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Mixer Design

• Introduction to mixers
• Mixer metrics
• Mixer topologies
• Mixer performance analysis
• Mixer design issues
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What is a mixer
• Frequency translation device

– Convert RF frequency to a lower IF or base bandfor
easy signal processing in receivers

– Convert base band signal or IF frequency to a higher 
IF or RF frequency for efficient transmission in 
transmitters

• Creative use of nonlinearity or time-variance
– These are usually harmful and unwanted
– They generates frequencies not present at input

• Used together with appropriate filtering
– Remove unwanted frequencies
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Two operation mechanisms

• Nonlinear transfer function
– Use device nonlinearities creatively!
– Intermodulation creates the desired 

frequency and unwanted frequencies
• Switching or sampling

– A time-varying process 
– Preferred; fewer spurs
– Active mixers
– Passive mixers
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An ideal nonlinearity mixer
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Commutating switch mixer
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A non-ideal mixer
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• Conversion gain – lowers noise impact of 
following stages

• Noise Figure – impacts receiver sensitivity
• Port isolation – want to minimize interaction 

between the RF, IF, and LO ports
• Linearity (IIP3) – impacts receiver blocking 

performance
• Spurious response
• Power match – want max voltage gain rather 

than power match for integrated designs
• Power – want low power dissipation
• Sensitivity to process/temp variations – need to 

make it manufacturable in high volume

Mixer Metrics
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Conversion Gain
• Conversion gain or loss is the ratio of the 

desired IF output (voltage or power) to the RF 
input signal value ( voltage or power).

signal RF  theof  voltager.m.s.
signal IF  theof  voltager.m.s.Gain  Conversion Voltage =

source  thefrompower  Available
load  the todeliveredpower  IF Gain  ConversionPower =

If the input impedance and the load impedance of the 
mixer are both equal to the source impedance, then the 
volltage conversion gain and the power conversion gain of 
the mixer will be the same.
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Noise Figures: SSB vs DSB 
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SSB Noise Figure

• Broadband noise from mixer or front end filter will be 
located in both image and desired bands

• Noise from both image and desired bands will combine 
in desired channel at IF output
– Channel filter cannot remove this 
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• For zero IF, there is no image band
– Noise from positive and negative frequencies combine, but the 

signals combine as well
• DSB noise figure is 3 dB lower than SSB noise figure 

– DSB noise figure often quoted since it sounds better 

DSB Noise Figure
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Port-to-Port Isolations

RF IF

LO

• Isolation
– Isolation between RF, LO and IF ports
– LO/RF and LO/IF isolations are the most 

important features.
– Reducing LO leakage to other ports can be 

solved by filtering.
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LO Feedthrough

• feedthrough from the LO port to IF output port due to 
parasitic capacitance, power supply coupling, etc.

• Often significant due to strong LO output signal 
– If large, can potentially desensitize the receiver due to the extra 

dynamic range consumed at the IF output
– If small, can generally be removed by filter at IF output 
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Reverse LO Feedthrough

• Reverse feedthrough from the LO port to RF 
input port due to parasitic capacitance, etc.
– If large, and LNA doesn’t provide adequate isolation, 

then LO energy can leak out of antenna and violate 
emission standards for radio

– Must insure that isolate to antenna is adequate
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Self-Mixing of Reverse LO Feedthrough

• LO component in the RF input can pass back 
through the mixer and be modulated by the LO 
signal
– DC and 2fo component created at IF output 
– Of no consequence for a heterodyne system, but can 

cause problems for homodyne systems (i.e., zero IF)
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Nonlinearity in Mixers

• Ignoring dynamic effects, three nonlinearities around an 
ideal mixer

• Nonlinearity A: same impact as LNA nonlinearity
• Nonlinearity B: change the spectrum of LO signal

– Cause additional mixing that must be analyzed
– Change conversion gain somewhat

• Nonlinearity C: cause self mixing of IF output
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Focus on Nonlinearity in RF Input Path

• Nonlinearity B not detrimental in most cases
– LO signal often a square wave anyway

• Nonlinearity C avoidable with linear loads
• Nonlinearity A can hamper rejection of interferers

– Characterize with IIP3 as with LNA designs
– Use two-tone test to measure (similar to LNA)
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Spurious Response
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Mixer topologies

• Discrete implementations:
– Single-diode and diode-ring mixers

• IC implementations:
– MOSFET passive mixer
– Active mixers
– Gilbert-cell based mixer
– Square law mixer
– Sub-sampling mixer
– Harmonic mixer
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Single-diode passive mixer

• Simplest and oldest passive mixer 
• The output RLC tank tuned to match IF
• Input = sum of RF, LO and DC bias
• No port isolation and no conversion gain.
• Extremely useful at very high frequency (millimeter wave band) 
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• Poor gain
• Good LO-IF isolation
• Good LO-RF isolation
• Poor RF-IF isolation
• Attractive for very high frequency applications where 

transistors are slow.
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• Poor gain (typically -6dB)
• Good LO-IF LO-RF RF-IF isolation
• Good linearity and dynamic range
• Attractive for very high frequency applications where 

transistors are slow.
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CMOS Passive Mixer

• M1 through M4 act as switches

+VLO −VLOM1 M2

−VLO M4 +VLOM3

RS

VIF
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CMOS Passive Mixer

• Use switches to perform the mixing operation
• No bias current required 
• Allows low power operation to be achieved 
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CMOS Passive Mixer 
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• Non-50% duty cycle of LO results in no DC offsets!!
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CMOS Passive Mixer with Biasing 
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A Highly Linear CMOS Mixer

• Transistors are alternated between the off and triode regions by the 
LO signal 

• RF signal varies resistance of channel when in triode
• Large bias required on RF inputs to achieve triode operation

– High linearity achieved, but very poor noise figure
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Simple Switching Mixer (Single Balanced Mixer)

• The transistor M1 
converts the RF 
voltage signal to the 
current signal.

• Transistors M2 and 
M3 commute the 
current between the 
two branches.
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Single balanced active mixer, BJT
• Single-ended input
• Differential LO
• Differential output
• QB provides gain 

for vin

• Q1 and Q2 steer the 
current back and 
forth at ωLO

LO+ LO-

vin + DC
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Double Balanced Mixer

• Strong LO-IF feed suppressed by double balanced mixer.
• All the even harmonics cancelled.
• All the odd harmonics  doubled (including the signal).
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Gilbert Mixer

• Use a differential pair to achieve the transconductor
implementation

• This is the preferred mixer implementation for most radio 
systems!
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Double balanced mixer, BJT
• Basically two SB mixers

– One gets +vin/2, the other gets –vin/2 
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Mixers based on MOS square law
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Practical Square Law Mixers
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Practical Bipolar Mixer
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MOSFET Mixer (with impedance matching)
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Sub-sampling Mixer

• Properly designed track-and-hold circuit works 
as sub-sampling mixer.

• The sampling clock’s jitter must be very small
• Noise folding leads to large mixer noise figure.
• High linearity
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Harmonic Mixer

• Harmonic mixer has low self-mixing DC offset, very 
attractive for direct conversion application.

• The RF single will mix with the second harmonic of the 
LO. So the LO can run at half rate, which makes VCO 
design easier.

• Because of the harmonic mixing, conversion gain is 
usually small

•Emitter-coupled BJTs work as 
two limiters.
•Odd symmetry suppress even 
order distortion eg LO selfmixing.
•Small RF signal modulates zero 
crossing of large LO signal. 
•Output rectangular wave in PWM
•LPF demodulate the PWM


