

- 1. Shown below is a generic fully differential folded cascode amplifier. Suppose all transistors are reasonably well designed. The two transistors in each pair are identical. V_{b1} , V_{b5} , and V_{b2} are appropriately selected so that total current at the bottom is equal to the total current at the top. All transistors are supposed to be in strong inversion with V_{eff} in the 0.1 to 0.4 V range, and all need to be in saturation.
 - a. Find conditions on V_{b3} and V_{b4} .
 - b. Find output swing range for V_{o+} , V_{o-} , and V_{od} , first in terms of V_{b3} and V_{b4} , and then the largest possible range.
 - c. Find the input common mode range.
 - d. Find the positive and negative slew rate for $V_{\text{o+}}, V_{\text{o-}},$ and V_{od} .

- 2. For the circuit shown to the right. Suppose the two PMOST have the same size and the two NMOT have the same size. V_{bn} and V_{bp} are well selected.
 - a. Find the I_{DQ} relationships and V_{eff} relationships among all transistors.
 - b. Find V_{in} range and V_{o} range. (notice that their difference is about fixed)
 - c. Find r_{in} , r_o , and $A_v(0)$.

- 3. 4.4
- 4. 4.8 (assume constant numerator)
- 5. 4.12 a. but use MOSIS 0.5um parameters
- 6. 4.14 a. but use MOSIS 0.5um parameters
- 7. 4.20
- 8. 4.21
- 9. 4.26
- 10. 4.27