Chapter 1

Review Questions 15

sensitivity, bandwidth, and accuracy, Finally, various types of control Systems were categorized
according to the system signals, linearity, and control objectives. Several typical control-sysiem
examples were given to illustrate the analysis and design of control systems. Most systems
encountered in real life are nonlinear and time-varying 1o some extent. The concentration on the
studies of lincar systems is due prmarily to the availability of unified and simple-to-understand
analytical methods in the analysis and design of linear systems,

REVIEW QUESTIONS

1. List the advantages and disadvantages of an open-loop system,

2. List the advantages and disadvantages of a closed-loop system.

3. Give the definitions of & and de control systems.

4. Give the advantages of a digital control system over a continuous-dats control system

5. A closed-loop conirol system is usually more accurate than an open-doop system. (T) (F)
6. Feedback is sometimes used to improve the sensitivity of a contro) system. T P
7.

If an open-loop system is unstable, then applying feedback will always improve
its stability, T

8. Feedback can increase the gain of a system in one frequency range bat decrease
it in another, o ®

9. Noalincar clements are sometimes intentionally introduced to a control system

to improve its performance, (N (F)

10.  Discrete-data control systems are more susceptible o noise due (o the nature of
their signals. () (F)

Answers to these review questions can be found on this book's companion Web site;
www.wiley <com/college/golnaraghi.
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REVIEW QUESTIONS

1. Give the definitions of the poles and zeros of a function of the complex vanable .

2. What are the advantages of the Laplace transform method of solving lincar ordinary
differential equations over the classical method?

What are state equations?

What is a causal system?

Give the defining equation of the one-sided Laplace transform.
Give the defining equation of the inverse Laplace transform.

7. Give the expression of the final-value theorem of the Laplace transform, What is the
condition under which the theorem is valid?

8. Give the Laplace transform of the unit-step function, u(1),

9. What is the Laplace transform of the unit-ramp function, tult)?

10.  Give the Laplace transform of 1) shifted to the right (delayed) by 7 in terms of the
Laplace transform of f{1), F(s).

1. I LLA] = Fils) and CLf2(0)] = Fals), then find £] i ()] f2(¢)] in terms of Fy(s) and
Fals).

12. Do you know how to handle the exponential term in performing the partial-fraction
expansion of

n ol

o

10 2

Fo =

13. Do you know how to handle the partial-fraction expansion of 4 function whose denominator
order is not greater than that of the numerator, for example,
_10(s* + 554 1)

PO =Fress

14. In trying to find the inverse Laplace transform of the following function, do you have 10
perform the partial-fraction expansion?

I
Oy

15, Can the Routh-Hurwitz criterion be directly applied to the stability analysis of the
following systems?
(a) Continuous-data system with the characteristic equation

R e T T

(b) Continuous-data system with the characteristic equation
o5t 43 L Ke 4 KP=0

16. The first two rows of Routh’s tabulation of a third-order system are

£ 22
£ 44
Select the correct answer from the following choices:
(@) The oquation has one root in the right-half s-planc.
(b) The equation has two roots on the foraxis at s = jand ~ j, The third root is in the left-half
s-plane.
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(¢) The equation has two roots on the jo-axis at s = 2 and s = ~2. The third root is in the
left-half s-plane.

(d) The equation has two roots on the jaraxis at s = 2j and s = ~2,. The third root is in the
right-half s-plane.

17. If the numbers in the first column of Routh’s tabulation twm out 1o be all
negative, then the equation for which the tabulation is made has at least one root not in

the left haif of the s-planc. mn (H
18.  The roots of the auxiliary equation, A{x) = 0, of Routh’s whulation of 1 characteristic equation
must also be the roots of the latter. (T (F)

19. The following characteristic equation of & continuous-dala system represents an unstable
system because it contains a negative coeflicient.
S = 4554 10=0 M ®

20. The following charactenistic equation of a continvous-data system represents an unstable
system because there is a zero coeflicient,

S 457 -4=0 m ¥
21. When a row of Routh’s tabulation contains all zeros before the tabulation ends, this means
that the equation has roots on the imaginary axis of the s-plane. n (F

Answers to these review questions can be found on this book’s companion Web site:
www.wiley.com/college/golnaraghi.
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PROBLEMS FOR SECTION 2-1
2.1, Find the poles and zeros of the following functions (including the ones at infinity, if any), Mark
the finite poles with x and the finite zeros with o in the s-plane.

10(s+2) 10(s +2)

® 66) = o 6+ 10) @0 =y
10s(s + 1) sl
® G(’)g(H»Z)( +3542) L c(’)gl(k(s+l)(:+2)

2-2. Poles and zeros of a function are given; find the function:
(a) Simple poles: 0, —2; poles of order 2: —3; zeros: 1, o0
(b) Simple poles: —1, —4; zeros: 0

(c) Simple poles: —3, oo; poles of order 2: 0,—1; zeros: £, oo

2.3, Use MATLAB to find the poles and zeros of the functions in Problem 2-1.

PROBLEMS FOR SECTION 2-2

2-4. Find the polar representation of G(s) given in Problem 2-1 for s = jo, where @ is a constant
varying from zero to infinity.

2-5. Find the polar plot of the following functions:

(@) G( jw) = (’j;l-g—-ﬁ

e 1
po G jw) l+24(f£ X (1&)

1
@2 ()

@) Gl jw) =

3 0<i<l

5 {>1

1
Jo JTw +1)

P

(e) G jw) = Tas1)
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2-6. Use MATLAB to find the polar plot of the functions in Problem 2-5,
2-7. Draw the Bode plot of the following functions:

- 2000(J0 £05)
& GU) = 5o+ 10)( o+ 50)
® G(jw) = 2
(o) = o= 25 +10)
2 (oo — 10007 + 100)
(€ Gliw) = = 37 — 5% +100)
1
G jw) = - 0<r<)
(d) @ w\*
vear(izz) + (727)

o 0.03 (e +1)°
(e) G jw) ([ — 1)(3e + 1){eM +0.5)

2-8. Use MATLAB to draw the Bode plot of the functions in Problem 2-7.

PROBLEMS FOR SECTION 2-3
2.9. Express the following set of first-order differential equations in the vector-matrix form of
dx(r)
e Ax(r) + Bu(r),
Wl )+ 2500
(a) ;‘{;T('l = —2x(1) + 3xz(t) 4 any (1)
%’# = =Xy (1) = 3xa(t) = x3(r) = w2(e)
Bl (1) +20200) + 2()
(b) d—%g—) =251 (1) — x3(r) + wa(t)
0 35 () ~ dte) 5300
PROBLEMS FOR SECTION 2-4

2-10. Prove theorem 3 in Section 2-4-3,
2-11. Prove the integration theorem 4 in Section 2-4-3.
2-12. Prove the shift-in-time theorem, which is

Clalt =Tyl = T) = e Gs))

2-13.  Prove the convolution theorem in both time and s domain, which is
Ligi (1) = g201)] = G {5)Gas)
Llg1()g2(n)] = Gy(s) » Gafs)
2-14. Prove theorems 6 and 7.
2-15. Use MATLAB to obtain £{sin*2r}. Then, calculate £{c0s*2r} when you know £{sin2).
Verify your answer by calculating £{cos?2r} in MATLAB.
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2-16. Find the Laplace transforms of the following functions. Use the theorems on Laplace
transforms, if applicable.

(a) g(t) = Ste™u,(1)

() 2(r) = (sin2s + " ¥ )u,(1)
(c) g(r) = 2¢ " Hsin2ru,(1)

(d) glr) = sin2tcos2tu,(1)

X
() () = Y e *5(t ~ kT) where 3(r) = unit-impulse function
=0

2-17.  Use MATLAB to solve Problem 2-16.

2-18.  Find the Laplace transforms of the functions shown in Fig. 2P-18. First, write a complete
expression for g(f), and then take the Laplace transform, Let g717) be the description of the function
over the basic period and then delay g710) appropriately to get g(r). Take the Laplace transform of g(r)
10 get the following;

&N
i

01234567ls,

b

20
1=
Py Pt Pl 5%, i S e O
1 2 3 4 1
(L]
Figure 2P-18

2-19. Find the Laplace transform of the following function.

1+l 0=r<d

0 1<1<2
0=92_4 2243
0 23

2:20. Find the Laplace transform of the periodic function in Fig. 2P-20.

fin)
4

0 T T 1
= L
Figure 2P-20

221, Find the Laplace transform of the function in Fig. 2P-21,
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Figure 2P-21

2-22. Solve the following differential equations by means of the Laplace transform.
2
@) ‘-’-d{}i) +5 %(it L4 £1) = € (r) Assume zero initial conditions.

dx‘;'(:) =x2(1) '

(b)
2200 - 2(1) = 3a(0) + 1)1 (0) = 1, 3(0) = 0

ds-?—’(') +2d.—x—d’;f') +"—’;)—Q +2¥(1) = —e~uy(r)
(c)

&y dy

E0) =1 Z(0) =1 y0)=0

2-23. Use MATLAB to find the Laplace transform of the functions in Problem 2-22,
2-24. Usc MATLAB to solve the following differential equation:

2,
%';- ~y = ¢ (Assuming zero initial conditions)

2-25. A serics of a three-reactor tank is arranged as shown in Fig. 2P-25 for chemical reaction.

G- o = D (] ‘

|

> Reactor 3

Reactor 1

Figure 2P-25

The state equation for each is defined as follows:

Rl :d—%‘l - VL[INO-O- 100CH2 = 1100Cy ~ &y Vi Cay
1
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dc
R2: dCaz _ lt_nooc,. ~ 1100Cy2 — k2V2Ca2|
V2
dC, 1 i
R3: o~ —[1000C2 ~ 1000C,s — k3VaCayl
dr Vi

when V.-andk‘mmmdnmlumnndﬂwwmp«amm&umofcxmhlmkushuwninlhc

following table:
Reactor v, ks
1 1000 0.1
1500 0.2
100 0.4

Use MATLAB to solve the differential equations assuming Cay=Caa=Caa=0at1= 0.

PROBLEMS FOR SECTION 2-5
2.26. Find the inverse Laplace transforms of the following functions. First, perform partial-fraction
expansion on G(s); then, use the Laplace transform table.

1
@ G0) = e +3)
e 10
(s+1)(s+3)
100(s+2)

Er e

b Gis) =

{«) G(.l‘) =

s+ 1
@ c(s)~;(;(—’£—}2—)

1
Gis) =
O A=ay

G 2L +s+1)
06 = T 5F 155+ 9)

24 25¢7 +de7H
® G =—gF3577

25+ 1

) Gis) =y T EF 115+ 6

33 4 105° + R8s & 5
M Gls) = G 5T 75 4 55 + 6

2.27. Use MATLAB to find the inverse Laplace wransforms of the functions in Problem 2-26, First,
perform partial-fraction expansion on G(s); then, use the inverse Laplace transform.
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2-28.  Given the state equation of the system, coavert it to the set of first-order differential equation.

il Bl vt 1]
oa[i33] o [2]

2-29. The following differential equations represent linear time-invariant systems, where #(z)
denotes the input and y(¢) the output. Find the transfer function Y(sVR(x) for cach of the systems.
(Assume zero initial conditions.)

d'y(r) L d'yin) dy(r) drit)

T +6y(1) = 37 +r(n)

(a) 2——,— o P

b "‘T’(" +|0'FT’(') D) | sv(0) = 5r(s)

()"J—T"" no"‘2 AR LIRS / stewde = 222 20

@ 2"’") "’("uym o) + 2t 1)

dr(l)

© &(iai_ﬂ) LD syes 1) =

) carlt) +2 / rede

3 2 -
n d%;ﬂ %‘;ﬂ &) t2¥(r) =2 f )'(!)df-—’(d’—z)+2r(l—2)

2-30. Use MATLAB to find Y(sVR(s) for the differential equations in Problem 2-29,
2-31. Use MATLAB to find the partial-fraction expansion to the following functions,
lO(s +1 )
r(: - A)(s + 6)
per (s=1)
® O = TR Ty
S(s+2)
s+ 1)(s +5)
5{'2'

(d) Gis) = FENETs+D)

@) Gls) =

(€) Gis) =

100(s* + 5+ 3)
s(s2 +5543)
1
0 = E G0

{¢) Gs) =

2+ # +8+6
® )= a5+

20 4 9% | 1557 =542
S(s+2)(s+ 1)

2-32. Use MATLAB to find the inverse Laplace transforms of the functions in Problem 2-31.

(h) Gis) =
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PROBLEMS FOR SECTIONS 2-7 THROUGH 2-13
2-33.  Without using the Routh-Hurwitz criterion, determine if the following systems are asymp-
totically stable, marginally stable, or unstable. In each case, the closed-loop system transfer function
is given,

10(s +2)
P v

s—1

® M) = T SE+ D)

(@) M(s) =

(e M) = ;T:%{?Fs

)
@ M)~ iRt 7254
o) (e} == IJ-—z?'lT_Js'ﬁé

10(s + 12.5
0 M) = Tt 1T

234, Use the ROOTS command in MATLAB 10 solve Problem 2-33.

2-35, Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system that has
lbefollw'ingchmeduiceqwions.Dcwmhnﬂwmhcfofmo(eachowaﬁmdmmlnlb:
right-half s-plane and on the feraxis.

(@) 5 + 2562 = 105+ 450 = 0

(b) 5 +256 + 105 +50= 0

(€) 5 4255+ 2805 +10=0

(d) 25 4 105" + 5.5 4+ 555 + 10 =0

(€) £ +25° =8¢ + 157 + 208 + 165+ 16 =0

NP +20+102 42054 5=0

(@) 5* =267 + 8% 4 126" 4 20¢* & 165" + 1658 =0

2.36. Use MATLAR to solve Problem 2-35.

2.37. Use MATLAB Toolbox 2-13-1 to find the roots of the following characteristic cquations of
linear continuous-data systems and determine the stability condition of the systems,

(@) 5 + 108 + 105 + 130 =0

P +128 + 2+ 254 10=0

(c) 5* + 125 + 1052 + 1054 10 = 0

@128 4 S+ 1054 1=0

(€) 5 + 6% + 125¢* 4 1005° + 1008 205 + 10 =0

() 5° + 1255* + 1005 + 1005> +20s + 10=0

238, For each of the characteristic equations of feedback control systems given, use MATLAB
1o determine the range of K so that the system is asymptotically stable. Determine the value of K so

that the system is marginally stable and determine the frequency of sustained oscillation, if
applicable.

(@) 8* + 2857 4 158 <205~ K =0
) s* + K +28 + (K= 1)s+10=0
(€ 5 + (K +2) +2Ks410=0
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(d) & 4205 4 S5 4 10K =0
(©) 5* +Ks® + 57 + 105+ 10K =0
ML 1258 + 2+ 55+ K=0

2-39.  The loop transfer function of a single-loop feedback control system is given as

Kis +5)
s(s+2)(14Ts)

The parameters K and 7 may be represented in a plane with X as the horizontal axis and 7' us the
vertical axis. Determine the regions in the T-versus-K parameter plane where the closed-loop system
is asymptotically stable and where it is unstable. Indicate the boundary on which the system is
marginally stable.

2-40. Given the forward-path transfer function of unity-feedback control systems, apply the Routh.
Hurwitz criterion to determine the stability of the closed-loop system as a function of K. Determine
the value of K that will cause sustained constant-amplitude oscillations in the system, Determine the
frequency of oscillation,

Kix+4)(s+ 20)
A

G{s)H(s) =

K(s 4 10){s + 20)
(s +2)

K
© Gl = o)+ 20)

(b) G(s) =

K(s+1)
@ G} =+ 1
2-41.  Use MATLAB 10 solve Problem 2-40.
2-42. A controlied process is modeled by the following state cquations.
dxa(t)

..... =a0) = 2eal) =5 = 10x(0) + wlr)

The control w(f) is obtained from state feedback such that
u(t) = ~kxlr) — k()

where k; and k; are real constants, Determing the region in the & y-versus-&; parameter plase in
which the closed-loop system is asympeotically stable.
2-43. A linear time-invariamt system is described by the following state equations,
dx(t)

T = Ax(1} 1 Bu(t)

41

The closed-loop system is implemented by state feedback, so that w(f) = ~Kx(r), where K =
[k ka ks| and &y, ks, and ks are real constants, Determine the constraints on the elements of K
so that the closed-loop system is asymptotically stable.

2-44. Given the system i state equation form,
B AX() 1Bt

where




B

1 0o 0 1
@ A=|0 -3 0 B= |0
0 0 -2 1
1 0 0 0
mA={0 -2 0| B=|1
0o 0 3 1

Can the system be stabilized by state foedback u(r) = ~Kx(t), where K = [k; k3 k3]?
2-45, Consider the open-loop system in Fig, 2P-45(a).

o — [} —» o
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Figure 2P-45a
&y g dz
wbena-;--7y— zand f(1) = ot

Our goal is to stabilize this system so the closed-loop teedback control will be defined as shown in
the block diagram in Fig. 2P-45(b).

Yix)
e

Figure 2P-45b

Assuming f{1) = kpe + kd%.

() Find the open-loop transfer function.

(b) Find the closed-loop transfer function.

(¢) Find the range of k, and k, in which the system is stable.

) quposc%-. 10and r =011 {0} = lOand‘%:O.Mplalhcﬂcpmpomolmcswan
with theee different values for &, and k. Then show that some values are better than others; however,
all values must satisfy the Routh-Hurwitz criterion.

2-46. The block diagram of a motor-control system with tachometer feedback is shown in Fig.
2P-46, Find the range of the tachometer constant K, so that the system is asymptotically stable.

o
——

Figure 2P-46
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2-47. The block diagram of a control system is shown in Fig. 2P-47, Find the region in the K-vergy,.
@ plane for the system to be asymptotically stable. (Use K as the vertical and « as the horizontal axis

"n e

Figure 2P-47

N0

2-48. ‘The conventional Routh-Hurwitz criterion gives information only on the location of the zerog
of a polynomial F{s) with respect to the left half and right half of the s-plane. Devise a linear
transformation 5 = f( p, &), where p is a complex variable, so that the Routh-Hurwitz criterion cag
be applicd to determine whether F(s) has zeros to the right of the line 5 = —a, where & is a positive
real number. Apply the transformation to the following characteristic equations to determine how
many roots arc 1o the right of the line s = —1 in the s-plane.

(@) Fls) = +55+3=0

M) s +37°7 4354 1 =0

(© F(s) =8 =4 4 35+ 10 =0

() s +457 +ds+4=0

2-49. The payload of a space-shuttle-pointing control system is modeled as a pure mass M. The
payload is suspended by magnetic bearings so that no friction is encountered in the control, The
attitude of the payload in the y direction is controlled by magnetic actuators located at the base,
The total force produced by the magnetic actuators is f{£). The controls of the other degrees of
motion are independent and are not considered here, Because there are experiments located on the
payload, clectric power must be brought to the payload through cables. The linear spring with
spring constant K, is used to model the cable attachment, The dynamic system model for the

P ¥ 'a Lv &
s s 11 B AN
g ¢+ B
1O ﬂ he m b
P QO % O
- o
Figure 2P-43
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control of the y-axis motion is shown in Figure 2P-49, The force equation of motion in the y-
direction is
(1)
S() = Kiyl) + M=~
where K, = 0.5N-m/m and M = 500kg. The magnetic actuators are controlled through state
feedback, so that
Q

10 = ~Kex{e) - Ko 21
(a) Draw a functional block diagram for the system.
(b) Find the characteristic equation of the closed-loop system.
(c) Find the region in the Kp-versus-Kp plane in which the system is asymptotically stable,

2.50.  An inventory-control system is modeled by the following differential equations:

duy(t) )
= ~x3(t) +ult)

dxar)
T = —Kulr)

where x;(1) is the level of inventory: x;(1). the rate of sales of product: u(1), the production rate; and K,
a real constant. Let the output of the system by (1) = xy(r} and r(#) be the reference set point for the
desired inventory level, Let w(f) « r(r) = ¥(t), Determine the constraint on X so that the closed-loop
system is asymptotically stable,

2.51.  Use MATLAB to solve Problem 2-50.

2-52. Use MATLAB 10

(a) Generate symbolically the time function of fir)

[ =5+ 2e"'sin(2: . ;) - 4('”“(2{ i ;) 43

v (s+1)

(b) Generate symbolically Gls) = ;(—;;—7——2)( T2 ‘3j

(¢) Find the Laplace transform of f{r) and name it F(s).

(d) Find the inverse Laplace transform of G(s) and name it g(1).

(e) If G(s) is the forward-path transfer function of unity-feedback control systems, find the transfer
function of the closed-loop system and apply the Routh-Hurwitz criterion to determine its stability.
(N If F(s) is the forward-path transfer function of unity-feedback control systems, find the transfer
function of the closed-loop system and apply the Routh-Hurwitz criterion to determine its stability.




