal voltage gain A_= $v_{\rm OUT}/v_{\rm IN}$ in terms of the Q-points and the nonlinear model parameters

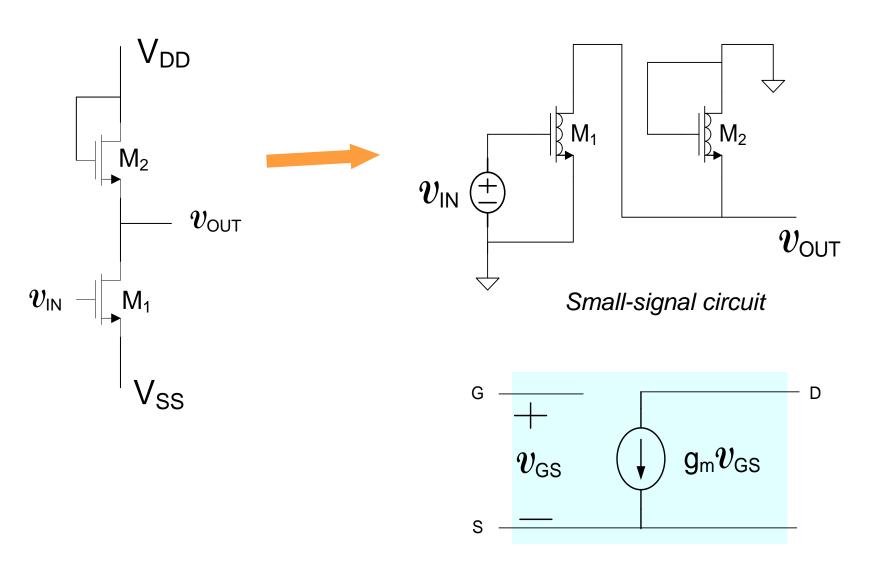


Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$



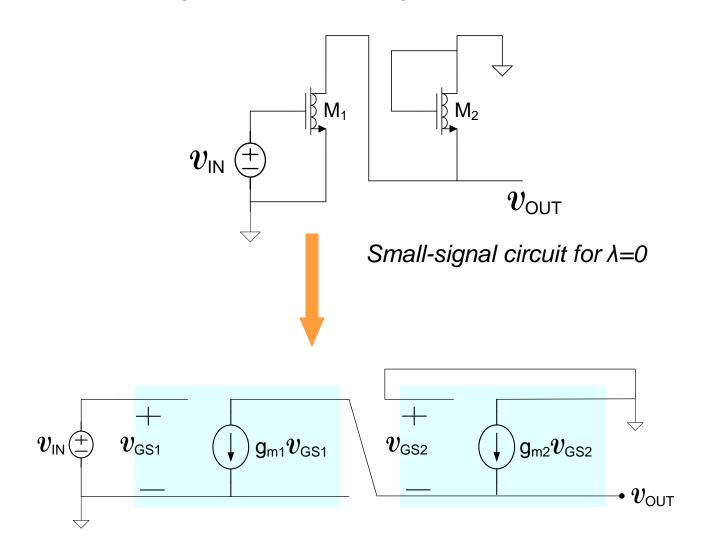
Small-signal circuit

Example: Determine the small signal voltage gain $A_V = V_{OUT}/V_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

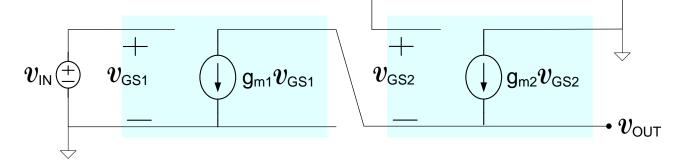


Small-signal MOSFET model for λ =0

Example: Determine the small signal voltage gain $A_V = V_{OUT}/V_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$



Small-signal circuit

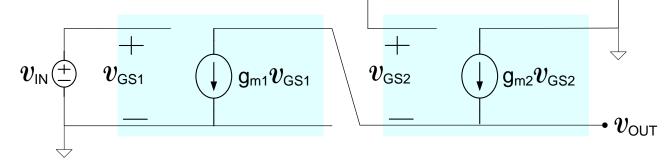


Small-signal circuit for λ =0

Analysis:

By KCL

$$g_{m1} \mathbf{V}_{GS1} = g_{m2} \mathbf{V}_{GS2}$$
 $\mathbf{V}_{GS1} = \mathbf{V}_{IN}$
 $\mathbf{V}_{GS2} = \mathbf{V}_{OUT}$
thus:
 $A_{V} = \frac{\mathbf{V}_{OUT}}{\mathbf{V}_{IN}} = -\frac{g_{m1}}{g_{m2}}$



Analysis:

Recall:

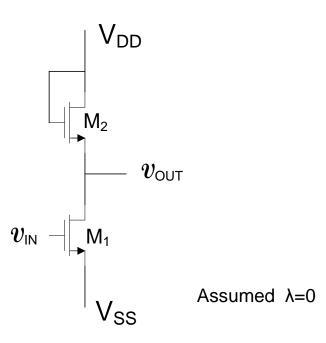
Small-signal circuit for λ =0

$$A_{V} = \frac{S_{oUT}}{v_{IN}} = -\frac{S_{m1}}{g_{m2}}$$

$$g_{m} = -\sqrt{2I_{D}\mu C_{OX}}\sqrt{\frac{W_{1}}{L_{1}}}$$

$$A_{v} = -\frac{\sqrt{2I_{D}\mu C_{ox}} \frac{W_{1}}{L_{1}}}{\sqrt{2I_{D}\mu C_{ox}} \frac{W_{2}}{L_{2}}} = -\sqrt{\frac{W_{1}}{W_{2}}} \sqrt{\frac{L_{2}}{L_{1}}}$$

Example Summary:



$$A_{V} = -\frac{g_{m1}}{g_{m2}}$$

 $A_{_{\scriptscriptstyle V}}=-\sqrt{rac{W_{_{\scriptscriptstyle 1}}}{W_{_{\scriptscriptstyle 2}}}}\sqrt{rac{L_{_{\scriptscriptstyle 2}}}{L_{_{\scriptscriptstyle 1}}}}$

In terms of small-signal parameters

In terms of Q-point and nonlinear model parameters

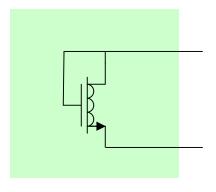
If
$$L_1=L_2$$
, obtain

$$A_{_{\!\!\!\!\!V}}=-\sqrt{rac{W_{_{\!\!\!\!1}}}{W_{_{\!\!\!2}}}}\sqrt{rac{L_{_{\!\!\!2}}}{L_{_{\!\!\!1}}}}=-\sqrt{rac{W_{_{\!\!\!1}}}{W_{_{\!\!\!2}}}}$$

The width and length ratios can be accurately controlled with good layout when designed in a standard CMOS process!

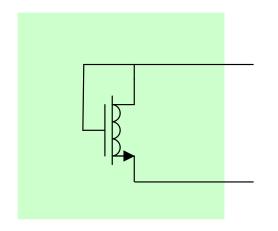
Obtain the small signal model of the following circuit. Assume MOSFET is operating in the saturation region

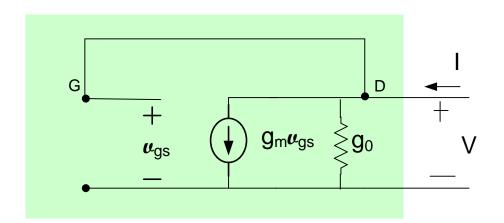
Note: $g_m >> g_o$ for MOS devices in most processes so also obtain model under this assumption



Obtain the small signal model of the following circuit. Assume MOSFET is operating in the saturation region.

Solution:





$$V(g_m + g_0) = I$$

$$R_{EQ} = \frac{V}{I} = \frac{1}{g_m + g_0}$$

for $g_m >> g_o$

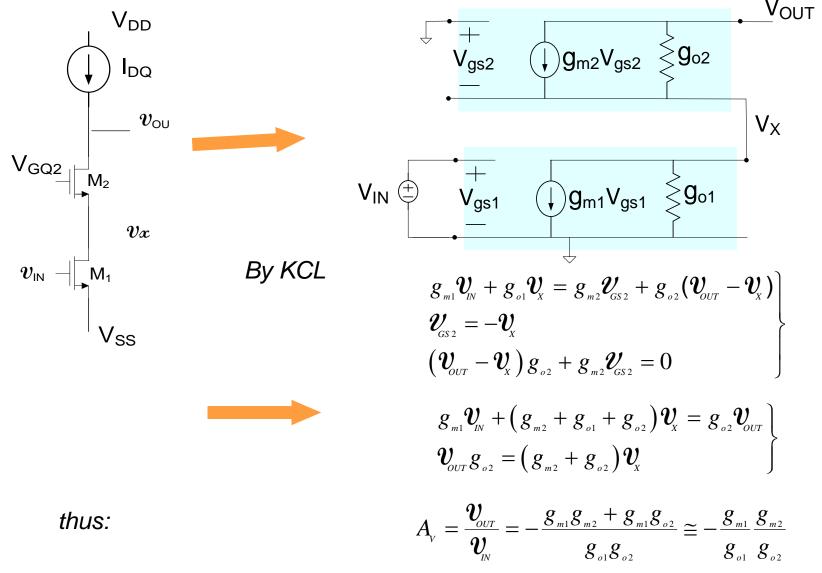
$$R_{EQ} \cong \frac{1}{g_m}$$

Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda=0$



Unexpectedly large, need better device models!

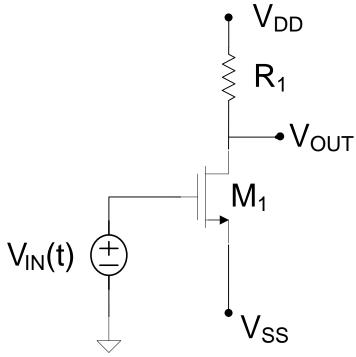
Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda \neq 0$



- Analysis is straightforward but a bit tedious
- A_V is very large and would go to ∞ if g_{01} and g_{02} were both 0

Graphical Analysis and Interpretation

Consider Again



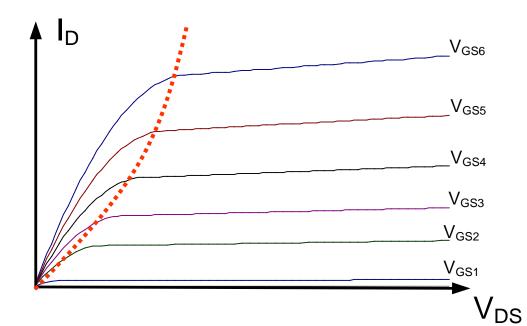
$$V_{OUT} = V_{DD} - I_{D}R$$

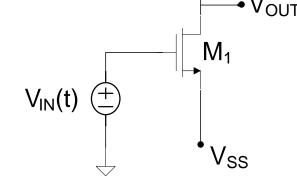
$$I_{D} = \frac{\mu C_{OX}W}{2L} (V_{IN} - V_{SS} - V_{T})^{2}$$

$$\boldsymbol{I}_{\text{\tiny DQ}} = \frac{\mu C_{\text{\tiny OX}} W}{2L} \big(\boldsymbol{V}_{\text{\tiny SS}} \boldsymbol{+} \boldsymbol{V}_{\!\scriptscriptstyle T} \big)^{\!\scriptscriptstyle 2}$$

Graphical Analysis and Interpretation

Device Model (family of curves)
$$I_{D} = \frac{\mu C_{Ox}W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$





Load Line

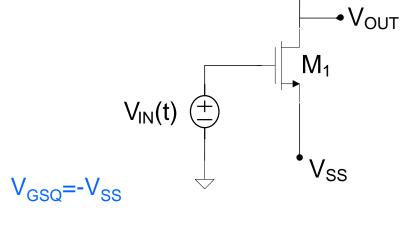
$$V_{\text{OUT}} = V_{\text{DD}} - I_{\text{D}}R$$

$$I_{_{D}} = \frac{\mu \ C_{_{OX}}W}{2L} \left(V_{_{IN}}\text{-}V_{_{SS}}\text{-}V_{_{T}}\right)^{2}$$

$$I_{DQ} = \frac{\mu C_{OX} W}{2I} (V_{SS} + V_{T})^{T}$$

Graphical Analysis and Interpretation

Device Model (family of curves)
$$I_{\scriptscriptstyle D} = \frac{\mu \ C_{\scriptscriptstyle ox} W}{2L} \big(V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle T}\big)^2 \big(1 + \lambda V_{\scriptscriptstyle DS}\big)$$



 V_{DD}

$$V_{GS2}$$

$$V_{DS}$$

$$I_{DQ} \cong \frac{\mu C_{OX} W}{2L} (V_{SS} + V_{T})^{2}$$

Load Line

 V_{GS6}

 V_{GS5}

 V_{GS4}

 V_{GS3}

$$V_{\text{OUT}} = V_{\text{DD}} - I_{\text{D}}R$$

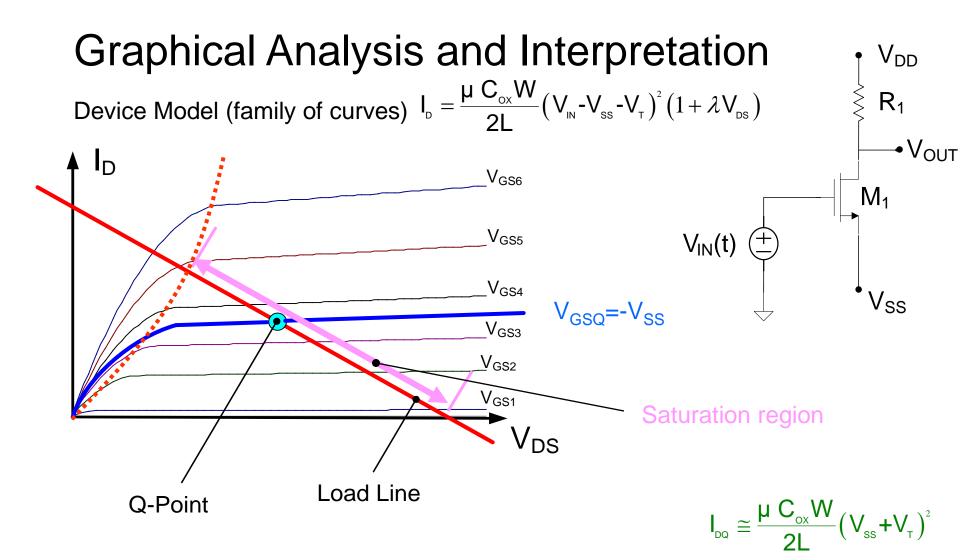
Q-Point

$$I_{D} = \frac{\mu C_{OX} W}{2L} (V_{IN} - V_{SS} - V_{T})^{2}$$

Must satisfy both equations all of the time!

Graphical Analysis and Interpretation V_{DD} Device Model (family of curves) $I_{D} = \frac{\mu C_{OX}W}{2I} (V_{IN} - V_{SS} - V_{T})^{2} (1 + \lambda V_{DS})$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} $V_{GSQ} = -V_{SS}$ V_{GS2} V_{GS1} **Load Line** Q-Point

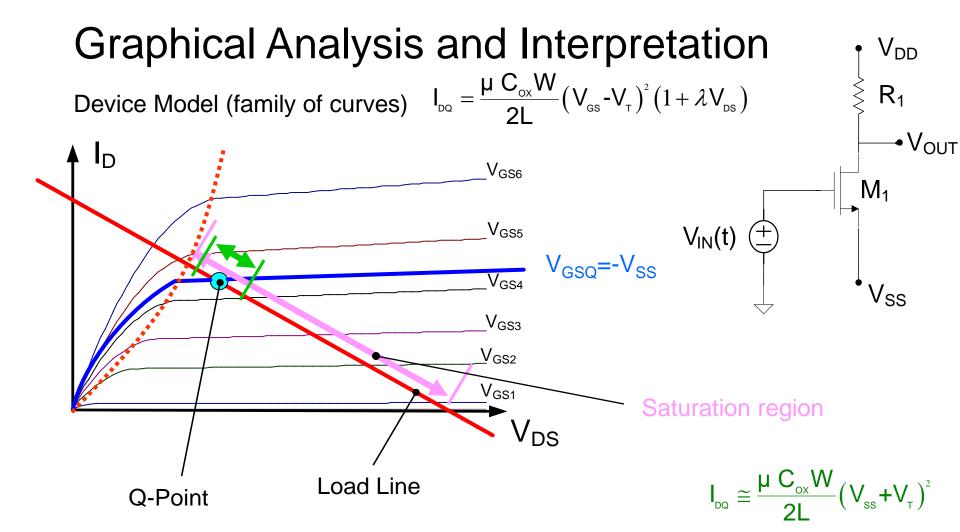
- As V_{IN} changes around Q-point, V_{IN} induces changes in V_{GS} . The operating point must remain on the load line!
- Small sinusoidal changes of V_{IN} will be nearly symmetric around the V_{GSO} line
- This will cause nearly symmetric changes in both I_D and V_{DS}!
- Since V_{SS} is constant, change in V_{DS} is equal to change in V_{OUT}



As V_{IN} changes around Q-point, due to changes V_{IN} induces in V_{GS} , the operating point must remain on the load line!

Graphical Analysis and Interpretation V_{DD} Device Model (family of curves) $I_{DQ} = \frac{\mu C_{ox}W}{2I} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} $V_{GSQ} = -V_{SS}$ V_{GS2} V_{GS1} Saturation region $I_{DQ} \cong \frac{\mu C_{OX}W}{2I} (V_{SS} + V_{T})^{2}$ Load Line Q-Point

- Linear signal swing region smaller than saturation region
- Modest nonlinear distortion provided saturation region operation maintained
- Symmetric swing about Q-point
- Signal swing can be maximized by judicious location of Q-point



Very limited signal swing with non-optimal Q-point location

Graphical Analysis and Interpretation V_{DD} Device Model (family of curves) $I_{\text{\tiny DQ}} = \frac{\mu \ C_{\text{\tiny Ox}} W}{2I} \big(V_{\text{\tiny GS}} - V_{\text{\tiny T}} \big)^2 \big(1 + \lambda V_{\text{\tiny DS}} \big)$ V_{GS6} M_1 V_{GS5} $V_{IN}(t)$ V_{GS4} V_{GS3} $V_{GSQ} = -V_{SS}$ V_{GS2} V_{GS1} Saturation region Load Line Q-Point $I_{DQ} \cong \frac{\mu C_{OX}W}{2I} (V_{SS} + V_{T})^{2}$

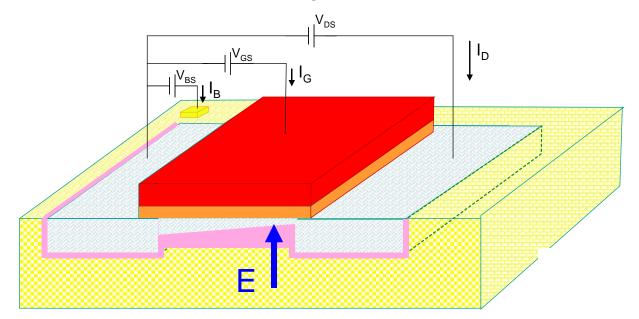
- Signal swing can be maximized by judicious location of Q-point
- Often selected to be at middle of load line in saturation region

Small-Signal MOSFET Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage!



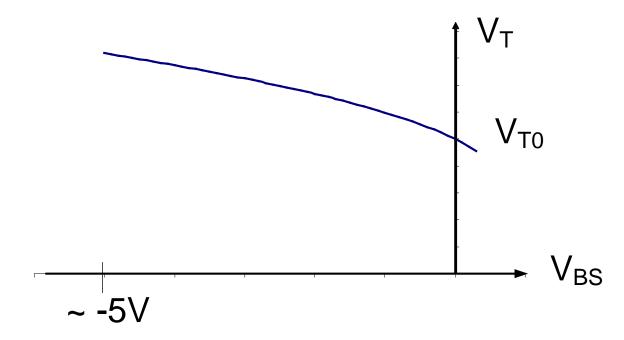
Recall that changing the bulk voltage changes the electric field in the channel region and thus the threshold voltage!



Recall: Typical Effects of Bulk on Threshold Voltage for n-channel Device

$$V_T = V_{T0} + \gamma \left[\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right]$$

$$\gamma \cong 0.4 V^{\frac{1}{2}} \qquad \phi \cong 0.6 V$$



Bulk-Diffusion Generally Reverse Biased (V_{BS}< 0 or at least less than 0.3V) for n-channel

Shift in threshold voltage with bulk voltage can be substantial Often V_{RS} =0

Recall: Typical Effects of Bulk on Threshold Voltage for p-channel Device

$$V_{T} = V_{T0} - \gamma \left[\sqrt{\phi + V_{BS}} - \sqrt{\phi} \right]$$

$$\gamma \cong 0.4V^{\frac{1}{2}} \qquad \phi \cong 0.6V$$

$$V_{BS}$$

Bulk-Diffusion Generally Reverse Biased ($V_{BS} > 0$ or at least greater than -0.3V) for n-channel

Same functional form as for n-channel devices but V_{T0} is now negative and the magnitude of V_T still increases with the magnitude of the reverse bias

4-terminal model extension

$$\begin{split} & \mathbf{I}_{\mathsf{B}} = \mathbf{0} \\ & \mathbf{I}_{\mathsf{B}} = \mathbf{0} \\ & \mathbf{I}_{\mathsf{D}} = \begin{cases} 0 & V_{\mathsf{GS}} \leq V_{\mathsf{T}} \\ \mu C_{\mathsf{OX}} \frac{\mathsf{W}}{\mathsf{L}} \left(V_{\mathsf{GS}} - V_{\mathsf{T}} - \frac{\mathsf{V}_{\mathsf{DS}}}{2} \right) V_{\mathsf{DS}} & V_{\mathsf{GS}} \geq V_{\mathsf{T}} & V_{\mathsf{DS}} < V_{\mathsf{GS}} - V_{\mathsf{T}} \\ \mu C_{\mathsf{OX}} \frac{\mathsf{W}}{2\mathsf{L}} \left(V_{\mathsf{GS}} - V_{\mathsf{T}} \right)^2 \bullet \left(1 + \lambda V_{\mathsf{DS}} \right) & V_{\mathsf{GS}} \geq V_{\mathsf{T}} & V_{\mathsf{DS}} \geq V_{\mathsf{GS}} - V_{\mathsf{T}} \\ V_{\mathsf{T}} = V_{\mathsf{T0}} + \gamma \left(\sqrt{\phi - V_{\mathsf{BS}}} - \sqrt{\phi} \right) & V_{\mathsf{DS}} > V_{\mathsf{T}} - V_{\mathsf{DS}} > V_{\mathsf{T}} \end{cases} \end{split}$$

Model Parameters : $\{\mu, C_{OX}, V_{TO}, \phi, \gamma, \lambda\}$

Design Parameters : {W,L} but only one degree of freedom W/L biasing or quiescent point

Small-Signal 4-terminal Model Extension

$$\begin{split} & I_{\text{g}} = 0 \\ & I_{\text{g}} = 0 \\ & I_{\text{D}} = \begin{cases} 0 & V_{\text{GS}} \leq V_{\text{T}} \\ \mu C_{\text{OX}} \frac{W}{L} \left(V_{\text{GS}} - V_{\text{T}} - \frac{V_{\text{DS}}}{2} \right) V_{\text{DS}} & V_{\text{GS}} \geq V_{\text{T}} & V_{\text{DS}} < V_{\text{GS}} - V_{\text{T}} \\ \mu C_{\text{OX}} \frac{W}{2L} \left(V_{\text{GS}} - V_{\text{T}} \right)^2 \bullet \left(1 + \lambda V_{\text{DS}} \right) & V_{\text{GS}} \geq V_{\text{T}} & V_{\text{DS}} < V_{\text{GS}} - V_{\text{T}} \\ V_{\text{T}} = V_{\text{T0}} + \gamma \left(\sqrt{\phi - V_{\text{BS}}} - \sqrt{\phi} \right) & V_{\text{GS}} \geq V_{\text{T}} & V_{\text{DS}} \geq V_{\text{GS}} - V_{\text{T}} \\ V_{\text{T}} = \frac{\partial I_{\text{G}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 & y_{12} = \frac{\partial I_{\text{G}}}{\partial V_{\text{DS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 & y_{13} = \frac{\partial I_{\text{G}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 \\ y_{21} = \frac{\partial I_{\text{D}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = g_{\text{m}} & y_{22} = \frac{\partial I_{\text{D}}}{\partial V_{\text{DS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 & y_{33} = \frac{\partial I_{\text{B}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 \\ y_{31} = \frac{\partial I_{\text{B}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 & y_{32} = \frac{\partial I_{\text{B}}}{\partial V_{\text{DS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 & y_{33} = \frac{\partial I_{\text{B}}}{\partial V_{\text{GS}}} \Big|_{\tilde{V} = \tilde{V}_{\text{Q}}} = 0 \\ \end{pmatrix}$$

Small-Signal 4-terminal Model Extension

$$\begin{aligned} \mathbf{I}_{\mathsf{D}} &= \mu \mathbf{C}_{\mathsf{OX}} \, \frac{\mathbf{W}}{2 \mathsf{L}} (\mathbf{V}_{\mathsf{GS}} - \mathbf{V}_{\mathsf{T}})^2 \bullet (1 + \lambda \mathbf{V}_{\mathsf{DS}}) \end{aligned} \qquad \begin{aligned} \mathsf{Definition:} \\ V_{EB} &= V_{GS} - V_{T} \\ V_{EBQ} &= V_{GSQ} - V_{TQ} \end{aligned}$$

$$g_{_{m}} = \frac{\partial I_{_{D}}}{\partial V_{_{GS}}}\bigg|_{_{\vec{V} = \vec{V}_{_{Q}}}} = \mu C_{_{OX}} \frac{W}{2L} 2 \left(V_{_{GS}} - V_{_{T}}\right)^{_{1}} \bullet \left(1 + \lambda V_{_{DS}}\right)\bigg|_{_{\vec{V} = \vec{V}_{_{Q}}}} \cong \mu C_{_{OX}} \frac{W}{L} V_{_{EBQ}}$$
Same as 3-term

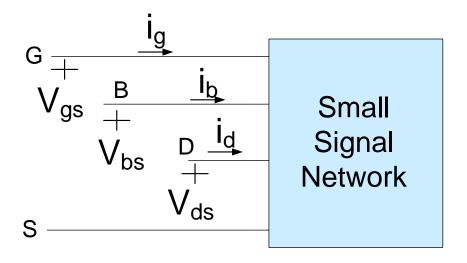
$$g_{o} = \frac{\partial I_{D}}{\partial V_{DS}}\bigg|_{\vec{V} = \vec{V}_{Q}} = \mu C_{ox} \frac{W}{2L} 2(V_{GS} - V_{T})^{2} \bullet \lambda \bigg|_{\vec{V} = \vec{V}_{Q}} \cong \lambda I_{DQ}$$
Same as 3-term

$$g_{mb} = \frac{\partial I_{D}}{\partial V_{BS}}\Big|_{\vec{V} = \vec{V}_{Q}} = \mu C_{OX} \frac{W}{2L} 2(V_{GS} - V_{T})^{1} \cdot \left(-\frac{\partial V_{T}}{\partial V_{BS}}\right) \cdot (1 + \lambda V_{DS})\Big|_{\vec{V} = \vec{V}_{Q}}$$

$$g_{mb} = \frac{\partial I_{D}}{\partial V_{BS}}\Big|_{\vec{V} = \vec{V}_{L}} \cong \mu C_{OX} \frac{W}{L} V_{EBQ} \cdot \frac{\partial V_{T}}{\partial V_{BS}}\Big|_{\vec{V} = \vec{V}_{L}} = \left(\mu C_{OX} \frac{W}{L} V_{EBQ}\right) (-1) \gamma \frac{1}{2} (\phi - V_{BS})^{-\frac{1}{2}}\Big|_{\vec{V} = \vec{V}_{Q}} (-1)$$

$$g_{mb} \cong g_{m} \frac{\gamma}{2\sqrt{\phi - V_{BSO}}}$$

Small Signal Model Summary



$$i_g = 0$$

$$i_b = 0$$

$$i_d = g_m v_{gs} + g_{mb} v_{bs} + g_o v_{ds}$$

$$g_{m} = \frac{\mu C_{ox} W}{L} V_{EBQ}$$

$$g_{o} = \lambda I_{DQ}$$

$$g_{mb} = g_{m} \left(\frac{\gamma}{2\sqrt{\phi - V_{BSQ}}} \right)$$

Relative Magnitude of Small Signal MOS Parameters Consider:

$$i_{d} = g_{m} v_{gs} + g_{mb} v_{bs} + g_{o} v_{ds}$$

3 alternate equivalent expressions for g_m

$$g_{m} = \frac{\mu C_{ox} W}{L} V_{ebQ} \qquad g_{m} = \sqrt{\frac{2\mu C_{ox} W}{L}} \sqrt{I_{DQ}} \qquad g_{m} = \frac{2I_{DQ}}{V_{ebQ}}$$

If $\mu C_{OX} = 100 \mu A/V^2$, $\lambda = .01 V^{-1}$, $\gamma = 0.4 V^{0.5}$, $V_{EBQ} = 1 V$, W/L = 1, $V_{BSQ} = 0 V$

$$I_{DQ} \cong \frac{\mu C_{OX}W}{2L} V_{EBQ}^2 = \frac{10^{-4}W}{2L} (1V)^2 = 5E-5$$

$$g_{m} = \frac{\mu C_{OX}W}{L} V_{EBQ} = 1E-4$$

$$g_{o} = \lambda I_{DQ} = 5E-7$$

$$g_{mb} = g_m \left(\frac{\gamma}{2\sqrt{\phi - V_{BSQ}}} \right) = .26g_m$$

In this example

$$g_{\scriptscriptstyle 0} << g_{\scriptscriptstyle m}, g_{\scriptscriptstyle mb}$$

$$g_{mb} < g_{m}$$

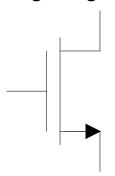
This relationship is common

In many circuits, v_{BS} =0 as well

- Often the g_o term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_o prior to obtaining a final expression

Large and Small Signal Model Summary

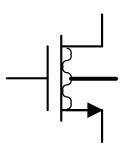
Large Signal Model



$$\begin{split} I_{_{D}} = & \begin{cases} 0 & V_{_{GS}} \leq V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{L} \bigg(V_{_{GS}} - V_{_{T}} - \frac{V_{_{DS}}}{2} \bigg) V_{_{DS}} & V_{_{GS}} \geq V_{_{T}} \quad V_{_{DS}} < V_{_{GS}} - V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{2L} \Big(V_{_{GS}} - V_{_{T}} \Big)^2 \bullet \Big(1 + \lambda V_{_{DS}} \Big) & V_{_{GS}} \geq V_{_{T}} \quad V_{_{DS}} \geq V_{_{GS}} - V_{_{T}} \\ & \text{saturation} \end{cases} \end{split}$$

$$V_{T} = V_{T0} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$$

Small Signal Model



saturation

$$i_g = 0$$

$$i_b = 0$$

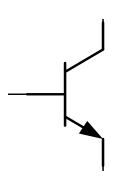
$$i_d = g_m v_{gs} + g_{mb} v_{bs} + g_o v_{ds}$$

where

$$\begin{split} g_{_{m}} &= \frac{\mu C_{_{OX}} W}{L} \, V_{_{EBQ}} \\ g_{_{mb}} &= g_{_{m}} \! \left(\frac{\gamma}{2 \sqrt{\phi - V_{_{BSQ}}}} \right) \\ g_{_{o}} &= \lambda I_{_{DQ}} \end{split}$$

Large and Small Signal Model Summary

Large Signal Model



$$\begin{split} I_{C} &= \beta I_{B} \Biggl(1 + \frac{V_{CE}}{V_{AF}} \Biggr) \\ I_{B} &= \frac{J_{S} A_{E}}{\beta} e^{\frac{V_{BE}}{V_{t}}} \end{split} \qquad \begin{aligned} V_{BC} &< 0 \\ Forward Active \end{aligned}$$

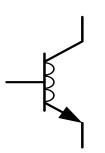
$$V_{BE}=0.7V$$

 $V_{CE}=0.2V$

$$I_C < \beta I_B$$

$$I_C=I_B=0$$
 $V_{BC}<0$
 $V_{BC}<0$

Small Signal Model



Forward Active

$$i_b = g_{\pi} v_{be}$$

$$i_c = g_m v_{be} + g_0 v_{ce}$$

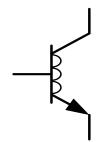
where

$$\mathbf{g}_{\mathsf{m}} = rac{\mathbf{I}_{\mathsf{CQ}}}{\mathsf{V}_{\mathsf{t}}}$$
 $\mathbf{g}_{\pi} = rac{\mathbf{I}_{\mathsf{CQ}}}{\mathsf{\beta}\mathsf{V}_{\mathsf{t}}}$
 $\mathbf{g}_{o} \cong rac{\mathbf{I}_{\mathsf{CQ}}}{\mathsf{V}_{\mathsf{AF}}}$

Relative Magnitude of Small Signal BJT Parameters

$$g_m = \frac{I_{CQ}}{V_t}$$
 $g_{\pi} = \frac{I_{CQ}}{\beta V_t}$ $g_o \cong \frac{I_{CQ}}{V_{AF}}$

$$g_o \cong \frac{I_{CQ}}{V_{AF}}$$



$$\frac{g_m}{g_\pi} = \frac{\left\lfloor \frac{I_Q}{V_t} \right\rfloor}{\left\lfloor \frac{I_Q}{\beta V_t} \right\rfloor}$$

$$\frac{g_{\pi}}{g_{o}} = \frac{\left[\frac{I_{Q}}{\beta V_{t}}\right]}{\left[\frac{I_{Q}}{V_{AF}}\right]}$$

$$g_m >> g_\pi >> g_o$$

Relative Magnitude of Small Signal Parameters

$$g_{m} = \frac{I_{CQ}}{V_{t}} \qquad g_{\pi} = \frac{I_{CQ}}{\beta V_{t}} \qquad g_{o} \cong \frac{I_{CQ}}{V_{AF}}$$

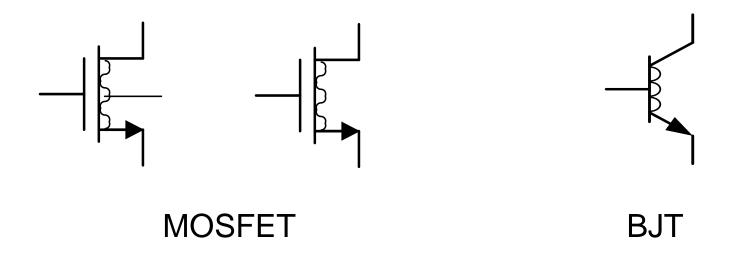
$$\frac{g_{m}}{g_{\pi}} = \frac{\left[\frac{I_{Q}}{V_{t}}\right]}{\left[\frac{I_{Q}}{\beta V_{t}}\right]} = \beta$$

$$\frac{g_{\pi}}{g_{o}} = \frac{\left[\frac{I_{Q}}{\beta V_{t}}\right]}{\left[\frac{I_{Q}}{V_{AF}}\right]} = \frac{V_{AF}}{\beta V_{t}} \approx \frac{200V}{100 \cdot 26mV} = 77$$

$$g_m >> g_\pi >> g_o$$

- Often the g_o term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_o prior to obtaining a final expression

Small Signal Model Simplifications for the MOSFET and BJT

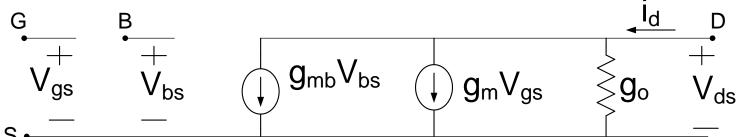


Often simplifications of the small signal model are adequate for a given application

These simplifications will be discussed next

Small Signal MOSFET Model Summary

An equivalent Circuit:



$$g_{m} = \frac{\mu C_{OX} W}{L} (V_{GSQ} - V_{T})$$

$$g_o = \lambda I_{DQ}$$

$$g_{\text{mb}} = g_{\text{m}} \left(\frac{\gamma}{2\sqrt{\phi - V_{\text{BSQ}}}} \right)$$

Alternate equivalent representations for g_m

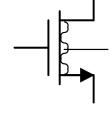
$$I_D \cong \mu C_{OX} \frac{W}{2I} (V_{GS} - V_T)^2$$

$$g_{m} = \sqrt{\frac{2\mu C_{OX}W}{L}} \sqrt{I_{DQ}}$$

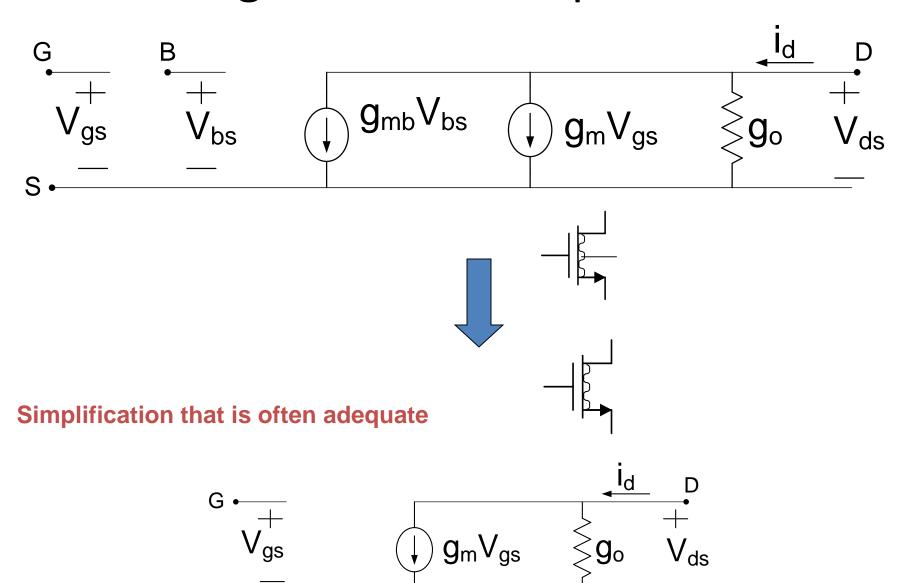
$$g_{m} = \frac{2I_{DQ}}{V_{GSO} - V_{T}} = \frac{2I_{DQ}}{V_{EBO}}$$

$$g_{mb} < g_{m}$$

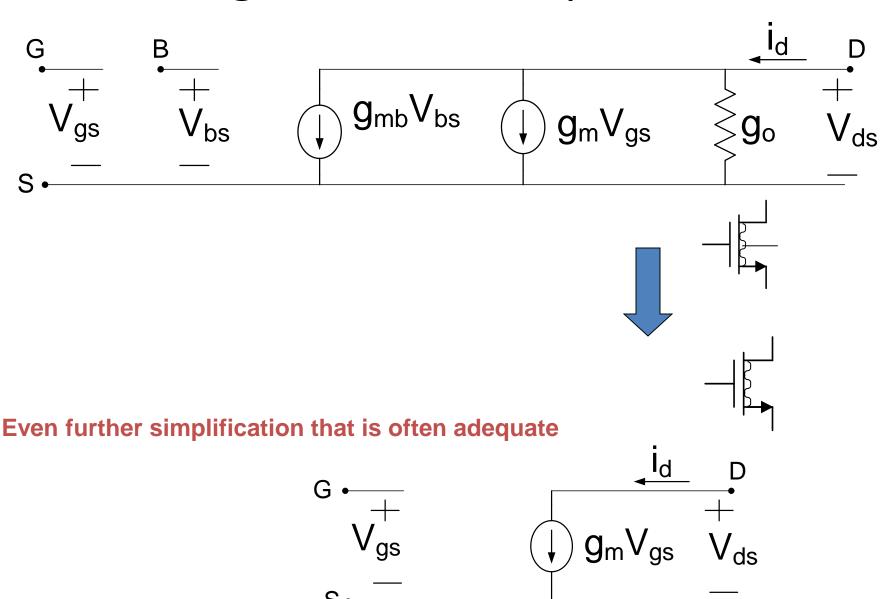
$$g_{\scriptscriptstyle 0}\!<\!<\!g_{\scriptscriptstyle m},g_{\scriptscriptstyle mb}$$



Small Signal Model Simplifications

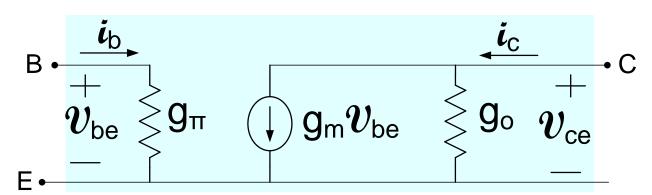


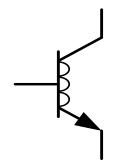
Small Signal Model Simplifications



Small Signal BJT Model Summary

An equivalent circuit





$$g_m = \frac{I_{CQ}}{V_t}$$

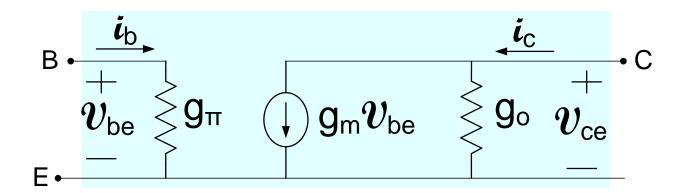
$$g_{\pi} = \frac{I_{CQ}}{\beta V_{t}}$$

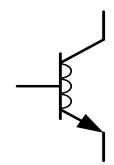
$$g_o \cong \frac{I_{CQ}}{V_{\Delta F}}$$

$$g_m >> g_\pi >> g_o$$

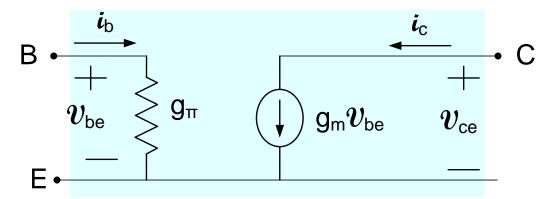
This contains absolutely no more information than the set of small-signal model equations

Small Signal BJT Model Simplifications

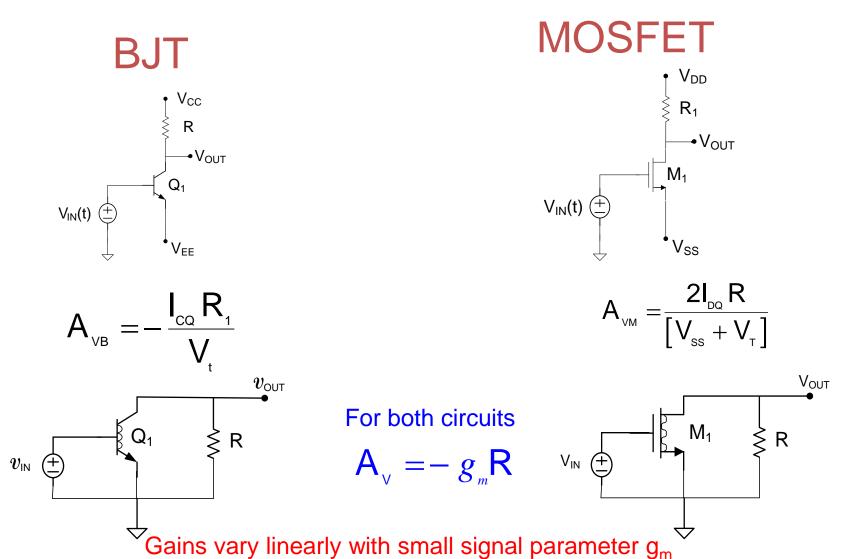




Simplification that is often adequate



Gains for MOSFET and BJT Circuits



Power is often a key resource in the design of an integrated circuit In both circuits, power is proportional to I_{CQ} , I_{DQ}

How does g_m vary with I_{DQ} ?

$$\text{g}_{\text{m}} = \sqrt{\frac{2\mu C_{\text{OX}}W}{L}}\sqrt{I_{\text{DQ}}}$$

Varies with the square root of I_{DO}

$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}} = \frac{2I_{DQ}}{V_{EBQ}}$$

Varies linearly with I_{DQ}

$$g_{m} = \frac{\mu C_{OX} W}{L} (V_{GSQ} - V_{T})$$

Doesn't vary with I_{DQ}

How does g_m vary with I_{DQ} ?

All of the above are true – but with qualification

 g_m is a function of more than one variable (I_{DQ}) and how it varies depends upon how the remaining variables are constrained

End of Lecture 25