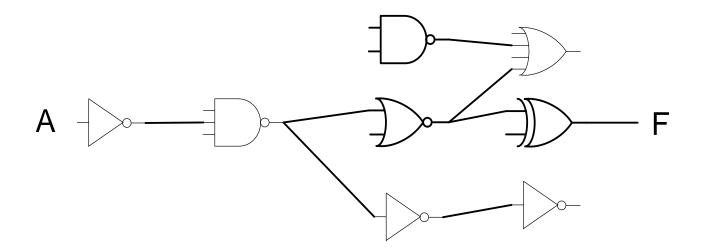
EE 330 Lecture 41

Digital Circuits

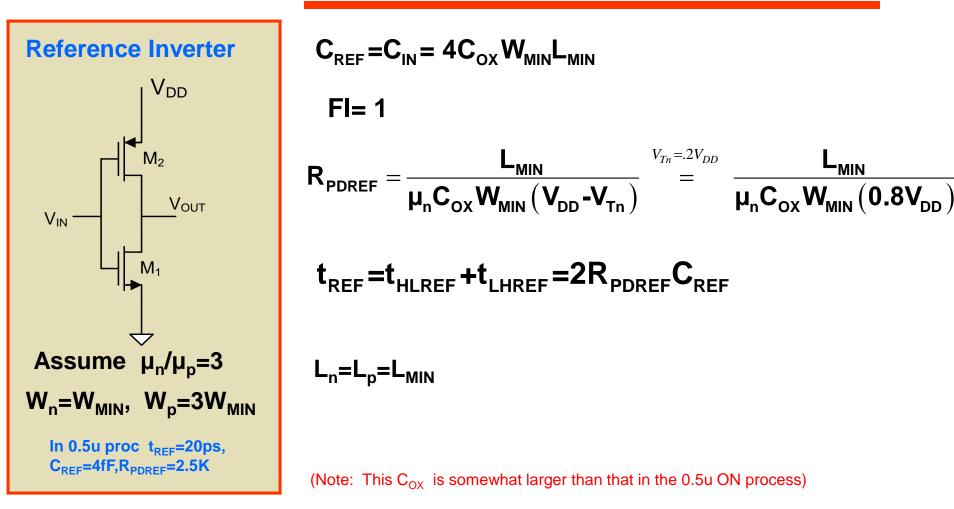

- Propagation Delay With Multiple Levels of Logic
- Overdrive

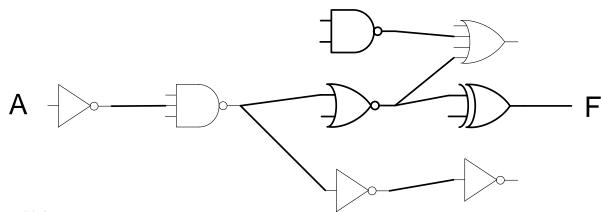
Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS
 Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates

Propagation Delay with Multiple Levels of Logic

- Optimal driving of Large
 Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators



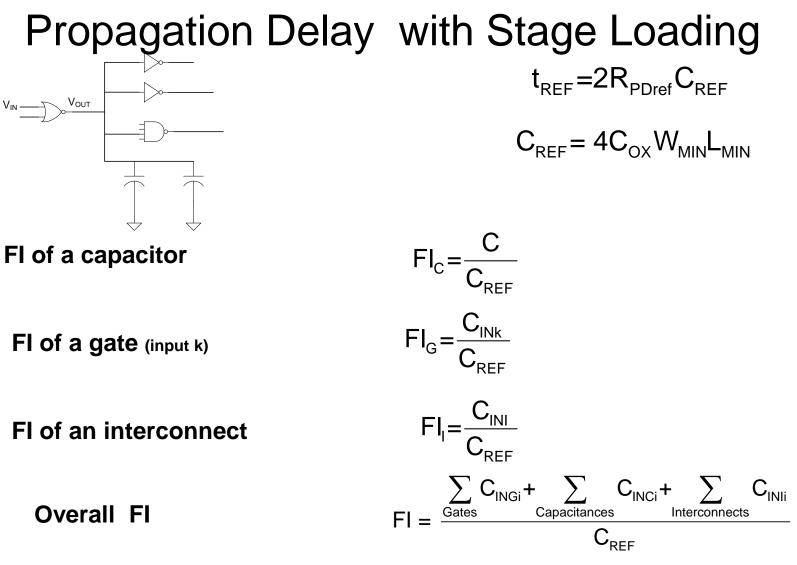

Assume all gates sized for equal worst-case rise/fall times

For n levels of logic between A and F

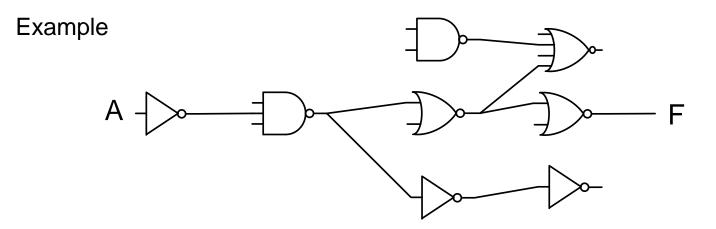
$$\mathbf{t}_{\mathsf{PROP}} = \sum_{k=1}^{\mathsf{n}} \mathbf{t}_{\mathsf{PROP}}(k)$$

Analysis strategy : Express delays in terms of those of reference inverter

Assume:


- all gates sized for equal worst-case rise/fall times
- all gates sized to have rise and fall times equal to that of ref inverter when driving C_{REF}

Observe:


 Propagation delay of these gates will be scaled by the ratio of the total load capacitance on each gate to C_{REF}

What loading will a gate see?

- Input capacitance to other gates
- Any load capacitors
- Parasitic interconnect capacitnaces

FI can be expressed either in units of capacitance or normalized to C_{REF} Most commonly FI is normalized but must determine from context If gates sized to have same drive as ref inverter $t_{prop-k} = t_{REF} \bullet FI_{LOAD-k}$

Assume all gates sized for equal worst-case rise/fall times

Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{REF} on F output

Determine propagation delay from A to F

Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{REF} on F output Determine propagation delay from A to F

What loading will a gate see?

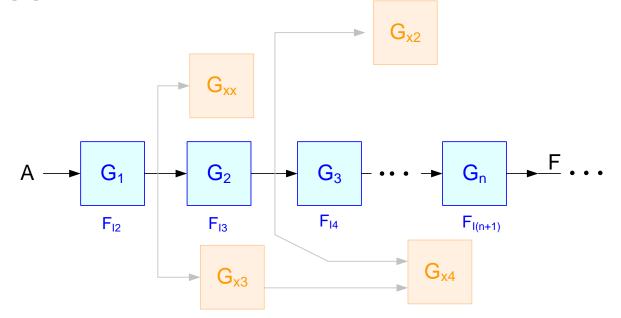
Derivation:

$$FI_{2} = \frac{6}{4}C_{REF} \qquad FI_{3} = C_{REF} + \frac{7}{4}C_{REF} \qquad FI_{4} = \frac{7}{4}C_{REF} + \frac{13}{4}C_{REF} \qquad FI_{LOAD} = FI_{"5"} = 10C_{REF}$$

10C_{REF}

Example

Assume all gates sized for equal worst-case rise/fall times Assume all gate drives are the same as that of reference inverter Neglect interconnect capacitance, assume load of 10C_{RFF} on F output


Determine propagation delay from A to F

DERIVATIONS

$$\begin{aligned} \mathsf{FI}_{2} = & \frac{6}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{3} = \mathsf{C}_{\mathsf{REF}} + \frac{7}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{4} = \frac{7}{4} \mathsf{C}_{\mathsf{REF}} + \frac{13}{4} \mathsf{C}_{\mathsf{REF}} & \mathsf{FI}_{5} = 10 \mathsf{C}_{\mathsf{REF}} \\ t_{\mathsf{PROP1}} = & \frac{6}{4} t_{\mathsf{REF}} & t_{\mathsf{PROP2}} = \left(1 + \frac{7}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP3}} = \left(\frac{7}{4} + \frac{13}{4}\right) t_{\mathsf{REF}} & t_{\mathsf{PROP4}} = 10 t_{\mathsf{REF}} \\ t_{\mathsf{PROP4}} = & \sum_{k=1}^{n} t_{\mathsf{PROPk}} = t_{\mathsf{REF}} \sum_{k=1}^{n} \mathsf{FI}_{(k+1)} = t_{\mathsf{REF}} \left(\frac{6}{4} + \frac{11}{4} + \frac{20}{4} + 10\right) = t_{\mathsf{REF}} \left(19.25\right) \end{aligned}$$

Propagation Delay Through Multiple Stages of Logic with Stage Loading

(assuming gate <u>drives</u> are all same as that of reference inverter)

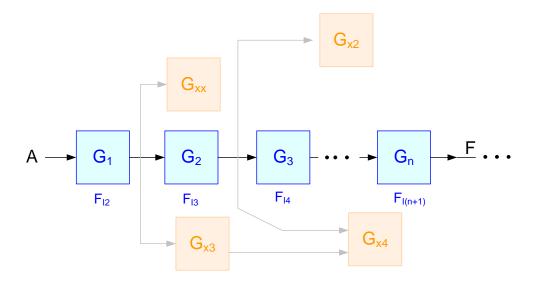
Identify the gate path from A to F

Propagation delay from A to F:

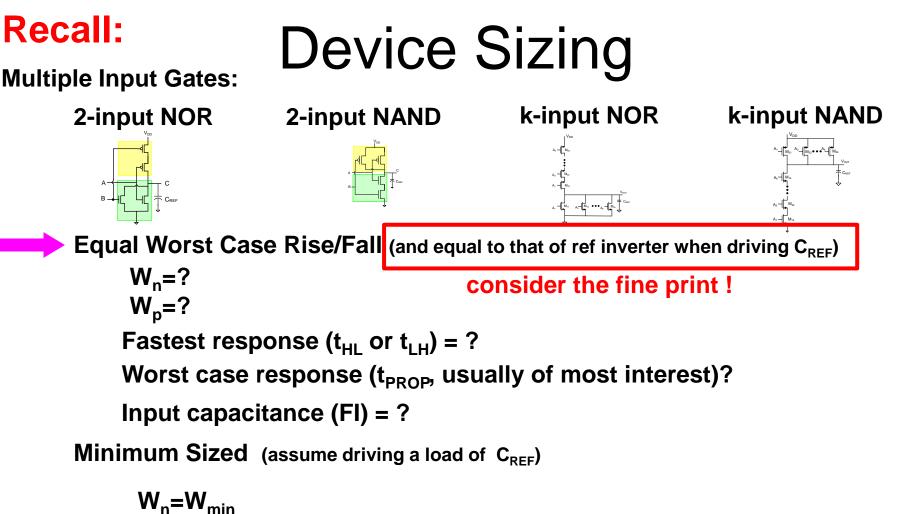
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$

This approach is analytically manageable, provides modest accuracy and is "faithful"

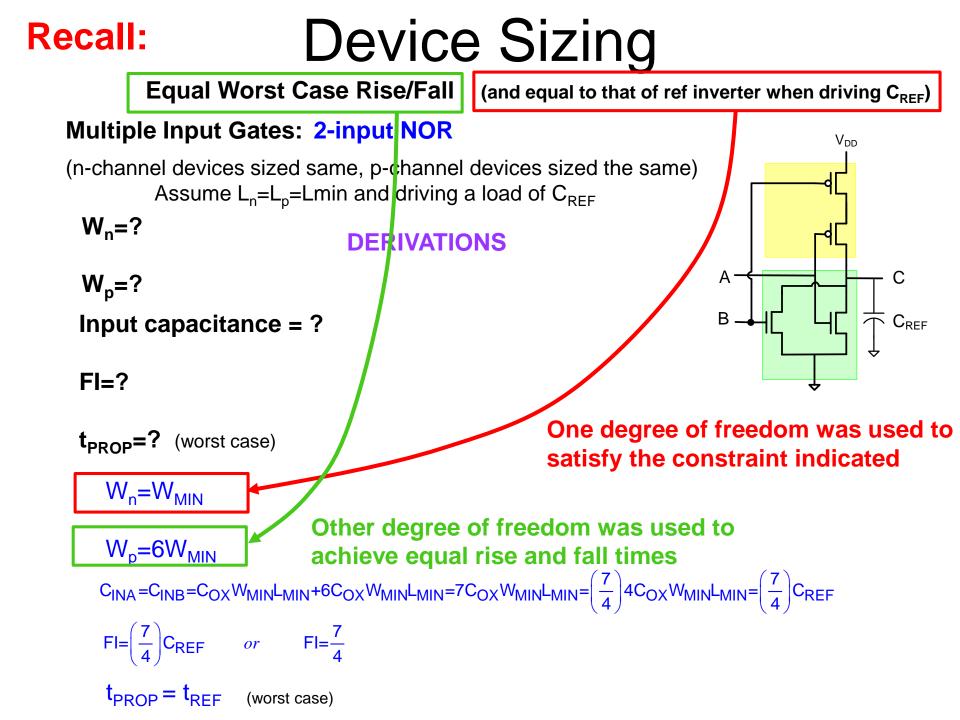
Digital Circuit Design


- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
 - Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - Ratio Logic
- Propagation Delay
 - Simple analytical models
 - Elmore Delay
- Sizing of Gates

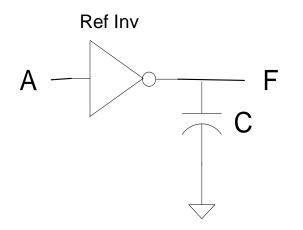
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
 - Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators



What if the propagation delay is too long (or too short)?


Propagation delay from A to F:

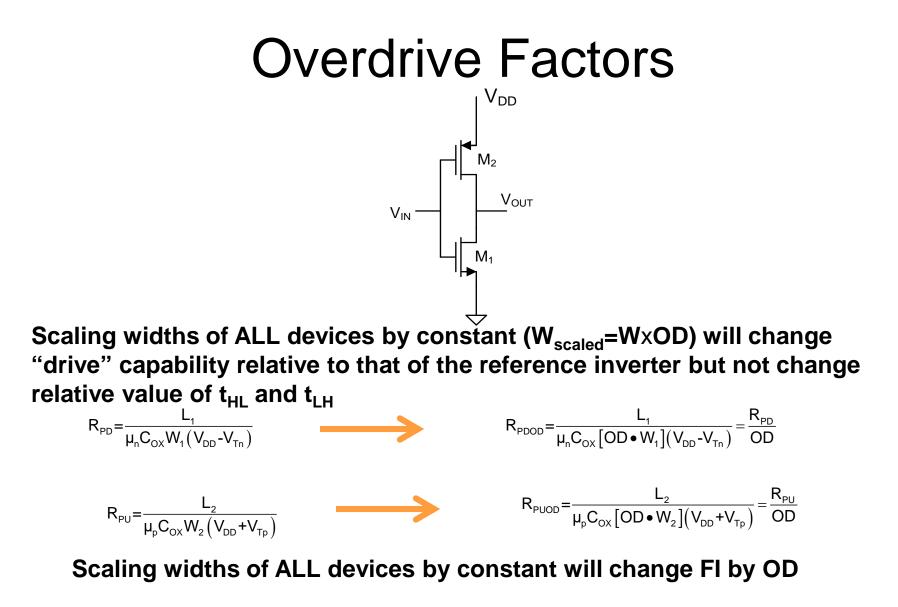
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROPk} = t_{REF} FI_{(k+1)}$$



 $W_p = W_{min}$

Fastest response $(t_{HL} \text{ or } t_{LH}) = ?$ Slowest response $(t_{HL} \text{ or } t_{LH}) = ?$ Worst case response $(t_{PROP}, \text{ usually of most interest})?$ Input capacitance (FI) = ?

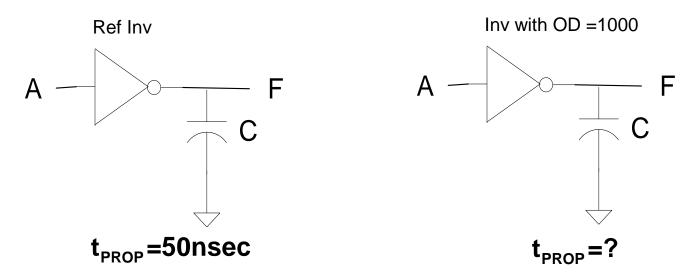
Overdrive Factors



Example: Determine t_{prop} in 0.5u process if C=10pF In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

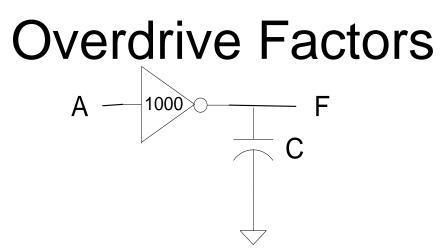
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$

t_{PROP} =20ps • 2500 = 50nsec

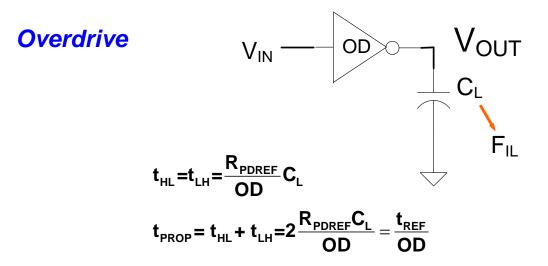

Note this is unacceptably long !

 $C_{IN} = C_{OX} (W_1 L_1 + W_2 L_2)$

 $C_{\text{INOD}} = C_{\text{OX}} \left(\left[O \ D \bullet W_1 \right] L_1 + \left[O \ D \bullet W_2 \right] L_2 \right) = O \ D \bullet C_{\text{IN}}$


Overdrive Factors

Example: Determine t_{prop} in 0.5u process if C=10pF and OD=1000


$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} = \mathbf{t}_{\mathsf{REF}} \bullet 2500$$
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \mathsf{FI} \bullet \frac{1}{\mathsf{OD}} = \mathbf{t}_{\mathsf{REF}} \bullet \frac{10\,pF}{4\,fF} \bullet \frac{1}{1000} = \mathbf{t}_{\mathsf{REF}} \bullet 2.5$$

Note sizing the inverter with the OD improved delay by a factor of 1000 !

- By definition, the factor by which the W/L of all devices are scaled above those of the reference inverter is termed the overdrive factor, OD
- Scaling widths by overdrive factor DECREASES resistance by same factor
- Scaling all widths by a constant does not compromise the symmetry between the rise and fall times (i.e. t_{HL}=t_{LH})
- Judicious use of overdrive can dramatically improve the speed of digital circuits
- Large overdrive factors are often used
- Scaling widths by overdrive factor INCREASES input capacitance by same factor - So is there any net gain in speed?

Propagation Delay with Over-drive Capability

Asymmetric Overdrive

Define the Asymmetric Overdrive Factors of the stage to be the factor by which PU and PD resistors are scaled relative to those of the reference inverter.

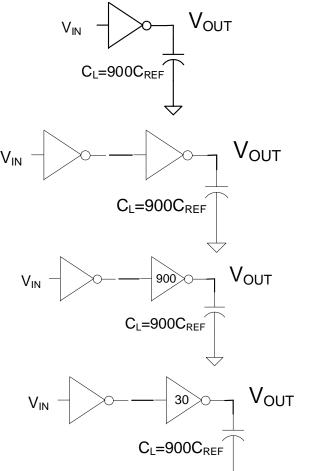
$$R_{PDEFF} = \frac{R_{PDREF}}{OD_{HL}} \qquad R_{PUEFF} = \frac{R_{PUREF}}{OD_{LH}}$$

$$t_{HL} = \frac{R_{PDREF}}{OD_{HL}}C_{L} \qquad t_{LH} = \frac{R_{PDREF}}{OD_{LH}}C_{L}$$

$$t_{PROP} = t_{HL} + t_{LH} = \frac{R_{PDREF}}{OD_{HL}}C_{L} + \frac{R_{PDREF}}{OD_{LH}}C_{L} = R_{PDREF}C_{L} \left[\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}}\right] = \frac{t_{REF}}{2} \left[\frac{1}{OD_{HL}} + \frac{1}{OD_{LH}}\right]F_{IL}$$

Propagation Delay with Over-drive Capability

If inverter with OD is sized for equal rise/fall, $OD_{HL}=OD_{LH}=OD$


$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \left[\frac{1}{\mathbf{OD}_{HL}} + \frac{1}{\mathbf{OD}_{LH}} \right] = \mathbf{R}_{\mathsf{PDREF}} \mathbf{C}_{\mathsf{L}} \frac{\mathbf{2}}{\mathbf{OD}} = \mathbf{t}_{\mathsf{REF}} \frac{\mathbf{F}_{\mathsf{IL}}}{\mathbf{OD}}$$

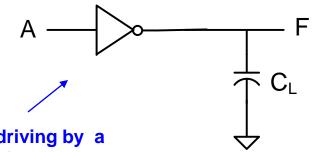
OD may be larger or smaller than 1

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

$$t_{PROP} = 900t_{REF}$$

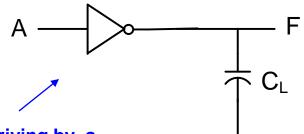

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} + \mathbf{900t}_{\mathsf{REF}} = \mathbf{901t}_{\mathsf{REF}}$$

 $\mathbf{t}_{\text{PROP}} \texttt{=} \textbf{900t}_{\text{REF}} + \mathbf{t}_{\text{REF}} = \textbf{901t}_{\text{REF}}$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{30t}_{\mathsf{REF}} + \mathbf{30t}_{\mathsf{REF}} = \mathbf{60t}_{\mathsf{REF}}$$

- Dramatic reduction in t_{PROP} is possible (input is driving same in last 3 cases)
- Will later determine what optimal number of stages and sizing is

Example


Assume C_L=1000C_{REF}

Assume driving by a reference inverter

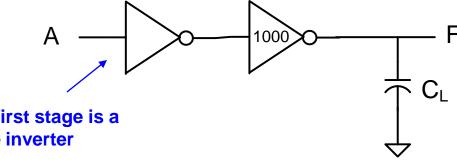
t_{PROP}=?

In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

Example

Assume driving by a reference inverter

t_{PROP}=1000t_{RFF}


 t_{PROP} is too long !

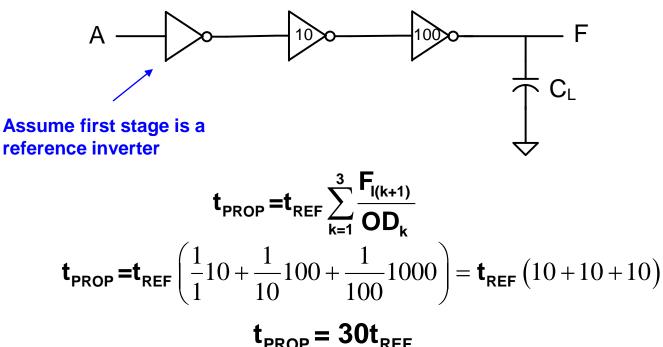
Assume C_L=1000C_{REF}

In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

Example

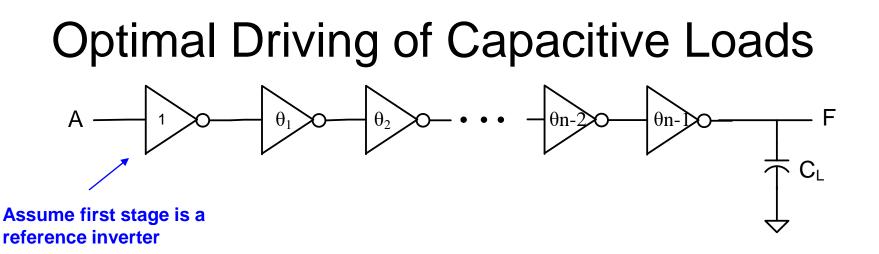
Assume $C_1 = 1000C_{RFF}$

Assume first stage is a reference inverter


t_{PROP}=?

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{2} \frac{\mathbf{F}_{\mathsf{I}(k+1)}}{\mathsf{OD}_{\mathsf{k}}}$$
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(\frac{1}{1} 1000 + \frac{1}{1000} 1000 \right) = \mathbf{t}_{\mathsf{REF}} \left(1000 + 1 \right)$$
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(1001 \right)$$

Delay of second inverter is really small but overall delay is even longer than before!

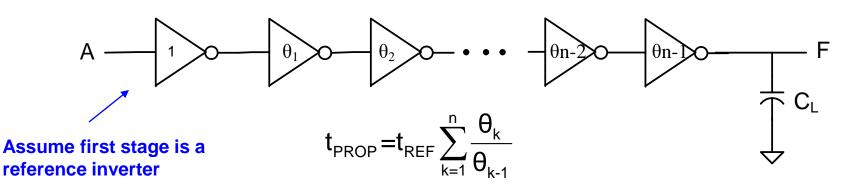

Example

Assume C_L=1000C_{REF}

Dramatic reduction is propagation delay (over a factor of 30!)

What is the fastest way to drive a large capacitive load?

Need to determine the number of stages, n, and the OD factors for each stage to minimize t_{PROP} .

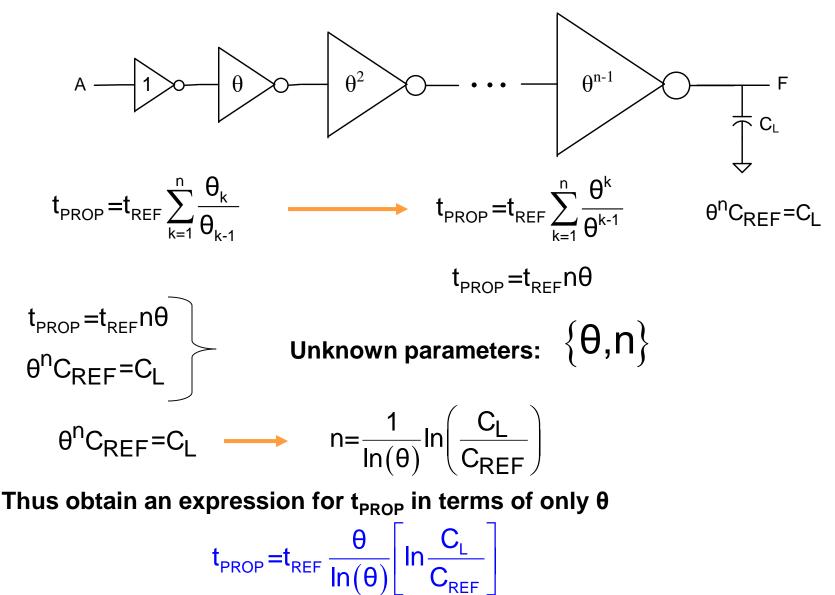


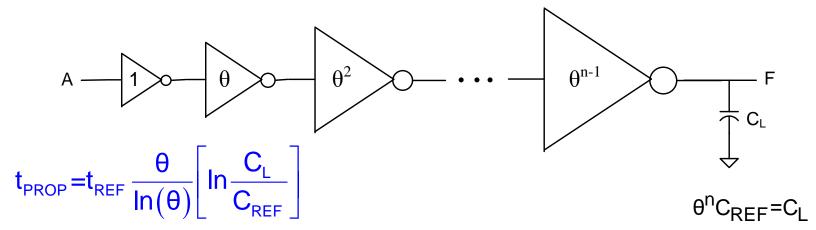
where $\theta_0 = 1$, $\theta_n = C_L / C_{REF}$

This becomes an n-parameter optimization (minimization) problem !

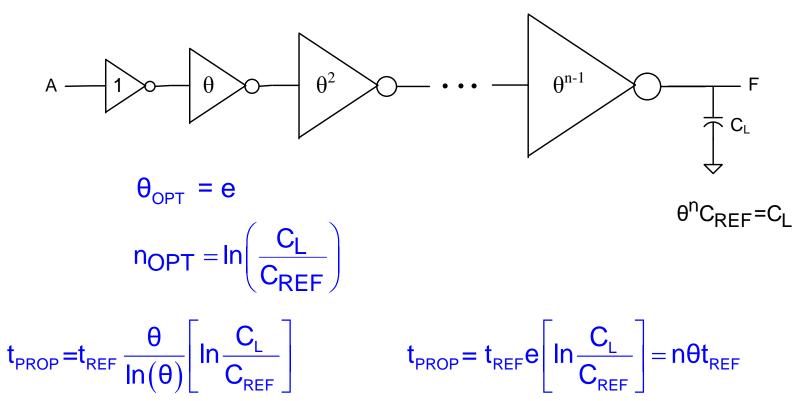
Unknown parameters: $\{\theta_1, \theta_2, ..., \theta_{n-1}, n\}$

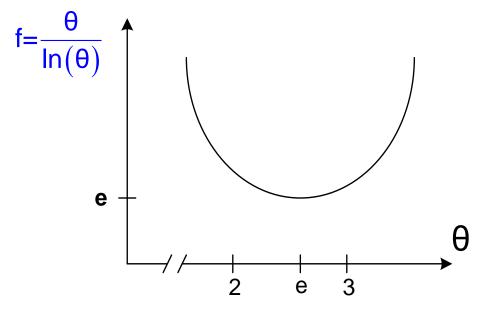
An n-parameter nonlinear optimization problem is generally difficult !!!!

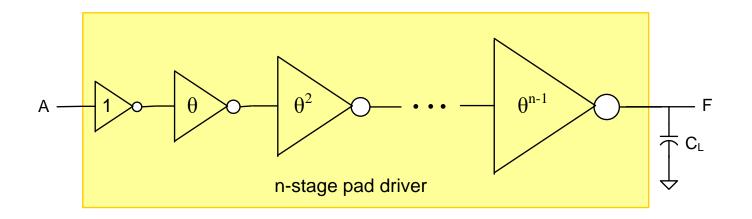

Order reduction strategy : Assume overdrive of stages increases by the same factor clear until the load



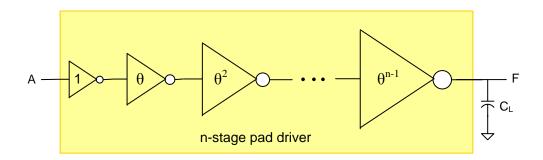
This becomes a 2-parameter optimization (minimization) problem ! Unknown parameters: $\{\theta, n\}$


One constraint : $\theta^{n}C_{REF} = C_{L}$


One degree of freedom

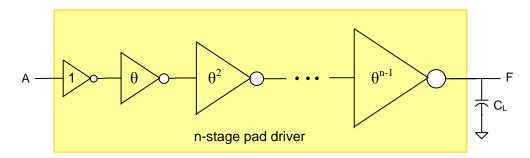


Is suffices to minimize the function $f(\theta) = \frac{\nabla}{\ln(\theta)}$ $\frac{df}{d\theta} = \frac{\ln(\theta) - \theta \cdot \left(\frac{1}{\theta}\right)}{\left(\ln(\theta)\right)^2} = 0$ $\ln(\theta) - 1 = 0 \qquad \rightarrow \quad \theta = e$ $n = \frac{1}{\ln(\theta)} \ln\left(\frac{C_L}{C_{\text{PEE}}}\right) \qquad \rightarrow \quad n = \ln\left(\frac{C_L}{C_{\text{PEE}}}\right)$



- minimum at θ =e but shallow inflection point for 2< θ <3
- practically pick θ =2, θ =2.5, or θ =3
- since optimization may provide non-integer for n, must pick close integer

- Often termed a pad driver
- Often used to drive large internal busses as well
- Generally included in standard cells or in cell library
- Device sizes can become very large
- Odd number of stages will cause signal inversion but usually not a problem



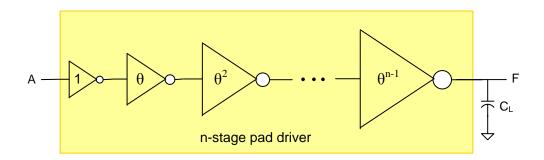
Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter to 0.5 u proc t_{REF}=20ps,

$$n_{OPT} = In \left(\frac{C_L}{C_{REF}}\right) = In \left(\frac{10pF}{4fF}\right) = 7.8$$

C_{REE}=4fF,R_{PDREE}=2.5K

$$W_{nk} = 2.5^{k-1} \bullet W_{REF}, \qquad W_{pk} = 3 \bullet 2.5^{k-1} \bullet W_{REF}$$

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized

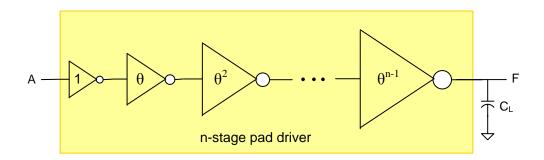

reference inverter. In 0.5u proc t_{REF}=20ps,

 $C_{REF}=4fF, R_{PDREF}=2.5K$ $W_{nk}=2.5^{k-1} \bullet W_{REF}, W_{pk}=3 \bullet 2.5^{k-1} \bullet W_{REF}$

$$V_{REF} = W_{MIN} \quad L_n = L_p = L_{MIN}$$

k	n-channel		p-channel
1	1	WMIN	3 VVMIN
2	2.5	WMIN	7.5 WMIN
3	6.25	WMIN	18.75 WMIN
4	15.6	WMIN	46.9 W/MIN
5	39.1	WMIN	117.2 WMIN
6	97.7	WMIN	293.0 WMIN
7	244.1	WMIN	732.4 WMIN
8	610.4	WMIN	1831.1 WMIN

Note devices in last stage are very large !


Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter to 0.5 u proc t_{REF}=20ps,

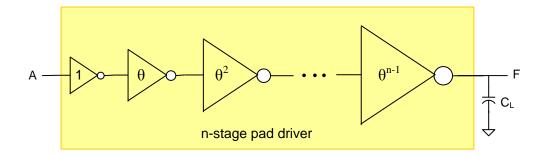
 $C_{REF}=4fF,R_{PDREF}=2.5K$ $W_{nk}=2.5^{k-1} \bullet W_{REF},$ $W_{pk}=3 \bullet 2.5^{k-1} \bullet W_{REF}$

 $t_{PROP} \cong n\theta t_{REF} = 8 \cdot 2.5 \cdot t_{REF} = 20 t_{REF}$

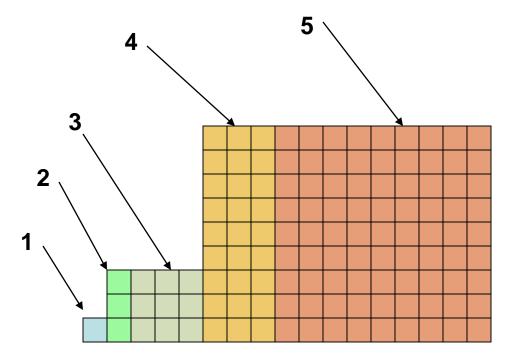
More accurately:

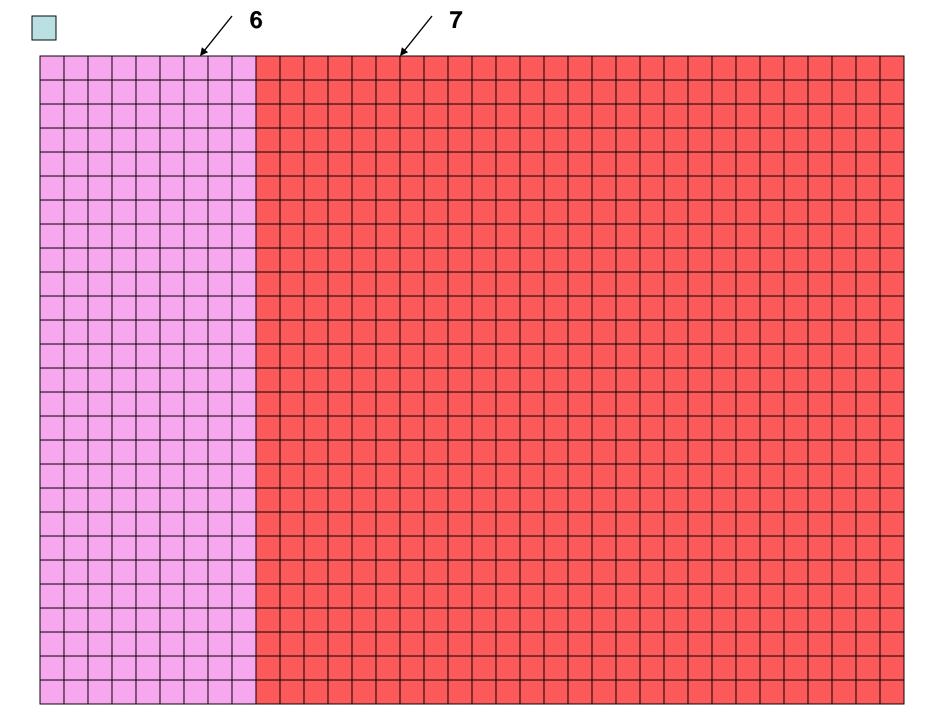
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(\sum_{k=1}^{7} \theta + \frac{1}{\theta^{7}} \frac{\mathbf{C}_{\mathsf{L}}}{\mathbf{C}_{\mathsf{REF}}} \right) = \mathbf{t}_{\mathsf{REF}} \left(17.5 + \frac{1}{610} 2500 \right) = 21.6 \mathbf{t}_{\mathsf{REF}}$$

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter, $0.5u \text{ proc } t_{REF}=20\text{ps}, C_{REF}=4fF, R_{PDREF}=2.5\text{K}$ $W_{nk}=2.5^{k-1} \cdot W_{REF}, W_{pk}=3 \cdot 2.5^{k-1} \cdot W_{REF}$

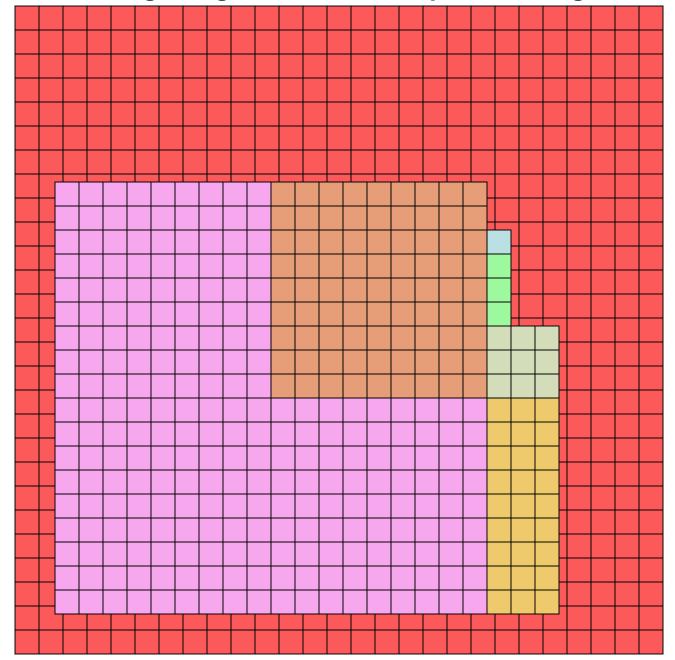

If driven directly with the minimum-sized reference inverter

$$t_{PROP} = t_{REF} \frac{C_L}{C_{REF}} = 2500 t_{REF}$$


Note an improvement in speed by a factor of


$$r = \frac{2500}{20} = 125$$

Pad Driver Size Implications



Consider a 7-stage pad driver and assume $\theta = 3$

Area of Last Stage Larger than that of all previous stages combined!

End of Lecture 41