LNA Linearization Using Bipolar Transistors

Authors: Chunyu Xin and Edgar Sánchez-Sinencio

Analog & Mixed Signal Center Electrical Engineering Department Texas A&M University

Why Linearity So Important ?

Communication system always deals with interferences.

Unwanted non-linearity will :

- Compress amplified signal
- Desensitize front-end
- Generate harmonics (filter out)
- Generate in-band interference (IMD)
- Cross-modulation

Linearity Metrics

1dB compression:

Measure gain compression for large input signal

Measure inter-modulation behavior

Relationships between IIP3 and P1dB

□ For one tone test: IIP3-P1dB=10dB

□ For two tone test: IIP3-P1dB=15dB

Non-linearity Terms of MOS Device

Intrinsic MOS I-V characteristic:

Inversion Level	g_m	g_2	83	
Strong/moderate	$\frac{KV_{od}\left(2+\theta V_{od}\right)}{\left(1+\theta V_{od}\right)^2}$	$\frac{K}{\left(1+\theta V_{od}\right)^3}$	$-\frac{\theta K}{\left(1+\theta V_{od}\right)^4}$	
Weak	$\frac{I_{s0}}{\eta\phi_t}$	$\frac{I_{s0}}{2(\eta\phi_t)^2}$	$\frac{I_{s0}}{6(\eta\phi_t)^3}$	

Non-Linearity Analysis of Conventional Inductive Degenerated LNA

Review of Multi-Gated-Transistor Linearization

Original Configuration:

Alternate Configuration:

Proposed Method: Hybrid LNA

MOS in weak inversion has speed problem

MOS transistor in weak inversion acts like bipolar

- Bipolar available in TSMC 0.18 technology (not a parasitic BJT)
- UWhy not using that bipolar transistor to improve linearity?

Linearity Analysis of the BJT

Bipolar is more non-linear than MOS

Degeneration used to match the 3rd order non-linear term of MOST

3rd Order Cancellation Effect

MOS and BJT biased separately

□MOS in moderate inversion, BJT in active region

Effects on Input Impedance Matching and Noise

- BJT biased at low current: 320uA
- □ BJT noise contribution: 2.4%

Device	Noise ratio		
Source Resistance	60%		
MOS Transistor	14%		
Bipolar Transistor	2.4%		
Other	23.6%		

Biasing Temperature Profile

MOS biased by constant-gm
 BJT biased by a PTAT circuit

Experimental Results of the Proposed Linearized LNA

Active area: 390um x 290um

Frequency	2.7	GHz
Gain	6.4	dB
IIP3	14.5	dBm
NF	2.1	dB
Pd	8.9	mW

Extend to a Differential Version

- Single-ended suffers from small IIP2
 Single-ended suffers from small IIP2
- Out-of-band termination

$$\varepsilon(\Delta\omega, 2\omega) = g_3 - g_{oB}(\Delta\omega, 2\omega)$$

$$g_{oB}(\Delta\omega, 2\omega) = \frac{2}{3}g_2^2 \left[\frac{2}{g_m + g(\Delta\omega)} + \frac{1}{g_m + g(2\omega)}\right]$$

□ The 3rd order term of MOS and BJT differential pair has the same sign.

□ BJT is more non-linear than MOS

Less current for BJT to present same non-linearity as MOS

Cross-couple MOS and BJT differential pair will help

Extend to a Differential Version

- BJT pair contributes 15% of noise
- Larger noise figure: 3.4 dB
- Larger current dissipation: 10mA
- Better reverse isolation: 25 dB
- No need out-of-band termination

Experimental Results of the Proposed Differential LNA

IM3 Cancellation Demo

Measurement setup Measurement video clip shows the IM3 cancellation effect of BJT differential pair in the differential LNA.

Comparison Table

	Frequency	Gain	NF	IIP3	Pd	FOM
	GHz	dB	dB	dBm	mW	
Single-ended [1]	0.9	10	2.85	15.6	21.1	18.5
Single-ended [proposed]	2.7	6.4	2.1	14.5	8.9	22.8
Differential [2]	0.9	5	2.8	18	45	4.9
Differential [proposed]	2.5	10	3.4	12.3	19.8	7.2
BiCMOS [Simulated]	3	9.5	1.2	12	6.6	67

$$FOM = \frac{G \cdot IIP3}{(F-1)P_D}$$

Hybrid: Bipolar linearizes MOST

- Differential structure: no degradation on IIP2
- Better trade-offs between design parameters
- Good figure of merit