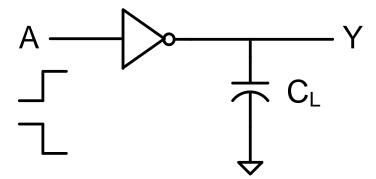

EE 330 Lecture 7


- Propagation Delay
- Stick Diagrams
- Technology Files
 - Design Rules

Example: What is the delay of a minimum-sized inverter driving another identical device? Assume V_{DD}=5V

Generalizing the Previous Analysis to Arbitrary Load

$$t_{\scriptscriptstyle HL} \cong R_{\scriptscriptstyle SWn}C_{\scriptscriptstyle L}$$
 $t_{\scriptscriptstyle LH} \cong R_{\scriptscriptstyle SWp}C_{\scriptscriptstyle L}$

Example: What is the delay of a minimum-sized inverter driving another identical device?

 $\mathbf{t}_{\text{LH}} \cong \mathbf{R}_{\text{SWp}} \mathbf{C}_{\text{L}} = 6K \bullet 3fF = 18p \sec 2$

Do gates really operate this fast?

What would be the maximum clock rate for acceptable operation?

Example: What is the delay of a minimum-sized inverter driving another identical device?

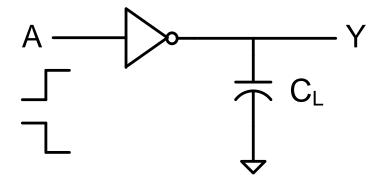
$$t_{\text{HL}} \cong R_{\text{SWp}} C_{\text{L}} = 6p \sec t_{\text{LH}} \cong R_{\text{SWp}} C_{\text{L}} = 18p \sec t_{\text{SWp}} C_{\text{L}} = 18p \sec t_{\text{L}} = 18$$

What would be the maximum clock rate for acceptable operation?

$$T_{CLK-min} = t_{HL} + t_{LH}$$

$$f_{CLK-max} = \frac{1}{T_{CLK-min}} = \frac{1}{24psec} = 40GHz$$

And much faster in a finer feature process!! ??????


What would be the implications of allowing for 10 levels of logic and 10 loads (FanOut=10)?

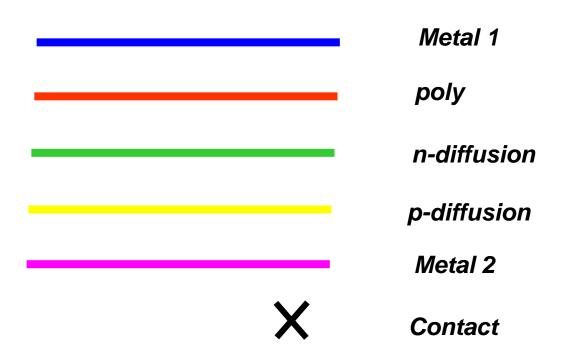
Example: What is the delay of a minimum-sized inverter driving another identical device? SUMMARY

 $\mathbf{t}_{\text{LH}} \cong \mathbf{R}_{\text{SWp}} \mathbf{C}_{\text{L}} = 6K \bullet 3fF = 18p \sec c$

Note this is very fast but even the small 1.5fF capacitors are not negligable!

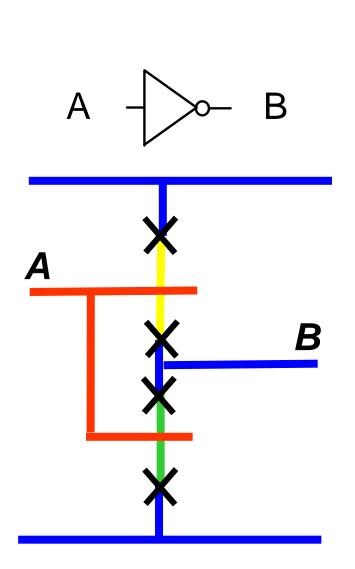
Response time of logic gates

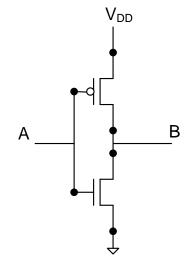
$$t_{HL} \cong R_{SWn}C_{L}$$


$$\mathsf{t}_{\scriptscriptstyle\mathsf{LH}} \cong \mathsf{R}_{\scriptscriptstyle\mathsf{SWp}} \mathsf{C}_{\scriptscriptstyle\mathsf{L}}$$

- Logic Circuits can operate very fast
- Extremely small parasitic capacitances play key role in speed of a circuit

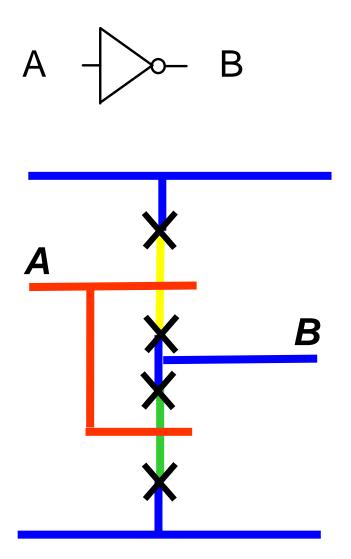
Stick Diagrams

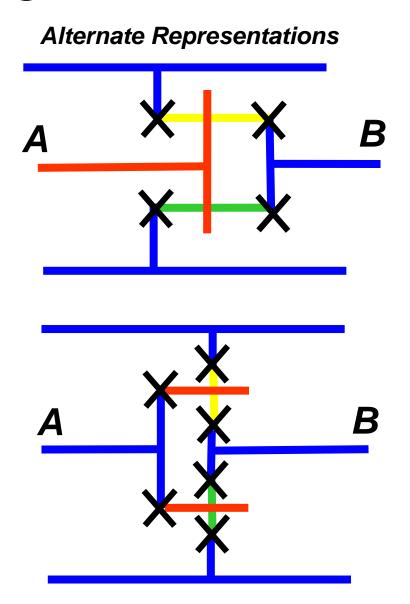

- It is often necessary to obtain information about placement, interconnect and physical-layer structure
- Stick diagrams are often used for small component-count blocks
- Approximate placement, routing, and area information can be obtained rather quickly with the use of stick diagrams

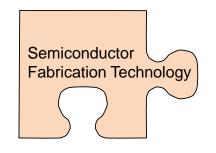

Stick Diagrams

Additional layers can be added and color conventions are peronal

Stick Diagram




A stick diagram is not a layout but gives the basic structure (including location,, orientation and interconnects) that will be instantiated in the actual layout itself


Modifications can be made much more quickly on a stick diagram than on a layout

Iteration may be needed to come up with a good layout structure

Stick Diagram

Technology Files

Fabrication CAD

Fabrication Devices

- Provide Information About Process
 - Process Flow (Fabrication Technology)
 - Model Parameters
 - Design Rules
- Serve as Interface Between Design Engineer and Process Engineer
- Insist on getting information that is deemed important for a design
 - Limited information available in academia
 - Foundries often sensitive to who gets access to information
 - Customer success and satisfaction is critical to foundries

Technology Files

Design Rules

- Process Flow (Fabrication Technology) (will discuss next)
- Model Parameters (will discuss in substantially more detail after device operation and more advanced models are introduced)

First – A preview of what the technology files look like!

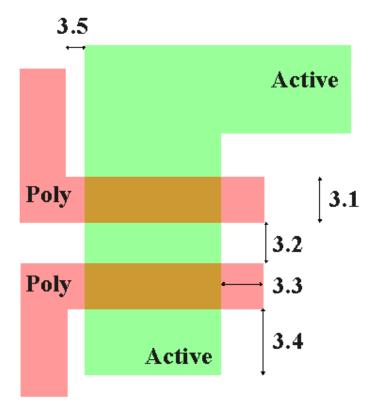
Typical Design Rules

TABLE 2B.2
Design rules for a typical p-well CMOS process
(See Table 2B.3 in color plates for graphical interpretation)

	Dimensions	
	Microns	Scalable
. p-well (CIF Brown, Mask #1a)		
1.1 Width	5	4λ
1.2 Spacing (different potential)	15	10λ
1.3 Spacing (same potential)	9	6λ
2. Active (CIF Green, Mask #2)		
2.1 Width	4	2λ
2.2 Spacing	4	2λ
2.3 p+ active in n-subs to p-well edge	8	6λ
2.4 n+ active in n-subs to p-well edge	7	5λ
2.5 n ⁺ active in p-well to p-well edge	4	2λ
2.6 p ⁺ active in p-well to p-well edge	1	λ
3. Poly (POLY I) (CIF Red, Mask #3)		
3.1 Width	3	2λ
3.2 Spacing	3	2λ
3.3 Field poly to active	2	λ
3.4 Poly overlap of active	3	2λ
3.5 Active overlap of poly	4	2λ
 p⁺ select (CIF Orange, Mask #4) 		
4.1 Overlap of active	2 2	λ
4.2 Space to n ⁺ active	t.	λ
4.3 Overlap of channel ^b	3.3	2λ
4.4 Space to channel ^b	3.5	2λ
4.5 Space to p ⁺ select	3	2λ
4.6 Width	3	2λ

Typical Design Rules (cont)

5 .	Conta	ct ^c (CIF Purple, Mask #6)		
	5.1	Square contact, exactly	3×3	$2\lambda \times 2\lambda$
	5.2	Rectangular contact, exactly	3×8	$2\lambda \times 6\lambda$
	5.3	Space to different contact	3	2λ
	5.4	Poly overlap of contact	2	λ
	5.5	Poly overlap in direction of metal 1	2.5	2λ
	5.6	Space to channel	3	2λ
	5.7	Metal 1 overlap of contact	2	λ
	5.8	Active overlap of contact	2	λ
	5.9	p+ select overlap of contact	3	2λ
	5.10	Subs./well shorting contact, exactly	3 × 8	$2\lambda \times 6\lambda$
6.	Metal	1 ^d (CIF Blue, Mask #7)		
	6.1	Width	3	2λ
	6.2	Spacing	4	3λ
	6.3	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8 \text{ mA/}\mu$


Typical Design Rules (cont)

7.	Via e	(CIF Purple Hatched, Mask #C1)		
	7.1	Size, exactly	3×3	$2\lambda \times 2\lambda$
	7.2	Separation	3	2λ
	7.3	Space to poly edge	4	2λ
	7.4	Space to contact	. 3	2λ
	7.5	Overlap by metal 1	2	λ
	7.6	Overlap by metal 2	2	λ
	7.7	Space to active edge	3	2λ
8.	Metal	2 (CIF Orange Hatched, Mask #C2)		
	8.1	Width	5	3λ
	8.2	Spacing	5	3λ
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$
	8.4	Probe pad size	75×75	$75 \mu \times 75 \mu$
	8.5	Bonding pad separation	50	50 μ
	8.6	Bonding to probe pad	30	30 μ
	8.7	Probe pad separation	30	30 μ
	8.8	Pad to circuitry	40	40 μ
	8.9	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8 \text{ mA/}\mu$
9.	Passiv	vation (CIF Purple Dashed, Mask #8	3)	
	9.1	Bonding pad opening	90 × 90	$90 \mu \times 90 \mu$
	9.2	Probe pad opening	65×65	$65 \mu \times 65 \mu$
10.		2 crossing coincident metal 1 and po	ly ^g	
	10.1	Metal 1 to poly edge spacing		
		when crossing metal 2	2	λ
	10.2	Rule domain	2	λ
11.	Elect	rode (POLY II)h (CIF Purple Hatched,	Mask #A1)	
	11.1	Width	3	2λ
	11.2	Spacing	3	2λ
	11.3	POLY I overlap of POLY II	2	λ
	11.4	Space to contact	3	2λ

Typical Design Rules (cont)

SCMOS	Layout	Rules -	Poly
-------	--------	---------	------

Rule	Description		Lambda	
	Description	SCMOS	SUBM	DEEP
3.1	Minimum width	2	2	2
3.2	Minimum spacing over field	2	3	3
3.2.a	Minimum spacing over active	2	3	4
3.3	Minimum gate extension of active	2	2	2.5
3.4	Minimum active extension of poly	3	3	4
3.5	Minimum field poly to active	1	1	1

Typical Process Description

Process scenario of major process steps in typical p-well CMOS process^a

1.	Clean wafer	
2.	GROW THIN OXIDE	
3.	Apply photoresist	
4.	PATTERN P-WELL	(MASK #1)
5.	Develop photoresist	
6.	Deposit and diffuse p-type impurities	
7.	Strip photoresist	
8.	Strip thin oxide	
9.	Grow thin oxide	
10.	Apply layer of Si ₃ N ₄	
11.	Apply photoresist	
12.	PATTERN Si ₃ N ₄ (active area definition)	(MASK #2)
13.	Develop photoresist	
14.	Etch Si ₃ N ₄	
15.	Strip photoresist	
	Optional field threshold voltage adjust	
	A.1 Apply photoresist	
	A.2 PATTERN ANTIMOAT IN SUBSTRATE	(MASK #A1)
	A.3 Develop photoresist	
	A.4 FIELD IMPLANT (n-type)	
	A.5 Strip photoresist	•
16.	GROW FIELD OXIDE	
17.	Strip Si ₃ N ₄	
18.	Strip thin oxide	
19.	GROW GATE OXIDE	
20.	POLYSILICON DEPOSITION (POLY I)	
21.	Apply photoresist	
22.	PATTERN POLYSILICON	(MASK #3)
23.	Develop photoresist	
24.	ETCH POLYSILICON	

Typical Process Description (cont)

25.	Strip photoresist Optional steps for double polysilicon process	
	B.1 Strip thin oxide	
	B.2 GROW THIN OXIDE	
	B.3 POLYSILICON DEPOSITION (POLY II)	
	B.4 Apply photoresist	
	B.5 PATTERN POLYSILICON	(MASK #B1)
	B.6 Develop photoresist	
	B.7 ETCH POLYSILICON	
	B.8 Strip photoresist	
	B.9 Strip thin oxide	
26.	Apply photoresist	
27.	PATTERN P-CHANNEL DRAINS AND SOURCES AND	(MASK #4)
	P ⁺ GUARD RINGS (p-well ohmic contacts)	
28.	Develop photoresist	
29.	p ⁺ IMPLANT	
30.	Strip photoresist	
31.	Apply photoresist	
32.	PATTERN N-CHANNEL DRAINS AND SOURCES AND	(MASK #5)
	N+ GUARD RINGS (top ohmic contact to substrate)	
33.	Develop photoresist	
34.	n+ IMPLANT	
35.	Strip photoresist	
36.	Strip thin oxide	
37.	Grow oxide	
38.	Apply photoresist	
39.	PATTERN CONTACT OPENINGS	(MASK #6)
40.	Develop photoresist	
41.	Etch oxide	
42.	Strip photoresist	
43.	APPLY METAL	
44.	Apply photoresist	0.54.575 #=
45.	PATTERN METAL	(MASK #7)
46.	Develop photoresist	
47.	Etch metal	

Typical Process Description (cont)

48.	Strip photoresist	
	Optional steps for double metal process	
	C.1 Strip thin oxide	
	C.2 DEPOSIT INTERMETAL OXIDE	
	C.3 Apply photoresist	
	C.4 PATTERN VIAS	(MASK #C1)
	C.5 Develop photoresist	(
	C.6 Etch oxide	
	C.7 Strip photoresist	
	C.8 APPLY METAL (Metal 2)	
	C.9 Apply photoresist	
	C.10 PATTERN METAL	(MASK #C2)
	C.11 Develop photoresist	
	C.12 Etch metal	
	C.13 Strip photoresist	
49.	APPLY PASSIVATION	
50.	Apply photoresist	
51.	PATTERN PAD OPENINGS	(MASK #8)
52.	Develop photoresist	
53.	Etch passivation	
54.	Strip photoresist	
55.	ASSEMBLE, PACKAGE AND TEST	

Typical Model Parameters

Process parameters for a typical a p-well CMOS process

	Typical	Tolerance b	Units
Square law	model parameters		
V _{T0} (threshold voltage)			
n-channel (V _{TN0})	0.75	± 0.25	v
p-channel (V_{TP0})	-0.75	± 0.25	v
K'(conduction factor)			
n-channel	24	± 6	$\mu A/V^2$
p-channel	8	± 1.5	μ A/V ² μ A/V ²
γ(body effect)			
n-channel	0.8	± 0.4	$V^{1/2}$
p-channel	0.4	± 0.2	$V^{1/2}$
λ(channel length modulation)			
n-channel	0.01	± 50%	V^{-1}
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	v
Proce	ss parameters		
μ (channel mobility)			
n-channel	710		$cm^2/(V \cdot s)$
p-channel	230		cm ² /(V·s
	Doping ^c		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	±4	10 ¹⁷ /cm ³
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	10 ¹⁶ /cm ³

Physical feature sizes

T _{OX} (gate oxide thickness)	500	± 100	Å
Total lateral diffusion			
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth			
n+ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer s	eparation		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.07	μ

Capacitane	es ^d		
C _{OX} (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ²
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	±0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	± 0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	± 0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	± 0.01	fF/μ^2
POLY I to Metal 2	0.039	± 0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	±0.01	fF/μ^2
Metal 2 to diffusion	0.02	± 0.005	fF/μ^2
n+ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n+ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p+ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p+ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistance	es		
Substrate	25	±20%	Ω-cm
p-well	5000	±2500	Ω/\Box
n ⁺ diffusion	35	±25	Ω / \square
p ⁺ diffusion	80	±55	Ω / \square
Metal	0.003	±25%	Ω/\Box
Poly	25	±25%	Ω / \square
Metal 1-Metal 2 via (3 $\mu \times 3 \mu$ contact)	< 0.1		Ω
Metal 1 contact to POLY I (3 $\mu \times 3 \mu$ contact)	<10		Ω
Metal 1 contact to n+ or p+ diffusion			
$(3 \mu \times 3 \mu \text{ contact})$	<5		Ω

Breakdown voltages, leakage currents, migration currents and operating conditions

Punchthrough voltages (Gate oxide, POLY I to POLY II)	>10	v
Diffusion reverse breakdown voltage	>10	V
p-well to substrate reverse breakdown voltage	>20	V
Metal 1 in field threshold voltage	>10	V
Metal 2 in field threshold voltage	>10	V
Poly-field threshold voltage	>10	V
Maximum operating voltage	7.0	V
n+ diffusion to p-well leakage current	0.25	fA/μ^2
p+ diffusion to substrate leakage current	0.25	fA/μ^2
p-well leakage current	0.25	fA/μ^2
Maximum metal current density	0.8	mA/μ width
Maximum device operating temperature	200	°C

SPICE MOSFET model parameters of a typical p-well CMOS process (MOSIS^a)

Parameter (Level 2 model)	n-channel	p-channel	Units
VTO	0.827	-0.895	v
KP	32.87	15.26	μ A/V ²
GAMMA	1.36	0.879	$V^{1/2}$
PHI	0.6	0.6	V
LAMBDA	1.605E-2	4.709E-2	V^{-1}
CGSO	5.2E-4	4.0E-4	fF/μ width
CGDO	5.2E-4	4.0E-4	fF/μ width
RSH	25	95	Ω /\square
CJ	3.2E-4	2.0E-4	ρ /1 F/μ ²
MJ	0.5	0.5	
CJSW	9.0E-4	4.5E-4	ρ ÆF/μ perimeter
MJSW	0.33	0.33	
TOX	500	500	Å
NSUB	1.0E16	1.12E14	1/cm ³
NSS	0	0	1/cm ²
NFS	1.235E12	8.79E11	1/cm ²
TPG	1	-1	
XJ	0.4	0.4	μ
LD	0.28	0.28	μ
UO	200	100	$cm^2/(V \cdot s)$
UCRIT	9.99E5	1.64E4	V/cm
UEXP	1.001E-3	0.1534	
VMAX	1.0E5	1.0E5	m/s
NEFF	1.001E-2	1.001E-2	
DELTA	1.2405	1.938	

_			N NMOS (LEVEL	=	49
	+VERSION	=	3.1	TNOM	=	27	TOX	=	1.4E-8
	+XJ	=	1.5E-7	NCH	=	1.7E17	VTHO	=	0.6656437
	+K1	=	0.875093	K2	=	-0.0943223	K3	=	25.0562441
	+K3B	=	-8.5140476	WO	=	1.01582E-8	NLX	=	1E-9
	+DVTOW	=	0	DVT1W	=	0	DVT2W	=	0
	+DVTO	=	2.670658	DVT1	=	0.4282172	DVT2	=	-0.1373089
	+00	=	452.3081836	UA	=	3.061716E-13	UB	=	1.515137E-18
	+UC	=	1.166279E-11	VSAT	=	1.682414E5	AO	=	0.6297744
	+AGS	=	0.1384489	BO	=	2.579158E-6	B1	=	5E-6
	+KETA	=	-3.615287E-3	A1	=	1.054571E-6	A2	=	0.3379035
	+RDSW	=	1.380341E3	PRWG	=	0.0301426	PRWB	=	0.0106493
	+WR	=	1	WINT	=	2.594349E-7	LINT	=	7.489566E-8
	+XL	=	1E-7	XW	=	0	DWG	=	-9.471353E-9
	+DWB	=	3.537786E-8	VOFF	=	0	NFACTOR	=	1.0754804
	+CIT	=	0	CDSC	=	2.4E-4	CDSCD	=	0
	+CDSCB	=	0	ETAO	=	2.332015E-3	ETAB	=	-1.531255E-4
	+DSUB	=	0.076309	PCLM	=	2.6209353	PDIBLC1	=	1
	+PDIBLC2	=	2.23243E-3	PDIBLCB	=	-0.0436947	DROUT	=	1.0300278
	+PSCBE1	=	6.619472E8	PSCBE2	=	2.968801E-4	PVAG	=	9.970995E-3
	+DELTA	=	0.01	RSH	=	80.9	MOBMOD	=	1
	+PRT	=	0	UTE	=	-1.5	KT1	=	-0.11
	+KT1L	=	0	KT2	=	0.022	UA1	=	4.31E-9
	+UB1	=	-7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4
	+WL	=	0	WLN	=	1	WW	=	0
	+WWN	=	1	WWL	=	0	LL	=	0
	+LLN	=	1	LW	=	0	LWN	=	1
	+LWL	=	0	CAPMOD	=	2	XPART	=	0.5
	+CGDO	=	2.34E-10	CGSO	=	2.34E-10	CGBO	=	1E-9
	+CJ	=	4.240724E-4	PB	=	0.9148626	MJ	=	0.4416777
	+CJSW	=	3.007134E-10	PBSW	=	0.8	MJSW	=	0.2025106
	+CJSWG	=	1.64E-10	PBSWG	=	0.8	MJSWG	=	0.2025106
	+CF	=	0	PVTHO	=	0.0526696	PRDSW	=	110.1539295
	+PK2	=	-0.0283027	WKETA	=	-0.0191754	LKETA	=	8.469064E-4

98 parameters in this BSIM Model!

.MODEL C	MOSP PMOS (LEVEL	=	49
+VERSION	= 3.1	MONT	=	27	TOX	=	1.4E-8
+XJ	= 1.5E-7	NCH	=	1.7E17	VTHO	=	-0.9633249
+K1	= 0.5600277	K2	=	9.302429E-3	K3	=	7.2192028
+K3B	= -1.0103515	WO	=	1.010628E-8	NLX	=	5.826683E-8
+DVTOW	= 0	DVT1W	=	0	DVT2W	=	0
+DVTO	= 2.2199372	DVT1	=	0.5378964	DVT2	=	-0.1158128
+00	= 220.5729225	UA	=	3.141811E-9	UB	=	1.085892E-21
+UC	= -5.76898E-11	VSAT	=	1.342779E5	AO	=	0.9333822
+AGS	= 0.157364	во	=	9.735259E-7	B1	=	5E-6
+KETA	= -2.42686E-3	A1	=	3.447019E-4	A2	=	0.3701317
+RDSW	= 3E3	PRWG	=	-0.0418484	PRWB	=	-0.0212357
+WR	= 1	WINT	=	3.097872E-7	LINT	=	1.040878E-7
+XL	= 1E-7	XW	=	0	DWG	=	-1.983686E-8
+DWB	= 1.629532E-8	VOFF	=	-0.0823738	NFACTOR	=	0.969384
+CIT	= 0	CDSC	=	2.4E-4	CDSCD	=	0
+CDSCB	= 0	ETAO	=	0.4985496	ETAB	=	-0.0653358
+DSUB	= 1	PCLM	=	2.1142057	PDIBLC1	=	0.0256688
+PDIBLC2	= 3.172604E-3	PDIBLCB	=	-0.0511673	DROUT	=	0.1695622
+PSCBE1	= 1.851867E10	PSCBE2	=	1.697939E-9	PVAG	=	0
+DELTA	= 0.01	RSH	=	103.6	MOBMOD	=	1
+PRT	= 0	UTE	=	-1.5	KT1	=	-0.11
+KT1L	= 0	KT2	=	0.022	UA1	=	4.31E-9
+UB1	= -7.61E-18	UC1	=	-5.6E-11	AT	=	3.3E4
+WL	= 0	WLN	=	1	WW	=	0
+WWN	= 1	WWL	=	0	LL	=	0
+LLN	= 1	LW	=	0	LWN	=	1
+L WL	= 0	CAPMOD	=	2	XPART	=	0.5
+CGDO	= 3.09E-10	CGSO	=	3.09E-10	CGBO	=	1E-9
+CJ	= 7.410008E-4	PB	=	0.9665307	MJ	=	0.4978642
+CJSW	= 2.487127E-10	PBSW	=	0.99	MJSW	=	0.3877813
+CJSWG	= 6.4E-11	PBSWG	=	0.99	MJSWG	=	0.3877813
+CF	= 0	PVTHO	=	5.98016E-3	PRDSW	=	14.8598424
+PK2	= 3.73981E-3	WKETA	=	2.870507E-3	LKETA	=	-4.823171E-3
_							

_

End of Lecture 7