EE 475 Final Exam, Fall 2010

Name:

1. Given $M(t) = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & 2e^{-2t} - e^{-t} \end{bmatrix}$. Is M(t) a state transition matrix? If it is, find A such that M(t) = exp(At); if not, explain why not.

2. Consider a linear control system given by the following state space model.

	-2	1	0	0	0		0	1	
	0	-2	0	0	0		1	0	
$\dot{x} =$	0	0	-1	1	0	<i>x</i> +	0	2	и
	0	0	0	-1	0		2	0	
	0	0	0	0	-1_		0	3_	
y = [-1]		0	-2	0	-3]	x			

Determine if the system is asymptotically stable, BIBO stable, completely controllable, and completely observable.

3. In a root locus based controller design, the plant TF is type 1 with numerator coefficient vector ng and denominator coefficient dg. A lead controller has been designed with z_lead, p_lead, and K computed. It has also been determined that a lag controller is needed to reduce the "ess to ramp" to <= ess2ramp_des. Write a few lines of Matlab code that will a) compute the ess2ramp when the lead controller has been used, b) compute the parameters of the lag controller (z_lag, p_lag, K_lag), c) compute and display the overall controller TF C, and d) compute and display the closed-loop unit step response.

4. In a Bode plot based controller design, it has been determined that a lead controller is needed to achieve closed-loop step-response overshoot <= Mp_des % and rise time tr <= 1 sec. It has also been determined that a lag controller is needed to reduce ess. The plant TF is defined in Gp. Write a few lines of Matlab code for the lead controller design part.

5. An LTI system has characteristic polynomial $d(s) = s^4 + Ks^3 + (K+3)s^2 + 4Ks + 4K - 4$. A) find conditions on K such the system is asymptotically stable, B) find the value of K such that the system will have sustained oscillation, and C) find the oscillation frequency.

6. The open-loop Bode plot of a unity feedback system is given when the controller gain K=1. The plant TF is rational, stable and minimum phase. The Bode plot has uniquely defined w_gc, w_pc, GM>0, and PM>0. With the controller gain denoted as a symbol K, the closed-loop characteristic polynomial is obtained and a Routh table is constructed for it. A) if K=1, how many sign changes are there in the first column of the Routh table? B) for what value(s) of K will a whole row of the Routh table become zero? C) with K as in part B), what can you say about the roots of the associated auxiliary equation?

7. Hand sketch the root locus for $1 + K(s+1)/\{(s+6)(s+4)(s^2+2s+4)\} = 0$ as K = 0 to ∞ . Compute the asymptote information, any break away points, departure/arrival angles at any complex poles/zeros, and the jw-axis crossing points, if applicable. Determine the phase cross-over frequency in the Bode plot of $(s+1)/\{(s+6)(s+4)(s^2+2s+4)\}$.

- 8. A closed-loop system has step response given below.
 - a) Is this system a prototype second order system?
 - b) This system has one zero, do you think it is in the left or right half plane?_____
 - c) Is the system BIBO stable or unstable?
 - d) The rise time = _____, The delay time = _____.
 - e) The peak time = _____, The 2% settling time = _____
 - f) The percentage overshoot: _____.

9. Some controllers' frequency response plots are given below (either amplitude plot or phase plot). Label each plot with either PI, or PD, or Lead, or Lag.

10. A unity gain feedback control system has open-loop bode plot as shown below.