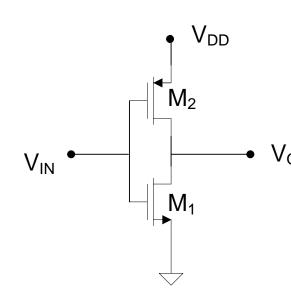
Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
 - Sizing of Gates

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

Static Power Dissipation in Static CMOS Family

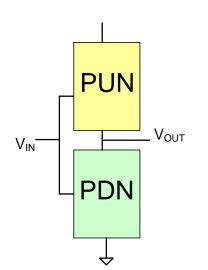


When V_{IN} is Low and V_{OUT} is High, M1 is off and $I_{D1}=0$

When V_{IN} is High and V_{OUT} is Low, M2 is off and $I_{D2}=0$

Thus, P_{STATIC}=0

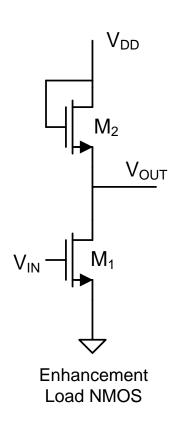
This is a key property of the static CMOS Logic Family → the major reason Static CMOS Logic is so dominant



It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of p-channel devices, the PDN is comprised of n-channel devices and they are never both driven into the conducting states at the same time

Static Power Dissipation in Ratio Logic Families

Example:



Assume V_{DD} =5V V_{T} =1V, μC_{OX} =10⁻⁴A/V², W_{1}/L_{1} =1 and M_{2} sized so that V_{L} is close to V_{Tn}

Observe:

$$V_H = V_{DD} - V_{Tn}$$

If
$$V_{IN}=V_H$$
, $V_{OUT}=V_I$ so

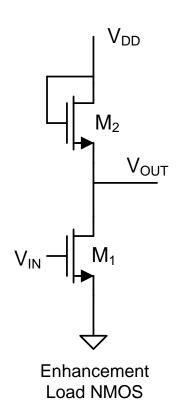
$${\bm I}_{\text{D1}} = \frac{\mu \bm C_{\text{OX}} \bm W_{\text{1}}}{\bm L_{\text{1}}} \! \left(\bm V_{\text{GS1}} - \bm V_{\text{T}} - \frac{\bm V_{\text{DS1}}}{\bm 2} \right) \! \bm V_{\text{DS1}}$$

$$I_{D1} = 10^{-4} \left(5 - 1 - 1 - \frac{1}{2} \right) \cdot 1 = 0.25 \text{mA}$$

$$P_1 = (5V)(0.25mA) = 1.25mW$$

Static Power Dissipation in Ratio Logic Families

Example:



Assume V_{DD} =5V V_T =1V, μC_{OX} =10⁻⁴A/V², W_1/L_1 =1 and M_2 sized so that V_1 is close to V_{Tn}

$$P_L = (5V)(0.25mA) = 1.25mW$$

If a circuit has 100,000 gates and half of them are in the $V_{OUT}=V_L$ state, the static power dissipation will be

$$P_{STATIC} = \frac{1}{2}10^5 \bullet 1.25 mW = 62.5W$$

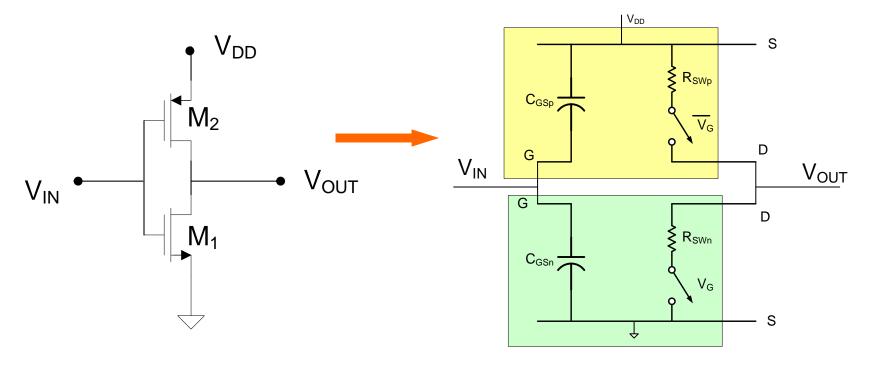
This power dissipation is way too high and would be even larger in circuits with 100 million or more gates – the level of integration common in SoC circuits today

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
- Simple analytical models
 - Elmore Delay
 - Sizing of Gates

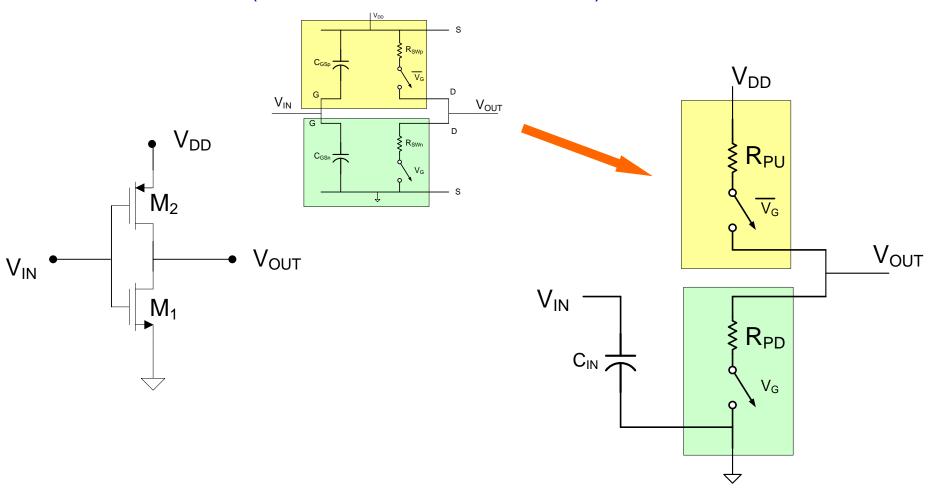
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

(Review from earlier discussions)



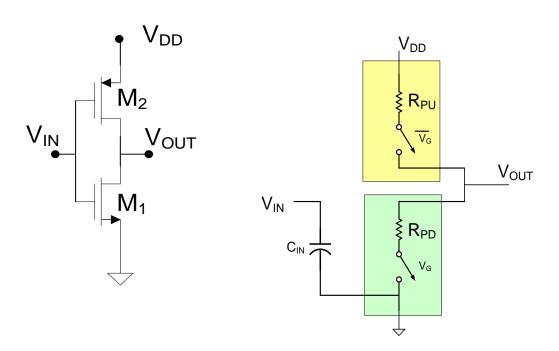
Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

(Review from earlier discussions)



Switch-level model of Static CMOS inverter (neglecting diffusion parasitics)

(Review from earlier discussions)



$$\boldsymbol{R}_{PD} = \frac{\boldsymbol{L}_{1}}{\boldsymbol{\mu}_{n}\boldsymbol{C}_{ox}\boldsymbol{W}_{1}\big(\boldsymbol{V}_{DD} - \boldsymbol{V}_{Tn}\big)}$$

$$\boldsymbol{R}_{PU} = \frac{\boldsymbol{L}_{2}}{\boldsymbol{\mu}_{p}\boldsymbol{C}_{OX}\boldsymbol{W}_{2}\big(\boldsymbol{V}_{DD} + \boldsymbol{V}_{Tp}\big)}$$

$$\mathbf{C}_{\mathsf{IN}} = \mathbf{C}_{\mathsf{OX}} (\mathbf{W}_{\mathsf{1}} \mathbf{L}_{\mathsf{1}} + \mathbf{W}_{\mathsf{2}} \mathbf{L}_{\mathsf{2}})$$

Example: Minimum-sized M₁ and M₂

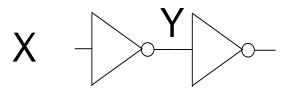
If $u_n C_{OX} = 100 \mu AV^{-2}$, $C_{OX} = 4$ fF μ^{-2} , $V_{Tn} = V_{DD}/5$, $V_{TP} = -V_{DD}/5$, $\mu_n/\mu_p = 3$, $L_1 = W_1 = L_{MIN}$, $L_2 = W_2 = L_{MIN}$, $L_{MIN} = 0.5 \mu$ and $V_{DD} = 5V$ (Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

$$R_{PD} = \frac{1}{10^{-4} \cdot 0.8 V_{DD}} = 2.5 K\Omega$$

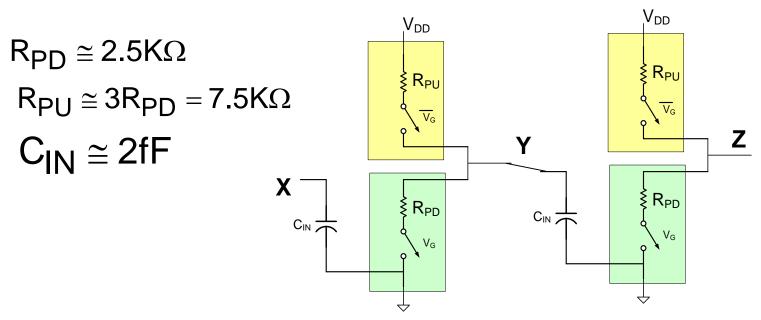
$$R_{PU} = \frac{1}{10^{-4} \cdot \frac{1}{2} \cdot 0.8 V_{DD}} = 7.5 K\Omega$$

$$C_{IN} = 4 \cdot 10^{-15} \cdot 2L_{MIN}^2 = 2fF$$

(Review from earlier discussions)



In typical process with Minimum-sized M₁ and M₂:

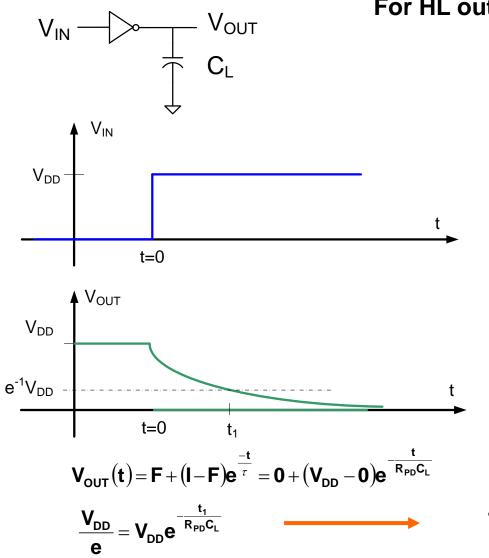


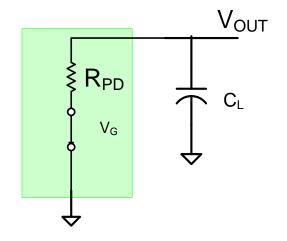
How long does it take for a signal to propagate from x to y?

(Review from earlier discussions)

Consider: For HL output transition, C_L charged to V_{DD} **Ideally:** V_{DD} t=0 V_{OUT} V_{DD} t=0

(Review from earlier discussions)

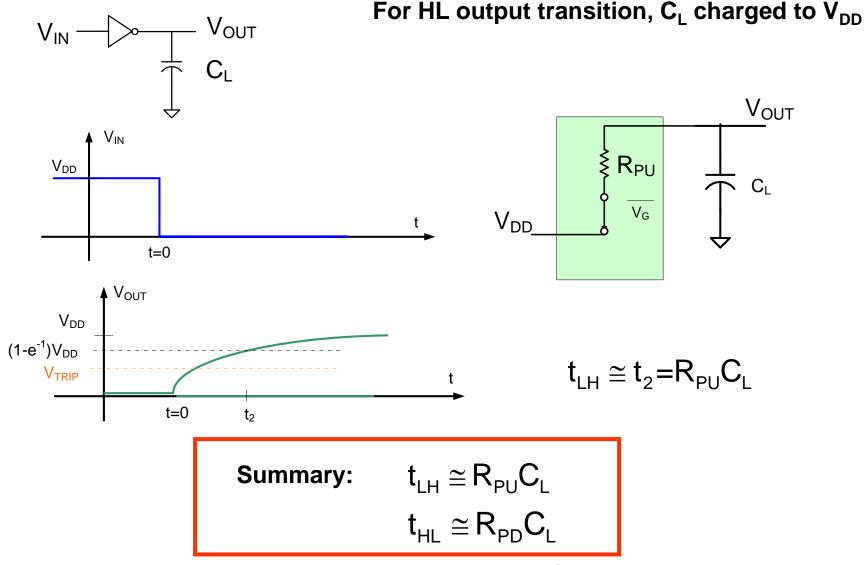




$$\boldsymbol{t}_{1} = \boldsymbol{R}_{PD}\boldsymbol{C}_{L}$$

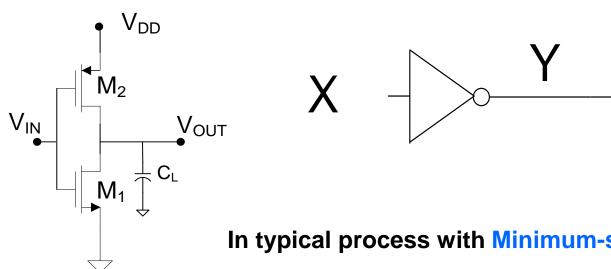
If V_{TRIP} is close to $V_{DD}/2$, t_{HL} is close to t_1

(Review from earlier discussions)



For V_{TRIP} close to $V_{DD}/2$

(Review from earlier discussions)



In typical process with Minimum-sized M₁ and M₂:

$$t_{HL} \cong R_{PD}C_{L} \cong 2.5K \bullet 2fF = 5ps$$

$$t_{LH} \cong R_{PU}C_L \cong 7.5 \text{K-}2 \text{fF=}15 \text{ps}$$

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON

process)

Note: LH transition is much slower than HL transition

Defn: The Propagation Delay of a gate is defined to be the sum of t_{HL} and t_{LH} , that is, $t_{PROP} = t_{HL} + t_{LH}$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked

For basic two-inverter cascade in static 0.5um CMOS logic

X
$$t_{PROP} = t_{HL} + t_{LH} \cong 20p \text{ sec}$$

$$t_{PROP} = t_{HL} + t_{LH} \cong C_L (R_{PU} + R_{PD})$$

$$R_{\text{PD}} = \frac{L_{1}}{\mu_{n}C_{\text{OX}}W_{1}\big(V_{\text{DD}} - V_{\text{Tn}}\big)} \qquad R_{\text{PU}} = \frac{L_{2}}{\mu_{p}C_{\text{OX}}W_{2}\big(V_{\text{DD}} + V_{\text{Tp}}\big)} \qquad \qquad C_{\text{IN}} = C_{\text{OX}}\big(W_{1}L_{1} + W_{2}L_{2}\big)$$

$$\begin{aligned} &\text{If } V_{\text{Tn}} = -V_{\text{Tp}} = V_{\text{T}} \\ &t_{\text{PROP}} = C_{\text{OX}} (W_{\text{I}} L_{\text{I}} + W_{\text{2}} L_{\text{2}}) \left(\frac{L_{\text{I}}}{\mu_{\text{I}} C_{\text{OX}} W_{\text{I}} (V_{\text{DD}} - V_{\text{T}})} + \frac{L_{\text{2}}}{\mu_{\text{P}} C_{\text{OX}} W_{\text{2}} (V_{\text{DD}} - V_{\text{T}})} \right) \end{aligned}$$

If
$$L_{2} = L_{1} = L_{\min}$$
, $\mu_{n} = 3\mu_{n}$,

$$t_{PROP} = \frac{L_{\min}^2}{\mu_n (V_{DD} - V_T)} (W_1 + W_2) \left(\frac{1}{W_1} + \frac{3}{W_2} \right) = \frac{L_{\min}^2}{\mu_n (V_{DD} - V_T)} (4 + \frac{W_2}{W_1} + 3 \frac{W_1}{W_2})$$

For min size: For equal rise/fall: For min delay:

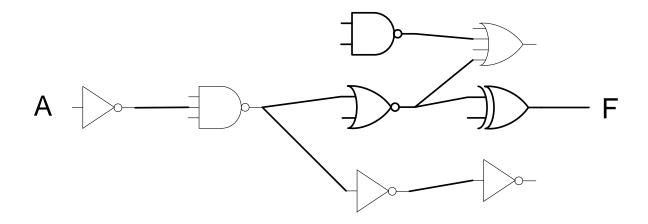
$$W_{2} = W_{1} = W_{\min} \qquad W_{2} = 3W_{1} \qquad W_{2} = \sqrt{3}W_{1} \qquad (4+2\sqrt{3}) \approx 7.5$$

$$t_{PROP} = \frac{8L_{\min}^{2}}{\mu_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{8L_{\min}^{2}}{\mu_{n}(V_{DD} - V_{T})} \qquad t_{PROP} = \frac{(4+2\sqrt{3})L_{\min}^{2}}{\mu_{n}(V_{DD} - V_{T})}$$

Approximate BSIM values

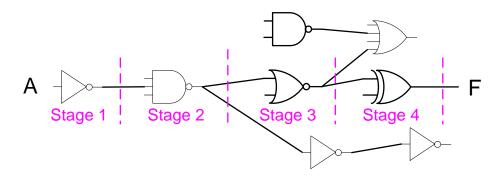
process	Lmin	u	VT	VDD	Wmin
500	600	34	0.7	5	900
180	180	35	0.4	1.8	180
130	130	59	0.33	1.3	130
90	100	55	0.26	1.1	100
65	65	49	0.22	1	65
45	45	44	0.22	0.9	45

For min L transistors, mobility will saturate as field strength reaches a certain level.



The propagation delay through k levels of logic is approximately the sum of the individual delays in the same path

Example:



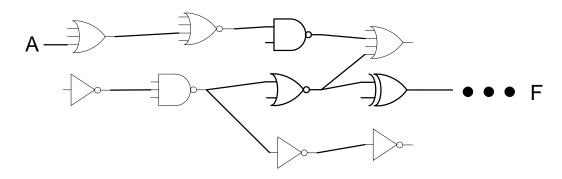
$$t_{HL} = t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1}$$

$$t_{LH} = t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL3} + t_{LH2} + t_{HL1}) + (t_{HL4} + t_{LH3} + t_{HL2} + t_{LH1})$$

$$t_{PROP} = t_{LH} + t_{HL} = (t_{LH4} + t_{HL4}) + (t_{LH3} + t_{HL3}) + (t_{LH2} + t_{HL2}) + (t_{LH1} + t_{HL1})$$

$$t_{PROP} = t_{PROP4} + t_{PROP3} + t_{PROP2} + t_{PROP1}$$



Propagation through k levels of logic

$$t_{HL} \cong t_{HLk} + t_{LH(k-1)} + t_{HL(k-2)} + \bullet \bullet \bullet + t_{XY1}$$

$$t_{LH} \cong t_{LHk} + t_{HL(k-1)} + t_{LH(k-2)} + \bullet \bullet \bullet + t_{YX1}$$

where x=H and Y=L if k odd and X=L and Y=h if k even

$$t_{PROP} = \sum_{i=1}^{k} t_{PROPk}$$

Will return to propagation delay after we discuss device sizing

End of Lecture 39