## EE 330 Lecture 31

Basic amplifier architectures

- Common Emitter/Source
- Common Collector/Drain
- Common Base/Gate
- Common Emitter/Source with R<sub>E</sub>/R<sub>S</sub>

**Basic Amplifiers** 

• Analysis, Operation, and Design

#### Two-Port Equivalents of Interconnected Two-ports



Apply V<sub>1</sub>, open V<sub>2</sub> to get A<sub>V</sub> but short V<sub>2</sub> to get R<sub>IN</sub> Apply V<sub>2</sub>, open V<sub>1</sub> to get A<sub>VR</sub> but short V<sub>1</sub> to get R<sub>OUT</sub>

## **Basic Amplifier Structures**



**Common Source or Common Emitter** 

**Common Gate or Common Base** 

**Common Drain or Common Collector** 

| MOS   |       |        | BJT    |       |        |
|-------|-------|--------|--------|-------|--------|
| ommon | Input | Output | Common | Input | Output |
| S     | G     | D      | E      | В     | С      |
| G     | S     | D      | В      | Е     | С      |
| D     | G     | S      | С      | В     | E      |
|       |       |        |        |       |        |

#### **Objectives in Study of Basic Amplifier Structures**

1. Obtain key properties of each basic amplifier

С

2. Develop method of designing amplifiers with specific characteristics using basic amplifier structures

# The three basic amplifier types for both MOS and bipolar processes



Will focus on the performance of the bipolar structures and then obtain performance of the MOS structures by observation

#### Two-Port Models of Basic Amplifiers widely used for Analysis and Design of Amplifier Circuits

Methods of Obtaining Amplifier Two-Port Network



2. Write  $v_1 : v_2$  equations in standard form

$$v_1 = i_1 R_{IN} + A_{VR} v_2$$
$$v_2 = i_2 R_0 + A_{V0} v_1$$

- 3. Thevenin-Norton Transformations
- 4. Ad Hoc Approaches

Any of these methods can be used to obtain the two-port model

## Consider Common Emitter/Common Source Two-port Models



Will focus on Bipolar Circuit since MOS counterpart is a special case obtained by setting  $g_{\pi}=0$ 

#### Two-port model for Common Emitter Configuration



In terms of small signal model parameters:

$$R_{in} = \frac{1}{g_{\pi}}$$
  $A_{V0} = -\frac{g_m}{g_0}$   $R_0 = \frac{1}{g_0}$   $A_{VR} = 0$ 

In terms of operating point and model parameters:

$$\mathsf{R}_{i} = \frac{\beta \mathsf{V}_{t}}{\mathsf{I}_{CQ}} \qquad \mathsf{A}_{V0} = -\frac{\mathsf{V}_{\mathsf{AF}}}{\mathsf{V}_{t}} \qquad \mathsf{R}_{0} = \frac{\mathsf{V}_{\mathsf{AF}}}{\mathsf{I}_{CQ}} \qquad \qquad \mathsf{A}_{\mathsf{VR}} = \mathbf{0}$$

Characteristics:

- Input impedance is mid-range
- Voltage Gain is Large and Inverting
- Output impedance is large
- Unilateral
- Widely used to build voltage amplifiers

#### **Common Emitter Configuration**



#### **Common Emitter Configuration**

#### Consider the following CE application

(this will also generate a two-port model for this CE application)



This circuit can also be analyzed directly without using 2-port model for CE configuration



#### **Common Emitter Configuration**

#### Consider the following CE application

(this is also a two-port model for this CE application)



Operating point and model parameter domain

Small signal parameter domain

$$\mathsf{A}_{v} \stackrel{g_{0} << g_{c}}{\cong} - g_{m} \mathsf{R}_{\mathsf{C}}$$

$$\mathsf{R}_{\mathsf{out}} = \frac{1}{g_0 + g_C} \stackrel{g_0 << g_c}{\cong} \mathsf{R}_{\mathsf{C}}$$

 $R_{in} = r_{\pi}$ 

$$A_{v} \stackrel{g_{o} << g_{c}}{\cong} -\frac{I_{CQ}R_{C}}{V_{t}}$$
$$R_{out} \stackrel{g_{o} << g_{c}}{\cong} R_{C}$$
$$R_{c} \stackrel{\beta V_{t}}{=}$$

CQ

 $A_{VR} = 0$ 

Characteristics:

- Input impedance is mid-range
- Voltage Gain is large and Inverting
- Output impedance is mid-range
- Unilateral
- Widely used as a voltage amplifier

#### Common Source/ Common Emitter Configurations



**Characteristics:** 

- Input impedance is mid-range (infinite for MOS)
- Voltage Gain is Large and Inverting
- Output impedance is large
- Unilateral
- Widely used to build voltage amplifiers

## **Common Source/Common Emitter Configuration**



• Widely used as a voltage amplifier

## Consider Common Collector/Common Drain Two-port Models



Will focus on Bipolar Circuit since MOS counterpart is a special case obtained by setting  $g_{\pi}=0$ 

#### Two-port model for Common Collector Configuration



 $\{R_{iX}, A_{V0}, A_{V0r} \text{ and } R_{0X}\}$ 

Two-Port Models of Basic Amplifiers widely used for Analysis and Design of Amplifier Circuits

Methods of Obtaining Amplifier Two-Port Network



1.  $v_{\text{TEST}}$ :  $i_{\text{TEST}}$  Method



- 2. Write  $v_1 : v_2$  equations in standard form  $v_1 = i_1 R_{IN} + A_{VR} v_2$  $v_2 = i_2 R_0 + A_{V0} v_1$
- 3. Thevenin-Norton Transformations
- 4. Ad Hoc Approaches

#### Two-port model for Common Collector Configuration



Applying KCL at the input and output node, obtain

$$i_{1} = (\boldsymbol{v}_{1} - \boldsymbol{v}_{2})g_{\pi}$$
  

$$i_{2} = (g_{m} + g_{\pi} + g_{o})\boldsymbol{v}_{2} - (g_{m} + g_{\pi})\boldsymbol{v}_{1}$$

These can be rewritten as

$$\boldsymbol{v}_{1} = i_{1}\mathbf{r}_{\pi} + \boldsymbol{v}_{2}$$
$$\boldsymbol{v}_{2} = \left(\frac{1}{g_{m} + g_{\pi} + g_{o}}\right)\boldsymbol{i}_{2} + \left(\frac{g_{m} + g_{\pi}}{g_{m} + g_{\pi} + g_{o}}\right)\boldsymbol{v}_{1}$$

Standard Two-Port Amplifier Representation  $\begin{array}{c}
i_{1} \\
+ \\
v_{1} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
+ \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$   $\begin{array}{c}
i_{2} \\
- \\
v_{2} \\
- \\
\end{array}$ 

 $v_1$  :  $v_2$  equations in standard form

It thus follows that

$$R_{iX} = r_{\pi}$$
  $A_{Vr} = 1$   $R_{0X} = \left(\frac{1}{g_m + g_\pi + g_o}\right)$   $A_{V0} = \left(\frac{g_m + g_\pi}{g_m + g_\pi + g_o}\right)$ 

#### **Two-port model for Common Collector Configuration**











To obtain  $R_0$ , set  $\vartheta_{in} = 0$ 

 $\mathbf{i}_{out} = \mathbf{v}_{out} \left( g_E + g_0 + g_\pi \right) - g_m \left( -\mathbf{v}_{out} \right)$  $\mathsf{R}_{out} = \frac{1}{g_m + g_\pi + g_o + g_E} \stackrel{g_E < < g_o}{\cong} \frac{1}{g_m}$ 



 $V_{DD}$ 



• Not completely unilateral but output-input transconductance (or A<sub>Vr</sub>) is small and effects are generally negligible though magnitude same as A<sub>V</sub>

## **Common Collector/Common Drain Configurations**



## Consider Common Base/Common Gate Two-port Models



Will focus on Bipolar Circuit since MOS counterpart is a special case obtained by setting  $g_{\pi}=0$ 

#### Two-port model for Common Base Configuration



 $\{R_{iX}, A_{V0}, A_{V0r} \text{ and } R_{0X}\}$ 

Two-Port Models of Basic Amplifiers widely used for Analysis and Design of Amplifier Circuits

Methods of Obtaining Amplifier Two-Port Network



1.  $v_{\text{TEST}}$ :  $i_{\text{TEST}}$  Method



- 2. Write  $v_1 : v_2$  equations in standard form  $v_1 = i_1 R_{IN} + A_{VR} v_2$  $v_2 = i_2 R_0 + A_{V0} v_1$
- 3. Thevenin-Norton Transformations
- 4. Ad Hoc Approaches

#### Two-port model for Common Base Configuration



 $R_{iX} = -$ 

$$\mathbf{i}_1 = \mathbf{v}_1 g_{\pi} + (\mathbf{v}_1 - \mathbf{v}_2) g_0 + g_m \mathbf{v}_1$$

$$\mathbf{i}_2 = (\mathbf{v}_2 - \mathbf{v}_1) g_0 - g_m \mathbf{v}_1$$

These can be rewritten as

 $\boldsymbol{v}_2 = \left(\frac{1}{g_0}\right)\boldsymbol{i}_2 + \left(1 + \frac{g_m}{g_0}\right)\boldsymbol{v}_1$ 

 $\boldsymbol{\mathcal{V}}_1 = \left(\frac{1}{g_m + g_\pi + g_0}\right) \boldsymbol{i}_1 + \left(\frac{g_0}{g_m + g_\pi + g_0}\right) \boldsymbol{\mathcal{V}}_2$ 

#### Standard Form for Amplifier Two-Port

$$v_1$$
 :  $v_2$  equations in standard form

It thus follows that:  

$$R_{iX} = \frac{1}{g_m + g_\pi + g_0} \cong \frac{1}{g_m}$$
  $A_{VOr} = \frac{g_0}{g_m + g_\pi + g_0}$   $A_{VO} = 1 + \frac{g_m}{g_0} \cong \frac{g_m}{g_0}$   $R_{oX} = \frac{1}{g_0}$ 

#### Two-port model for Common Base Configuration



#### **Common Base Configuration**



#### **Common Base Configuration**



#### Common Base Application

(this is not a two-port model for this CB application)





Characteristics:

- Output impedance is mid-range
- A<sub>V0</sub> is large and positive (equal in mag to that to CE)
- Input impedance is very low
- Not completely unilateral but output-input transconductance is small

#### **Common Base/Common Gate Application**



- Output impedance is mid-range
- $A_{V0}$  is large and <u>positive</u> (equal in mag to that to CE)
- Input impedance is very low
- Not completely unilateral but output-input transconductance is small

# The three basic amplifier types for both MOS and bipolar processes



- Have developed both two-ports and a widely used application of all 6
- A fourth structure (two additional applications) is also quite common so will be added to list of basic applications



#### Common Emitter with Emitter Resistor Configuration Application

(this is not a two-port model for this CE with R<sub>E</sub> application)



#### Common Emitter with Emitter Resistor Configuration Application

(this is not a two-port model for this CE with R<sub>E</sub> application)



It can also be shown that

$$R_{in} \cong r_{\pi} + \beta R_{E}$$
$$R_{out} \cong R_{C}$$

Nearly unilateral (is unilateral if  $g_0=0$ )

#### Common Emitter with Emitter Resistor Configuration Application

(this is not a two-port model for this CE with R<sub>E</sub> application)



Characteristics:

- Analysis would simplify if g<sub>0</sub> were set to 0 in model
- Gain can be accurately controlled with resistor ratios
- Useful for reasonably accurate low gains
- Input impedance is high

**Basic Amplifier Gain Table** 



(not two-port models for the four structures)

#### **Basic Amplifier Gain Table**



Can use these equations only when small signal circuit is EXACTLY like that shown !!

#### **Basic Amplifier Structures**

- 1. Common Emitter/Common Source
- 2. Common Collector/Common Drain
- 3. Common Base/Common Gate
- 4. Common Emitter with R<sub>E</sub>/ Common Source with R<sub>S</sub>
- 5. Cascode (actually CE:CB or CS:CG cascade)
- 6. Darlington (special CC:CE or CD:CS cascade)

Will be discussed later

The first 4 are most popular

#### **Basic Amplifier Structures**

- 1. Common Emitter/Common Source
- 2. Common Collector/Common Drain
- 3. Common Base/Common Gate
- 4. Common Emitter with R<sub>E</sub>/ Common Source with R<sub>S</sub>
- 5. Cascode (actually CE:CB or CS:CG cascade)
- 6. Darlington (special CC:CE or CD:CS cascade)

Will be discussed later

The first 4 are most popular

#### Why are we focusing on these basic circuits?

- 1. So that we can develop analytical skills
- 2. So that we can design a circuit
- 3. So that we can get the insight needed to design a circuit

Which is the most important?

#### Why are we focusing on these basic circuits?

- 1. So that we can develop analytical skills
- 2. So that we can design a circuit
- 3. So that we can get the insight needed to design a circuit

#### Which is the most important?

#### 1. So that we can get the insight needed to design a circuit

- 2. So that we can design a circuit
- 3. So that we can develop analytical skills

## **Properties/Use of Basic Amplifiers**

CE and CS



More practical biasing circuits usually used

 $R_{C}$  or  $R_{D}$  may (or may not) be load

- Large inverting gain
- Moderate input impedance for BJT (high for MOS)
- Moderate output impedance
- Most widely used amplifier structure

## **Properties/Use of Basic Amplifiers**



More practical biasing circuits usually used

R<sub>E</sub> or R<sub>S</sub> may (or may not) be load

- Gain very close to +1 (little less)
- High input impedance for BJT (high for MOS)
- Low output impedance
- Widely used as a buffer

## **Properties/Use of Basic Amplifiers**

CB and CG



More practical biasing circuits usually used

 $R_{\rm C} \mbox{ or } R_{\rm D} \mbox{ may (or may not)} \mbox{ be load}$ 

- Large noninverting gain
- Low input impedance
- Moderate (or high) output impedance
- Used more as current amplifier or, in conjunction with CD/CS to form two-stage cascode

## **Basic Amplifier Characteristics Summary**



### **Cascaded Amplifiers**



- Amplifier cascading widely used to enhance gain
- Amplifier cascading widely used to enhance other characteristics and/or alter functionality as well
   e.g. (R<sub>IN</sub>, BW, Power, R<sub>O</sub>, Linearity, Impedance Conversion..)

## Cascaded Amplifier Analysis and Operation



• Systematic Methods of Analysis/Design will be Developed

#### One or more couplings of nonadjacent stages



- Less Common
- Analysis Generally Much More Involved, Use Basic Circuit Analysis Methods

# End of Lecture 31